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In this paper we introduce a notion of twisted coefficients M for a diagram of
spaces X, and define the cohomology groups H*(X, M). We prove the invariance
of this cohomology under weak homotopy equivalence of diagrams (Theorem 2.3,
Corollary 2.6), as well as a Whitehead Theorem for diagrams of spaces (Corollary
3.8). We also study induction and restriction of diagrams of spaces along a change
of indexing categories. We prove that the cohomology of the induced diagram is
isomorphic to the cohomology of the original diagram with restricted coefficients
(Corollary 3.4), and we relate the cohomology of a given diagram to that of its
restriction via a spectral sequence (Corollary 3.7). These results are of the form of
the Shapiro lemma in group cohomology (see e.g. [Bn, Ec, We]).

These results belong to the homotopy theory of diagrams of spaces, which has
recently been studied by various authors; cf. for example [D, DZ, DKI, DK2,
H]. However, our motivation for proving a Whitehead theorem and induction-
restriction theorems comes from equivariant topology. A space X with an action by
a (discrete) group G gives rise to the diagram X(-) of fixed-point spaces XH, for all
subgroups H ~ G. The Bredon cohomology of X, as defined in [Br], is isomorphic
to the cohomology of the diagram X(-). The Whitehead Theorem for diagrams of
spaces will be seen to imply an equivariant Whitehead Theorem, while induction
and restriction along a group homomorphism or along a suitable subcategory of
the orbit category explain, in a unified way, the relation of the cohomology of
fixed-point spaces and of orbit spaces to Bredon cohomology. These results on
equivariant topology are stated in a first, introductory section. Sections 2 and 3 are

* An earlier version of this paper appeared as preprint 686 (1991), Mathematical Institute, Uni-
versity of Utrecht.
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concemed with cohomology of diagrams, while Section 4 provides the proofs of
the results stated in Section 1. We wish to emphasize that some of the results in
Section 1 can also be proved in a more ad hoc way. However, our approach of using
diagrams of spaces provides a uniform treatment, and opens further possibilities by
considering other subcategories of the orbit category. In Section 5 we show, by way
of illustration, that our results on induction and restriction also relate to splitting
theorems for Bredon cohomology with coefficients in a Mackey functor. The proof
of our main technical result, the Invariance Theorem 2.3, has been deferred until
the last Section 6. There are two appendices, one providing background for the
relation between the homotopy of spaces, of simplical sets, and of small categories,
the other on cohomology of small categories.

Our methods also apply to Bredon homology and homology of diagrams. The
details for homology are completely analogous to those for cohomology, and we
have refrained from spelling them out.

1. Some results for G-spaces

The techniques used in this paper are most naturally explained in the context of
diagrams of spaces; i.e. (contravariant) functors from some small category into
a category of spaces. Our motivation, however, comes from the study of spaces
with a group action. Indeed, if a group G acts on a space X, then, up to (weak)
G-homotopy equivalence, X can be recovered from a diagram of spaces defined
over the orbit category O((G) (the category of all transitive G-sets and all G-maps
between them); for details, see e.g. [El] or §4 below. The purpose of this section is
to outline some of the consequences of our results for the special case of G-spaces.
Full proofs of these consequences will be given in §4 below.

For a G-space X, Bredon introduced the cohomology of X with coefficients
in a functor M : O(G) OP ~ Ab with values in the category Ab of abelian groups
(briefly, M is said to be an O((G)-abelian group); see [B, Br, tD2]. Such a coefficient
system M depends on the orbit category O(G) but not on X, and should be regarded
as constant, from the point of view of G-spaces. There is also a more general notion
of local or twisted coefficient system M on a G-space X, introduced in [MS] and
explicitly described in §4 below. Roughly speaking, such a local coefficient system
M is a contravariant abelian group-valued functor defined on a category built up
from O(G) together with the fundamental groupoids of all the fixed-point spaces
XH. (This is unrelated to the "local" coefficient systems occurring in Bredon’s
book.) Similar coefficients have been studied by Moller in [M0]. For such a system
M, we introduced in [MS] cohomology groups Hâ(X, M), which should be
viewed as a twisted version of Bredon cohomology. (The definition of these groups
is reviewed in §4 below.) Recall that, for G-spaces X and Y, a G-map f : Y - X
is said to be a weak G-homotopy equivalence if, for each subgroup H C G, the
map f induces an ordinary weak homotopy equivalence YH -+ XH between fixed
point sets. In case X and Y are (of the G-homotopy type of) G - CW -complexes,
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such a weak G-homotopy equivalence is automatically a G-homotopy equivalence.
As a consequence of our results for diagrams of spaces, we obtain the following
theorem. (See [MS] or §4 for the definition of the fundamental groupoid TIG(X)
of a G-space X.)

THEOREM 1.1 (Equivariant Whitehead Theorem). A G-map f : Y - X is a
weak G-homotopy equivalence iff it induces an equivalence of fundamental
groupoids 03A0G(Y) ~ TIG(X), as well as an isomorphism
Hâ(X, M) -=+ -ff’ (Y, f* M)for every local system of coefficients M on X.

The "only if" - part of this theorem is proved in [MS]. The key technical result
of this paper (Theorem 2.3) is a version of this "only if"-part for diagrams of
categories or spaces; it will be applied in our general treatment of induction and
restriction in §3 below. There we will consider general constructions on diagrams
of spaces X and coefficient systems M, and derive an isomorphism having the
form of a "Shapiro lemma",

H*(induced(X), M) ~ H*(X, restricted(M)), (1)

as well as a spectral sequence of the form

E2’q = HP(X, Rq(induce)(M)) ~ Hp+q(restricted(X), M), (2)

where Rq (induce) is the q-th derived functor of the induction functor on coeffi-
cients.

To illustrate the meaning of (1) and (2), we will now give their "translations"
in various special cases related to the context of spaces with group actions.

The simplest case is where the induction and restriction are along a homomor-
phism of groups p : G - AB For such a ~ and a G - CW-complex X, the induced
K-space will be shown to be K-homotopy equivalent to K G X. Any twisted
coefficient system M on the K-space K x G X restricts in a natural way to a similar
such system ~*(M) on the G-space X, essentially by pullback along the natural
map X - K X G X. (When M is constant, i.e., M : O(K) op ~ Ab, then ç* M is
just the composition of M with the functor O(G) ~ 0(-li7) induced by ~.) In this
case, the isomorphism (1) takes the following form:

PROPOSITION 1.2. For any G - CW-complex X and any twisted system of
coefficients M on K X G X, there is a natural isomorphism

For example, if H is a normal subgroup of G, then, for the quotient map
G ~ G / H, this proposition gives an isomorphism
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When H = G this isomorphism (3) reduces to an isomorphism

where con(A) : O(G) op ~ Ab is the constant functor with value the abelian
group A. This isomorphism (4) is known, and can be seen as a consequence of the
representability of Bredon cohomology with constant coefficients; see [B], [El].

For a group homomorphism cp : G ~ K, there is also an evident restriction
functor from K-spaces to G-spaces, and an induction functor
CP* : (O(G)-abelian groups) ~ (0(A")-abelian groups), defined as follows. For
M : O(G) op ~ Ab and any object KIL of O(K),

where the cosets G/Hi range over a decomposition of the G-set A"/Z into orbits.
This functor Cp* is exact, and the spectral sequence (2) collapses to an isomorphism
in this case. More generally, for a K-space Y the functor ~* can be lifted to twisted
coefficients, and we will prove:

PROPOSITION 1.3. Let cp : G ~ K be a group homomorphism, and let Y be a
K-space. For any twisted system of coefficients AI on y as a G-space, there is a
canonical isomorphism

Besides induction and restriction along a group homomorphism, there are many
other ways of inducing and restricting. For example, for the functor 1 ~ O(G) on
the one-point category 1 with as value an orbit G/K, our general induction and
restriction operations take the following form: the restriction of a G-space X is the
fixed-point set XK, and for any abelian group A the induced O(G)-abelian group
ind(A) is given by ind(A)(G/H) = Hom(Z[HomG(G/K, G/H)], A). In this case
the spectral sequence (2) collapses to an isomorphism

This shows that the Bredon cohomology groups "contain" the cohomology groups
of all the fixed-point sets in X. The same holds for twisted coefficients. Indeed, in
§4 we will show that if one replaces the functor 1 ~ O(G) by a suitable inclusion
of the fundamental groupoid of XK into the "equivariant" fundamental groupoid
RG(X) (defined in §4 below), one obtains the following result:

PROPOSITION 1.4. Let X be a G-space. For any subgroup K Ç G and any
twisted system of coefficients A on the fixed-point space XK, there is a natural
isomorphism
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We will also give an explicit formula for this system ind(A) in §4 below. (Cf.
the proof of Proposition 1.4 there.)

Proposition 1.4 is a key ingredient of the proof of the "if" part of the equivariant
Whitehead Theorem (Theorem 1.1). Indeed, from Proposition 1.4 it follows that if
a G-map f : Y - X induces isomorphisms in (our) twisted Bredon cohomology,
then for any subgroup H C G the map fH : YH --+ X H between fixed-point
sets induces isomorphisms in (ordinary) twisted cohomology. The "if"-part of
Theorem 1.1 will then be seen to follow easily from the classical (non-equivariant)
Whitehead theorem; cf. the proof of Corollary 3.8 below.

For a final example of induction/restriction in this section, we also write G for
the category with one object and elements of G as morphisms, and consider the
inclusion G - O((G) sending the one object to the orbit G/1. A G-space X can be
considered as a diagram of spaces indexed by the category G, and the cohomology
of this diagram X with coefficients in a G-module A is simply Htw ( EG G X, A),
with twisting arising from the projection EG x G X - BG. We will show in
Section 4 that, when the action by G on X is free, the isomorphism (1) takes the
following form:

PROPOSITION 1.5. For any free G-space X and any O(G) -abelian group M
there is a natural isomorphism

This shows that for free G-spaces, Bredon cohomology reduces to (twisted)
Borel cohomology.

2. Twisted cohomology for diagrams of spaces

Let B be a fixed small category. A diagram of spaces, indexed by B, is a functor X :
B op ~ Top, where Top is the category of topological spaces. The purpose of this
section is to define the cohomology of such a diagram with "local" coefficients, and
state the invariance of this cohomology under suitable weak homotopy equivalences
between diagrams (Corollary 2.6 below). This Invariance Theorem, and analogous
invariance theorems for simplicial sets and for categories, play a central role in this
paper. However, the proofs of these results are somewhat technical, and will only
be given in Section 6 below.

We will make repeated use of the fact that the categories Cat, Sset and Top, of
small categories, simplicial sets and topological spaces, respectively, are all equiv-
alent from a homotopical point of view. Indeed, one can pass freely between these
categories, using functorial constructions as displayed in the following diagram:
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The functors in this diagram are all standard, and their precise definitions will
be recalled in Appendix A at the end of this paper. What is important here is that
they are mutually inverse up to weak homotopy equivalence (as proved in the
appendix).

The construction of the category f0 Z from any simplicial set Z (the upper left
functor in (1)) is a special case of the so-called Grothendieck construction, at least
if we view sets as "discrete" categories. This construction assembles a diagram of
categories F : 3 OP - Cat into one large category, denoted

The objects of this category fjl F are pairs (B.x), where B is an object of B and
x is an object of the category F(B). An arrow (B, x) ~ (B’, x’) between two
such objects of £ F is a pair (a. u), where a : B - B’ is an arrow in B while
u : x - F(03B1)(x’) is an arrow in F(B). Composition of such arrows is defined in
the evident way.

We will now use this Grothendieck construction to define twisted cohomology
of diagrams of spaces.

Recall first that for an arbitrary (small) category C , and for any contravariant
abelian group-valued functor M on C,

one can define the cohomology groups Hn(C,M) for any integer n &#x3E; 0 (see
Appendix B). In general, these cohomology groups are invariant under a weak
homotopy equivalence of categories C’ ~ C only in case the functor M is
morphism-inverting (cf. Appendix B (5)). Our main Invariance Theorem 2.3 states
that they are also invariant under weaker conditions on M, in the special case where
the map C - C is obtained by "integrating" (as in the Grothendieck construction)
a pointwise weak equivalence.

To express the conditions on the coefficients M, let F : B OP ~ Cat be a diagram
of categories as above. For any small category C, the fundamental groupoid II (C)
of C is obtained by formally inverting all the arrows in C. (This groupoid can also be
constructed as the edge-path groupoid of the simplicial set NC ; cf. [GZ, pp 10, 39].
It comes equipped with a functor C - TI( C). By applying this construction to each
of the categories F(B) in our diagram F, one obtains a diagram of groupoids 03A0(F)



255

and a natural transformation of diagram s F - 03A0(F). By integration (Grothendieck
construction) one next obtains a functor f3 F ~ ~B fl(F) . We will call fli II(F)
the fundamental groupoid of the diagram F, and denote it

It should be emphasized that this category HIIF is not itself a groupoid, but an
integrated diagram of groupoids, or (in Grothendieck’s language) a fibered groupoid
over the base category B (fibré en groupoide).
We can now define local coefficients:

DEFINITION 2.1. A local (or twisted) system of coefficients on a diagram
F : B OP ~ Cat of categories is a functor M : (~B F) op ~ Ab which factors, up to
natural isomorphism, through the fundamental groupoid of F,

The cohomology of F with respect to such a system of coefficients M is defined
to be the cohomology of the category fa F:

DEFINITION 2.2. A natural transformation v : G ~ F, between two diagrams
of categories F and G : B OP ~ Cat, is said to be a weak equivalence if, for any
object B E B, the functor v(B) : G(B) ~ F( B ) is a weak homotopy equivalence
between categories (as defined in Appendix A).

A natural transformation v : G - F induces, for any local system M on F, an
evident local system v*(F) on G.

THEOREM 2.3 (Invariance Theorem). A weak equivalence v : G ~ F between
diagrams of categories induces a natural isomorphism

for any local system of coefficients M on F.

REMARK 2.4. From a diagram of categories F : B °P ~ Cat, one obtains a dia-
gram of spaces B o F : IB °p ~ Top, by pointwise applying the classifying space
functor B of (2.1). It is well-known that the classifying space B(~B F) of the
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Grothendieck construction is a model for the homotopy colimit of this diagram of
spaces. (An equivalent statement for simplicial sets is proved in [T].) In particular,
a weak equivalence v as in the theorem induces a weak equivalence of categories
~B G ~ f3 F. It follows from Appendix B (5) that v induces isomorphisms in coho-
mology for any morphism-inverting functor M : (~B F) °p ~ Ab. We emphasize
that the isomorphism in Theorem 2.3 is much more general, since a local coefficient
system M on the diagram F need not at all be morphism-inverting on the category
fa F. (For example, any functor A : fiS op ~ Ab yields, by composition, a local
system (~B F) op ~ E OP ~ Ab.) On the other hand, Theorem 2.3 need not hold
for an arbitrary coefficient system M : f3 F OP --+ Ab. Therefore we reserve the
notation H*(F, M) (as opposed to H*(~B F, M ) ) for local coefficients.

Using the functors in diagram (1), and the fact that they are mutually weakly
homotopy inverse, Theorem 2.3 immediately gives similar invariance theorems
for diagrams of simplicial sets and for diagrams of spaces. We now state these
explicitly.

Let Z be a diagram of simplicial sets, i.e., a functor Z : fiS op - Sset. Using the
functor f0394 : S set ~ Cat of (1), one obtains a diagram of categories
fo Z : E OP ~ Cat. We define the fundamental groupoid of Z, in terms of the
fundamental groupoid of a diagram of categories just considered, as

A local system of coefficients on Z is then (by definition) a local system of coeffi-
cients on the diagram of categories ~0394 Z, and we will denote the associated coho-
mology groups by H*(Z, M). (So by definition, H*(Z, M) = H*(~0394 Z, M) =
H*(~B~0394Z,M).
A natural transformation ~ : Z ~ W between two diagrams of simplicial sets

is said to be a weak equivalence if, for any object B E fiS, the map
~(B) : Z(B) ~ W(B) is a weak equivalence of simplicial sets. As explained
in Appendix A, this is equivalent to the condition that ~0394 ~ : ~0394 Z ~ ~0394 W is
a weak equivalence between diagrams of categories. Thus from Theorem 2.3 we
obtain the following corollary.

COROLLARY 2.5. A weak equivalence ~:Z ~ W between diagrams of simpli-
cial sets induces an isomorphism

for any local coefficient system M on W.

In a similar fashion, one can use the functors in (1) to derive from Theorem 2.3
an invariance theorem for diagrams of spaces. Explicitly, from a diagram of spaces
X : B OP ~ Top, one obtains a diagram AX : B OP - Cat by composing X with
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the functor A : Top ~ Cat in (1). A local system of coefficients on X is then,
by definition, such a system on this diagram of categories AX, as defined in 2.1
(see also 2.7 below). For such a local system M, we define the cohomology groups
H*(X, M) as H*(X, M) = H*(0394X,M). Now call a natural transformation
f : X - Y between two diagrams of spaces a weak equivalence if for each object
B E B, the map f(B) : X(B) ~ Y(B) is a weak homotopy equivalence of
topological spaces in the usual sense. By Appendix A, this is equivalent to the
condition that 0394f : 0394X ~ AY is a weak equivalence of diagrams of categories.
Thus from 2.3 one obtains:

COROLLARY 2.6. A weak equivalence f : X ~ Y between diagrams of spaces
induces an isomorphism

for any local coefficient system M on Y.

REMARK 2.7. For a diagram of simplicial sets Z, we defined local coefficients on
Z using the category f Z. But note that, for any simplicial set S and its fundamental
groupoid H(S), there is a natural equivalence of groupoids 03A0(~S) ~ H(S).
(One way to see this is to use the weak homotopy equivalence p : N(~S) ~
,S of Appendix A). Consequently, for a diagram Z as above, there is a natural
equivalence of diagrams of groupoids 03A0(~0394Z) ~ IIG. Thus local coefficient on
Z can equivalently be described as abelian group valued contravariant functors on
~B(03A0Z), rather than on the (equivalent but larger) category ~B 03A0(~0394 Z).
A similar remark applies to a diagram of spaces X, to the effect that local

coefficients on X are essentially abelian group-valued functors on fJJB IIX, where
IIX is the diagram of groupoids on B given by 03A0X(B) = 03A0(X(B)) = the
fundamental groupoidof X(B).
REMARK 2.8. Consider the case where the index category B is the one-object
category, so that a diagram X of spaces on B is just a single space. A local
system on X is then a twisted system of coefficients in the usual sense. The
weak homotopy equivalence B0394X ~ X of Appendix A, together with the fact
that II*(C, A) = H*tw(BC, A) for any category C and any local system A on
C (Appendix B (4)), show that our notion of cohomology with local coefficients
H*(X, A) agrees with the usual one in the case where B is the one-point category.
Corollary 2.6 reduces in this special case to the familiar invariance of twisted
cohomology under weak homotopy equivalence of spaces.

3. Induction and restriction for diagrams

In this section we will describe the general operations of induction and restriction
for diagrams of categories and of spaces. The main results of this section, Theorems
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3.2 and 3.5 (together with their corollaries 3.4, 3.7), explain how these operations
relate to twisted cohomology. We will also derive a general Whitehead Theorem
for diagrams of spaces (Corollary 3.8). The Invariance Theorem 2.3, together with
the analogous statements 2.5 and 2.6, will be seen to play an essential role.
Let (p C be a functor between small categories. Recall that a system of

abelian coefficients on C, i.e., a functor M : C op ~ Ab, induces a similar system
cp* M on D, simply by composition (so ~*(M)(D) = M(~D), for any object
D E D). In the other direction, from a functor B : D op ~ Ab one can construct a
functor ~*(N) : C OP ~ Ab, by defining, for each object C E C,

Here, for a fixed object C, ~/C is the "comma-category" with as objects the pairs
(D, a : ~(D) ~ C) and as arrows (D, a) - (D’, a’) those arrows 03B2 : D ~ D’
in D for which 03B1’ o ~(03B2) = a in C. Furthermore, 03C9C : p /C - D is the "forgetful"
functor ( D, a ) - D.

There is a similar dual comma-category C/~, with as objects the pairs
( D, a : C - ~(D)), and a similar forgetful functor which we denote again by
03C9C : C /p - D. It is this latter comma category which we use to define simi-
lar operations for diagrams of categories and of spaces. Specifically, the functor
ç : D - C yields for a diagram of categories F : C OP ~ Cat, indexed by C,
an evident diagram ~*(F) indexed by D, by composition with p (so
~*(F)(D) = F(~D)). In the other direction, we define, from a diagram
G ID OP ~ Cat, a new diagram cp! (G) : C op ---+ Cat, by setting, for each object
C ~ C,

Recall here that the integral sign refers to the Grothendieck construction, described
in Section 2. For a morphism a : C’ ~ C in C, there is an evident functor
a* : C/~ ~ C’/~ defined by composition, for which oc, o 03B1* = 03C9C. Thus such
an 03B1 induces a functor CP!(G)(Q) : ~!(G)(C) ~ ~!(G)(C’), showing that pj(G)
is indeed a contravariant functor on C.

For diagrams of spaces we define similar functors ~* and cp!, except that we use
homotopy colimits instead of the Grothendieck construction. Thus, for a diagram
of spaces X : C OP ~ Top, we denote by ~*(X) the diagram D op ~ Top obtained
by composition with ~. And for a diagram of spaces Y : D op ~ Top, we construct
a diagram ~!(Y) : C op ~ Top, by defining 

REMARK 3.1. These operations cp* and ~! respect the passage between cate-
gories and spaces in diagram (2.1). More explicitly, for any diagrams of
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categories F : C OP ~ Cat and G : D op ~ Cat, and for any diagrams of spaces
X : C op ~ Top and Y : D op ~ Top, one has the identities

and natural weak homotopy equivalences of diagrams

For details, we refer to the end of Appendix A.
Consider again a functor rp : D ~ C and a diagram of categories G on D. Then

p lifts to a functor

defined on an object (D, x) E ~D G by (D, x) = (~(D),(D,id,x));the definition
of  is extended to arrows in the evident way. Thus if M : (fe ~!G) op ~ Ab is any
system of abelian coefficients on the category fc ~!(G), we obtain by restriction
along Ç? a system Ç?*(M) on ~D G. However, it is easy to see that if M is a local
system on the diagram ~!(G), then *(M) is a local system on G.

THEOREM 3.2. Let rp : ID ~ C be a functor between small categories. For any
diagram of categories G on D and any local system of coefficients M on ~!(G),
there is a natural isomorphism

REMARK 3.3. Recall that we use the notation H*(~!G, M) only for local systems
of coefficients. However, Theorem 3.2 actually holds for any coefficient system on

fe ~! (G), and we will prove the theorem in this generality. Of course, the Invariance
Theorem 2.3 allows us to deduce a similar result for spaces (Corollary 3.4 below)
only for local coefficients.

Proof. Consider the functor c : fc ~!(G) ~ ~D G, defined on objects by

For any coefficients M : (~C~!(G)) op ~ Ab, there is a Grothendieck spectral
sequence of the form

see Appendix B. By (11) of Appendix B, the coefficient system occurring in the
E2-term is the functor on ~D G with as value at an object (D, x) E ~D G the abelian
group Hq(~/(D,x),03C9*(D,x)(M)). (Here, as before, 03C9(D,x) denotes the forgetful
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functor ~/(D, x) ~ fc ~!(G).) But notice that the category ~/(D, x) has a terminal
object t(D,x), given by the object (~(D), (D, id,x)) = (D,x) of ~C ~!(G) and
the identity map ~(D, x) ~ (D. x). Hence

and the spectral sequence collapses to the desired isomorphism.

COROLLARY 3.4. Let ~ : D ~ C be a functor, as above. For any diagram of
spaces Y on D and any local system of coefficients M on ~!(Y), there is a local
coefficient system Ç?*(M) on Y and a natural isomorphism

Proof. The twisted cohomology of Y is defined as the cohomology of the dia-
gram of categories AY. The local system M on ~!(Y) gives a similar system on
~!(0394Y), by the weak equivalence 0394~!(Y) ~ ~!(0394Y) of (5) above. From this we
obtain a local system *(M) on A (Y), and an isomorphism H*(~!(0394Y), M) ~
H*(Y,*M) as in Theorem 3.2. Finally, the Invariance Theorem 2.3 and the
weak equivalence 0394~!(Y) ~ ~!(0394Y) give an isomorphism H*(~!(0394Y), M) ~
H*(~!(Y), M).

Next, consider a functor ~ : D ~ C as before, and a diagram of categories
F : C OP ~ Cat. A coefficient system M : (f,5 ~*(F) op ~ Ab yields, for each
object ( C, x ) of fe F, a coefficient system llilx : (~/C) op ~ Ab, defined for each
object (D, a : ~(D) ~ C) of ~/C by

Hence there are cohomology groups Hq(~/C, Mx) (as in Appendix B), and the
assignment (C,x) ~ Hq(~/C, Mx) defines a coefficient system on Je F, denoted

With this definition, we have the following result:

THEOREM 3.5. Let cp : D - C be a functor, as before. For any diagram of
categories F on C and any local system of coefficients M on rp* F, the coefficient
system Hq(~/(-), M) on F is local for each q &#x3E; 0. Furthermore, there is a
natural spectral sequence
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Proof. The functor rp : D ~ C has an evident lifting

and we consider the Grothendieck spectral sequence (Appendix B) for this func-
tor ~. This spectral sequence converges to H*(~*(F), M), and the E2-term is
Hp(~C F, Rq*(M)). Moreover, by (11) of Appendix B, there is a natural isomor-
phism

for each object (C, x) of fc F. Unraveling of the definitions reveals that

where Fx : (~/C) op ~ Cat is the functor defined on objects by Fx(D,03B1) =
F(~(D))/F(03B1)(x). In particular, each category Fx(D,03B1) has a terminal object.
Thus the unique transformation Fx - 1, from Fx to the constant diagram on cp j C
with value the trivial one-object category 1, is a weak equivalence of diagrams.

Next, the restriction of the local coefficient system M on ~D cp* F, along the
forgetful functor flc Fx = ~/(C, x) ~ ~D ~*F, gives a local coefficient system
on the diagram Fx. It is easy to see that this system is isomorphic to p*x(Mx), where
lVlx is the system on ~/C defined in (6) above, and p, : fcplc Fx - cpjC is the
projection. Thus, by the invariance Theorem 2.3, the weak equivalence Fx ~ 1
induces a natural isomorphism H*(/(C,x), 03C9*(C,x)M) ~ H*(cp/C,Mx). This
shows that 

To conclude the proof, it therefore remains to be shown that the system
Hq(~/(-), M) is a local system on F. This will follow once we can show that,
for any object C ~ C and any arrow u : x ~ y in F(C), the arrow (id, u) :
(C, x) ~ (C, y) yields an isomorphism Hq(~/C, My) ~ Hq(~/C, Mx). But, by
hypothesis, M is local on ~*F and so the map My ~ Mx is an isomorphism of
coefficients on rp je. Finally, the naturality of the spectral sequence (in M and,
more interestingly, in F) follows from the naturality of the Grothendieck spectral
sequence (Appendix B).

REMARK 3.6. The coefficient system 1tq( rpj( -), M) of Theorem 3.5 has a sim-
pler description if we assume that M is "constant". By this we mean that M :
(Ja ~*(F)) op - Ab factors up to isomorphism through the projection p in the
diagram below, say as M ~ 03C1*(N).
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In this case it is clear from the definition (7) of 1tq that

If, in addition, the induction functor w* in (1) is exact, the spectral sequence
collapses to an isomorphism

More generally, the functor p induces a functor , as in

Now if we view a local coefficient system on cp*( F) as a functor
M : 03A0D(~*F) op ~ Ab, then, as in the proof of the theorem, one can derive an
isomorphism of the form (8) for the functor :

Here Hq(~/(-), M) : (~C II(F)) °p - Ab is defined in the same way as 1tq in
(7), and spelling out this definition yields that

We will use this isomorphism in the next section for the proof of Proposition 1.3.
One can now use the invariance theorem to derive a "topological" version of

Theorem 3.5, in the same way that Corollary 3.4 was derived from Theorem 3.2.

COROLLARY 3.7. Let ~ : ID ~ CC be a functor, as before. For any diagram of
spaces X on C, and any local system of coefficients M on ~*(X), there is a natural
spectral sequence

The coefficient system Hq(~/(-), M) occurring in this corollary is defined in
exactly the same way as that for diagrams of categories (cf. (7)).

Recall that, for a diagram X of spaces on a category C, the "fundamental
groupoid" flc (X) is defined as the category Je HA(X). As noted in Remark 2.7,
this is the same (up to a canonical equivalence of categories) as the total category
Je II(X) obtained from the diagram 03A0(X) of all fundamental groupoids II(X (C)).
We can now deduce the following Whitehead Theorem for diagrams of spaces.
COROLLARY 3.8. Let X and Y be diagrams of spaces on a category (C. A map f :
Y - X is a weak homotopy equivalence of diagrams iff f induces an equivalence
offundamental groupoids 03A0C(Y) ~ Hc (X) as well as an isomorphism

for any local coefficient system on X.
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Proof. (~) This is an immediate consequence of the Invariance Theorem (cf.
Corollary 2.6). (G) Suppose that f : Y ~ X gives an equivalence
03A0C(f) : 03A0C(Y) ~ 03A0C(X) as well as isomorphisms in twisted cohomology. Since
TIe(f) is an equivalence, it follows for each object C ~ C that
f(C) : Y(C) - X(C) gives an equivalence of fundamental groupoids. We
claim that f (C) also induces isomorphisms in (ordinary) twisted cohomology
of the spaces X(C) and Y(C). This would complete the proof since the "non-
parametrized" classical Whitehead theorem then shows that f(C) is a weak homo-
topy equivalence. To verify the claim, let A be a local system of coefficients on
X(C) (thus A is a functor (0394X(C)) op ~ Ab which factors through the last vertex
map AX(C) -+ 03A0X(C)).Consider the functor ~ : 1 ~ C which sends the unique
object to C E C. Then ~*(X) = X(C), and by Corollary 3.7 we have a spectral
sequence

which is natural in X. Since Hq(~/(-), A) is local, the map f : Y - X gives an
isomorphism Ep,q2(X) ~ Ef,q(y), by the assumption. It follows that the homo-
morphism fà : Hp+q(X(C), A) ~ H*(Y( C), f(C)*(A)) between the abutments
is also an isomorphism, as required.

REMARK 3.9. Actually the spectral sequence (11) in the proof of Corollary 3.8
collapses. To see this, note that, by definition (7), the value of Hq(~/(-), A)
at an object (D, 03C3 : 0394n - X(D)) of the category ~C0394(X) is Hq(~/D, A03C3).
But ~/D is just the discrete category of arrows u : C ~ D, and A03C3 sends
such an arrow to A(X(03B3) o Q). Thus H0(~/D, A03C3) ~ 03A003B3:C~DA(X(03B30 o u), and
consequently H0(~/(-),?) is an exact functor. This shows that its right derived
functor Hq(~/(-), ?) vanishes for q &#x3E; 0. Hence we have an isomorphism

4. Applications to G-spaces

In this section we will apply our results conceming diagrams of spaces to spaces
equipped with an action by a group G. Write O((G) for the category whose objects
are the left G-sets G/H, for any subgroup H C G, and whose morphisms are the
G-equivariant maps. For a G-space X one obtains an 0((?)-diagrams of spaces
(D (X) defined by

We recall from [El, S] that there is also a functor C which associates to each diagram
Y : O(G) OP ~ Top a G-space C(Y), and that these functors are mutually inverse,
up to weak homotopy equivalence. More precisely, for each G-space X and for
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each O(G)-indexed diagram of spaces Y, there are weak homotopy equivalences
C03A6(X) ~ X and 4lC(Y) - Y. Recall that, by definition, a map of G-spaces
X’ ~ X is a weak homotopy equivalence if for each subgroup H C G the induced
map (X’)H ~ XH is an ordinary weak homotopy equivalence. Furthermore,
recall from [MS] that, for a G-space X, its "fundamental groupoid" 03A0G(X) is the
category ~O(G) 03A003A6(X); this category is not identical to, but is equivalent to the
category 03A0O(G)03A6(X) = fo (G) 03A0039403A6(X) defined in Section 2. In [MS] we defined
a local coefficient system on a G-space X to be a local system on the diagram
03A6(X). For such a system M, we defined the cohomology groups H*G(X, M) as
H*(03A6(X), M), and we showed that for "constant" M (i.e. M : O(G) op - Ab),
these cohomology groups coincide with the Bredon cohomology groups (as defined
in [Br]).

With these definitions, the preceding results on diagrams of spaces "translate" to
the results on twisted Bredon cohomology for G-spaces which we stated in Section
1, as we will now explain in some detail. We begin with the equivariant Whitehead
Theorem:

Proof of Theorem 1.1. By definition, a G-map f : Y - X is a weak G-homotopy
equivalence if the induced map 03A6(Y) - 03A6(X) of diagram is a weak equivalence.
So by the definition of HG (X, AI) just quoted, Theorem 1.1 is a special case of
Corollary 3.8.

Our next objective is to relate our induction along a group homomorphism to
the usual induction in equivariant topology.

Let X be a G-space and let ~ : G - K be a homomorphism of groups. The
standard induction along r.p is given by the K-space K x G X. Now (p : G ~ K
induces a functor (again called)

defined on objects by ~(G/H) = K/~(H) = h’ XG (GIH). Thus there is an
induction ~! from diagrams of spaces on O(G) to such diagrams on 0(-H). We
claim that the fixed-point functor 03A6 respects these two kinds of induction in the
following sense:

LEMMA 4.1. Let ~ : G ~ li be a homorphism of groups. For any G-space X
with the G-homotopy type of’a G - CT1l-complex, there is a natural weak homotopy
equivalence

of diagrams of spaces on O(K).

(Note that the two operations 03A6 in 4.1 are different: one is for the group G and the
other for Ii7.)
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Proof. Write 0394G(X) for the category JO(G) 039403A6(X), and let
Px : AG(X ) - O(G) ç (G-spaces) be the evident projection functor. We refer
to [MS] for the fact that there is a natural Il x G-homotopy equivalence
hocolim0394G(X)(K x PX) = h’ x hocolim0394G(X)PX ~ K x X. Under the assump-
tion that X has the G-homotopy type of a G - CW-complex, this is an honest
K x G-homotopy equivalence. So by factoring out the G-action, one obtains a
K-homotopy equivalence

Next, we consider the fixed-point set of the space on the left-hand side of (1), for
any subgroup L C 117. We claim that there is a (weak) homotopy equivalence

Indeed, since the G-spaces in the image of PX are all discrete, the homotopy
colimit on the left of (1) can be computed as the classifying space of the category

But this category is literally the same as the category

where 03C9K/L : (K/L)/~ - O(G) is the forgetful functor, as before. By definition
(3.2) of ~!, this last category is exactly ~!(039403A6(X))(K/L). By taking classifying
spaces, one thus obtains the desired homotopy equivalence (2). To conclude the
proof, we observe that by (3.5), together with the fact that the functors B and A of
diagram (2.1) are mutually weakly homotopy inverse (Appendix A), one has the
following weak homotopy equivalences of diagrams of spaces:

By (1) and (2), finally, one obtains the desired weak equivalence ~!(03A6(X)) ~
03A6(K x r X). This proves the lemma.
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Proof of Proposition 1.2. As before, for a homomorphism of groups
~ : G ~ K we also write p for the associated functor O(G) ~ O(K). For a
G - CW-complex X and any local system of coefficients M on K G X, Lemma
4.1 and Corollary 3.4 together give, for the induced system *(M) on X,

Proof of Proposition 1.3. Let Y be a K-space and ~ : G ~ K a group homo-
morphism. The restriction of 03A6(Y) along ~ : O( G) - O(K) is ~*03A6(Y) = 4) (Y),
where, on the right-hand side, Y is considered as a G-space via p : G ~ li .

Corollary 3.7 gives a spectral sequence

for any local system of coefficients M on Y (as G-space). By Remark 3.6,
Hq(~/(-), ?) is the right derived functor of the induction rp* along the obvious
functor  : flG( Y ) - 03A0K(Y). We claim that * is exact. Indeed, by definition of
§l* (cf. (8) of Appendix B),

where the Hom is taken in the category Ab(03A0G(Y) of all functors 03A0G(Y) op - Ab,
and Z[-] denotes the free abelian group. Let K/L ~ 03A3i G/Hi be a decomposition
of A7Z as a G-set. Then 03A0K(Y)((-), (K/L, y)) = Li 03A0G(Y)(-, (G j Hi, y)),
and consequently

This shows that Z[03A0K(Y)((-), (K/L, y))] is a projective object in Ab(03A0G(Y))
and thus, by (3), rp* is exact. This ends the proof of Proposition 1.3.

Proof of Proposition 1.4. The isomorphism of Proposition 1.4 is a special case
of the isomorphism (12) in Remark 3.9, for the functor ~ : 1 ~ O(G) with value
G/K. Note that, by the explicit description given there, the coefficient system
ind(=1) : 03A0G(X) op - Ab occurring in Proposition 1.4 is given by

where the product is taken over all G-maps f : G/K ~ G / H, while for x E
XH = MapG(G/H, X), we write f*(x) for the induced point in XK.
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Proof of Proposition 1.5. Here we consider the inclusion functor

rp : Aut(G/1)  O((G). Notice that an Aut(G/1)-diagram of spaces is the same
as a space with a left action by G. Hence, for a left G-space X and any M E
Ab(O(G)), Corollary 3.4 gives an isomorphism

where the left-hand side is the cohomology of X as a G-diagram
(i.e. H*(~G0394(X), M(G/1))). Since M(G/1) is morphism-inverting on ~G 0394(X),
we have, by (4) of Appendix B, that
H*(~G 0394(X) M(G/1)) ~ H*tw(B(~G(X)), M(G/1)), with a twisting coming
from the map 03A0 B(~G0394(X)) ~ ~G03A0(X) ~ G. Thomason’s weak homotopy
equivalence T (in Appendix A) gives

This shows that the left-hand side of (4) equals H*tw(EG Xa X,M(G/1)). To
analyse the right-hand side of (4), notice that, if G acts freely on X, then

(One way to see that ~!(X)(G/1) = EG x X is to compute the homotopy colimit
involved as the classifying space of the topological category ~(G/1)/~ X. This is
the category with G x X as space of objects, and with exactly one arrow
(g, x) ~ (h,y) whenever g-1y = h-1x. But this category is isomorphic to G  X,
where G has the elements of G as objects, and exactly one arrow between any two
objects. Since the classifying space BG of G is EG, we find that
B(G x X ) = EG x X.) Since F’G x X ~ X, this shows that, for a free G-space
X, there is a weak equivalence ~!(X) ~ 03A6(X) of diagrams of spaces on the orbit
category O(G). Consequently, the Invariance Theorem (Corollary 2.6) gives an
isomorphism H*(~!(X), M) ~ H*G(X, M). This proves Proposition 1.5.

5. A remark on Mackey functors

In this short section we will show that our induction-restriction formalism for

diagrams of spaces is also related to well-known splitting theorems for equivariant
cohomology. More precisely, we will give a simple proof of Proposition 5.1 below.
More abstract general splitting theorems occur e.g. in [LMS, §V.6], and in [0].

PROPOSITION 5.1. Let G be a finite group, and let R be a commutative ring with
unit such that 1 G is invertible in R. Then for any Mackey functor
M : O(G) op ~ (R-modules), there is a splitting of Bredon cohomology

for any G-space X.
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In this proposition, M(G/H) is the R-module defined by

where f runs over all non-isomorphic maps. Furthermore, WH denotes the Weil
groupWH = Aut(G/H) = N(H)/H.Thus W H acts on both XH and M(G/H),
hence on H*(XH, M(G/H)), by "conjugation". The product in (1) ranges over
all isomorphism classes of orbits [G/H].

Our proof of Proposition 5.1 is based on the following splitting of the Mackey
functor M. Recall that the group LL’H can be viewed as a one-object category.
Let iH : W H  O(G) be the inclusion of W H as the orbit G/H with its
automorphisms. For G, R and M as above, there is a splitting

where the product ranges over all isomorphism classes of orbits G j H. This iso-
morphism (2) has been observed by many authors, and published references can
be traced back at least to [S].

For the proof of 5.1, consider the abelian category Mod(R[W H]) of R[W H]-
modules, or equivalently, of functors W H ~ (R-modules), and the similar cate-
gory Mod(R[O(G)]) of functors O(G) op ~ (R-modules). Then induction along
the functor iH : 14IH - O(G) can be viewed as a functor
(iH)* : Mod(R[W H]) ~ Mod(R[O(G)]).

LEMMA 5.2. For any R[W H]-module A and any G-space X, there is a canonical
isomorphism

Proof. First we observe that the induction functor

Mod(R[W H]) ~ Mod(R[O(G)]) is exact. Indeed, this is clear from the (last)
description of (iH)* in Appendix B (8); this description gives, for any R[W H]-
module A and any orbit G/AB that

where R[-] is the free R.-module on the set of all G-maps G/H ~ G/K, viewed
as a left R[W H]-module via the action of WH on G’/H. Since this module is
free as an R-module and IW HI is invertible in R, it is projective as an R[W H]-
module. By the exactness of (iH)*, it follows as in (10) of Remark 3.6 that, for
the diagram 039403A6(X) on O( G), there is an isomorphism Hp(039403A6(X); (iH)*(A)) ~
Hp(i*H039403A6(X), A). In other words, HpG(X, iH*(A)) ~ Hp(~WH A(XH), A).
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LEMMA 5.3. Let r be a finite group such that 1 r is invertible in R. Then for any
F-space Y and any R[F]-module A, there is a canonical isomorphism

(On the left, we have identified A with the corresponding composite functor
~03930394(Y) ~ B r ~(R-modules).)

Proof. First observe that, exactly as in the proof of Proposition 1.5 given in the
preceding section, there is an isomorphism

where on the right, the twist comes from the projection Er X r Y - Br. Now
consider the spectral sequence for the covering projection EY x Y - Er x r, Y,

Since Hq(Y, A) is an R-module, multiplication by 1 F | is an isomorphism on
HP(Y, A). Thus Ep,q2 = 0 for q &#x3E; 0 and this spectral sequence collapses to
an isomorphism Hq(Y, A)0393 ~ Hiw(Ef 0393 Y, A).

Proof of Proposition 5.1. The desired isomorphism (1) is obtained directly from
(2), Lemma 5.2 for A = M(G/H), and Lemma 5.3 for F = W H and Y - XH.

EXAMPLES 5.4. (a) The constant functor M = con(Q) : O(G) op ~ Ab, with
value the rational numbers Q, is a Mackey functor, with covariant action by a
map a : G/H - GIK in O(G) defined as multiplication by the cardinality
#03B1-1 (K) of the fiber of cx. In this case we have M(G/H) = 0 when H ~ 1, while
M(G/1) ~ Q, so Proposition 5.1 together with (1.4) yield an isomorphism

for any G-space X.
(b) Let R be a commutative ring so that 1 G | is invertible in R, and consider the
case W = 0 R where A is the Bumside ring Mackey functor. Thus
(A 0 R)(G/H) = A(G/H) 0 R - AH x R (where AH is the Bumside ring of
H). In this case there is for any G-space X an isomorphism

Indeed, by Proposition 5.1 it suffices to show that for any subgroup H C G,

A ~ R(G/H) ~ R, (with trivial WH-action). (3)
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To prove (3), recall first that by [tDl, Proposition 1.2.3], the usual injective ring
homomorphism A(G/H) = AH , flz becomes an isomorphism after tensoring
with R ; here the product is over all H-conjugacy classes of subgroups of H,
or equivalently, over all isomorphism classes of objects in O(G)/(G/H). Thus
A 0 R(GIH) is isomorphic to the intersection of the kemels of all the maps

for all non-isomorphisms 03B1 : G/K ~ G j H. Here rx* is the map

But for r E 03A0O(G)/(G/H) R, clearly a*(r) = 0 for all non-isomorphic ce iff

r03B2 = 0 for all [(3 : G/L ~ G/H] for which 03B2 is a non-isomorphism. Hence
A ~ R(G/H) ~ R, as claimed in (3).

6. Proof of the invariance theorem

The purpose of this section is to give a proof of Theorem 2.3. For a category C,
we will use AC as a shorthand notation for fO N(C). (Since this notation will
occur in the present section only, it should not lead to confusion with the analogous
abbreviation 0394(X) = ~0394S(X) for a topological space X.) Explicitly, if we write
[p] for the ordered set {0,...,p} (for p &#x3E; 0), then the category 0394C has as objects
all functors u : [p] ~ C, and as arrows from (a : [p] ~ C) to (T : [q] ~ C) all
arrows ce [p] ~ [q] in A such that cr = T o a.

Let F : 3 OP ~ Cat be a diagram of categories, indexed by a fixed category B.
By composition with the functor A : Cat Cat just described, one obtains a new
diagram OF on B. In preparation for the proof of Theorem 2.3, we will first derive
a spectral sequence for the cohomology of this diagram AF. To state this spectral
sequence, some more notation is needed. For any p-simplex a = (Bo B1 ~
... ~ Bp) in the nerve of B, the composition ap o cep-, o ... o 03B11 gives a functor

Furthermore, a local system of coefficients M : (~B 0394F) op ~ Ab on this diagram
0394F gives a local system MB0 on 0394F(B0), via restriction along the inclusion of
this category into ~B0394(F). Composing with , we get a local system *(MB0)
on 0394F(Bp). Using this notation we have, for each q &#x3E; 0, a cosimplicial abelian
group, defined in degree p by
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LEMMA 6.1. Let F : fiS op ~ Cat be a diagram of categories on B, with associated
diagram 0394F as above. For any local system M on A F there is a natural spectral
sequence

Proof. A p-simplex of N(~B 0394F) is a sequence

such that

commutes, for all 0  i  p - 1. Thus given the 03B1i, the Ui and Op, all the ai for
i  p are determined. Consequently, we can write

where a = (Bo b ... ~ Bp) as before. Recall from Appendix B our stan-
dard notation 03B1(0) for Bo; similarly for a 03BE E N(~B AF) we write 03BE(0) for
( Bo, [no] ~ F( Bo) ). With this notation, the standard cosimplicial group used to
compute H*(~B A F, lll) (see appendix B, (1)) takes the form

But note that this is the diagonal of the bicosimplicial abelian group C~(0394F, M)
with (p, q)-simplices

with cosimplicial structure coming from the nerves ofB and of 0394F(-). Filtration
of the associated double complex by vertical lines gives a spectral sequence with
the desired E1-term, abutting to H*(TotC~(0394F, M)). Here Tot denotes the usual
total complex of a double complex, as in [DP, p 212]. By a basic result in [DP] (see
p 213), this total complex has the same cohomology as the diagonal of the double
complex, and the latter cohomology has just been identified as H*(0394F, M). This
proves the lemma.
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Next, let F be a diagram of categories on B as before, and consider the natural
transformation

obtained by applying the "last vertex" map A of Appendix A for each of the
categories F(B) in the diagram. Of course, AF is a weak equivalence of diagrams.
We first prove the following special case of the invariance theorem:

LEMMA 6.2. For any local system of coefficients M on F, the map ÀF induces
an isomorphism

Proof. By integration, we obtain a functor ~B 03BBF : ~B AF - ~B F. For the
purpose of this proof (and the next one), we agree to denote this functor simply by
À or by 03BBF. The Grothendieck spectral sequence (Appendix B) of this functor À
has the form

Here, as in Appendix B, Rq03BB*(03BB*M) is (isomorphic to) the coefficient system
sending an object (B,x) of f3 F to the abelian group Hq(03BB/(B,x),03C9*03BB*M),
where o : 03BB/(B, x ) - fa AF is the forgetful functor. Now note that

where F/x : (B/B) op - Cat is the functor sending an object a : B’ ~ B of fiSj B
to F(B’)/F’(03B1)(x). Applying Lemma 6.1 to the diagram of categories 0394(F/x),
we get a spectral sequence with

which converges to Hp+1(03BB/(B,x),03C9*03BB*M).
But (F/x)(Bp ~ B) = F(Bp)/F(Bp ~ B)(x) has a terminal object
(F(Bp ~ B)(x), id). Consequently, the category (F/x)(Bp ~ B) has triv-
ial cohomology groups. Since the last vertex functor 0394(F/x)(Bp ~ B) -
(F/x)(Bp ~ B) is a weak equivalence (see Appendix A), and since

03B1*(03C9*03BB*(M)B0~B) is morphism-inverting on 0394(F/x)(Bp ~ B), it follows by
(5) of Appendix B that
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Thus E"q = 0 for q &#x3E; 0 in (2), and the E2-term can be computed as follows:

where MB is the obvious coefficient system on B/B. Now B/B has a terminal
object, so HP(B/B, MB) = 0 for p &#x3E; 0, while H0(B/B, MB) = MB(B ~
B) = M(B, F(B ~ B)(x)) = M(B, x). This proves that the spectral sequence
(2) collapses to an isomorphism

Thus the spectral sequence reduces to an isomorphism
H*(~B F, M) ~ H* ( AF, 03BB*F M), as desired. This proves Lemma 6.2.

Proof of Theorem 2.3. Let v : G ~ F be a weak equivalence of diagrams, and
consider the commutative square of categories and functors

where X = ~B 0394v. Applying the spectral sequence of Lemma 6.1, for both F and
G, we find that v induces an isomorphism in cohomology with local coefficients.
By Lemma 6.2, the same is true for À F and aG, and consequently for v. This proves
Theorem 2.3.

REMARK 6.3. By combining Lemma 6.1 and 6.2, we see that, for a diagram of
categories F : B OP ~ Cat and a local system of coefficients M on F, there is a
spectral sequence

Here a = (B0 ~ ... ~ Bp) as before, MB0 is the system on F(B0) induced by
M, and *(MB0) is its restriction along à = F(03B10 o ... o 03B11) : F(Bp) ~ F(BO).

REMARK 6.4. We will now determine the E2-term of the spectral sequence of the
preceding remark in the special case where the coefficient system is constant, i.e.,
factors through the projection functor fa F ~ B. We will view M as a functor
M : B °P ~ Ab, so that in this case &#x26;*(MBo) in 6.3 is simply the group M(B0).
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Now consider the category Ab(B x fiS op) of all contravariant abelian group functors
on B x 3 OP (we use the notation of Appendix B here). Define the object

for each pair of objects B, B’ of B by letting ZHomB(B, B’) be the free Abelian
group on the set of all arrows B - B’ in B. We claim that, for any other object
L E Ab(B x B op ), the group Extp(ZHomB, L) can be computed as the p-th
cohomology of the cochain complex defined in degree p by 03A003B1~Np(B) L ( Bo , Bp).
To see this, define, for each p &#x3E; 0, an object RP E Ab(B x B OP) by

Each such object Rp is projective, being a sum of free groups on representable
functors B IP x B((B0,Bp), -). Furthermore, one defines coboundary operators

in the evident way, using altemating sums of the face operators of the nerve N(B)
There is a canonical augmentation

defined for each pair of objects (C, D) E B OP x B by using the composition in the
category B:

One readily checks that this augmented complex ... R1 ~ R0 ~ 7,Homi is exact.
Thus we obtain a projective resolution of ZHomB, and hence Extp(ZHomB, L)
can be computed as the cohomology of the complex Hom(R*, L)( where the
Hom is in the category Ab(B °P x B)). But Hom(Rp, L) = TIaENp(JJB) L(Bo, Bp),
thus proving our claim. Applying this to the special case where L is the functor
Hq(F( -), M(?)), one finds that, when the coefficient system M is constant, the
F;2-term in the spectral sequence 6.3 is

Appendix A. Spaces, simplicial sets and categories

The purpose of this appendix is to review the basic constructions by which one can
pass from one to another of the three categories of spaces, simplicial sets and (small)
categories. We will denote these categories by Top, Sset and Cat respectively.
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We begin with the definition of the functors in diagram (2.1 ), repeated here for
convenience

For a simplicial set Z, its geometric realization is denoted |Z|. For a topological
space X, its singular complex is denoted S(X). These functors 1 - 1 and S are
extensively discussed in any standard text on simplicial topology [GZ, L, M]. In
particular, we recall that there are, for any simplicial set Z and any space X, natural
maps

These maps are the unit and counit of the adjunction Hom( Z, SX) ~ Hom(|Z|, X ) .
Both 7î and e are weak homotopy equivalences. Thus the functors 1 . | and S are
mutually inverse, up to natural weak homotopy equivalence.

For a small category C, its nerve is denoted N(C). This is the simplicial set
with as n-simplices all composable strings C0 ~ C1 ~ ... ~ Cn of arrows in C.
In the other direction, one can construct for each simplicial set Z a category ~0394Z.
The objects of this category are pairs (n, z) where n &#x3E; 0 and z E Zn. An arrow

(n, z) ~ (n’, z’) is an order-preserving map a : [n] - [n’] with the property that
a*(z’) = z; here [n] denotes the ordered set {0,..., n}, as usual. The category of
all these ordered sets [n] and order-preserving maps between them is denoted A.
When we view a simplicial set Z as a functor A ’P --+ Set, then the category ~0394 Z
is a special instance of the Grothendieck construction, defined in Section 2 above.

The other two functors A and B between Cat and Top in the above diagram are
defined by composition: for a small category C and a topological space X,

BC is called the classifying space of C. By definition, a functor C - C between
small categories is said to be a weak homotopy equivalence iff it induces a weak
equivalence BC ~ BC’.

With this definition, the functors fA and N are also mutually inverse, up to
weak homotopy equivalence. Indeed, for each simplicial set Z there is a natural
map
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sending a p-simplex ((no, zo) ~ ... ~ (np , zp)) of the nerve of fA Z to the
p-simplex â*(zp) E Zp ; here à : [p] - [np] is defined by

We refer to [I, p 21] or [W, p 359] for the observation that p is a weak equivalence.
In the other direction, there is, for each small category C, a natural "last vertex"
functor

It is defined, for any object

This definition of À can be extended to the arrows of f0 N(C) in the evident way.
The map À is a weak homotopy equivalence of categories, because N (Àe) = 03C1N(C).
Note that both functors N : Cat - Sset and ~0394 : Sset ~ Cat preserve weak
equivalences; the first by definition, and hence also the second since it is inverse
to N up to natural weak homotopy equivalence.

It follows that the functors B and A : Cat 7:t Top are also mutually inverse,
up to natural weak homotopy equivalence, and that these functors B and A both
preserve weak equivalences. To see this, one uses, for any category CC and any
space X, the weak equivalences

obtained from then compositions:

and

together with À : ~0394 N(C) ~ C.
These constructions also apply to diagrams of spaces, simplicial sets, and cat-

egories, and are natural in the index category, at least up to weak homotopy
equivalence. In Section 3, this was used in particular for the functors B and A. To
be more explicit, write Top(C) for the category of diagrams of spaces on C, i.e.
functors C op ~ Top, and natural transformations between them. Similarly, write
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Cat(C) for the category of diagrams C op - Cat of categories. For any functor
~ : D ~ C, we then obtain a diagram of categories and functors

Here the functors B and A for diagrams are defined by applying the earlier functors
B and A : Cat (::2 Top "pointwise". Thus for diagrams X : C op - Top and
F : C °P - Cat, we have A(X)(C) = A(X(C)) and B(F)(C) = -B(F(C»,
for any object C E C. The functor ç* is defined simply by composition with
~ : D - C. Thus for X and F as before, we have cp*(X)(D) = X(~D) and
cp*(F)(D) = F(~D), for any object D E D. Clearly, there are identities

B~*(F) = ~*(BF) and 0394~*(X) = ~*0394(X).
Recall from Section 3 that the functors ~! are defined, for diagrams G : D °P - Cat
and Y : D op - Top and for any object C E C, by

Here Wc : C / w - D is the evident forgetful functor. To compare the compositions
B~! and ~!B in (7) , as well as 0394~! and ~!0394, we use the result from [T] which
states that for a diagram of small categories G : D op ~ Cat, there is a natural weak
equivalence

(In other words, for categories the Grothendieck construction acts as a homotopy
colimit.) This map 03C4, applied to each index category C/~, gives a natural weak
homotopy equivalence

Finally, for a diagram of spaces Y : D op - Top, we can now compare ~!(0394Y)
and 0394~! (Y) by using the weak homotopy equivalences discussed so far. Indeed,
for any object C E C, there are the following maps, all natural in C:
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and, with a as in (6),

By definition of ~!(0394Y)(C) as ~C/~ 03C9*C(0394Y), and of 0394~!(Y)(C) as
0394(hocolim 03C9*C (Y)), this gives a zig-zag ofweak homotopy equivalences

We remark (but will not use) that, for diagrams of categories, as well as for
diagrams of spaces, the induction functors are homotopy left-adjoint to the restric-
tion functors rp*, in the following sense. In the case of diagrams of spaces, denote
by HoTop(C) the category obtained from Top(C) by formally inverting all weak
homotopy equivalences, and similarly for HoTop(I). Then for diagrams of spaces
X on C and Y on D there is a natural bijection between arrows Y ~ ~*(X) in
HoTop(IID) and arrows ~!(Y) ~ X in HoTop(C). In the case of diagrams of cate-
gories, the adjointness of pj and ~* is proved as follows: for diagrams F E Cat((C)
and G E Cat(D) there are evident morphisms

where id : D - D denotes the identity functor. (The map idj (G) - G is an
instance of the first map ~!~*(F) ~ F, for p the identity.) This map
id!(G) ~ G is a weak equivalence, so in the homotopy category Ho Cat(D) we
obtain a morphism G - ~* cp! (G). One can now check that these morphisms
~!~*(F) ~ F and G ~ ~*~!(G) satisfy the triangular identities for an adjunc-
tion. The adjointness for diagrams of spaces is a consequence of that for categories.
Indeed, since the functors and A in (7) are mutually inverse up to weak equiva-
lence, they induce an equivalence of categories at the level of homotopy categories,
and one obtains from (7) a diagram

Appendix B. Cohomology of Categories

In this appendix we will review some of the standard definitions and constructions
related to the cohomology of small categories. In particular, we will recall a suitable
version of the Grothendieck spectral sequence.



279

Let C be a small category, and let A : C op ~ Ab be a functor into the category
of abelian groups. One way to introduce the cohomology groups Hn(C, A) is as
follows. Let N(C) be the nerve of C, i.e. the simplicial set with as n-simplices all

sequences (3 = (C0 ~ Ci - ... ~ Ci). We also write 03B2(i) for Ci ( i = 0,..., n).
Define a cochain complex C*(C, A) in degree p by

thus an élément of CP( C, A) is a sequence a = (a03B2)03B2~Np(C). For such a sequence,
the coboundary operator d : Cp(C, A) - Cp+1(C, A) is given by

This definition is part of general homological algebra. Indeed, write Ab(C) for
the abelian category of all such functors A : C op ~ Ab. This abelian category has

enough injectives [G, p 135]. Consider now the functor

defined for each A in one of the following equivalent ways:

Here Hom is taken in the category Ab(C), and Z E Ab(C) is the constant functor
with value Z. Then the above cohomology groups are exactly the right derived
functors of F:

(One way to see this is to observe that Ab(C) also has enough projectives, and to
consider the projective resolution .. ~ P1 ~ Po -+ 1 where

Here C(-, /?(0)) : C op ~ Sets is the representable functor, and Z[-] dénotes the
free abelian group on a set. Then Hom(P*, A) is exactly the complex C*(C, A) . )
The cohomology groups H*(C, A) are functorial in the usual way, contravariant
in C and covariant in A.

For general coefficients A the groups Hn(C, A) cannot be expressed in terms
of the classifying space BC. However, if A : C °P - Ab sends every morphism
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of C to an isomorphism, then A gives rise to a twisted coefficient system (again
called A) on the classifying space BC, and there is a natural isomorphism

see [Q, p 91]. In particular, it follows that if p : D - C is a weak homotopy
equivalence between categories (i.e., if ~ induces a (weak) homotopy equivalence
Bcp : BD - BC between classifying spaces), then if yields an isomorphism

provided A is morphism-inverting.
Next, consider, for a functor ~ : D ~ C, the associated restriction functor

defined by composition: for any A : C op ~ Ab and any object D E D, one has
~*(A)(D) = A(~D). This functor ep* has a right adjoint

which can be defined, for each B E Ab(D) and each object C E C, in one of the
following equivalent ways:

Here ~/C is the usual comma-category with as objects pairs (D, Q : ~(D) ~ C)
and 03C9C : ~/C ~ D is the forgetful functor; the Hom at the end of (8) is taken in the
category Ab(D). We note that, by the adjunction Hom( rp* A, B) ~ Hom(A, ~*B)
and the fact that ~* is left exact, it follows that ~* preserves injectives.

Observe that, for the special case where ç is the functor rp : : C ~ 1 into the
trivial category 1, one has Ab(1) = Ab and 03C8* = F : Ab(C) ~ Ab, defined in (2)
above. For an arbitrary functor ~ : D - C, the composition of the functors

is (naturally isomorphic to) F : Ab(D) ~ Ab. Thus, by [G, p 148; HS, p 299],
there is a Grothendieck spectral sequence E2’ q = Rp0393(Rq~*(BB)) ~ Rp+qf(B)
for this composition of functors. By (3) above, this spectral sequence can be written
as

The coefficient system Rq~*(B) : C op ~ Ab, occurring in (10), can equivalently
be described, for each object C E C, by
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Indeed, using the uniqueness of derived functors, this follows easily from the
description of rp* (B) as H0(~/-, 03C9* (B)) in (8). Thus the Grothendieck spectral
sequence can be written in this context as

To conclude this appendix, we remark that it readily follows from the explicit
constructions that this Grothendieck spectral sequence is natural in ç in the follow-
ing sense. Consider, in addition to the functor ~ : D ~ C, a functor u : C’ ~ C,
and construct the pullback

The pair of functors T and o, together induce, for each object C’ E C’, an evident
functor (03C4/03C3) making the following square commute:

Thus, for each B E Ab(D), there is a canonical map

These maps, for all C’, give a map

or equivalently (cf. (11)), a map

Thus we obtain a map

between the E2-terms of the spectral sequences for cp and for ~’ respectively. The
naturality of the Grothendieck spectral sequence in this context means that these
maps converge to the map T*, as in
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