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Abstract. We present explicit generators D, ... , Dn of an algebra of commuting difference operators
in n variables with trigonometric coefficients. The algebra depends, apart from two scale factors,
on five parameters. The operators are simultaneously diagonalized by Koomwinder’s multivariable
generalization of the Askey-Wilson polynomials. For special values of the parameters and via limit
transitions, one obtains difference operators for the Macdonald polynomials that are associated with
(admissible pairs of) the classical root systems: An-1, Bn, Cn, Dn and BCn. By sending the step
size of the differences to zero, the difference operators reduce to known hypergeometric differential
operators. This limit corresponds to sending q ~ 1; the eigenfunctions reduce to the multivariable
Jacobi polynomials of Heckman and Opdam. Physically the algebra can be interpreted as an integrable
quantum system that generalizes the (trigonometric) Calogero-Moser systems related to classical root
systems.

1. Introduction

Over the past few years, progress has been made with the study of orthogonal
polynomials in more than one variable. It has turned out that a lot of classical
results conceming orthogonal polynomials depending on only one variable admit
generalization to many variables. Such generalizations can be viewed naturally
in a Lie-theoretic setting: for each root system R, there exist associated families
of multivariable polynomials. The number of variables coincides with the rank
n of the root system. Families of multivariable Jacobi polynomials related to
root systems have been studied by Heckman and Opdam [9, 10]. Recently, a
more elementary account of some of these results was presented in [11]. For
R = BC1 the Heckman-Opdam-Jacobi polynomials reduce to the classical Jacobi
polynomials in one variable. In a yet unpublished manuscript, Macdonald has
introduced q-versions of the Heckman-Opdam families [20]. See [22, 16] for a
summary of these results and [21] for lectures devoted to the special case R = An.
If R = BC1, then Macdonald’s polynomials coincide with the continuous q-
Jacobi polynomials. (For information on continuous q-Jacobi polynomials see e.g.
[1]). Recently, Macdonald’s results pertaining to the root system BCn have been
generalized by Koomwinder [16]. He finds BCn-type multivariable versions of
the Askey-Wilson polynomials [1]. Again, the one-variable case is recovered by
specializing to BC1.
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A crucial ingredient in the construction of the above families is the existence of
an operator of which the polynomials are eigenfunctions. In case of the Heckman-
Opdam-Jacobi polynomials this operator is a second order partial differential oper-
ator (PDO) which is named hypergeometric differential operator. For Macdonald’s
and Koomwinder’s polynomials the relevant operator is an analytic difference
operator (AAO). A similarity transformation turns the hypergeometric PDO into
a differential operator that is self-adjoint with respect to Lebesgue measure. From
the perspective of physics, one can look upon the latter PDO as being the Hamilto-
nian of a quantum system of n particles in dimension one. Such quantum systems
have been studied for quite some time in the physics literature; they are known as
(generalized) Calogero-Moser systems [4, 35, 36, 28]. The systems studied in [4]
and [35, 36] correspond to the root system An-l. See the survey paper [28] for the
generalization to arbitrary root systems. The motion of the corresponding classical
systems has also been studied [23] (R = An-1) and [27] (arbitrary R).

It has been shown by Heckman and Opdam that the hypergeometric differential
operator is but one member of an algebra of commuting PDO’s, which have the
multivariable Jacobi polynomials as their joint eigenfunctions [9, 10, 25, 26]. This
algebra is generated by n independent PDO’s. For the classical root systems rather
explicit expressions for these PDO’s (without a complete proof of their commuta-
tivity) can be found in [33, 19] (root system An-1) and [7, 8] (root system BCn).
This state of affairs can be expressed by saying that the corresponding (general-
ized) Calogero-Moser system is quantum integrable. For R = An-1, Liouville
integrability of the classical system, i.e. the existence of n independent integrals in
involution, was already proved by Moser [23] using a Lax pair formulation. For a
partial generalization of this result to the other classical (i.e. non-exceptional) root
systems, see [27] and [12].

Just as the hypergeometric PDO, Macdonald’s difference operator for R =
A-,-, is related to certain known quantum systems of n particles. The systems of
interest were originally introduced as a relativistic generalization of the Calogero-
Moser systems [29] (classical) and [30] (quantum). (See [31] ] for a survey and
connections with certain soliton PDE’s and exactly solvable quantum field theo-
ries). The relativistic generalization of the Calogero-Moser system is (quantum)
integrable too: explicit formulas representing n independent commuting integrals
are presented in [29, 30]. At the quantum level these integrals are AAO’s, which
are related to Macdonald’s An-1-type difference operators E,, via a similarity
transformation [13]. The operators Ewr (associated with the fundamental weights
03C9r) generate an algebra of commuting AAO’s that have Macdonald’s An-1-type
polynomials as joint eigenfunctions.

Also for root systems other than An-1 1 one expects that there exist algebras
of commuting difference operators that are simultaneously diagonalized by the
Macdonald polynomials. The purpose of the present paper is to introduce such
difference operators for the Koomwinder polynomials. We will show that via limit
transitions and/or specialization of parameters, this also leads to the correspond-
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ing AAO’s for those families of Macdonald polynomials that are connected with
(admissible pairs of) the classical series: An-1, Bn, Cn, Dn and BCn ; the Koom-
winder polynomials then reduce to the latter Macdonald polynomials. By sending
the step size of the differences to zero (this corresponds to the limit q ~ 1) our
Aa0’s go over in PDO’s. Thus, we recover the commuting hypergeometric PDO’s
associated with the classical root systems as a limit case.

Our difference operators constitute a new integrable quantum system of n
particles in dimension one. In this paper, however, we will not pay much attention
to this interpretation of the AAO’S; instead we will emphasize the connection with
orthogonal polynomials. More information on the integrability of these and related
n-particle systems, at the level of both quantum and classical mechanics, can be
found in [37, 38, 39].

Before outlining the contents of this paper in more detail, let us mention two
more connections of interest. For special values of the parameters (namely those
corresponding to root multiplicities), the system of hypergeometric PDO’s coin-
cides with the radial reduction of the algebra of invariant differential operators on
certain symmetric spaces G/K [28, 9]. It seems natural to ask oneself the question
whether, for special values of the parameters, our system of difference operators
can be seen in some way as radial reduction of certain AAO’s connected with

quantum homogeneous spaces. Recent results on the quantum group interpretation
of Macdonald’s An-1-type polynomials [15, 17, 24] indeed seem to point in this
direction. However, apart from this special case no relations of this kind are known
to the author.

Recently, Cherednik introduced commuting difference operators connected with
Knizhnik-Zamolodchikov-type difference equations associated with affine root
systems [5, 6]. He claims that for An-1 these operators coincide with the Macdonald
A0394O’s. It would be interesting to investigate the relation with the explicit A0394O’s
of the present paper. Specifically, one would like to know whether the Cherednik
operators associated with classical root systems are special cases our AAO’s.

The paper is organized as follows: in Section 2 we introduce n independent
AAO’s.Û,,r - 1,..., n in the (real) variables xl,..., Xn. These AAO’s (which we
write down explicitly) depend, apart from two scale factors, on five parameters. The
simplest operator, viz. D1, coincides (up to an irrelevant multiplicative constant)
with Koomwinder’s difference operator D03B51; for r &#x3E; 2 our operators are new. By
setting a certain parameter to zero, Dr reduces to the rth elementary symmetric
function of the operators D1(xj), j = 1,..., n. (Here D1(xj) denotes the one-
variable version of D i with x j as variable).

Section 3 contains the main results of the paper. In subsequent subsections it is
shown that: i. Dr leaves invariant certain finite-dimensional highest weight spaces
(triangularity); ii. Dr is symmetric with respect to the L2 inner product with weight
function A (A dx being the orthogonality measure of Koornwinder’s polynomials).
Combination of these two facts implies that Dr is diagonalized by the Koomwinder
polynomials. We would like to mention that this method to diagonalize the dif-
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ference operators Dr resembles very much the approach that was originally used
by Sutherland, which leads to the spectrum and eigenfunctions of the (trigonomet-
ric) Calogero-Moser system [35, 36]. The spectrum of the operators is computed
explicitly. As a result, we obtain a Harish-Chandra-type isomorphism between the
commutative algebra generated by D1, ..., Dn and the symmetric algebra in n
variables. For D 1 the discussion in this section amounts to a reproduction of results
already obtained by Koomwinder [16]. The difference between our presentation
(when restricted to the case r = 1) and that of [16] is that (by exploiting a calcula-
tion of residues and some asymptotics) we avoid certain (rather long) calculations
in Koornwinder’s paper leading to the triangularity and the eigenvalues of D1.

In Section 4 we discuss the transition to Heckman and Opdam’s commuting
hypergeometric PDO’s related to the root system BCn . In this limit, which amounts
to sending q ~ 1, the eigenfunctions converge to the BCn -type Jacobi polynomi-
als.

In Section 5 we study various special cases related to the classical root systems.
In 5.2 we introduce a limit transition leading to the An- 1 root system, which is
the most interesting from a physical viewpoint. Specifically, we show how the
An - 1 Macdonald polynomials and ADO’s can be obtained from the Koomwinder
polynomials and the AAO’s D1, ..., Dn, respectively. This novel transition can be
applied to other situations as well. (For example, it enables one to view the An- 1
Jacobi polynomials as limits of their Dn counterparts).

In 5.3 and 5.4 we show how the Macdonald polynomials associated with the
remaining root systems can be obtained from the Koomwinder polynomials by
suitable specialization of the parameters. In contrast to our account for the An- 1
case, which is quite self-contained, this involves various concepts from [20]. We
have attempted to render our account more accessible by collecting some prelimi-
naries in 5.1 ; this subsection can be skipped at first reading and referred back to as
needed.

2. Introducing the Différence Operators

In this section the operators Dr, r = 1,..., n, are introduced and their combinato-
rial structure is discussed.

2.1. THE OPERATOR Dr
In order to write down our difference operators we first introduce some notation.
Let va(z) and vb (z) be the following trigonometric functions:
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with 03B1,03B3 and IL, 1L8, y, (6 = 0, 1 ) complex parameters. For later purposes, it is
convenient to parametrize q according to:

We form the following multivariable functions using Va and vb as elementary
constituents:

with

The variables x1, ..., xn are assumed to be real. The function V03B5J;K depends on
the index sets J, Il and on a collection of prescribed signs 03B5j, j E J; it serves as a

building block from which the coefficients of Dr are constructed. The ADO’s read
explicitly

with r = 1,..., n, and J0 = 0,

Remarks i. |J| denotes the cardinality of J, and J’ is the complement of J with
respect to {1, ..., n}.
ii. The first summation in Eq. (2.6) is over all index sets J ~ {1, ..., n} with
cardinality r and over all flippings of the signs E, ~ {+1, -1},j e J; the second
summation is over all strictly increasing sequences of subsets in J:

iii. The exponential exp(-03B203B8j) acts on a function f(x1, ..., xn), which is analytic
in the variables x1, ..., xn, as a (complex) shift:



188

Hence, Dr is indeed an analytic difference operator. 
iv. The ’hats’ in Eqs. (2.6), (2.7) are used to emphasize that Dr and b. are operators
rather than ordinary (complex) functions or variables.
v. In the simplest case, i.e. for r = 1, Eq. (2.6) reduces to

vi. It is clear that the operator Dr is invariant under permutations of the variables
x1, ..., xn. Furthermore, the ADO’s are also covariant under translations over half
the period: a simultaneous shift of the variables over 7r/(2of) is equivalent to an
interchange of parameters:

(see Eq. (2.4) and Eqs. (2.1), (2.2)).
For some purposes it is more convenient to use slightly different expressions

for Dr . Two such expressions read

(with J-1 =0) and

with

In Eq. (2.12), Dr is written in terms of the operators exp(-03B203B8) rather than the
operators [exp( -¡Je) - 1]. Accordingly, Jo in Eq. (2.12) is allowed to be empty.
Eq. (2.13) emphasizes the fact that the coefficients of the translator exp(-03B203B8)
in Dr consist of a part V03B5J;Jc, which does not commute with the translator, and a
commuting part WJc,r-|J|.’

Note From a physical point of view, one can look upon Dr as a Hamiltonian
for an n-particle quantum system in dimension one. The functions of the type
va(±xj ± xj’ + 203B403B3) (b = 0, 1 ) and va(± xj ± xk) in the coefficients of the AAO
are in this interpretation responsible for the interaction between the particles; the
functions vb(± xj) model an extemal field.
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2.2. COMBINATORIAL STRUCTURE AND PARAMETERS

The increment sets Ji, J2 B J1, ... , Js B JS-1 of the increasing sequence (2.8) form
the blocks of a partition of J; the second summation in (2.6) amounts to a sum over
all ordered blocks. By breaking up V03B5J;K (Eq. (2.4)) into three parts

with

one can rewrite DT (Eq. (2.6)) as

Eqs. (2.6), (2.12) and (2.19) are more compact than (2.19), but the latter has
the virtue that different parts of the coefficient can be controlled independently.
The index set J in Eq. (2.19) will be referred to as the cell. The first block Ji
determines the translator; this part of the cell will be called the nucleus. Notice
that : i. V103B5JV303B5J;Jc depends on the cell J but not on its subdivision in blocks; ii. the
product over V2 depends on the partition of J, but not on the order of the
blocks; iii. the product over V303B5(js,BJs’-1);JBjs’ depends both on the blocks and on
their order.

The parameters 03B1 and 13 are scale factors; cx determines the period of the
trigonometric functions and Q govems the complex shift of the translation operators
exp(±03B203B8j). Both parameters will be taken positive. The parameters M, J-L8 and 03BC03B4
determine the relative ’weight’ of va and vb in the coefficients of the AAO. For
instance, Va == 1 for M = 0; therefore, v,, may be omitted for fi = 0. The parameters
y, 03BC03B4 and 03BC03B4’ will be assumed to be non-negative imaginary:
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Notice that the above restrictions on the parameters guarantee that: i. exp(±03B203B8j)
yields a purely imaginary shift; ii. the commuting part of the coefficient, viz.
WJc,r-s (cf. Eqs. (2.13), (2.14)), is real because vc(z) = vc(-z) (c = a, b) for z
real.

If one picks a = 1/2, then Ôi 1 (Eq. (2.10)) coincides, up to an irrelevant
multiplicative constant, with Koomwinder’s difference operator D03B51 [16, Eqs.
(5.1)-(5.4)]. The parameters used in [16] are related to ours via

Note The parameters g, g8 and gs can be interpreted physically as the coupling con-
stants that determine the strengths of the various interactions. In this interpretation,
setting g = 0 (i.e. 03BC = 0) yields a system of n particles moving independently in
an extemal field.

2.3. g = 0: REDUCTION TO RANK n = 1

By setting g = 0, the combinatorial structure of Dr simplifies considerably because
the coefficients in Eq. (2.19) no longer depend on the partition of the cell J in blocks
(g = 0 ~ Ve2J = V303B5J;K = 1). It will be shown next that in this case Dr reduces to
the rth elementary symmetric function of the following AAO’S:

(For n = 1, D 1 (2.10) coincides with D1(x1)).
By summation of all terms in Dr that correspond to a certain cell J with fixed

nucleus JI = I, Eq. (2.19) reduces to

where

with

To verify this, think of Np,s as the number of ways in which a collection of p distinct
objects can be distributed over s distinct slots such that every slot is non-empty.
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LEMMA 2.1.

One has

Proof
The above interpretation of Np,s leads to the recurrence relation

Substituting (2.28) in (2.25) yields a recurrence relation for cp

whose unique solution is (2.27).
D

DEFINITION 2.2. Let t1, ..., tn belong to a commutative algebra. The rth ele-
mentary symmetric function Sr of t1, ... , tn is defined as

PROPOSITION 2.3. If g = 0, then

(with D (x j) defined by Eq. (2.23)).
Proof
Substituting (2.27) in (2.24) yields

Using Eq. (2.16), one completes the proof of the proposition:

Note Proposition 2.3 is in accordance with the previously noted fact that for y = 0
the particles of the quantum system become independent.
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3. Simultaneous Diagonalization

In this section it is shown that Koomwinder’s polynomials form a basis of joint
eigenfunctions of D1, ..., Dn. We prove that the difference operators commute and
compute their eigenvalues. As a result, we obtain an explicit Harish-Chandra-type
isomorphism between the commutative algebra generated by D1, ..., Dn and the
symmetric algebra in n variables. For convenience, we will put cx = 1 /2 from now
on.

3.1. TRIGONOMETRIC POLYNOMIALS

Let A = C[exp(±ix1), ..., ,exp(±ixn)] be the algebra of trigonometric polynomi-
als on the n-dimensional torus

,A is spanned by the Fourier basis {e03BB} with A in the character lattice P of ’T:

Let W be the (Weyl) group of permutations and sign flips of the variables xi, ... , xn
(so W ~ Sn x (Z2)n). The subalgebra AW = C[cos x1, ..., cos xn]Sn of W-
invariant polynomials on T is spanned by the basis {m03BB} of monomial symmetric
functions

with N denoting proportionality and p+ denoting the cone of dominant weights:

The lattice P can be partially ordered in the following way:

DEFINITION 3.1. (partial ordering of P).

The above ordering induces a partial ordering of the monomial basis {m03BB}03BB~p+.
To each dominant weight À E P+ we associate a finite-dimensional subspace of
,4w with highest weight À :

Occasionally we will also use the notation
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3.2. TRIANGULARITY

In this subsection it is shown that Dr maps the highest weight spaces 4w into
itself.

DEFINITION 3.2. A linear operator D : 4w ~ 4w is called triangular iff

One can rewrite Eq. (3.8) in a more illuminating way:

(i.e. [D]03BB,03BB’ = 0 if 03BB’ À). In order to prove that Dr is triangular, we first need to
verify that the operator maps 4w into itself.

PROPOSITION 3.3. (invariance of 4w).

Proof
Acting with Dr Eq. (2.19) on a monomial ma (3.3) yields the following W-invariant
trigonometric function on the torus ’1:

with

({e1, ..., en} denotes the standard basis of Rn). The r.h.s. of (3.11 ) is rational in the
exponentials exp(±ixj), j = 1,..., n. In order to prove the proposition, we need
to show that Dr ma (3.11) is actually a polynomial in exp(±ix1), ..., exp(±ixn).
Since the r.h.s. of (3.11) is symmetric in x1, ..., xn it suffices to verify that ÎJ r m À,
viewed as a function of x1, is free of poles.

As a function of x1, the terms in (3.11) may have poles caused by zeros in the
denominators of the coefficients of the AAO. These poles are located at (cf. Eqs.
(2.16)-(2.18) and (2.1), (2.2)):
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From now on the parameters 03B3, /1, M8, 03BC’03B4 (6 = 0, 1) and the remaining variables
x2, ... , xn are fixed in general position. Specifically, we choose these parameters
and variables such that the poles in the terms of (3.11) are simple.

The residue at x 1 = 0 vanishes because (3.11) is even in x1; the residue at
x 1 = x j vanishes because (3.11) is invariant under an interchange of the variables
x 1 and Xj. Furthermore, because Dm03BB(x) is even in x j , j = 1,..., n and covariant
under translations over half the period (cf. Remark vi, Section 2.1 ):

(with IÀI | = Lj=1 1 A,), we need only show that the total residue of (3.11) vanishes
at e.g.:

type I : x 1 = -03B3.
The only terms in the r.h.s. of (3.11) that contribute to the residue at x 1 = are
those corresponding to cells J with 1 E J and 03B51 1 = + 1 (recall (2.2) and (2.16)
to check this). Fix a cell J and choose a configuration of signs 03B5j ~ {+1,-1},
j E J. It suffices to show that the total residue at x 1 = 201303B3 in the sum of all
terms of (3.11) corresponding to this fixed cell J, with the signs prescribed, is zero.
One may assume that all signs 03B5j, j E J are positive; this is because the general
situation can be reduced to the case with s j = 1 by appropriate flipping of signs
of the variables xj, j E J. We prove in Appendix A (Lemma A.l) that the sum
of terms in (3.11) corresponding to a fixed cell J with all signs positive is indeed
regular at x 1 = -03B3.

type II: x 1 = -xj- 203B3.
The proof of this case is very similar to the previous one. The only terms in (3.11)
that contribute to the residue at xi 1 = -xj- 2q are those with 1, j E J and
03B51 1 = Ei = + 1 (cf. (2.1) and (2.17)). Lemma A.2 of Appendix A states that the
sum of all terms in (3.11) that correspond to a fixed cell J with the signs 03B5j, j E J,
being + 1, is regular at x 1 = - xj - 203B3. Again the general case (corresponding to
an arbitrary configuration of signs 03B5j = ±1) can be obtained by an appropriate
flipping of the signs of x j , j e J.

We conclude that D, m03BB is a W-invariant rational function on the torus TT without
poles. Consequently, Drm03BB must be a polynomial in AW, which completes the
proof of the proposition. 

D

Proposition 3.3 says that Dr ma is a W-invariant trigonometric polynomial on
1f, i.e. it must be a finite linear combination of monomial symmetric functions:



195

with

In order for Dr to be triangular one must have

(cf. Eq. (3.9)). We shall prove this property by studying the asymptotics of
(Dr m03BB)(x) for lm xj ~ -oc. The following limits will be useful (cf. Eqs.
(2.1), (2.2) and (2.20)):

(with 03B5 = ± 1).

PROPOSITION 3.4. (triangularity).

Proof
Fix an r E {1, ..., n} and A E P+. Let Wk - 03A31~j~k ej (the kth fundamental
weight) and introduce (cf. (3.17)) 

To derive a contradiction, assume (3.18) does not hold; i.e. assume that there exists
a k ~ {1, ..., nl such that

Now it is easy to verify the asymptotics

with

so using (3.16) we obtain
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On the other hand, Eq. (3.24) combined with the limits (3.19) and (3.20) entails
the following asymptotics for (3.11 ):

Consequently,

(because of inequality (3.23)).
The matrix elements [Dr]03BB,03BB’ in (3.26) are non-zero (by definition), and the

exponentials e03BB"(x) (3.2) corresponding to different weights À" ~ P are linearly
independent. Hence, by comparing the r.h.s. of Eqs. (3.26) and (3.28) one arrives
at the desired contradiction.

D

3.3. THE SPECTRUM

By extending  (Definition 3.1 ) to a linear ordering of P+ (take e.g. the Lexico-
graphical ordering), it is easy to see that the triangularity of the AAO:

has as consequence that the elements on the diagonal of the matrix [Dr]03BB,03BB are the
eigenvalues of the operator Dr ; AW - .AW . (It will become clear in Section 3.5
that in our case these eigenvalues are semisimple). The purpose of the present
subsection is to compute [Dr]03BB,03BB.
- Let y E IR n be a fixed vector subject to the condition

By combining the asymptotics (cf. (3.24))

with Eq. (3.29), one finds (using

In the next proposition, we will evaluate this limit.

PROPOSITION 3.5 (eigenvalues).
One has
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with

and

Proof
Using Eq. (2.13) we obtain

with V03B5J;K and WI,p defined by Eqs. (2.4) and (2.14), respectively. In order to
compute the limit (3.32), we first derive some preliminary asymptotics:

i. m A (cf. Eq. (3.24)):

ii. V03B5j;Jc:.
From (3.19), (3.20) one deduces

with

and
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Consequently,

with p, defined by (3.35).
iii. WI,p :

Using (2.14) and (3.41) it is not hard to see that limR~~ WI,p|x=iRy exists and
depends only on the cardinality of I and on p (but not on the number of variables
n). We define

Notice that (cf. Eq. (2.14))

After these preliminaries, we are now ready to compute limit (3.32). Substituting
(3.36) in (3.32), and making use of (3.37), (3.41) and (3.42), we obtain

It remains to calculate Fm,p, 1  p  m  n. Acting with Dr on a constant
function yields zero (see Eq. (2.6)); one obtains, therefore, the following relations
for Fm,p after setting À = 0:

For a fixed number of variables n, this yields n equations. However, for n’  n the

same coefficients F m,p occur, now with 0 ~ p  m,  n’. Collecting the relations
(3.45) for n’ = 1,..., n, and making use of Eq. (3.43) results in a linear system of
n(n + 1)/2 equations in the n(n + 1)/2 variables F,,p, 1  p  m  n.

In order to solve this system it is convenient to make the substitution p. =
pn+1-j. Notice that pj (unlike Pj) does not depend on the number of variables n.
After this substitution the n( n + 1)/2 equations become:

with condition (3.43). In Lemma B.l of Appendix B it is shown that this linear
system has a unique solution:

Substituting (3.47) in (3.44) and using pj = pn+1-j now yields the expressions
(3.33)-(3.35).
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For y = 0 all components of the vector p (Eq. (3.35)) are equal:

Then, one can rewrite the above expressions for the eigenvalues in terms of elemen-
tary symmetric functions (see the remark following Lemma B.2 of Appendix B. to
check this):

This equation is in agreement with Proposition 2.3.

3.4. SYMMETRY

In Ref. [16] the following weight function on the torus ’T was introduced:

with

The so-called q-shifted factorials are defined in the usual way:

Notice that the conditions on our parameters, viz. (2.20), guarantee that the infinite
products in Eqs. (3.52) and (3.53) converge. Recall that in order to compare our
formulas with those of [16], one has to reparametrize according to Eqs. (2.21 ) and
(2.22).

Let L2W(T,0394dx) be the space of W-invariant functions on 1f that are square
integrable with respect to the measure Adx. We define

The space of W-invariant polynomials AW is a dense subspace of L2W(T, Odx ).
The purpose of the present section is to show that the A03A3O’S D1, ..., Dn are
symmetric with respect to .,.&#x3E; 0394. We need the following lemma:
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LEMMA 3.6. Let 03B1 = 1/2 and z E R; furthermore, let the parameters be subject
to condition (2.20). Then the functions d(+) (c = a, b) satisfy the following first
order difference equations:

Proof
i. Eq. (3.56) is an immediate consequence of definition (3.52):

Eq. (3.57) can be reduced to the former case by observing that d+b(z) factorizes:

ii. Using Eqs. (3.56) or (3.57), respectively (in step * below), one derives Eq.
(3.58):

Part ii. of the above lemma leads to the following useful difference equation:

COROLLARY 3.7. One has

We now arrive at the main result of this subsection, namely the symmetry of
Dr, whose proof hinges on relation (3.62).

PROPOSITION 3.8. (symmetry).



201

Proof
First consider the following contour integral

with V03B5J;K and WI, p as in (2.4) and (2.14), respectively and j e J. The integration
takes place over the closed contour

Let all parameters and the variables xk, k ~ j, be fixed in general position. A
priori the integrand has simple poles inside Cj due to zeros in the denominators
of V03B5J;Jc and 0394(x). However, one easily verifies that any of these poles in V03B5J;Jc
is compensated by a zero in 0394(x); similarly, poles inside Cj due to 0394(x) are
compensated by a zero in V03B5J;Jc. Consequently, integral (3.64) vanishes because
of Cauchy’s theorem. Furthermore, the contributions to (3.64) which are due to the
paths [7r, 7r - i03B5j03B2] and [-03C0- i03B5j03B2, -7r] respectively, cancel each other because
the integrand is periodic in xj with period 27r. The upshot is that, when integrating
the integrand of (3.64) over [-03C0,03C0], one may deform the integration path to
[201303C02013 i03B5j03B2, 03C0 2013 i03B5j03B2] without changing the value of the integral.

Armed with this conclusion and Eq. (3.62), we are now ready to prove (3.63).
Its I.h.s. can be written

Déformation of the integration paths of xj,j C J, from [-03C0,03C0] to [ - r - i03B5j03B2, 03C0-

i03B5j03B2], followed by a change of variables xj ~ xj- i03B203B5j,j E J, yields

Using Corollary 3.7 and the fact that WJc,r-s is real (for parameters subject to
(2.20)) entails
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3.5. DIAGONALIZATION AND COMMUTATIVITY

If g = g0 = g1 = g’0 = g’1 = 0, then d,, = db = 1 (see Eqs. (3.51), (3.52) and
(3.60)), and thus .,.&#x3E; 0394 reduces to the inner product on 1F with respect to Lebesgue
measure (A = 1). The basis of monomials {m03BB}03BB~p+ is an orthogonal basis of
L2W(T, dx). For arbitrary parameters, however, the orthogonality of the monomials
with respect to .,.&#x3E; 0394 no longer holds. By subtracting from MA the orthogonal
projection of ma onto span{m03BB’}(03BB’~p+,03BB’03BB) C 4w, one obtains an alternative
basls {p03BB}03BB~p+ of 4w. This is the basis of Koomwinder polynomials.

DEFINITION 3.9 (Koomwinder polynomials).
Koornwinder’s polynomial pa E 4w is defined by the conditions

and

We now prove that {p03BB}03BB~p+ is a basis of joint eigenfunctions of D1, ..., Dn. For
convenience, the notation for the eigenvalues Eq. (3.33) is sometimes abbreviated
by putting

THEOREM 3.10. (eigenfunctions).

(with r = 1,..., n and p = (PI,... , Pn), see Eq. (3.35)).

Proof
It follows from (3.69) and Proposition 3.4 that

On the other hand, one has (using the propositions 3.8, 3.4 and Eq. (3.70))

Combining (3.73) and (3.74) entails Dr pa = [Dr]03BB,03BB p03BB. We now invoke Propo-
sition 3.5 to complete the proof.
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In Appendix C it is shown that if a difference or differential operator vanishes on
,AW , then all its coefficients must be zero. Combining this result with Theorem 3.10
entails the commutativity of the A0394O’s:

THEOREM 3.11 (commutativity).
The operators D1, ... , Dn mutually commute.

Proof
The polynomials {p03BB}03BB~p+ form a basis of 4w consisting of joint eigenfunctions
of D 1, ... , Dn (Theorem 3.10). Hence, it is clear that the AAO’s commute as

operators on 4w. In other words, the commutator of Dr and Dr, is a difference
operator that vanishes on 4w:

It now follows from Proposition C.l in Appendix C that the coefficients of the
commutator are identically zero.

D

Consider the real algebra of difference operators generated by D 1, ... , Dn :

It is clear that D is a commutative algebra (Theorem 3.11) and that the operators in D
are simultaneously diagonalized by the Koomwinder polynomials (Theorem 3.10).

THEOREM 3.12 (D ~ R[ch03B203B81, ..., ch03B203B8n]Sn).
For each symmetric function S(03B8) E R[ch03B203B81, ..., ch138n]8n there exists a unique
difference operator D ~ D such that

Proof
Er,n(03B8) (3.71) is a linear combination of elementary symmetric functions:

l . d . stands for terms of lower degree in ch138 j, j = 1,..., n. The elementary
symmetric functions form a set of algebraically independent generators of the
symmetric algebra (this fact is the ’fundamental theorem on symmetric functions’,
see e.g. [18]). Hence, Eq. (3.78) implies that the same is true for the functions
Er,n(03B8): every element in R[ch03B203B81, ..., ch03B203B8n]Sn can be written uniquely as a
polynomial in Er,n(03B8), r = 1,..., n.

Now we use Theorem 3.10 to conclude that for every symmetric function S(03B8)
there exists a difference operator D e D such that Eq. (3.77) holds. That such a
difference operator D is unique follows from Proposition C.1 (Appendix C).
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The symmetric functions S(03B8) E R[ch03B203B81, ... , ch138n]Sn separate the points of
the wedge

To see this, first notice that (-1)n-rSr(ch03B203B81, ..., ch03B203B81) is the coefficient of

vn-’’ in the characteristic polynomial det(T - vI) of the diagonal matrix T =
diag(ch03B203B81, ..., ,chjj8n). Consequently, the values of Sr(ch03B203B81, ..., ch03B203B8n), r =
1,..., n determine 0 in the wedge (3.79) uniquely. This fact combined with Theo-
rem 3.12 can be used to prove the orthogonality of the basis IpA 1:

COROLLARY 3.13. (orthogonality).

Proof
Let À, 03BB’ E P+, and A 0 À’. There exists an S( 8) E R{[ch03B203B81, ..., ch03B203B8n]Sn such
that

since the symmetric functions in R[Ch03B203B81, ..., ch03B203B8n]Sn separate the points of the
wedge (3.79), 

Hence, by Theorem 3.12 there exists a D e D for which pa and pA, are
eigenfunctions corresponding to different eigenvalues. But then the polynomials
pa and pA, must be orthogonal with respect to (., .) 0394 because D is symmetric, cf.
Proposition 3.8.

D

Note The orthogonality of the basis {pa}03BB~P+ was already shown by Koomwinder
[16]. His proof exploits the continuity of (pa, p03BB’&#x3E; 0394 in the parameters.

COROLLARY 3.14 (self-adjointness).
Every difference operator D E D is essentially self-adjoint on 4w C L2W(T, Adx).

Proof
This an immediate consequence of the fact that every AAO in D acts as a real

multiplication operator on the orthogonal basis {p03BB}03BB~P+ of L2W(T, A dx).
D

Remarks i. Theorem 3.12 states that the assignments
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induce a Harish-Chandra-type isomorphism HC between ID) and the symmetric
algebra R[ch03B203B81, ..., ch03B203B8n]Sn.

ii. Recall that p03BB is defined as m03BB minus the orthogonal projection of ma onto
span{m03BB’}03BB’03BB. Using the orthogonality of {p03BB}03BB~P+ (Corollary 3.13) this leads
to the following recurrence relation for pA:

iii. If the partial ordering 3.1 is extended to a linear ordering of the cone p+,
then it is possible to orthogonalize the basis {m03BB} by means of the Gram-Schmidt
process. By Corollary 3.13, the result does not depend on the particular choice of
the refinement of the ordering: the resulting orthogonal basis coincides with 1PAI.
This amounts to a very restrictive property of the measure A dx.

iv. According to Theorem 3.11, the Hamiltonians D1, ..., Dn constitute a quan-
tum integrable n-particle system (cf. the note ending Section 2.1 ).

4. 03B2~ 0: The Transition to BCn-type Hypergeometric PDO’s

By sending the step size 0 of the differences to zero, our AAO’s go over in
commuting hypergeometric PDO’s associated with the root system BCn. In this
limit the eigenfunctions {p03BB} converge to the BCn-type Jacobi polynomials of
Heckman and Opdam.
In this section we will make the dependence on (3 explicit by adding it as a subscript
on all objects of interest, e.g.: Dr,03B2, 039403B2 and p03BB,03B2.

4.1. EIGENFUNCTIONS

Consider the following weight function on the torus il:

and let ., .) ¿la be the inner product on L2W(T,03940 dx) (cf. Eq. (3.55)). As before
one introduces W-invariant polynomials on TT associated with the weight function
Ao (cf. Definition 3.9); these are the BCn-type Jacobi polynomials of Refs. [9]
and [11].

DEFINITION 4.1 (BCn-type Jacobi polynomials).
The Jacobi polynomial P).,o E AW03BB is defined by the conditions
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and

Remark Usually 0o is written in a slightly different form, which emphasizes the
relation with the root system BCn. Use

with jo = k0 + k and 91 1 = k1, to compare (4.1 ) with the usual expression for the
BCn-type weight function.

We need the following convergence result from [ 14] to connect p03BB,0 with Koom-
winder’s polynomial p03BB,03B2 03B2 &#x3E; 0:

LEMMA 4.2. Let k1, k2 C R and q ~]0,1 [. Then

uniformly for z in compacts of the punctured disc

Proof
See Proposition A.2 of Ref. [14, Appendix A].

It is immediate from Eqs. (3.52), (3.60) and the above lemma that

uniformly for z in compacts of 7r, 03C0[B{0}.
Consequently, for Q - 0, 039403B2 (3.50) converges to a weight function that is propor-
tional to i10:

with

and

PROPOSITION 4.3. One has

and
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Proof
Using (3.83), (4.8) and an induction argument on À, one verifies that lim03B2~0 p03BB,03B2
exists and satisfies a recurrence relation of the type (3.83) (with .,.&#x3E;039403B2~~., .~03940).
Use Corollary 3.13 and Eq. (4.8) to conclude that the resulting polynomials are
orthogonal with respect to ~.,.~ 03940. But then the recurrence relation for lim03B2~0 p03BB,03B2
implies that it equals m03BB minus the orthogonal projection (with respect to ~.,.~03940)
onto span {m03BB’} 03BB’03BB. Comparing with Definition 4.1 one obtains (4.10).

D

Note The limit 03B2 ~ 0 corresponds to the limit q - 1, cf. (2.21). For Macdonald’s
polynomials the q ~ 1 limit to the Jacobi polynomials of Heckman and Opdam
was studied in [20], for arbitrary root systems. The orthogonality of the Jacobi
polynomials was proved in [10] (again for arbitrary root systems).

4.2. EIGENVALUES

The purpose of this subsection is to investigate the behavior of the eigenvalues of
Dr,03B2 (Proposition 3.5) for 03B2~ 0.
PROPOSITION 4.4. One has (for r = 1,..., n)

Proof
Our proof of Eq. (4.12) hinges on a recurrence relation for Er,n, which has been
relegated to Lemma B.2 of Appendix B:

with the convention

We divide Eq. (4.13) by 132r and then use induction on n to obtain

Now we use again Lemma B.2 to conclude (4.12) from relation (4.15) (with
convention (4.14)).
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4.3. OPERATORS

Expansion of Dr,03B2 in 13 yields a formal power series of the form

The coefficients 7)’ are polynomials in the partials Ôj, j = 1,..., n; this means
that these coefficients are PDO’s. We define the leading differential operator Dr,o
of Dr,03B2 as the first nonzero coefficient in expansion (4.16):
DEFINITION 4.5 (leading PDO).
Let

(with D(m)r defined by expansion (4.16)). Then,

is called the leading PDO of Dr,03B2.

The BCn-type Jacobi polynomials are joint eigenfunctions of D1,0, ..., Dn,o:
THEOREM 4.6. One has mr = 2r and

with r = 1,..., n and p as in (3.35).

Proof
Consider the eigenvalue equation (3.72):

First, apply Taylor’s theorem to the I.h.s. of Eq. (4.20) and make use of Defini-
tion 4.5 and Limit (4.10) to conclude that

Next, use Proposition 4.4 and Limit (4.10) to derive the asymptotic behavior for
03B2~ 0 of the r.h.s. of (4.20):
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By Definition 4.5 and Proposition C.1 it is possible to pick a À E p+ such that
Dr,0p03BB,0 ~ 0, so mr ~ 2r. It is not difficult to see that there also exist À E P+
such that

so mr  2r. This entails mr = 2r and (4.19).

COROLLARY 4.7.

Explicit computation of (4.23) for r = 1 yields (using (2.10), (2.20))

(with ce = 1/2 and go, gl as in Eq. (4.9)).
An immediate consequence of Theorem 3.11 and Limit (4.23) is the commuta-

tivity of Dr ,0, r = 1,..., n.

COROLLARY 4.8. The differential operators D1,0,... , Dn,0, mutually commute.

LetIDO =- R[Î)1,0, ..., Î)n,01. The algebra D0 consists of commuting PDO’s which
are simultaneously diagonalized by the BCn-type Jacobi polynomials pa,p.

THEOREM 4.9 (D0 ~ R [03B821, ... , 03B82n] Sn ).
For every symmetric polynomial S(03B8) E R [02 ... , 03B82n]Sn there exists a unique
differential operator Do E D0 such that

COROLLARY 4.10 (self-adjointness).
The PDO’s Do E Do are essentially self-adjoint on 4w C LW(1f, Aodx).

The proofs of Theorem 4.9 and Corollary 4.10 are virtually the same as for Theo-
rem 3.12 and Corollary 3.14, respectively.

Remarks i : The operator D1,0 (4.24) coincides with the simplest (i.e. low-
est order) hypergeometric PDO associated with the root system BCn. In order
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to compare (4.24) with the usual expression, which emphasizes the rôle of the
root system, one should eliminate tan(03B1xj) from (4.24) by means of the relation
tan(03B1xj) = cot(03B1xj) - 2 cot( 2ax j ) (cf. the remark under Definition 4.1).

ii. The existence of a commutative algebra of PDO’s containing D1,0, which is
isomorphic to R[03B821, ..., 03B82n]Sn via a Harish-Chandra-type isomorphism (cf. Theo-
rem 4.9), was already shown by Heckman and Opdam [10, 26]. In fact, their result
is more general since they consider arbitrary root systems. 

iii. For an arbitrary root system R, the quantum Hamiltonian H of the corre-
sponding generalized Calogero-Sutherland system is related to the second order
hypergeometric PDO via a similarity transformation [28]. From a mathematical
point of view, this just amounts to the conjugation with 03941/2, which transforms
between Lebesgue measure and Plancherel measure with weight function A. In
our case (i.e. for R = BCn), one has

with Eo = 403B12(03C1, p) ando,- = (n - j)g + (go + jl)/2, cf. (3.35).
Corollary 4.8 can be interpreted as the quantum integrability of the BCn-type
Calogero-Sutherland system. For arbitrary root systems integrability follows from
[10, 26] (cf. Remark ii).

5. Spécial Cases Related to Classical Root Systems

By limit transitions and/or specialization of the parameters, the difference operators
D1, ..., Dn reduce to commuting A0394O’s that are simultaneously diagonalized by
Macdonald’s polynomials. Such difference operators are obtained for all Macdon-
ald families associated with (admissible pairs of) the classical root systems: An-l,
Bn, Cn, Dn and BCn.

Note Most results in this section have an obvious counterpart for 13 = 0 (which
amounts to q = 1).

5.1. PRELIMINARIES

First, we outline very briefly some of the main points of the construction presented
by Macdonald [20]. A more detailed summary of his results can be found in [22]
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and [16]. (For our purposes, especially the second summary is useful). Here, we
only want to introduce some terminology that facilitates clarifying the connection
between the preceding sections and Ref. [20]. For general information on root
systems the reader is referred to e.g. [3, 34]. Although most of the remaining part
of the paper should be accessible without a detailed knowledge of root systems, a
glance at the ’planches’ in Bourbaki [3] might be of some help.

Ref. [20] uses the concept of admissible pairs of root systems. The pair (R, S)
is admissible if R and S are root systems (assumed irreducible) such that S C R
is reduced and generates the same Weyl group as R. Let V be the real vector space
spanned by R and consider the torus TR ~ V/(203C0/ZRv). Let P+R be the dominant
cone of the weight lattice of R (which equals the character lattice of TR) and let
A5 denote the algebra of W-invariant (trigonometric) polynomials on 1f R (this
algebra is isomorphic to the W-invariant part of the group algebra over the weight
lattice). To every admissible pair (R, S) Macdonald associates a weight function
0394(R,S) on 1F R and finds a corresponding orthogonal basis {p03BB(R,S)}03BB~P+p Of AWR.
Furthermore, he introduces difference operators Da associated with the so-called
(quasi-)minuscule weights (7 of Sv. These operators are diagonalized by the basis
of Macdonald polynomials {p03BB(R,S)}03BB~P+R
We will show that additional AAO’s for Macdonald’s polynomials arise as

special cases of D 1, ... , Dn (2.6). This leads to difference operators associated with
the fundamental weights of Sv, for every admissible pair consisting of classical
root systems. These AAO’s generate a commutative algebra JD(R,S) of difference
operators, which are simultaneously diagonalized by the basis {p03BB,(R,S)}03BB~P+R. The
algebra D(R,S) is isomorphic to R[Sv]W (the W-invariant part of the real group
algebra over P’1).
Remark If all roots in R have the same length (this is the case for R = An and
Dn), then S = Rand there exists only one admissible pair. If there are roots with
different lengths, then there are several possibilities for the pair (R, S). In case of
the classical series there are six such possibilities; these correspond to R = Bn,
Cn or BCn and S = Bn or Cn.

5.2. THE ROOT SYSTEM A,- 1

Let Dr,lead consist of those terms in Dr that are of highest order in the exponentials
exp(-03B203B8j),j= 1,..., n (cf. Eq. (2.13)):

One picks up these leading terms via the following limit:
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with

Let

Conjugation of Dr,lead with 0+ results in An-1-type difference operators (use
(3.56), (3.57)):

It is clear from Theorem 3.11 and Eqs. (5.2), (5.5), that the operators D’1, ..., Dn
commute. For r = n, (5.6) reduces to an operator that only generates a translation
of the coordinates: Dn = exp (-03B2(03B81 + ... + Ôn)). For r  n, Dr decomposes
in two commuting parts:

The first part causes a translation x - x + i03B2(r/n) (e1 + ··· + eu ); the second part
coincides (up to a multiplicative constant) with Macdonald’s difference operator
E,,:

The operator Ewr is associated with the rth fundamental weight Wr of the root
system An-1. The parameters in [20] are related to ours via Eq. (2.21 ).
Notes i. For r = 1, Eq. (5.6) reduces to

ii. After transformation to Lebesgue measure, the operator Dr goes over in the
rth quantum integral Sr [30, (Eq. (2.3))] of the relativistic Calogero-Moser system
with trigonometric coefficients. More precisely, let
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then

This relation between the n-particle relativistic CM system introduced by Ruij-
senaars and Macdonald’s difference operators for the root system An- 1 was first
observed by Koomwinder [13]. It generalizes the relation between the n-particle
Calogero-Sutherland system and the hypergeometric PDO’s associated with R =
An- 1 [28] (cf. Remark iii at the end of Section 4.3).

iii. The operators Dr,An-1 act as a real multiplication on functions that depend
only on x 1 + ··· + xn. The transition Dr ~ Dr,An-1 can be interpreted physically
as restricting attention to the motion in the center of mass hyperplane x1 + ··· +xn =
0.

We show next that the joint eigenfunctions of Dr,An-1, i.e. Macdonald’s An-1-
type polynomials, can be obtained from Koomwinder’s polynomials by a certain
limit transition. Let MA,1,,,d be the sum of terms in ma (3.3) that are of the highest
degree in exp(ixj), j = 1,..., n:

Recall that according to Definition 3.9, pa is a linear combination of monomials of
the form

with c03BB,03BB’ certain complex coefficients (which depend only on the parameters) such
that (3.70) holds and cA,A = 1. We set

Let

From the asymptotics

and Eqs. (5.13) and (5.14), one derives



214

The polynomial p03BB,lead is homogeneous of degree 1 À in the exponentials exp( ix j ).
Consequently, a translation causes an automorphic phase factor: x - x + Rw *
p03BB,lead ~ exp(iR |A|) P03BB,lead. By multiplying P03BB,lead with an appropriate exponen-
tial function one ends up with a basis of translation-invariant functions:

with

As the notation suggests, it will tum out that the functions {P03BB,An-1} (5.18) coincide
with the Macdonald polynomials associated with the root system An-1.

First we need a lemma. It says that the spectrum of DI 1 (2.10) is monotonic in
À e P+. (Recall that the eigenvalues of D1 are given by (3.33) with r = 1; see
also Eq. (5.29) below).

LEMMA 5.1. Let

Then, for all À, À’ E ’P +.-

(with p given by (3.35)).

Proof
It is clear from Definition 3.1 that A &#x3E; À’ iff

with at least one of the aj ’s positive.
Obviously, it suffices to verify (5.21) for the special case that only one of the aj

is positive. Now for j = n this is immediate, while for j  n this follows because

ch03B2(·) is a convex function:

if x &#x3E; y and a &#x3E; 0.
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PROPOSITION 5.2. Let Dr,An-1 be determined by (5.6)-(5.7) and let p03BB,An-1 be
defined by (5.18). Then

with

(Sr denotes the rth elementary symmetric function (Definition 2.2)).

Proof
The operator Dr (5.6) is invariant both under permutations of xj and under transla-
tions of the form x - x + R03C9 (with 03C9 as in (5.15)). We use this and the asymptotics
of (D’rm03BB,lead)(-iRy) for R ~ oa (with y such that (3.30) holds) to derive (cf.
Proposition 3.3, Proposition 3.4, and their proofs)

with

(The poles at xj = xk, ~ k, cancel because of the permutation symmetry; the
condition |03BB’] = |03BB| in sum the (5.27) stems from the translational invariance of
D’r).
We will now show that p03BB,lead is an eigenfunction of Dr (with eigenvalue

(5.28)). Consider the eigenvalue equation (3.72) for r = 1:

with D given by (2.10). Substitute

and divide both sides of the equation by exp(R|03BB|); Sending R ~ oo entails (use
(3.19), (3.20) and (5.17))
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with

(To verify equality *, first check that both parts of (5.33) are regular and bounded
in x j; consequently, these parts are constants because of Liouville’s theorem. One
obtains the value of these constants by putting x = iRy with y such that (3.30)
holds, and then sending R ~ ~).

It is clear from the commutativity of D’1, ..., Dn that Dr commutes with the
operator on the 1.h.s. of (5.31). Therefore, D’rp03BB,lead is an eigenfunction of the
latter operator corresponding to the same eigenvalue as p03BB,lead. We know from

(5.14) and (5.27) that ’rp03BB,lead lies in span{ p03BB’,lead|03BB’ ~ À, IÀ’I = IÀI | }. Now
we use Lemma 5.1 to conclude that p03BB,lead must be an eigenfunction of D’r. The
corresponding eigenvalue follows from (5.27), (5.28).

One obtains the expressions (5.24)-(5.26) by restricting to the hyperplane x +
... + Xn = 0.

Notice that m03BB,An-1 = m03BB,An-1 iff 03BB’-03BB~ Z(e1+···+en). Thus, the monomials
m03BB,An-1 can be relabeled by the projection of P+ (3.4) onto the hyperplane x1 +
... + xn = 0. This projection of P+ coincides with the cone pln-l of dominant
An-l 1 weight vectors. The polynomials p03BB,An-1 can also be relabeled by P+An-1,
since p03BB’,An-1 = p03BB,An-1 iff À’ - À e ae:(el + ... + en). (This follows from
expansion (5.18) and the eigenvalue equations (5.24) for r = 1,..., n - 1). Since
the operators Dr,An-1 coincide with Macdonald’s An- difference operators up to
a constant, we end up with the following corollary:
COROLLARY 5.3. The function p03BB,An-1 coincides with the An-1-type Macdonald
polynomial corresponding to the weight vector À - |03BB|(e1+···+en)/n~ P+An-11
(with the parameters as in (2.21 )).

Notes i. The transition p03BB,lead ~ p03BB,An-1 amounts to ignoring the linear motion of
the center of mass.

ii. For 03B2 ~ 0 (i.e. q = exp(-03B2) ~ 1), the polynomials p03BB,An-1 converge to the
Jacobi polynomials associated with An- 1 [20]. It is clear that the 13 = 0 version
of the formulas (5.14), (5.18) relates the Jacobi polynomials associated with BCn
and An-1:
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iii. Recently, a completely different limit taking the Jacobi polynomials associ-
ated with BCn to those associated with An- bas been found [2]; this limit has not
been dealt with for q ~ 1.

5.3. THE ROOT SYSTEMS Bn, Cn AND BCn.

In order to compare our results with Ref. [20], it is convenient to carry out a

reparametrization:

with (cf. (2.20))

With these new parameters we rewrite vb(z) (2.2) and d+b(z) (3.53) (recall also
(3.60)):

and

For the parameters in Fig. 1, 0394(x) (3.50) reduces to Macdonald’s weight function
A(R,S) with R = Bn, Cn or BCn and S = Bn or Cn.
The relation with the parameters employed in Ref. [20] reads:

and

(In order to verify that for the above parameters, A (3.50) indeed coincides with
the weight functions introduced by Macdonald, it may be helpful to compare our
expressions with Eqs. (3.1)-(3.5) of [16], since the latter are rather explicit).

Next, we consider the Macdonald polynomials associated with 0394(R,S). We
distinguish two cases:



218

Fig. 1. Special cases associated with admissible pairs (R, S).

i. R = (B)Cn
In this case the toms 1fR(= Rn/(203C0ZRv)) coincides with TT (3.1) and the algebra
AWR of W-invariant polynomials on 1f R coincides with AW. The fundamental
weights of R = (B)Cn read

(our convention regarding the choice of the positive roots agrees with [3]). The cone
of dominant weights P+R, which consists of the non-negative integral combinations
of wk, k = 1,..., n, coincides with the cone p+ (3.4). By specializing the param-
eters as in column 2 and 3 of the table (Fig. 1), {p03BB}03BB~P+ reduces to an orthogonal
basis of L2W(TR, 0394(R,S)). Combined with the structure of the expansion (3.69), it
now follows that this basis coincides with the Macdonald basis {p(R,S),03BB}03BB~P+R.

ii. R = Bn
This case is a bit more complicated because TT (3.1 ) is merely a subgroup with index
two of the Macdonald torus TBn(~ Rn/(203C0ZBvn) = Rn/(203C0ZCn)). For k  n,
the fundamental weights 03C9k of Bn are the same as in (5.42), but on is now given
by the spin weight

The cone of dominant weight vectors can be written as

and the algebra of W-invariant polynomials on il Bn is spanned by the associated
monomials:

For 03B4 = 0 (1) the function m03BB+03B403C9n(x) (3.3) is periodic (anti-periodic) in x j :

Combining (5.46) with the fact that the functions are even in xj entails that

m À+Wn (x) is zero on the hyperplanes x j = 7r (mod 203C0). Therefore, mA+,,, is

divisible by
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Thus, we have the following decomposition of A1fn in periodic and anti-periodic
functions:

(with AW as before). This decomposition is orthogonal with respect to the inner
product on L2(1f Bn’ 03B4Bndx) because 0394Bn(x) is periodic in x j with period 203C0.

The situation is now as follows: just as the basis {m03BB’}03BB’~P+Bn the Macdonald
basis {p03BB’,(Bn,s)}03BB’~P+Bn of 4w splits in periodic and anti-periodic functions in
,4w and mwnA w, respectively. By specializing to the first column of the table, we
recover the Bn -type Macdonald polynomials that are in the subspace 4w (cf. case
i., above). The Bn -type polynomials in m03C9nAW can also be expressed in terms of
Koomwinder’s polynomials. To see this, notice that m203C9n0394(Bn,S) coincides with a
weight function of the type (3.50)-(3.53) with parameters

By multiplying mWn and the Koomwinder polynomials with parameters as in
(5.49), we obtain an orthogonal basis of m03C9nAW; the latter polynomials coincide
with the anti-periodic Macdonald polynomials. To be more explicit, we have:

(with A e P+).
Let us now tum to the corresponding A0394O’s. Let D1,(R,S), ..., Dn,(R,S) denote

the operators D 1, ... , Dn (2.6) with parameters given by the table. We claim
that the polynomials p03BB’(R,S),03BB’~ P"li, are joint eigenfunctions of the operators
D1,(R,S), ..., Dn,(R,S). For R = (B)Cn, and for the polynomials (5.50), this is
an immediate consequence of Theorem 3.10. For the polynomials (5.51) this is
seen as follows. By conjugating D1,(Bn,S) with mWn (5.47), one obtains (up to an
additive constant) the operator D 1 (2.10) with parameters (5.49):
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with cx = 1/2 (calculate the residues to verify the second equality). Therefore,
the polynomials (5.51) are eigenfunctions of D1,(Bn,S). One generalizes this to
Dr,(Bn,S), r &#x3E; 1, via similar reasoning as in the proof of Proposition 5.2: first

one shows that Dr,(Bn,S) leaves invariant the space of anti-periodic polynomials
m03C9nAW (by calculating the residues); from the asymptotics for Im x - oa in
the positive Weyl chamber, it then follows that the operator is triangular. One
uses Eq. (5.52), the monotony of the spectrum of D1,(Bn,S) (Lemma 5.1), and the
commutativity of the operators to conclude that the polynomials (5.51) are joint
eigenfunctions of D1,(Bn,S), ... , 1 Dn,(Bn,S)

The value of the additive constant in the r.h.s. of (5.52) can be easily obtained
by comparing the spectrum of the operators on both sides of the equation (cf. Eqs.
(3.33)-(3.35), for r = 1, and (5.37)):

with 03C1j = (n-j)g+k1/2(S = Bn)orpj = (n-j)g+k1 (S = Cn). In principle
one could generalize (5.52) to an expression that relates m-103C9nDr,(Bn,S)m03C9n to the
operators D1, ..., Dr with parameters (5.49). Thé precise form of these relations
can be obtained by comparing the spectrum of the operators. More precisely, one
has to express Er,n( B) (3.71) in terms of E1,n(03B8), ..., Er,n(03B8) with p replaced by
p + on and use Theorem 3.12.

Remarks i. The operator Dl,(R,S) coincides (up to a multiplicative constant) with
the Macdonald difference operator D1r that is associated with the first fundamental

weight wl = el of S’. For technical reasons, Macdonald works with a dilated
root system S - aS and the weight lattice of S’ is scaled correspondingly:
Psv - 03B1-1PSv. This has as consequence that in comparing with [20] one must
multiply the weights of Sv with a factor 2 if S = Cn and R = B (C)n. Specifically,
D1,(R,S) ~ Del if S = Bn or S = R = Cn, and D1,(R,S) ~ D2,, if S = Cn and
R = B(C)n. 

ii. The operators D1,(R,S), ... , Dn,(R,S) generate a commutative algebra D con-
sisting of difference operators that are simultaneously diagonalized by the basis

{p03BB’,(R,S)}03BB’~p+R. Now let S = Cn and consider the operator
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with

This AAO coïncides up to a multiplicative constant with the Macdonald operator
E03C0. that is associated with the nth fundamental weight 03C9n of Cv = Bn; (03C9n
is given by (5.43)). One has (cf. Remark i) D’n,(R,Cn) ~ Ewn if R = Cn, and
D’n,(R,Cn) ~ E203C9n if R=B(C)n.

It follows from [20] that D’n,(R,Cn) is diagonalized by {p03BB’,(R,Cn}03BB’~P+R. Notice
however, that D’n,(R,Cn) is not in D but its square is (it is easy to see this by
examining the eigenvalues and using Theorem 3.12).

iii. From a group-theoretic perspective, Theorem 3.12 amounts to saying thatD
is isomorphic to R[R]W (the W-invariant part of the (real) group algebra over the
lattice P= Zn). If S = Bn, then one has Psv = P; so D(R,Bn) ~ D ~ R[PBvn]W.
If S = Cn, then P is a subgroup of Psv with index two; so D is isomorphic to a
subalgebra of JR [PCvn] w. In the latter case, one can extend D to an algebra D(R,Cn)
that is isomorphic to R[PCvn]W by replacing the generator Dn,(R,Cn) by D’n,(R,Cn))
(5.54).

5.4. THE ROOT SYSTEM Dn

We conclude by briefly sketching the state of affairs for R = Dn. (The interested
reader should not have much difficulty to supply missing proofs by comparing with
the previous subsection). Put

Then db(z) = 1 and A (x) (3.50) reduces to Macdonald’s Dn-type weight function.
(Again the correspondence of parameters is via Eq. (2.21)). Also vb ( z ) = 1 and Î) 1
reduces to Macdonald’s operator D03C91 associated with the first fundamental weight
oi 1 = e1.

For R = Dn, the torus Tp = Rn/(203C0ZRv) is the same as for R = En. The
Weyl group, however, is smaller: only an even number of sign flips of the variables
xj, j = 1,..., n, is allowed. For k = 1,..., n - 2, the fundamental weights 03C9k

of Dn are the same as in (5.42), but 03C9n-1 and on are now given by the half-spin
weights
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It is not hard to see that the cone of dominant weights Pbn generated by 03C9k,

k = 1,..., n, consists of the vectors 

with

The Macdonald polynomials p03BB’, Dn, À’ E ptn constitute an orthogonal basis of
L2 , (TDn,0394Dndx). By combining the polynomials associated with (À + 03B403C9n)+
and (À + 03B403C9n) - one obtains polynomials that are even in x j, j = 1,..., n. These
are related to Koomwinder’s polynomials in the following way (cf. Eqs. (5.50),
(5.51)):

In the second and the third line of the above formula one obtains a sum of Dn poly-
nomials rather than the polynomials themselves. Nevertheless, Eq. (5.60) deter-
mines the Dn polynomials uniquely. This is because flipping the sign of one of
the x j’S in P(03BB+03B403C9n)+,Dn results in P(03BB+03B403C9n)-,Dn. · Consequently, the coefficients
of the expansion of P(À+8wn)g,Dn in Dn-type monomial symmetric functions are
determined in terms of the coefficients occurring in (3.69).

As regards the difference operators with parameters (5.56), the algebra D con-
sists of commuting AAO’s with the Dn-type polynomials as joint eigenfunctions.
One can extend D to an algebra that is isomorphic to R[PDvn]WDn by replacing the
generators Dn- 1 and D n by

These operators are proportional to Macdonald’s operators E03C9n-1 1 and E03C9n, which
are associated with the half-spin weights (5.57).

Appendix

A. Cancellation of Poles

In this appendix we prove two results, which were needed to demonstrate that Dr
maps 4w into itself. It was claimed in the proof of Proposition 3.3 (Section 3.2)
that the following expression:
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(with 03BB e P+ and J ~{1, ..., n}, J0 ~ ), is regular both at x 1 = - q (pole of
type I) and at xl = -x j - 203B3,j = 2,..., n (poles of type II). The terms of (A.1)
have poles due to zeros in the denominators of the coefficients (cf. (2.16)-(2.18)
and (2.1), (2.2)). Recall that we assume that the parameters 03B3, y, 03BC03B4, 03BC’03B4 (6 = 0, 1 )
and the variables x2, ..., xn are chosen in such a way that these poles are simple.
In the next two lemmas we prove the above regularity claims, thereby completing
the proof of Proposition 3.3.

Before tuming to the details, let us outline the idea of the proof. Equation (A.1 )
consists of a sum of terms of the type

where the index sets B s’ C J, s’ = 1,..., s denote the blocks of the partition of
the cell J:

The terms (A.2) are associated with the sequences

(with the cell J fixed). Each term in (A.1 ) corresponds to a sequence (A.4). We
will construct an involutive operation a (a2 =id) on the collection of sequences
(A.4) in such a way that the terms associated with a sequence and its image under
a have opposite residue. Therefore, the poles in (A.1 ) cancel in pairs.

LEMMA A.1 (pole of type I).
Let 03B3, 03BC, 03BC03B4, 03BC’03B4(03B4 = 0, 1) and x2, ... , xn be such that the terms in (A.l ) have only
simple poles. Then (A) is regular as a function of x 1 at x 1 = -03B3.

Proof
First note that the lemma is trivial if 1 e J, because in that case V1J does not depend
on x1. But if 1 E J, then V1J gives rise to a pole at x 1 = -,in(A.1).

Assume 1 E J and let B,l denote the block of the cell J that contains the index
1. We define the following map u on the collection of sequences (A.4):
1.A If |Bs1| 1 &#x3E; 1, then (7 maps (A.4) to the sequence

1.B If |Bs1| 1 = 1 and s1 &#x3E; 1, then u maps (A.4) to the sequence

2. If |Bs1| = 1 and s 1 = 1 (i.e. JI = {1}), then a maps sequence (A.4) to itself.
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Fig. 2. A graphical representation of the map (j.

Phrased in words: unless Bsl = {1}. the map u pulls the index 1 out of Bsl and
places it in a newly created block, which is sandwiched between BS1B{1} and
BS1+1 1 (case 1.A) ; when Bs 1 contains only the index 1, then u merges the blocks
Bsl ={1} and BSl-1 if s1 &#x3E; 1 (case 1.B) or, if s 1 = 1, then it leaves the sequence
(A.4) unchanged (case 2.).

Thus defined, (7 is indeed an involution on the collection of sequences (A.4):
the cases 1.A and 1.B are inverse to each other (see Fig. 2).

We claim that in the first situation (i.e. 1.A or 1.B) the pole at x 1 = -, in the
term (A.2) (which is associated with (A.4)) cancels against the pole in the term
corresponding with the (7-image of the sequence (A.4). To see this, we may assume
that we are in situation 1.A. One obtains the term corresponding to the sequence
(A.5) from (A.2) by making the substitutions

(03B4j,k denotes the Kronecker symbol). This substitution in (A.2) amounts to replac-
ing the part

by

At x 1 = -03B3 the r.h.s. of (A.11) and (A.12) differ only by sign. Hence, the residues
at x 1 = -03B3 cancel.
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If we are in situation 2., i.e. BI = {1}, then (A.2) is regular at x 1 = --y because
the pole in V1J is compensated by a zero in the difference of the two monomial
symmetric functions:

This shows that the total residue at xi = -u of the sum (A.1) vanishes, which
completes the proof of the lemma.

D

LEMMA A.2 (poles of type II).
Let 03B3, 03BC, 03BC03B4, 03BC’03B4 (03B4 = 0, 1) and x2, ..., xn be such that the terms in (A) have
only simple poles. Then (A) is regular as a function of x 1 at x 1 = -xj- 203B3,
j = 2, ... , n.

Proof
The proof is very similar to that of Lemma A.1. Fix a j E {2, ..., n}. The lemma
is trivial if J does not contain the pair {1,j}, because in that case all terms of (A.1 )
are regular at x 1 = -xj- 203B3.

Assume for the remaining part of the proof that {1,1} C J. Let a j be the
following map on the collection of sequences (A.4):
1.A If the pair {1,j} is contained in one of the blocks, say BsJ, of sequence (A.4),

and !7L ! 1 &#x3E; 2, then 03C3j maps sequence (A.4) to

1.B If one of the blocks of séquence (A.4), say BsJ, équals {1,j}, and sj &#x3E; 1,
then aj maps sequence (A.4) to

2. If BI ={1,j}, then a j maps sequénce (À.4) to itself.
3. If the pair {1, j} is not contained in any of the blocks of (A.4), then u j maps

the sequence (A.4) to itself.
It is clear that 03C3j is an involution, the cases 1.A and 1.B are inverse to each other
(see Fig. 3).

Consider situation 1., assuming case 1.A. The application of 0’,- boils down to
making the following substitutions in the associated term (A.2):

These substitutions amount to the following change in the term (A.2): replace the
part
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Fig. 3. A graphical representation of the map o,,.

by

At x 1 = -x. - 203B3, (A.19) and (A.20) differ only by sign. Consequently, the
residues at x 1 =-xj- 2-j of the corresponding terms in (A.1 ) add up to zero.

In situation 2. the pole in the coefficient of (A.2), which is caused by V¿l’
cancels against the zero in the difference of the monomial symmetric functions:

In situation 3. the denominator of the coefficient of (A.2) has no zero at x 1 =

- xi - 203B3, so the term is regular at x1=-xj- 203B3.
We conclude from the above analysis that the total residue at x 1 x. - 2,

in the sum (A.1) is zero, thus completing the proof of the lemma.

D

B. Two Combinatorial Lemmas

In this appendix we prove two technical results used in the main text, which have
a bearing on the eigenvalues of our difference operators. In Lemma B.l we solve a
certain linear system; its solution resulted in explicit formulas for the eigenvalues
of Dr (Proposition 3.5). Lemma B.2 deals with a recurrence relation, which helped
us in obtaining explicit information conceming the behavior of the eigenvalues for
03B2 ~ 0 (Proposition 4.4).

LEMMA B.1. The functions
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form the unique solution of the linear system

with the convention

Proof
After splitting off the term in (B.2) corresponding to s = 0 and bringing all other
terms to the r.h.s. of the equation, one arrives at a recurrence relation for Fn,r :

It is clear that (B.4) with condition (B.3) determines Fn,r uniquely (use induction
on r). Hence, the system (B.2), (B.3) has a unique solution.

In order to prove that this solution is indeed given by Eq. (B.1 ), we must show
that the expression

vanishes identically (for 1  r  n). To this end we observe that (B.5) consists of
a sum of monomials in the variables t1, ..., tn of the type

which correspond to pairs of the form

subject to the condition

We shall now show that these monomials cancel in pairs.
Let a be the following operation defined on the above collection of pairs (B.7)

with condition (B.8):
A. If i 1  j1 or s = 0, then
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B . If i 1 ~ j1 1 or s = r, then

Roughly speaking, u compares the first entries of the two elements constituting
the pair (B.7) and moves the smallest of these two to the first entry of the other
element. One easily verifies that: first, 03C3 is well defined in the sense that the image
of (B.7) is again a pair satisfying (B.8); second, 03C3 is an involution (a2 = id), the
cases A. and B. being inverse to each other.

For the associated monomial (B.6), acting with u amounts to an increase (case
A.) or a decrease (case B.) of the number s by one, i.e. it flips the sign of the
corresponding monomial. Therefore, combining the term (B.6) associated with a
pair (B.7) with the one associated with its image under u entails the vanishing of
the sum (B.5), which completes the proof.

D

Remark If one replaces the upper bound n - r + 1 of the second summation in

(B.5) by n, then, for r = n, expression (B.5) also vanishes. (Indeed, the above
proof again applies). In this case the vanishing of (B.5) amounts to a well-known
relation between the elementary symmetric functions and the complete symmetric
functions (see e.g. [18]).

LEMMA B.2. The function

is the unique solution of the recurrence relation

with the convention

Proof
It is clear that (B.12) with condition (B.13) determines Er,n uniquely (use induction



229

on n). After splitting up the sum in (B.11) in three parts, it becomes apparent that
(B.11) indeed solves Eq. (B.12):

Remark In some cases Lemma B.2 can be used to obtain alternative expressions
for Er,n. For instance, one easily verifies with the aid of relation (B.12) that if

then

In particular,

In this appendix we present a result due to S. N. M. Ruijsenaars [32]. It shows that if
an AAO or PDO is zero on all symmetric functions in 4w, then its coefficients must
be zero. This fact was used in Section 3.5 to show that the operators D1, ..., Dn
commute (Theorem 3.11), and again in Section 4.3 to conclude that for (3 -+ 0 one
obtains the BCn-type hypergeometric PDO’s of Heckman and Opdam.

Let

with k = (k1, ..., Kn ) in M" or Nn in the AAO or PDO case, respectively. The
A0394O’s/PDO’s of interest are of the form:

with the n-dimensional vectors k(1), ... , distinct, and the coefficient functions

continuous on an open dense set u C Rn.

PROPOSITION C.1 (D(AW) = 0 ~ b = 0).
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Let D be an AAOIPDO of the form (C.2). If

then

Proof ([32])
Introduce the following vector-valued functions (À e P+):

The fact that ma is in the kemel of D translates itself geometrically in the orthog-
onality of tA and v :

We will assume v ~ 0 and derive a contradiction. Let 03BB(1), ..., 03BB(M) be vectors
in P+. One has v  t03BB(1),...t03BB(M). Therefore, the vectors t03BB(1)(x), ..., t03BB(M)(x)
must be linearly dependent for all x ~u for which v(x) ~ 0. Since v(x) is

continuous in x, there exists an open ball 03B2 C U on which v(x) ~ 0. The fact that
the vectors t03BB(s)(x), 1  s  M are real-analytic in x then entails

We will now show that an appropriate choice of the vectors 03BB(1), ..., 03BB(M) contra-
dicts the vanishing of the above determinant.

Let A E p+ and y E Rn be such that

From the asymptotics (cf. Eq. (3.37))

with

one derives:

Pick the vector A (subject to condition (C.10)) in such a way that
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That such a À exists follows in the AAO case from (C.12) and the fact that the
vectors k(1), ..., k(M) are distinct; in the PDO case one can pick distinct prime
numbers for the components of 03BB.
We use À = (03BB1, ..., 03BBn) to form the vectors 03BB(1), ..., 03BB(m) in the following

way:

On the one hand, Eqs. (C.9) and (C.13) imply

On the other hand, for the above choice of the vectors 03BB(s) (C.15) , T is a Vander-
monde determinant:

Therefore,

Because À is chosen such that 03C4k(r),03BB ~ 03C4k(p),03BB if r ~ p, it follows from Eq. (C.18)
that the determinant 03C4 ~ 0, contradicting (C.16).

Hence, v (C.7) must be zero.

~
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