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Abstract. We introduce D-modules adapted to study ideals generated by exponential polynomials.

1. Introduction

In this manuscript we introduce a new method to study ideals generated by expo-
nential polynomials, inspired by the theory of D-modules [17, 18, 19]. Let us recall
that an exponential polynomial f of n complex variables with frequencies in a
finitely generated subgroup I" of C™ is a function of the form

f(z1,.00,20) = f(2) = va(z)exp(y - 2),

~ver

where the sum is finite, the p, are polynomials,and ¥ - 2 = y12; + -+ + Y 2n-
Such a function belongs to the algebra A,(C™) of entire functions F satisfying the
growth condition:

AC >0 |F(2)| < Cexp(Cé(2)),

where the weight ¢ can be taken as | z |, the Euclidean norm of z, or, more precisely,
if we choose a system 7!, ..., 7", of Q-linearly independent generators of I', as

o(2) = maz(|R(y -2) |15 =1,---, N)+log(1+ ] z |%),

where Rz denotes the real part of the complex number 2.

In the case that I' C :R", the exponential polynomials are just the Fourier
transforms of distributions supported by finitely many points in the lattice —:T",
and A, is a subalgebra of the Paley-Wiener algebra £'(R™) of Fourier transforms
of distributions of compact support. It is well-known that the spectral synthesis
does not hold for arbitrary systems of convolution equations as soon as n > 2,
equivalently, not all ideals in the Paley-Wiener algebra are localizable [23]. If
an ideal is generated by polynomials then, it has been proved by Ehrenpreis and

* Both authors were partially supported by the NSF grants DMS-9225043 and CDR-8803012 and
NSA grant MDA90493H3012
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Malgrange, that it is always localizable [21, 27]. The only fairly general criterion
to ensure localizability of a finitely generated ideal [ is to verify that the generators
form a slowly decreasing sequence in the sense of [6]. Among other requirements,
the generators must define a complete intersection. The slowly decreasing condition
is not too easy to check, especially when the variety V' of common zeros of the
generators is not discrete. The only general example given in [6] of a slowly
decreasing sequence of exponential polynomials is the following. Let Pp,..., P,
be polynomials defining a discrete (hence, finite) variety in C™ and k¥ < n, then
the sequence of functions

fj(z)=Pj(e”l,...,ei”k,zk_l.l,...,zn) €))

is slowly decreasing.

For these reasons, in our previous paper [9] we had considered the case of
finitely generated ideals of exponential polynomials with frequencies in a group I
of rank n and V' discrete. Even when I' = ¢Z", we could not find a general criterion
for localizability of the ideals generated by such exponential polynomials. Part of
the problem was of an arithmetic nature, namely localizability may depend not
only on the geometry of V' and I', but also on the diophantine approximations
of the coefficients of the generators of /. For example, the ideal generated by
cos(z1), cos(z3), 23 — @z is localizable if and only if « is not a Liouville number.
As we pointed out in [10], there is a deep relationship between the localizability
issue and a conjecture of Ehrenpreis on the zeros of exponential polynomials of a
single variable with algebraic coefficients and frequencies.

In this paper we consider a situation that is fairly different from that of [9].
Namely, the group I' has very low rank, either one or two, and the variety V'
might not be discrete or complete intersection. We have obtained some results
very simple to state. For instance, if rank(I') = 1, any system of exponential
polynomials defining a complete intersection generates a localizable ideal in the
space Ay. Another example of localizability is that where the generators are of
the type (1) and define a non-discrete complete intersection. We have also studied
problems related to global versions of the Nullstellensatz and of the Briangon-
Skoda theorem, which could be useful when solving the ubiquitous Bezout identity
for exponential polynomials without common zeros. The solution of the Ehrenpreis
conjecture, as mentioned in [10], is precisely equivalent to solving in general the
Bezout identity.

The leitmotiv of our approach is to relate the division problems implicit in the
previous questions, to the study of the analytic continuation in Ay,..., A, of the
distribution

2 AN fm(2))

for exponential polynomials f; and the residues of this distribution-valued mero-
morphic function. This idea originated in our previous work about residue currents
[3] and their applications to the effective solvability of the polynomial membership
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problem [12, 13]. The theory of D-modules, as introduced by J. Bernstein [17],
was precisely formulated to obtain an explicit form of the analytic continuation
in A of the distribution | P(z)|* when P is a polynomial. Bernstein’s results were
extended by Bjork to the holomorphic setting in [18].

Finally, we should mention that our results can be interpreted in harmonic
analysis as providing a representation of all the solutions of certain homogeneous
systems of linear partial differential equations with time lags, for instance, in
Theorem 3.4 below.

The authors would like to thank Jan-Erik Bjork for several estimulating con-
versations.

2. D-modules

The ideas we develop in this section are clearly related to those about the Weyl
algebra found in [18, Chapter 1], to which we refer for further developments.

We denote by N the set of non-negative integers. For an index o € N, its
length |a| = a1+ - - -+ a,. We also let K be a field of characteristic zero, n and m
two positive integers, we define an extension E,, ,,,(K) of the Weyl algebra A,,(K).
It is realized as an algebra of operators acting on the algebra of polynomials in
n + m variables over K as follows.

Consider the polynomial algebra K[z1,...,Zs,¥1,...,Yn] and derivations
Dy,..., D, on this algebra such that

Diw]‘:(sij (i,j:l,...,n)
Diyjzéijyj (i:l,...,n;j:l,...,m.)

The algebra E,, ,,(K) is the algebra of operators on K[z1,..., 2., ¥1,..., ym] gen-
erated by X1,..., X, Y1,..., Y, Dy,..., Dy, where X; (resp. Y;) is the operator
of multiplication by z; (resp. y;). It is a Lie algebra, with the usual definition of
the Lie bracket [., .] in terms of the composition of operators, i.e.,

[P,Q]=PoQ—-QoP.

The Lie bracket satisfies the following commutator relations
[(Xe, X5] = [Vi,Yj] = (X3, Y] = [Di, Dj] = 05
[Xi, Dj] = =6;5 5 [Yi, Dj] = —é;Y:.

We note that for m = 0 our algebra coincides with the Weyl algebra. It is evident
that every element P of F,, ,,,(K) can be written in the form of a finite sum

P=>" cap,X°YPD, 2

o,By
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capy € K,a,7 € N*, 3 € N™. We want to prove the uniqueness of the repre-
sentation (2). For that purpose it is convenient to introduce the operators ad(())
acting on E, ,,,(K) by ad(Q)(P) := [@, P]. Once the uniqueness is proven, the
integer maz(|a| + |3| + || : ¢a,8,y # 0) will be denoted deg P.

LEMMA 2.1. Every element of E,, ,,(K) can be written in a unique way as in (2).

Proof. Let us assume we have an expression

P= capsX°YPD =0,

a8,y
as an operator on K[z1,...,Z,,91,...,Ym]- We rewrite P as
P= ZPD Pyi=) capaXYP.

o,B
Observe that if ¥ = (7y1,...,7,) = (71,7’) then
ad(X,)(D") = [X1, D7) = =y D" 7'DY,
which vanishes if 7; = 0. Hence
ad(Xn)" 0 -+-0 ad(X)"(D7) = (-1)Pyt.
Moreover, for any other index 7 we have
ad(X,)™ o ---o0ad(X)" (D7) =0,

if some 7; < 1;, in particular, if |§] < |y|. It follows, using the lexicographical
ordering, that for all y

(-1)y1p, = 0.
Since char(K) = 0,wehave P, = 0. As P, isthe operatoractingon K[z, ..., z,,
Y1, .., Ym] by multiplication with a polynomial all the coefficients of P, are zero.

a
We shall need the following simple calculus rules.

LEMMA 2.2. For any integers a,b > 0,1 < k < n, we have
[Dk, X2V = a X271V 4+ bX Y.

COROLLARY 2.1. Let P(X,Y) = Y M XFP(XY) = SN, Y[ Qu(X,Y"),
where X = (X1,X'),Y = (Y1,Y’). Then

_ Q1
[mm_§HM+@)
oPy M dP,
— X1MYI (3;/1 + Z Xl {(k-l— I)Pk.H + Y aY’:}

k=0
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Let us define the natural filtration £, on E,, ,,,(K) by
Ey:={P € E,,(K):degP < v}.

Itis a K-vector space of dimension (2""';”"’”) ~ v¥"*™ We can define the graded
algebra gr( E,, »(K)) as

9r(Eam(K)) := EoD E1/E0D -

As always (cf. [18]), it is necessary to show that this is a commutative algebra. The
only thing to show is that

[gua gv] g gu-}-v—l .

This is a consequence of the fact that deg[X;, D;] <0, deg[Y;, D;] < 1.

Finally, we want to show that gr( E,, ,,,(K)) is isomorphic to a polynomial ring
in 2n 4+ m variables. As in [18] all we need to demonstrate is that if X; (resp.,
Y, D;) denotes the class of X; (resp., Y;, D;) and

Z ca,ﬁﬂya?ﬁﬁ’y =0,
in gr(E,,»(K)), then all coefficients ¢, 3, = 0. Assume this is not true and let

v:=maz {|a| + |8 + 7] : ca g~ # 0} .
We have that
Y ap X YD =0iné(v),
o +1Bl+v]=v
where £(v) := &,/&,—1. Thus, its representative 3|, |4|g]+|v|=v Cap XOYPDY
belongs necessarily to &,—_;. Since the degree is v, this is clearly a contradiction to
the uniqueness of the representation proved earlier, so we are done.
Let M be a (left) E, ,,(K)-module and I', a filtration of M, i.e., an increasing
family of finite dimensional K-vector spaces I, such that
@ Usolv = M;
(11) erv - FU—{—lvl/YiI‘u - F’U—{-lv and Dirv - FU+1'
LetI'(v) :=T',/I',—; and define gr( M) by

gr(M):=To@PTI/ToP---=TO)Pra)P---

Due to property (ii), this graded module is a module over gr( E,, ,,(K)). One says
the filtration is a good filtration if gr(M ) is of finite type over gr(E, »(K)). For
instance, if M is finitely generated over E, ,,(K) by ai,...,a, and we choose
Iy :=¢&a1 + - -+ &a,, then we have a good filtration.

As in [18, Lemma 3.4], one can prove the following lemma.
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LEMMA 2.3. Let (T}),,(Qy)y be two filtrations of a E,, ,,(K) module M, and
assume that (T',), is a good filtration. Then there is an integer w such that T, C
Qyyw forallv > 0.

If gr(M) is of finite type over gr(E, (K)), there is a Hilbert polynomial
H € Q[t] such that for all v > 1

H(v) = dimgT,

(see [18, Theorem 3.1]). As a consequence of Lemma 2.3, the degree and the
leading coefficient of H do not depend on the choice of the good filtration (I',),.
The degree d of H is called the dimension d(M ) of gr(M ) and the multiplicity
e(M) of gr(M) is the leading term of H times d!.

In the case m = 0, i.e., for the Weyl algebra A, (K) one has the fundamental
theorem of J. Bernstein that asserts that, for any non-trivial A, (K)-module M
such that gr( M) is of finite type,

d(M) > n.

An A, (K)-module M such that d(M) = n is said to be holonomic.

One of the applications of the concept of holonomic modules is the existence
of the Bernstein-Sato functional equations [18, 31, 29], i.e., given polynomials
fis..os fyin K[zy, ..., z,] there are differential operators @; in A, (K[\]), with
A = (A1,+-+,Ag), and a non-zero polynomial b € K[A] such that the formal
relations

Qi [ Py = bR N (G=1,.0,0)

hold.

One of the most interesting examples, for us, of E,, ,,(K)-modules, m < n,
is the following. Consider exponential polynomials P, ..., P, of n variables with
positive integral frequencies and coefficients in a subfield K of C, that is, finite
sums

Pi(z)= > cjp(z)e"?,
keN™
with ¢, € K[z],j = 1,...,¢. We consider a new field K(X) = K(Aq,..., ;)
obtained from K by adjoining ¢ indeterminates, and define the module M freely
generated by a single generator denoted P* = PIA e -Pq)‘ ¢, namely,

1 1
M=M(Py,...,P) :=K\)[z1,..., 20, €., €™ ][=,..., =P, (3)
P P,
where, to pick up the earlier notation, X; (resp., Y;) operates as multiplication by
z; (resp., by e®s) and D; acts as the differential operator v/, defined by
9A Nk am)

V(AP = (— A =2
]( ) ax]- =1 Pk 8a:j
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The natural filtration of M is

R\, z,€)
[,:={ ————2P": ReK(\)|z,e"],deg s R < vdp },
{(Pl"‘Pq)” (M ] 0}

where dy := 1 + deg = (P - - - Py). This is a good filtration and

. n + m + vdy
dimg )Ly = ( v ) .
Hence,

dM)=n+m, e(M)=djt".

It is natural to ask whether for every non-trivial E,, ,,(K)-module (or E, .,
(K(N))-module) with m < n, one has d(M) > n + m. Or, at least, to give
conditions that ensure this inequality occurs.

Let us start with the following simple examples where n = m = l.Leta € R
(or even a € C) and denote by 6, the Dirac mass at the point . Consider K a
subfield of C, and the E; ;(K)-module M,, generated by d,. M, is a family of
distributions with support at the point &. When @ = 0 we have

zbg = 0, ey = by, %60 = 6,
so that

My = {8} = K[a),
and hence,

d(Mp) = 1.

On the other hand, when & # 0, we have
zéy = by, €6y = €%b,, %% =46,
so that this time

M, = Kla, e*][z].
Hence,
d(Ma) =1+ transcdeg(K[a, ea])»

that is, it depends on the degree of transcendency of the extension of K by o and
e®. For instance, if K = Q, a # 0 is algebraic, then d(M,) = 2. In every case in
whichK = Q, a #0,d(M,) <3.If K=RorC,thend(M,) = 1.

What this example shows is that the choice of the field may play a crucial role
in deciding whether an E,, ,,,(K)-module M verifies d(M) > n 4+ m or not. On
the other hand, we are mainly interested in modules of the form M (Py,..., ),
their submodules, and quotient modules.

Let us now consider the case m = 1.



138 C.A. BERENSTEIN AND A. YGER

PROPOSITION 2.1. Let M be a finitely generated E,, 1(K)-module, then, either
d(M) > n + 1 or for every element mo € M \ {0} there exist two non-zero
polynomials A, B € K[s|,and t € N such that

YltA(Xl)mO = B(Yl)mo =0.

Proof. Let us assume that d(M ) < n and let mg € M \ {0}. We complete mg to a
system of E, ;(K)-generators of M and denote by I' the K-vector space spanned
by this system of generators. We define for v € N

Iy :={P(X,Y1,D)lg : degP < v}.

This is a good filtration.
We claim that the map

&y — Homk(T',,T2,)
P—{meTl,— PmeTly}

cannot be injective for any sufficiently large v. If it were injective, we would have
the inequality

M)

ntl o dimg&, < dimgHomk(I'y,T2,) = const.v*H ,

const.v

which implies 2n + 1 < 2d(M), in other words, d(M) > n + 1. This contradicts
the fact that we have assumed d(M ) < n.

Hence, for all large v there are differential operators P, = P € &, \ {0} such
that P - I', = 0. In other words,

Pm=0Vmel,.

Let us write P = an,gﬂX“YlﬁDV, || + 8 + |y] < v. Let ¢ be the largest
power of D, in the lexicographical order, that appears in P. Then, as in Lemma
2.1, we have

Py = ad(X)o(P) = (=1)1lyo!l 3~ ca e XYY # 0.
On the other hand, since P - T, = 0, we have forany 1 < k < n
ad(Xg)P-Ty1 =0
because
ad(Xg)P -Ty_1 = XxP-T'yoy — PXi - Ty
and X -I',_; €T, I'y—1 € TI,. Therefore,
P Tyl = ad(X)°(P) - Ty = 0,
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and
deg Py + |yo| < degP < v.

Let us rewrite P; as a polynomial in X' = (X5,..., X,,),
P =Y bapsXPV (X"

From Lemma 2.2, with D’ = (D», ..., D,), we obtain
ad(D')*(X")® = 6!

and, if for some ¢, 8; < 6;,
ad(D')’(X") = 0.

Therefore, if §¢ is the largest power of X’ in the lexicographic order, we have
Py = ad(D)0P = 6!y ba s s XY, #0,
deg Py + |6o| < deg Py,

Py - Ly 15 = 0-

Clearly, v — |yo| — |60| > degP> > 0, if not, P, would be a non-zero constant,
which contradicts the last identity.

Thus, we have reduced ourselves to the following situation. We have a non-zero
polynomial P of the variables X;, Y;,1 < degP < v,and P-T', = 0. Let us write
it in the form

N
P(X1,Y1) = > _YiQu(X)).
=0

Observe that if P(X,Y;) = YN Qn(X1,Y]) (thatis, @ = 0for0 < [ < N — 1)
then

YN Qn(X1, Y)mo € Y Qn(X1,Y1)T, = 0.

and we would already have proved the first part of the proposition, so that we can
assume that there is more than one index [ such that ¢); # 0. Obviously, we want
to reduce ourselves to the case of a single @; # 0. Let us apply Corollary 2.1, then

N
ad(Dy)P =) Y{(Q)(X1) + 1Qi(X1)),

=0

where Q] = j—%. We let

P = [Qnad(Dy)P - (Qx + NQn)P],
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so that we still have
P-T,_y=0.
Let L be the largestindex such that . < N and @1, # 0, then the leading coefficient
of P as a polynomial in Y] is
Qn(QL + LQr) — Qr(QN + NQn)
=(L-N)QnQrL + (@NQL — QLQN),

which is the sum of two polynomials of different degrees. The one of highest degree
is (L — N)Qn~Q L, which is evidently different from zero. This shows that P # 0,
degy,f’ =L,and P- I'y—1 = 0, so that we can repeat the procedure, and in at
most N — 1 steps arrive to a non-zero polynomial of the form Y’ A(X}), which
annihilates I',,_ y41. This makes sense because N < deg P < v. This proves the
first part of the proposition.

To prove the second part, we rewrite the original polynomial P( X, Y)) in the
form

M
P =3 X{P(V),
k=0

and assume M > 1, otherwise we are done. Hence, by Corollary 2.1 we have

M-1
ad(D1)P = XMV Py (Y1) + > X15((k + 1) Pegy + Y1 PY),
k=0

which again kills I',_; . We consider

P := Y, Py (Y1)P — Par(Y1)ad(D)P. 4
We claim that degx, P=M-1.In fact, the leading coefficient of Pis

Y1 Py (Y1) Par-1(Y1) = M(Py(Y1))? = Y1 Pu (Y1) Py i (Y1), )

which we have to show is not identically zero. For that purpose, we prove the
following lemma.

LEMMA 24. Let R, S € K[€], R # 0, and a € K*, then, the polynomial
aR*(€) — E(R(€)S(§) - R(§)S'(€)) # 0.

Proof. We want to reduce ourselves to the case where the coefficients are complex
numbers. For that purpose we consider the collection of a and all the non-zero
coefficients of R and 5, say {a1,...,a,}. Then Q(ay,..., ;) is a subfield of K,
since charK = 0, and, on the other hand it is a finitely generated extension of Q,
which we can decompose as a finite transcendental extension followed by a finite
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algebraic extension. The first extension can be embedded as a subfield of R, and
its algebraic extension as a subfield k of C.

Therefore, we really have two polynomials R, S € C[£], R # 0,and a € C*,
and we need to show that the identity

aR? = £(R'S - RY)
is impossible. Namely, we would have the equation

a RS'-RS _d <5)

&~ R T de\R

The function f(§) := %% is rational, hence it is single valued and holomorphic
outside the set of its poles. On the other hand, the differential equation
a —
£

has only the solutions —alog& + ¢, ¢ € C, which are neither single valued nor
rational. This concludes the proof of Lemma 2.4.

f(€) (6)

a
Let us return to the proof of the Proposition 2.1. We have just seen that deg x, P=
M — 1, where P is defined by ( 4 ). We also have that P.T v—1 = 0. Repeating
this procedure a total of M times, we obtain a non-zero polynomial B(Y}), i.e, a
polynomial of degree zero in X, such that B(Y)) - I'y—ar = 0. This is possible
because M < degP < wv. This concludes the proof of the second part of the
proposition.
a
Let us give an application of Proposition 2.1 to the module

M(Py,...,P) = K\)z1,...,z,,e][1/Py,...,1/ PP
defined by equation (3), where P; € K{[z1,...,z,, "], K asubfield of C.

PROPOSITION 2.2. There are two non-zero polynomials A1, A, of a single vari-
able s, with coefficients in K[A], A = (A1,..., ), and 2q linear differential oper-
ators, Q;; (1t = 1,2; j = 1,...,q), with coefficients belonging K[\, z, €1, e~%1],
such that for every j

0
A\, 2P = Ql,j(A,m,eII,e-“,8—:6)13]-7?& )
z A T -z 0 A
Ay( X, e™)PY = Qpj( A, z, €, 7", a—m)P]‘P . ®)
(To simplify the notation we have written % to denote (ai_m, ceey agn ).)
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Proof. We follow an idea of Lichtin [29]. The module M,
M= M(Py,...,P,) = K(\)[z1,...,20,"][1/P1,..., 1/B]P

is an E, ;(K(A)-module of finite type and d(M) = n + 1, as stated earlier.
Introduce the new F,, 1(K(\))-module AV defined by

NZ: M@@M (qterl’nS),
consider the elements e; € V', [ € N*,
e = (Pll"lpzl‘"quPA,--.,Pf .. -Pq_lqul"IPA),

and denote A/ (1) the submodule of A generated by e;.
We have that

dN)=n+1,

since it is a direct sum [18]. Hence (cf. [18]),
dN(D) S nt 1.

Moreover,
N({I+1)CN(), (IeN~).

On the other hand, we can apply Proposition 2.1 to conclude that d(N (1)) = n+ 1
for every (. If not true, there would be a non-zero polynomial B € KA, s], such
that

B(X, e )e; = 0.

This is impossible, since we are just multiplying exponential polynomials. Further-
more, for every [ [18],

ANO/N(I+1)<n+ 1.

Thus, either for every / we achieve this upper bound or there is a smallest index /o
such that

d(N(lo)/N(lo+ 1)) < n. )
Let us show the first case cannot occur. If it did, consider the sequence of modules
0— N(I+1) — NI) — NO/N(+1) — 0,

which is clearly exact for every [. Since the dimensions of all the terms coincide
and it is possible to apply the proof of [18, Proposition 3.6], with A,,(K) replaced
by E,1(K(X)), we conclude that their multiplicities are related by

e(N(1)) = e(N (1 + 1)) + e(N(D)/N(1+ 1)),
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which implies that forall / > 1
1 <e(N()) < e(N(l+1)).

This is obviously impossible. Hence, the equation (9) holds for some minimal value
of l().

It could occur that N (l)/N(lp + 1) = 0, then e, € N(lp + 1). In this case

there is a differential operator R = R(A, z,€"1, %) € E,1(K(X)) such that

e, = Regyq1.
Consider the jth entry. We have
pl.. .leo—l .. .quoPA - R (P110+1 . ,leo ) “quoHpA)
= R((Pi-- B 1) (R BoPY))
= B (Pilo--- PP

where R; is another differential operator in E,, ;(K())) obtained applying Leib-

niz’s rules. Since Ap,..., A, are transcendental over K, this last formal identi-
ty is equivalent to a true identity involving only Pi,..., P,, and their deriva-
tives, instead of P*. We can therefore change variables \; — X + I, ..., Aj =

)\j + 1y — 1,...,)\q — /\q + lp, and obtain
P = R;(FP).

Finally, we can clear the denominators from K[A] in R; and conclude that there is
some b € K[A]\ {0}, independent of j, and corresponding differential operators
@ ; with coefficients in K[\, z, e¥1] so that

b(N)PA = Q,(P;PH). (10)

If N(lo)/N(lo+ 1) # 0, we can apply Proposition 2.1 to this F, ;(K()))-
module and find two non-zero polynomials A, B € K[, s] and an integer t € N
such that

e AN, zy)e, € N(lo+ 1)
and
B(/\, exl)elo € ./v(l() + 1).

We can divide out by e'*! the first relation and apply the earlier reasoning to
conclude there are non-zero polynomials A, A, € K[, s] and linear differential
operators ; ; with coefficients in K[A, z, €1, e~*1] so that

A1\ 2Pt = Q, ;PP
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by A
AN\, e"YP* = QPP

forj=1,...,q.
This concludes the proof of the functional equation in every case.
a
Let us denote by A the ring of all entire functions f in C"? satisfying the
growth condition

IF(X,2)] < K(1+ [A] + |z])V Pl (11)

for some x, N, D > 0.
If we knew that A;(A,s) = b;(A)B;(s), 7 = 1,2, then we could simplify the

equations (7) and (8) when K C Q, as follows. The only possible solution s € C
of the pair of equations

Bi(s) = By(e®) =0

is s = 0, by the Gelfond-Schneider theorem [2]. Let us denote m € N is the
multiplicity of this solution. Then, appealing to [10] we know there are two entire
functions C'}, C satisfying the growth conditions

|C5(s)] = O((1+ [s)N ey (s € ©), (12)
forsome N € N, 7 = 1,2, and
Ci(s)Bi(s) + Ca(s)Ba(e®) = s™. (13)

We could then conclude that there would be a non-zero polynomial b(\) and linear
differential operators () ; with coefficients in .A such that

b(N)z ™ P = Q;(PPY), j=1,...,q.

Namely, multiply (7) by b2(A)Ca(z1), (8) by b1(A)C1(x1), and add.
In general, we do not have such a factorization of A; and A,. The idea will be
to use an approximate factorization. We discuss this point in the following section.
To conclude this introductory section, let us make some remarks about general-
izations of the previous results. First, it is convenient to observe that the algebra A
is a subalgebra of the weighted Fréchet algebra usually denoted A,(C™), p(z) =
log(1 + |z|) 4+ |Rz|, where

A,(C™) = {f entire : 3¢ > 0 |f(z)] < ce®) ¥z € C"}.

The spaces F,, ,,, we are considering are subalgebras of this weighted algebra. In
this paper we will essentially consider only this weight p.

Let us now see how to apply the previous reasonings to the algebra of polyno-
mials in €*1, %1, 2y, ..., z, with coefficients in Q, where we assume @ € Q \ Q
and z1,..., 2, are n complex variables. For this purpose, we introduce the algebra
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K=K< ¥,7,X,,...,X,,Di,...,D, > of operators acting on the polynomi-
al algebra K[Y1, Z1, X»,..., X,], K a field of characteristic zero. The differential
operators ); obey Leibniz’s rule, the X, Y7, Z; act by multiplication, and we
define

DYy =Y, D17z, = aZ;, D1 X; =0,
D;Y1=D;Z1 =0(j 2 2), DjXy = éj.
As a consequence, we have the commutation rules
[DisY] = [Dj, Z1] = 0 (4 2 2), [Dj, Xi] = by,
Y1, Z1] = 1, X;] = [Z1, X5] = [Xk, X5] = O,
[D1,Y1¥2,'] = (k 4+ o)1 %2}/ (14)
(Y1, Di¥] = Y1 D"~ + Dy([Y1, Di* ")) = —kY1 D"~ 4 p(Y1, D), (15)

where p(Y1, D) is a polynomial of degree < k£ — 2 in D;.

We remark that the algebra of exponential polynomialsin the variables e*!, e**!,
Z3, ..., Zn, cannot be isomorphic to the polynomial algebra in Y;, Z1, X»,..., Xy,
unless o ¢ Q. Recall that the field K always contains a copy of Q.

LEMMA 2.5. Every element P of K can be written in a unique way as
P=> ciuXVZ,*D'.

Proof. Denote deg P = |i| + j + k + |I|. Suppose P = 0, as operator, we need to
verify that all the coefficients ¢;;x; = 0. As in Lemma 2.1, we can reduce ourselves
to the case P is a polynomial in Y;, Z;, D;. We use (13) to diminish the degree of
P in D, by commutations with Y}, and conclude we can assume there is no D;.
But, as a multiplication operator, a polynomial in Y7, Z; cannot vanish unless its
coefficients are zero.
O

We define the filtration K, of K, by degrees, and the corresponding graded ring
gr(K) = Ko@® K1/Ko@ - - - We conclude, as before, that gr(K) is commutative
and isomorphic to the polynomial ring in 2n + 1 variables over K. The concept of
good filtrations is the same as earlier and Lemma 2.4 and its consequences hold.

We need to prove the analogue of Proposition 2.2.

PROPOSITION 2.3. Let M be a finitely generated K-module. Then, either d(M ) >
n + 1 or for every element my € M \ {0} there are two non-zero polynomials
A, B € K[s] and two non-negative integers a, b such that

Z1*A(Y1)mg = Y1*B(Z))mg = 0.
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Proof. We use the same filtration I', as in the proof of the Proposition 2.2, so that
mgo € Tg. Thus, if d(M) < n, for all large v there is P € K, \ {0}, such that
P .-T, = 0. By the argument we have used in Proposition 2.2, we can assume that
P depends only on the variables Y7, Z;, D1, 1 < degP < v. Using the relation
(13), we can even eliminate D;. We just observe that ad(Y;)P -T',—; = 0, and
ad(Y1)P is a non-zero polynomial whose degree in D strictly smaller than that of
P. This is verbatim the procedure in Proposition 2.2 to eliminate D;. So that, from
the start, we could assume that 1 < degP < v, P-T, = 0,and P € K[Y}, Z;].

If P were independent of Z,, then, either P(Y;) = cY1%, ¢ # 0, d = degP,
and we can take a = 0, b = d, A(Y;) = P(Y1), B(Z;1) = ¢, or P has at least
two terms. In the latter case, the polynomial ad(D;)P(Y;) — (degP)P(Y7) # 0,
it annihilates I',,_1, and it has degree < deg P. Iterating this procedure we would
be done. Thus, let us assume that P depends both on Y7 and on Z;. Consider

l

Z M2y,

and assume there are at least two non-zero terms in this representation. (Otherwise,
we let A(Y;) = Qi(Y1) and @ = [.) Then,

l

[D1, P] =Y _(1Q(Y1) + 2jQ; (V1)) Z/’

=0
kills I',,_1, and so does
P = QI[DI,P] - (YIQ;(YI) + alQ,(Yl))P,

which has degree in Z; < [. The only problem is to show that P, # 0. Since there
is an index 7 < [ such that @; # 0, if P; = 0 we would have that

Y1(QiQ) - Q;Q)) = ol - j)Q;Q1-

This leads to the formal differential equation

Q@ _al-j)
o ¢ w 7°

which, by an argument similar to that used in (5), can be shown to be impossible.

This concludes the proof of the existence of an € N and an 4 € K[Y;]\ {0}

with the required properties. The other part of the proposition is proved similarly.
O

As pointed out above, the algebra generated over K by €', e*™1, z5,...,

8%1, . ax , when K is a subfield of C and @ € K \ Q, is 1som0rphlc to the

algebra K = K, we have considered above ( Y} = e”!, Z1 = e*1). Therefore,
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we can consider a family Py, ..., P, of exponential polynomials in K, K(\) =
K(A1,...,Aq), and the module

M = M(Py,...,P) = K\)[e™, e s,...,2,][1/P,..., 1/ PP,

which is the module generated by the action of K on the formal generator P* =
P Pqu. So that we obtain the following result, corresponding to Proposition
2.2.

PROPOSITION 2.4. There are two non-zero polynomials A, Aj of a single vari-
able s, with coefficients in K[\, A = (A1,...,q), and 2q linear differential
operators, Q); ; (1 < i < 2; 1 < j < q), whose coefficients belong to K[\, e*1,

e™T, ¥ T gy ..., Zy], such that for every j = 1,...,q we have
A1(N, €)PA = @ ; PP, (16)
Ay( N, ¥ )PY = Qy ;PP (17)

3. Functional equations and analytic continuation

In the applications we have in mind, e.g., Bezout identities, division problems, and
the like, one needs to determine the principal part of the Laurent development of
| f|** for A = —k, k € N, where f is an exponential polynomial. The reason for
this need will become clear later on. Meanwhile, we are going to explain how to
obtain sufficient knowledge of the coefficients of the principal parts, even if we do
not have the factorization of the polynomials A;, Ay mentioned at the end of the
last section.

LEMMA 3.1. Let f be an exponential polynomial in E, (K), k € N, there is
an integer ¢ € N such that for any N € N one can find a non-zero polynomial
- Ry € K[z1] and a functional equation of the form

A+ E)IRNIFI? = Qe (I FIP ) + (A + k)T N oy £, (18)

where vy € K[\, z1] and Q. N is a linear differential operator with coefficients in
K[\, z, €™, e 1.

Proof. From Proposition 2.2 we know the existence of a non-zero polynomial
A € K[\, z1] and a differential operator () with polynomial coefficients such that
one has the formal identity

xr - a
AN @) f = QN m, €™, e, o) M= Q) .
We would like to iterate this identity, except that contrary to the usual Bernstein-
Sato functional equations, the coefficients of A(A,z;) depend on z;. We factor A

into two coprime polynomials

A(A, z1) = pr(A)Ai(A, z1).
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In particular, for every fixed A the map z; — A;(A, ;) is not identically zero, and
hence we deduce the formal identity

A+ DAz = Q) {A(A . lwof“l}

-’41(/\ + 1,$1)

_ QA+ 1)fA2
= Q(”{Aluu,xl)}'

Applying Leibniz’s rules one obtains

A QT
pl(/\+ I)A()\,.Tl)f - A](A‘}‘ l,ﬂfl)ml’

for some m; € N, and Ql a new differential operator with coefficients in
K[\, z,e", e~"1]. Thus, we find

A z) = oA+ DA+ 1 z)™ AN, 2) f = Qi(M) AT

Iterating this procedure, for every £ € IN we find a non-zero polynomial Ax(A, )
and a differential operator ) with coefficients in the same ring as above, so that

Apfr = Qi fATHHL (19)

. C . . . =X .
Since multiplication by the formal antiholomorphic function f~ commutes with
the operators %, then

AR f1PY = Qe 25,

Note that this formal identity can also be interpreted as an identity among distri-
butions. It is convenient to factor Ay into coprime polynomials as follows

Ar(A, z1) = (A 4+ k)IBr(X, z1),
which allows us to write
(A +k)TBe(A, 2 1 = Qe (| fIPA ) (20)

Since By, is coprime with A + k, forany N € N* we have a polynomial Bezout
identity

Bn(z1) = un(X, 21)Br(A, z1) + on(A, 21)(A + k)Y, Q1)
for some polynomials un, vy € K[\, z1] and Ry € K[z;], Ry # 0. (It is clear

that un, vy, Rn, and ¢ depend also on k. We suppress this index to simplify the
notation.) Therefore, we have

A+ B RN (el f1P = (4 B)Tun Bel 12 + (A + K)oy | 12

un QeSS + (A + k)T Noy| £

Il

Qe (P + (A + k) oy | £,
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with QN := un @, which concludes the proof of the lemma.

The same proof yields relations of the form
A+ R)ISn(e)IFPY = Qra (/P + (A + BT oy /2, @22)

where o € K[\, e™1], Sn(t) = Sni(t) € K[t], and Qk,N is a differential opera-
tor with the same properties as Q n.

We know a priori [1] that, in a neighborhood of A = —k, the distribution-valued
meromorphic function | f|>* has the Laurent expansion

(oo}

112 = 3 an;(A+ kY, (23)

j=-2n

with a;; € D'(C™). The previous lemma allows us to compute explicitly the
products Ry(z1)ak,;, Sn(€*")ag,;, for —2n < j < 0, as soon as we take N >
2n + 1. Namely, the polynomial vy in (21) can be expanded in powers of A + £,
ie.,

ov(A, z1) = Z oni(z1)(A+ k)l. 24)
=0

Let ¢ € D'(C™), then

o0

A+ RSP Bu(z)e) = Y (arg, Rvg)(A+ k)

j==2n

(Qe N FIPA ), 0)

+ 3 (akgone)(A+ BTN (25)

j==2n

= (/PP Qv (V)

+2 (ks o) (A + k)TN,
]
where Q;C, ~ is the adjoint operator of () n (obtained by integration by parts).
The first term of the last sum is holomorphic at A = —k, and the series only
contains powers of A + k bigger or equal to ¢ + 1, due to the choice N > 2n + 1.
Thus, the distribution-valued function (A + k)7 Ry(z1)|f|** is holomorphic in a
neighboorhood of A = —k. Moreover, if we denote

(A+ k) RN(z)fIP =D bew(A+ k) (26)
h=0
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its Taylor development, then, for 0 < & < g, the distributions by, », are given by
1
bast) = 5 [ [P e
{bkpy ) = 5— bkl o F @I F (@) v (Y

dA
X(99(73))d9”(—/\m7 27

where ¢ > 0 is chosen sufficiently small so that on a neighborhood of supp(),
the function = — | f(z)|~% is integrable.
We can rewrite the last integral as

1 2RO £\ £l )/ FlaNE
7t oo o V@RS 0 )

<@l V() oy

= 53 oo oo LY AT

Qi n(N)(@(2))de (A+ kY =" dx,

which shows that the terms < by 1, ¢ > are linear combinations of integrals of the
form

|, (ol PV F(PFQu ()i, @8)

where j € N (in fact, 0 < 7 < h + 1) and the ¢, are differential operators with
coefficients in K[z, €1, e~*1]. Note that the term (f/ ) is bounded, and the same
holds locally for f(log|f|?)’.

Let us take, once for all, NV = 2n + 1 and, since Ry really depends now only
on k we shall denote it R from now on. Therefore, from (23) and (26) we obtain

Re(zi)ar; = 0 ifg+j<0 29)
Ri(z1)ak; = brgr; if0<g+j<gq (30)

Moreover, if we introduce the polynomials S; in a similar way, the same
procedure leads to an explicit computation of Si(e”!)ay, ; for the same values of
7, —2n < 7 < 0. We summarize these remarks in the following statement.

PROPOSITION 3.1. Let f € E,, 1(K)andk € N, there exist non-zero polynomials
R, Sk of a single variable, with coefficients in K, Ny, € N, and positive constants
Ck, Dy, such that the distributions ay ;, —2n < j < 0, defined by the Laurent
development

1717 = > ari(A+ k)

j==-2n
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satisfy the estimates

KRi(z1)ak;, o) + [(Sk(e™)ak,;, ¥)]

< Crllellng Iegzg;((@) e(Dre()) 31)

where ¢ € D(C"), p(z) = log(1 + |z|) + |Rz1].

COROLLARY 3.1. If K C Q, there are integers mj, € N, and two constants
Ci» D}, > 0 such that the estimate (31) implies

(27 akj, ©)| < Cillolly, max elPrr(®)
z€supp(p)

Proof. We return to the argument at the end of the preceding section. For each
k € N we can find two entire functions ¢, 1; in the Paley-Wiener class of
functions, i.e., O((1 + |z1])BeA®*11), and an integer m = my > 0 such that

Ri(z1)er(z1) + Se(e™)br(z1) = =7 (32)

Thus, we can get estimates for the distributions z7"ax ;, using (28), (30), and (32).

In the following section, we shall use these estimates for the distributions
involved in the analytic continuation of distribution-valued holomorphic functions
of the form | f1|**1 - - - | f,|*** /(| f1]* + - - -+ | f»|*)™. These functions have already
appeared in our previous work [12, 3]. The existence of an analytic continuation as
a meromorphic function of Ay, ..., A, follows from Hironaka’s resolution of sin-
gularities, but since we want to control the distributions that appear as coefficients
in the Laurent developments about some pole, that is, we would like to obtain
estimates similar to those of Proposition 3.1 and Corollary 3.1, we need to find
some kind of functional equation that provides the analytic continuation. Since it
is easier to provide functional equations for | f;|>*1 - - - | f,|**#, we need a technical
trick to reduce this kind of quotients of functions to products. It is based on a simple
lemma about the inverse Mellin transform. In order to simplify its writing let us
introduce the following notation.

Forty,...,t, > 0, p1,...,up, € C, welet

= thr
Given s,...,8,—1,3 € C, let

ds:=dsy---dsp_1, 8p =8 —81 — -+ — Sp_1, fij = p; — 8; (1 < 7 < p).
We also let s := (s1,...,8,-1),8" := ($1,...,5,), With s, as previously defined.

Recall also the somewhat standard notation,

I'a] :=T[ay,---,ax] :=T(ay)---T(ak),
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for complex values a; such that the Euler Gamma function is defined. Finally, as
long as there is no possibility of confusion, we shall use the following abbreviated
notation for multiple integrals on lines parallel to the imaginary axes. Let v =

(715---,7p—1) be a vector of real components, then, for any integrable function F’
Y4100 Y1400 Yp—1+100
/ F(s)ds := / f F(s)ds: - --dsy,
y—too Y1 —100 Yp—1—100

LEMMA 3.2. Let ty,...,t, > 0, fi1,...,pp € C,RB > 1, P € Clp1, ..., pp),
then, with the previous notation,

p t* _ 1 ’Y+ioor o P( g
(,u)(tl o4 1,)f T (2mi)P-IT(B) L_ioo [s*]P(fa)t"ds (33)

for any v; > O such thaty; + -+ -+ 7p—1 < B8 — L.

Proof. We start from a known formula about the inverse Mellin transform [24,
6.422.3,p.657], for0 < v < R(B — 1), t > 0, one has

1 1 /7“00 _
= — [(s)I'(8 — s)t™%ds, 34
This integral is absolutely convergent because of the rapid decrease of I'(s) along
vertical lines in the right-hand plane. (In fact, (34) follows inmediately from the
definition of Euler’s Beta function and the Mellin inversion formula.) Thus, when
p>2weletT =1+ ---+tp, and then, if 0 < 7; < R(B — 1), we have

1t 1t
(th+-+1,)8 — B(1+(t1/7))P
1 Y1+t00 L
- W/m_m P(s)T(B = s1)(t1/7) " dsy
1

Y1+i00 r B L —fs1 g
= — sy TPy,
27T (3) /m_ioo (s)L(B —s1)t1 ™' s1

Since ®(3 — s1) > 1, we can use a recurrence argument when p > 3, which
will become clear after we write down the next step. We rewrite 7 = ¢, + o, so that

1 1
7',9—31 - G‘ﬁ_sl (1+(t2/g))ﬂ_31

1 Ya+t00 T T 1—52 —(ﬁ_sl_SZ)d
- mlz—ioo (32) (ﬁ - 31 _ 32) o 52’

aslongas 0 < 72 < R(B — s1 — 1), e, 71 + 72 < RB — 1. Therefore, with
T=t+---+1, wehave
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1 1 /W1+ioo /vz+ioo
T8~ (2mi)2T(B) Jy—ico Jyp—ico

xT'[s1, 82,8 — 81 — sz]t_slt_”a-(ﬁ—sl_”)dsldsz,

which shows, by induction on p, that the formula (33) is correct when P =
1, u; = 1(j = 1,...,p). In other words, with the notation introduced above, we
have proved that

v+zoo

1

TP = (2riypr- lr(ﬁ)/ L T )

Multiplying (35) by t# = ¢/ - - - t,”, we obtain the formula (33) in the case P = 1:

tH 1 Y+1i00 o
L (—?-m/ D5t ds. (36)

Y—100
To obtain the general case, let us rewrite (36) by choosing new variables 7y, ..., 7,
defined by
t; t; .
rp=Ad=—3 __ (1<j<p).

T ti+---+1

It follows that for any r; > 0, u; € C,

= 1 T e 37
r _m/‘ [s™|r*ds. (37

Y—200
If we now apply the differential operator r; 887] to both sides of (37) we find

+zoo
T iq
Wil = )= lr ﬂ)/ (7t ds.

It is clear now that for any polynomial P,

P(p)rt = Wl—lr(ﬁ) L 1:0 T[s™]P(ji)r¥ds.

Replacing r; by their values in terms of the ¢;, we obtain the expression (33).
a

Let us now apply this lemma to the study of the coefficients in the Laurent
expansion about ¢ = 0 of the analytic continuation of

|f|2(m—ﬁ)

ST o
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where ¢ €]0, 0[P is a vector to be chosen below, u € C, k € Z, k is the
p-dimensional vector (k,...,k), m € N*, f; € E,(K), [|fI*™ = (|fi]* +

-« + | fo|*)™, and, keeping with the previous notation |f|” = |fi]|™ - - -| f,|"” for
any vector 7 = (ry,...,7,) (Similar meaning for f”). From Proposition 2.2 we
conclude that there is a polynomial A(Aj,...,A,, 1) and differential operators
Q1,;(A, z, e, e, 5@;) such that

AN e )M 0 = Qui(N (M -+ it ).
As we have done in the proof of Lemma 3.1, for any k¥ € Z,/ € N there is
a polynomial A; € K[\, z;] and a functional equation (in which we use the
abbreviated notation introduced earlier)

AfE = QN (£ EY).
The polynomial A; and the new differential operator ¢} ,; depend also on k. Multi-

. . . M-k S Ap—k . . .
plying this equationby f;"' ~ ---f,"* ", we obtain a functional equation that has
also meaning in the sense of distributions

Al fPOE = Q)| fPA-B fh. (39)

As a consequence of Lemma 3.2, and using the same notation, for any point z such
that fi(z)--- fo(z) # 0 we have

2(A-k) 1 Y+100
T
Az(/\,zrl)If( ) = v /
17 ()] (2mi)p=il(m)
xT[s"JAi(A, 1) f(2) P B ds. (40)
Let us fix = 2m + 2k + 1 and choose a vector ¢ €]0, co[P such that the one
variable polynomial p — A;(ut, 1) is not identically zero. Almost every choice
of t works for all £ and m. To emphasize the dependence on k, we now denote
Ak(p, 1) := Aj(pt, z1). Factor Ay, into two coprime terms,
'Ak(/%zl) = ,quk(l/«,iUl), (q = Q(k))
Therefore, there are polynomials Ri(z1) # 0, ug(p, 1), and vg(u, 1), with the
property that
Ri(e1) = ur(u,@1)Br(p, 21) + 2+ o, 21).
Consider from now on A = ut. For R > 1 and ¢ € D(C") we can integrate
o against (40) to obtain

¥—100

+100 - ~
m /oo /c I[s"Jur Ai(A, 21)| f(2) POB) odeds
2(A—k)
- /Cn uk(“’ml)Ak(”7wl)%|7nT@($)dx
|f 37)|2A o) d gt2n+1 |f(w)|2/\ k)
- - S ——od
= o Rt g e = o
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We remind the reader that A;(), z;) is really a polynomial in p, sy, ..., s,—1, and
z1. For s fixed we apply the functional equation (39) and integration by parts, to
conclude that

L Tl PO Bedn = [ Quh)(EOH fuspds

= [ PO 01 (3 unp)da

where ()}, represents the adjoint operator. Using Fubini’s theorem we get

. » |f|2(A—&) p
w / kT paT =
c AP

m / " Dls”]| PO )L QL (N (urp)dads

Y—100

2(A—k)
puatant / —|];l| P odz (41)
= Li(p) + L(p)

Similarly to the case of a single equation considered earlier, we have that in
a neighborhood of p = 0, the distribution-valued function (38) has the Laurent
development

| f|A(ut=k) i

P =2y it ok € D(C7) 42)
J=—zn

The choice | = 2m + 2k + 1, ensures that the distribution valued function

we | f@)POB(fi(e) - fola))

is holomorphic in a neighborhood W of y = 0, uniformly with respect to s , and
independent of = as long as z is near supp(y). Thus, the Taylor coefficients of
I () about g = 0 are linear combinations of expressions of the form

/W m/ s*1F(s*)(log | f])°| f|72"+0) fL E(z, e, e )P dads,

where E, F are polymonials, @ € N?, 3 € N", and we have written (log | f|)* =
(log|fi])>r - - - (log| f,|)*r. Altogether, due to the choice of / and the constraints on
the ;, there are constants x, and N € N such that these integrals can be estimated
by

Kamaz{|fi(z) - fp(z)E(z, €™, e™™)| : x € supp(p)}|#lIns
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with ||¢||; denoting a Sobolev norm of . It is clear that there are distributions
bi,, € D'(C™) such that

(o)

L) =) {bkp, o)

h=0
On the other hand, if vg(u, 1) = Y% ¢ v.i(1), then

[*S) d

L(p)= > Y ak,vki(z)p)u T orent!

7=—2n =0

Summarizing,

[ee)

Y. (Ri(er)ag,;, p)u't

j=—-2n

(o)
= D (brp )" + Y (anj, vni(z)p)u T
h=0 i

The second series on the right hand side does not contain any power of © smaller
than ¢ + 1. This allows us to identify the coefficients on the left hand side with
indices —2n < 7 < 0. Namely,

Rk(:cl)akyj =0 ifg+7<0

. . 43
Ri(z1)ak,; = bkgt; f0<g+7<q )

Note that if the f; are polynomials (no exponentials) then the polynomial factor can
be taken to be Ry = 1 for any k. This follows from the fact that F,, o(K) is holo-
nomic and, hence, there are always functional equations (7) with A; independent
of z and @, ; with coefficients in K[, z].

The same reasoning holds when we start with the system of formal identities
(8), and the only thing to remark is that we can choose the vector t €]0, co[P
so that for every k,m the corresponding exponential polynomials in K[\, e*1]
are not identically zero on the complex line A = pt. Correspondingly, we obtain
Sk € K[e™], ¢ = ¢(k) € N, and distributions ¢, ;, with the same properties as the
b ; such that

Sk(el“l)bkyj =0 ifG+7<0
Sp(e™)bi,; = brgr; if0< G+ 7 <q.

In other words, we have proved entirely the following proposition.

PROPOSITION 3.2. Let fi,..., f, € En1(K), then, for any t €]0,1[P (outside
a countable union of K-algebraic hypersurfaces, which depend on the f;) and
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any k € Z,m € N*, there are polynomials R and Sy, in K[u| and constants
Ck, Dr, > 0, N € N such that if ar; € D'(C") denote the coefficients of the
Laurent expansion

| f|2(ﬂt—k) 0 ,
= > arw,

2
”f” " j=-2n
then, for —2n < j < 0, ¢ € D(C™),

[(Ri(z1)ak,;, )| + (Sk(e™ )ar;, ©)| < Cillelln, max )e(Dk”(“”))a
r€supp(e

where p(z) = log(1 + |z|) + |Rz4].

Note that in this proposition, R, Sk, Ck, Di depend also on m and ¢, while Ny
depends on k, m.

COROLLARY 3.2. IfK C 6 there is an integer v € N, and positive constants
C}., Dy, such that

(2% ars, 0)| < Chllgll,  max  ePhole)
z€supp(y)
Proof. It is the same as that of Corollary 3.1.
O

Let us examine now the situation where f, ..., f, are polynomials in e!, e**1,
T3, ..., T, with coefficients in Q, o € Q \ Q. The same procedure as earlier
shows there are polynomials of a single variable A, B € Q]s] \ {0} such that if
ai,; denote the distributions that appear in (42), then A(e”)ay ; and B(e®*!)ay, ;
have good estimates for —2n < j < 0. In this case the two entire functions A(e”!)
and B(e“"') can only have z; = 0 as a common zero. In fact, if z; = ( is a
common zero, then w = ¢ satisfies the algebraic equation A(w) = 0, so that
w € Q. For the same reason w® € Q. Gelfond’s theorem [2] implies that { = 0.
Let us factor

I
A(s) = (s = )" [J(s - &),

i=1

L
B(s) = (s - 1)” 1:[(3 —15),

where £;,7; € Q\ {1}.

LEMMA 3.3. Let A(e®') = z¥ Ai(z1), B(e**') = z{Bi(x}), where v € N, and
Ay, By are entire functions without any common zeros. Then there are constants
c1,¢2,€,5 > 0 such that

eexp(—kp(z)) < [A1(z1)] + |Bi(z1)] < erexp(eap(z)).
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Proof. Clearly v = in f(v1, v;). For the sake of definiteness, let us assume v = vy.
The proof now follows from the fact that if | A;(z1)|+ | B1(21)| is small, then, either
|e*1—&;|+|e>*1 — 1| is small for some pair of indices 7, I, or [€*! —£; |+ |az —2mi|
is small for some index j and some integer /m. Baker’s theorem [2] on lower bounds
for linear combinations over Q of logarithms of algebraic numbers yields the lower
bound of the lemma. (Otherwise, either |z, —log &;| + |z —log 7| is too small or
|z1 —log&;| +|ax) — 2mmi| is too small. Since o € Q \ Q these two simultaneous
estimates are impossible [2, 10].) The upper bound is clear.

As a consequence of this lemma, we conclude that 27 ay ; can be estimated as
in Corollary 3.2. For future use, we state this in the form of a proposition.

PROPOSITION 3.3. Let f1,..., fp are polynomials in €', e, x3,..., 2., with
coefficients in Q, « € Q \ Q and t €]0,1[P (outside a countable union of K-
algebraic hypersurfaces, which depend only on the f;) and any k € Z, m € N*,
there are an integer vi, € N and positive constants Cy, Dy, such that if ai; €
D'(C™) denote the coefficients of the Laurent expansion

|f|2(ut—£) as ,
= Z a;w-,uj,

2m
||f” 1=—2n
then, for —2n < j <0, ¢ € D(C"), we have the estimate

(2% an;, )| < Chllelly, max ePhe@),
z€supp(p)

where p(z) = log(1 + |z|) + |Rz1]-

4. Division formulas and representation theorems

In [9] we gave some sufficient conditions, albeit sometimes hard to verify, so that
if fi,..., fn are exponential polynomials in » variables with integral frequencies
whose variety of common zeros V = {z € C" : fi(2) = --- = fu(2) = 0} is
discrete or empty, then the ideal I generated by them in the space A,(C"), p(2) =
log(1 + |2|) + |Rz| coincides with I;,. the ideal of those functions in A,(C")
which can locally be obtained as linear combinations of the f; with holomorphic
coefficients. In particular, I is closed and localizable (i.e., I = I = I;,.). In fact, the
conditions given in [9] implied that the n-tuple fi,..., f, was slowly decreasing
in the sense of [6]. This has a certain number of interesting consequences for the
harmonic analysis of the solutions of the system of difference-differential equations
in R™ with symbol given by the f;. In [8] we had proved that in case n = 2, the
discreteness of V' was enough to ensure that the pair f;, f; is slowly decreasing.
This led to the conjecture in [9] that if the coefficients of the f; are algebraic
numbers, the discreteness of V' should be enough to prove that f,..., f, is slowly
decreasing or, at least, that I is closed and localizable. Examples were given
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showing that this last statement could fail if the algebraicity of the coefficients was
not true. On the other hand, we show in this section that if f;,..., f, € E, 1(C)
define a complete intersection variety, that is dezmV < n — p, then [ is closed and,
moreover, I = Ij,.. In the case V is not a complete intersection we show that the
local algebraic closure I and the radical v/T are closed. That is, these theorems
are valid without any restrictions on the coefficients, whereas to extend them to
exponential polynomials with two main frequencies one needs to impose arithmetic
restrictions both on the frequencies and the coefficients.

The section ends with some representation theorems for the solutions of sys-
tems of difference-differential equations corresponding to exponential polynomials
fi,..., fp € E,1(C), which define a complete intersection, as an illustration of
the applications of the previous results to harmonic analysis.

THEOREM 4.1. Let fi,..., f, € E, 1(C) define a complete intersection variety
V. The ideal I generated by them in A,(C"),p(z) = log(1 + |z|) + |Rz| is
localizable.

Proof. The first thing to do is to replace fi,..., f, by some linear combinations of
them, g1, ..., gp, that have the additional property that for any sequence of indices
1<y << <1 <p,

dim{z € C": giy(2) = - = g;,(2) = 0} <n— k.

We say that the sequence ¢1, ..., g, is a normal sequence. The existence of such a
normal sequence is guaranteed by the following lemma.

LEMMA 4.1. Given any collection of entire functions f1, ..., f, such that
dim{z € C": fi(z)=---= fo(2) =0} <n—p.
There exist (;; € C such that the functions defined by

V4
gii=> Ciifi (1<i<p)

i=1
form a normal sequence. Moreover det((;;) # 0.

Proof of Lemma 4.1. Let g; = f; and V).; denote the irreducible components
of V(g1) = {z € C" : g1(2) = 0}. Pick a regular point z{,; in each V. Since
dimV < n — pand we can assume p > 2, for each zi;i there is a nearby regular
point z1;; € Vi.; and scme 2 < k < p such that fi(z1,;) # 0. Consider now the
system of linear equations

4
> erfi(z1:) =0
k=2
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Since the number of equations is countable, the Baire category theorem ensures
there is a complex vector (¢, ..., ¢,) such that g; := ¢y f> + - - - + ¢, f, does not
vanish at any of the points z1.;. It is clear that the two vectors {; = (1,0,...,0)and
G2 = (0,¢,...,cp)are linearly independent. We claim that dimV (g1, 92) < n—2.
If not, g, would be identically zero on a component of V (g; ), which is impossible.
Assume now that p > 3. By the previous reasoning we can choose regular
points ). ; € V(g2) (tesp., 21 5., € V (g1, 92)), one for each component, such that
for some index 1 < k < p, fi(23,;) # 0 (resp. fi(2] 5.,) # 0). The index k clearly
depends on the point. Let us denote now {z;,}; the collection of all the points
2134, 22,55 21,2:»- Then we consider the countable family of linear equations in C?

Y4
> Grfi(z20) =0,

k=1

augmented by the linear equation in (3 = ((31,...,(3,)

rank[(i, (2, (3] = 2.

The earlier considerations imply the existence of a point (3 not satisfying any of
the equations. We define g3 := ZZZI (3, fx for this choice. It is clear now that also
dimV(g1,93) < n—2,dimV(g2,93) < n—2,and dimV'(g1,92,93) < n—3.If
p > 3 it is easy to continue this process. This way we obtain a normal sequence
with the desired properties.

Let us return to the proof of Theorem 4.1. We assume henceforth that f;,. .., f,
is a normal sequence. We recall from the proof of Proposition 3.1, applied to the
function f := f*'--- f3'", m; € N, the existence of polynomials R ,»(z1) such
that the coefficients a1 ;, —2n < j < 0, of the Laurent development of | f |2A

at A = —1, have the property that the distributions R ,,(z1)am:1,; are linear
combinations of distributions of the form
@ [, JU/T 08|} Qu(p)dz. (¢ € D(C™)) @)
k)

where [ € N and (), are differential operators in - with coefficients that are
polynomials in z, €”1, e~*1, (See equation (28), note that £ = 1 in this case.)

For simplicity, we define R to be the product of R ,, for all the choices of
indices m with length |m| < p. This choice allows us to control all the coefficients
@pm;1,; Simultaneously.

Let a1,..., o be the distinct roots of the polynomial R(z;) and vy,..., v
their respective multiplicities. Fix one such root «;. Then each function f; can be
considered as a power series in 1 — ¢y, with coefficients that are polynomials
in 2’ = (22,...,2,). It is clear that when we truncate this series at the term
(z1 — o), we obtain a polynomial P;;. Moreover, if a function is locally in
the ideal generated by fi,..., fp, (z1 — aq)*, then, it is also locally in the ideal
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generated by Py ,..., Py, (z1 — 7). Let F' € A,(C™) belong to Ij,., then, for
each [ itis locally in the ideal generated by P, , ..., P, ;, (21 — o )”. We can apply
Ehrenpreis’ Fundamental Principle to obtain a representation

P
F = ZG]"[P"I + (171 - al)yle+l,la
=1
with functions G;; € A,(C") (cf. [21, 18, 26]). If we write
fi = Pia+ (z1 — a)"Qjy,
then Q;; € A,(C") and F' can be expressed as

4
F =Y Gjifi + (x1 — )" Gpyry, (45)

J=1
where Gpi1; = Gpp1 — >5—1 @1 Pjy, so that this function also belongs to

A (CM).
We claim that there are functions G; € A,(C™) such that

P
F =Y G,fi + R(z1)Gpt1- (46)

j=1

In fact, for =’ fixed, we apply the Lagrange interpolation formula to the points

ai,..., ok, with multiplicities v, ..., vk, so that we construct functions G;(z)
with the property that for each [
Gj(ml,:c’) — G]‘J(.Z‘l,l',) = O((.”L‘l — al)l/l)_ (47)

The Lagrange interpolation formula guarantees that G; € A,(C™), and (45),(47)
imply that

Y4
F-> Gifi =F=Y"'_Gfi + S5 1(Gjy — G))f
7=1
= O((z1 = a1)™).

Hence, F' — Z§=1 G f; is divisible by the polynomial R, and the entire function
Gp+1 defined by (46) also belongs to A,(C") by the Pélya-Ehrenpreis-Malgrange
division lemma [21, 27].

Note that the remainder term in (46), namely H := R(z1)Gp+1 € Ijoc, since
FeI,.and Eé?:l G, f; € 1. The idea of the rest of the proof of Theorem 4.1 is to
show that, thanks to the fact that H is also divisible by R, we have H € I, using
the explicit division formulas considered in [3].

Let us recall the construction from [3, 14], except that here we will need three
weights as in [14]. Let AV be a sufficiently large integer and x >> 1 (both shall be
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chosen below.) Let § € CZ°(R?"), non-negative, radial, 8(z) = 0 for |z| > 1,
[0 dz = 1. The weights we consider are constructed starting with an auxiliary

entire function I'(#) of a single variable, I'(1) = 1, and a smooth (1, 0)-differential
form () in C?2", In fact, we take three such pairs, the first one depends on A and it is

1 V4
Qia,0) = 5 311 'M]T@)Q’ RAS 1.
_ 48)

1 .
L'i(t) = — || (pt-7).
The g;(z, £) are differential forms given by
(z,6) = Z gik(z, &) dég,

where the entire functions g;x € A,g,(C?"), with (p ® p)(z,€) = p(z) + p(€),
and satisfy the identities

Zn: (2 = & )gsu(,€) = fi(z) = f;(§) (1 <5 <p)
k=1

The existence of such functions is well-known [27, 6]. The second pair is given by

o 2
Qz(rccz,(g - fA}?g(l +1€1) (49)
Finally,
Q3(z,§) = kO(|R&| * 0) (50)

I'3(t) := exp(t —1).
To every pair we associate a function
®;(2,6):=14(Qj,z - &) =1+ > Qjr(z,&)(zx — &),
k=1
where Q;(z,€) := 31—, Qjk(z,€&)dE. A simple computation shows that

P ¥4
Oy (x,6,)) = },Z OPO VT fi(a +%Z L= 1f;(¢
j=1 j=1
Itz 51)
©:(r6) = T

®3(z,§) = K(IRE1| % 90) - (21— &1) + 1
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Here x - £ = xlg + -+ 4 z,€,. We also need a few extra auxiliary functions

(e

d
F( (:r 5) dio T; )lt @, (x,€)° a€N.

() = r&“‘)ré”’ré“”, a; € N,a = (a1,0,03).

Following Henkin’s ideas [11, 5, 25, 16], we can represent an arbitrary function u
in C§5°(C™) by the formula

1 5 .
Uo)= i o MEOPE O~ [ Pu(E) n K(a.6), (52

where

P(z,6) = P(2,6,2) == ) 5““’(562)“,
lol=n "

(9Q)* = (9¢Q1(2,€))™ A (9eQa(x, €)™
/\(85@3(1‘, 5))a37

5 A (3S) A (3Q)”
K6 = K@,63) = Y -1 A|(z_)£|zfy\0£2Q)’

apt|a|=n—1

S =8(2,8) 1= Y (T; - §)d¢;,

J=1

08 =05 = > dE; NdE;.
j=1

Let us now apply (52) to prove that H € I. We choose a radial function
X €CP(C),x = 1for €] < 1,x =0for|£] >2,0< x < 1.Forafixed R > 1,
apply the representation formula (52) to the function u(€) := x(§/R)H (&) =
X(§/R)R(&)Gp+1(€). Note that (52) is a priori defined only when the parameter
A satisfies ®A > 1, and we apply it to a fixed z, |z| < R/2. The two integrals in
(52) admit an analytic continuation to the whole complex plane as meromorphic
functions of A\. We are going to identify the zeroth coefficient of their Laurent
development at A = 0, which will provide a representation for H(z).

Following the computations in [3, p.42-43], we can conclude that because
H ¢ I,., the first integral in (52) represents an element of the ideal generated by /

in C§°(C™). (It is here that one uses the fact that f},.. ., f, is a normal sequence,
a point left implicit in [3].) More precisely, if we consider
d* Ty

r{e)(z,6,0) = T‘t—%Zﬁ;l(l—m Py = ij T) Yoy, (2, & A), (53)
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it is possible to show (cf. [3]) that to compute the zeroth coefficient of the first
integral in (52) at A = 0, we canreplace everywhere in P, I‘ga‘) by 351 fi(2)7an,j
(z,€,X).

The other important terms where A appears are (0Q1)*', @; € N. We have

Z!f )PAVDF(E) A gi(,€))°, (54)
which is a linear combination of terms of the form

X i (€) -+ Fia (PO N\ OF,(6) A giy(3, ). (55)

=1

A typical term in T{*") is

P q
{Z Ifj |2 (=1 f](é)f] + Z 1 - |fJ |2>\ } ’
7=1

0<g<p-aj. (56)
So that
/ u(€)rt / H(§)x(&/R)TY (e (0Q1)™ A ¥, (57)

for some differential form ¥, independent of .
Similarly, for the second integral in (52)

= S A(08)> A (0Q)™
()
L, Bute) AT R

1 3 ar)ry aj
= 3 L HO@0(E) AT @0 A 6., 68)

O, a form independent of A, smooth on supp((0x)(£/R)). Finally, (57) and (58)
are both linear combinations of expressions of the following type

A »
R /c - gy PO e PHOXD(E/ BRI, 6), (59)

where m; € N’Z§:1 m; < p,n; € N, x(, the ith derivative of x>t =0,1,
Q is a form of degree (n,n), smooth on the support of X(i)(ﬁ/R). The form
involves the coefficients of the second and third pairs. It is this formula (59) that
will eventually allow us to let R — oo.

Let us recall that H(§) = R(£1)Gp+1(€), Gp+1 € A,(C™). Each expression
of the form (59), when analytically continued to A = 0, contributes one term to
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the zeroth term of the Laurent expansion of (52), namely, that corresponding to

the coefficient @y,;1 o, Of the Laurent expansion of | f{"' -+ fp*"[** at A = —1.
Therefore, the contribution of (59) is given by terms of the form
1 n n 7
(R(E)mt,—oqs 7 Gort |7 - 7 A 6/ R)w(z, €)), (60)

where w(z, £) is one of the coefficients of Q(z, £). We know from (44) how the
distributions R(&; )@m:1,—«, act on test functions, which shows that their limit exist
when R — oo and, in fact, are zero for ¢ = 1 (i.e., the terms corresponding to
the kernel K'), while that for : = O (i.e., those corresponding to the kernel P)
they are entire functions of z, with the correct growth conditions, that is, they
belong to A,(C"). All these estimates are achieved thanks to the previous choices
of @2, T, @3, T'; for sufficiently large constants NV, k. (We dot really need to use
the exact form (44) of the distributions R(&;)@m:1,—a,, it is enough to apply the
estimates of the Proposition 3.1.) This is similar to what we have done elsewhere,
[3], in the algebraic case, and [14], in the analytic case. In other words, we have
shown that H € .

Let us consider now the case where we do not assume the ideal is either complete
intersection or its variety is discrete. We shall study several ideals containing
I = I(fi1,..., fp). First, let us recall that V1, the radical of I, is the set of all
elements F € A,(C") such that F* € I for some k € N. Second, let I, the local
integral closure of I, be the set of all elements F' € A,(C") such that for every
point zg € C™ there is a neighborhood U and a constant C, > 0 such that

p
|F(2)] < Copllf(@)]] = Ca( X i) D)2, Ve € U.
7=1
For W open in C", let Iy denote the ideal generated by fi,..., f, in H(W). It

follows from [28] that F' € [ if and only if for every o € C" there is an open
neighborhood W, a positive integer N, and functions ¢y, ..., @ such that

FN+4,91FN_1+~'-+¢N:0inW,and@j€I€V.

Finally, let (V) = {F € A,(C") : F | V = 0}. Note that for a function
F to belong to I;,. means that it vanishes on the points of the variety V' with
some multiplicity, whereas in I(V') the common multiplicities of fi,..., f, are
disregarded. It is obvious that /(1) is a closed ideal, and we recall that the same is
true for I;,.. Some inclusions between these ideals are clear

IC N, CICI(V), VICIV).

It is also clear that, in general, we do not have [, = I(V'). We are now ready to
state two important results.
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THEOREM 4.2. Let I be the ideal in A,(C") generated by fi,..., f, € En1(C),
V={zeC": fi(z)=---= f,(z) = 0}. Then VI = I(V).

THEOREM 4.3. Let I be the ideal of the previous theorem and let m be given by
m=inf(p+ 1,n), then I*™ C I.

The crucial step in the proof of these two theorems is the following proposi-
tion. We state it in a slightly more general form that actually needed for future
reference.

PROPOSITION 4.1. Let ¢ be a convex, non negative function in C", satisfying
the inequality

p(z) < Kop(y) + K1 iflz -yl < 1, (61)
for some constants Ky, K| > 0. Let A be the space of entire functions given by
A:={g € H(C"): 3A > 0 log|g(z)| < A(log(2 + |z|) + ¢(z))}.

Let fi,...,f»,R € A, m = inf(p,n), and assume there are t €]0,00[?, B >
0, N € N such that the coefficients a;, —2n < j < 0, of the Laurent expansion

| f|2(kt=D) s ,
T ©2

j=-2n
satisfy for any b € D(C") the estimates

[(Raj, )| < Bexp(Bmaz{log(2+|z|)+¢(z) : = € supp(¥)})||¥||n-(63)
Then

() If F € Aand F(z) = 0 whenever fi(z) = ---= f,(z) = 0, then
RFNTU e A+ -+ fA.
(ii) If F' € A is such that every xo € C™ has a neighborhood U, in which
[F(2)] < Coll f(2)]] V2 € U
for some constant C; > 0, then

RF™ € fid+ -+ fLA.
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Proof. The proof is based on the representation formula (52) with

u(€) 1= x(§/R)R(E)F (&), (64)

for some R > 0,k € N, x a plateau function as in the proof of Theorem 4.1. We
need to make explicit the three pairs ¢);, I'; that appear in the kernels P and K.
First, for Ry > 1,

Iy &
Q1(33,§; = ”f||2 Zf]g](m 6) (65)

[i(s) :=489, ¢g= mm(p,n+ 1),

where we have left implicit the variable £ of T] in the definition of (), as we
shall do elsewhere. The differential forms g; are defined exactly as in (48), for the
present growth conditions.

As before, for some N >> 1 to be chosen later

Q2(z, &) := dlog(1 + [¢[), Ta(s) = sV. (66)

Finally, for some x >> 1 and # € C'*°, non-negative and radial, supp(6) C {¢ :
€] < 1}, f6dE =1,

Q3(z,€) := k(e 0)(&), Ts(s) := es L (67)

When the corresponding functions ®; are defined as before, the function ®; is the
same as in (51). The function @3 is given by

n

Ba6) =) (¢ 851 7= &) +1

We remark that the function ¢ * 8 and all its partial derivatives of order « can be
estimated by

|D%( % 6)(€)] < CL((€) + 1) < Coe?®

and, since the function ¢ * 6 is also convex,

lexp ®(z,£)| = eexp{aR(I(p+0)- (¢ —£)}
< eexp{3(p*6(z) — px0(£))}

On the other hand, not only

(p*0)(z) < Kop(z) + K1,
by the hypothesis (61), but moreover,

Ko(p0)(€) = /|n|<1 Kop(& — n)8(n)dn

< /|n|51("’“) Kf(n)dn < (€) - Ku.



168 C.A. BERENSTEIN AND A. YGER
It follows that, for some C' > 0,

lexp ®(z,&)| < Cexp{= ( op(z) = 99(6))}
The function ®1, here, is really different from that in the proof of Theorem 4.1.
Namely,

&y (z,6p) = (1 |f|2’”+|f|2‘“zf (68)

Hfll2 '

Moreover, it will turn out to be important to make the expression of (0Q;)™!
explicit. We have

9Qu(z,& ) = |17 ((uZt afm(_ﬁle;_@i))

, - Z
Z ”f”2 ) A giz f))- (69)

For a; € N, (562 1)°! is a linear combination of terms of the form

et (o S ) (a_i;/\ %‘)
Kl (l|f|12 e\ T

fh] otl—l
where 0 < I < a; <p,ig << ipf1 < -+ < Ji,hy < -+ < hg -1, and v is
an (a1, 0)-form with holomorphic coefficients, obtained from the wedge product
of several g;. It is clear that, for a; > m, (0Q;)®* = 0, since there are either too
many d§; or too many g;. For a; = p, the expression of (8Q);)P is particularly
simple, namely

2put
(0Q1)F = 'up!(_l)p(p_l)/z(tl+"'+tp)I|Tf}”pTl;

XOfi Ao . NOFy A gi(z,E) A .. A gp(z,§). (71)
In fact, from (69) we see that 0Q; has the form
9Q1 = |f*(AAB +0C),

where A and B are 1-forms and C' is a 2-form. Since 2-forms commute for the
wedge product,

@Quy = 7Py ()4 BY €7
i=0

= |f]?*"(CP + p(A A B) ACPT,
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since clearly (A A B)j =0forj > 2.In[11, p.61-62] we have shown that C? = 0
(just set ¢ = 0 in the expression obtained there.) Hence,

@iy = wplFP 635/ 5) A T/ AIP)g:)
N BTN A g™
k

which yields the identity (71) after an easy computation.

With these simplifications at hand, let us return to the analysis of the kernel P
that appears in (52). The following computations are all made for Ry > 1, modulo
the ideal 7 generated by fi,..., f, in C°°(C"). Every term in P contains some
I'(e1) ag a factor, 0 < a; < n, then it contains 7! when a; < ¢ (and vanishes
when a1 > ¢), thus the terms that do not belong to Z are of the form

(1= 1fP#)772(9Q1)™ A Ya,

Vo, = Poy(z,€) is a C form, which we do not make explicit for the time
being. From (70) we conclude that, modulo Z, we need to consider the analytic
continuation of integrals of the form

7 -
! ]Cn u(l — [ fP)rme |f|2‘“’”h1% A Bking A O(2,6), (72)
where
fll N fll
hr = ,
DA
%} = 8f]l af]l
fJ fJ1 sz

Okrs 2= O Fy [IFIP) A=+ A O(Fona, i/ IFIIP),

0O isa C* form, and u is given by (64), so that it has compact support.

Let us distinguish two cases, p < nand p > n. If p > n,theng = n + 1, and
g — o1 > Oalways. If p < n, (5()1)“1 = 0 once &1 > p. On the other hand, when
a1 = p, (71) shows that the only possible non-trivial value for [ is [ = 1. Hence,
in every case, either ! > 0 or ¢ — o > 0in (72).

We are now going to consider the case [ = 0 in (72). Recall that we are only
interested in the zeroth term in the Laurent development of the analytic continuation
of (72) at p = 0. As a function of u, (72) can be written as

S e T e v
S (1Y [P = A Bk 1 (), @3

i=0
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where we have absorbed all other terms into ©. Even though the powers | f|2#(e1+)t
are different, their contributions to the zeroth term at ¢ = O coincide. (This is
evident by considering the variable A = p( ;45 ).) Therefore, the total contribution
of (73) is zero.

Consider now the case [ > 0. As in [3, Proposition 2.3] we can use Hironaka’s
resolution of singularities to study the current defined by the zeroth term of the
analytic continuation at u = 0 acting on test forms 0,

2uBt f
u/ RIS == Bk 1.0, (74)

where 3 = a; + j, for some j, and we have absorbed x(£/R)F(£)F into ©.
The first thing to observe is that these currents are supported by the variety V
of common zeros of fi,..., f,. Moreover, we shall show that these currents are
also annihilated by multiplication by the functions f—j, as well as multiplication
by fi'---fp7, whenever n; + --- + n, exceeds the order of the current. The
order of these currents will be estimated using hypothesis (63). Recall that, after
using a partition of unity and resolving the singularities as in [3, p.33-34], we can
reduce ourselves to the case where all the f; are invertible holomorphic functions
multiplied by monomials m,, all the m; are multiples are m, that is, 7 f;(w) =
ui(w)m;(w) = ui(w)mi(w)my(w), my = 1, where 7 is the blowdown of the
desingularized variety. Hence,
um; Wﬁm—l

(NP = = =

Py lugmg2 o lm 28 fuyml?

7['*]9,'

U_iﬁg V4
mi(lur|? + 55 luymil?)  my
with v; € C°°. Thus,

7 (Okng) = 0 (kny) = ;—M

ap=1?

1

for some smooth wyy. Similarly,

m(hy) = =%
my
Finally,
ofs ou; om; ou; om;
(—) = (L + =)A=+ )
Ujy o Uj, ey
JT-
= Z Us A —1—6,
Ws

ls1<!
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where, as above, wy, . .., w, are local coordinates in the desingularized variety, ¥
are smooth forms, ¢ := (01,...,6,),1 < 6 < --- < é, < n,|6] :=r <, and
dwg dw dwg,

= 249 A ... A 252 Hence, in the coordinates w the integral in (74) is a

ws - ws, we,

linear comb1nat10n of

w /|u|2“ﬁt|m|2”ﬁt lal dia Ans ATH(RO), (75)
m{' Ws
for some smooth form 7s. Recall we are assuming that / > 0 and note that when
a1 = Othe integrand in (75) is integrable up to p = 0, thus it contributes nothing to
the zeroth term of the Laurent development. We can therefore assume that a; > 0
in what follows.

Let us assume now that O is a smooth multiple of some f;, then s A7*(R0O) =
m10’, ©® a smooth form in the w-coordinates (it depends on z also, but that is
irrelevant at this moment.) In this case we can integrate by parts (75) and obtain

'ul / |u|2pﬁt|m|2pﬁt%fiﬂ A o’

1

™y dws
/| |2t ZLZZ8 A @,
my Ws

Here ©” = ©”(z,w, p) such that g — 0" is holomorphic at 4 = 0 and P is
a polynomial which does not vanish at i = 0 (cf. [3, eqns.(1.20)-(1.22)] for the
details.) It is now clear that the integrand is integrable for p = 0, so that this term
cannot contribute to the zeroth term of the Laurent expansion. This is equivalent
to say that the currents we are computing are annhilated by fjC*° +--- + f,C>,"
which implies that their support lies in [, {fi=0}=V.

Remark that if F' satisfies the local estimates in part (ii) of the statement of
this proposition and & > m = min(p,n) > ai, then (Tr*F)k/mj"‘ is bounded, so
that again the integral (75) will not contribute to the currents we are looking for,
because everything is integrable up to ;¢ = 0. We will use this remark in the proof
of part (i) of the proposition.

We are now ready to conclude the proof of statement (i) in the proposition. We
observe that the integrand in (74) is a linear combination of terms of the form

7D
TR

where ©” is smooth and has absorbed some factors | f;|? and || f||2. This expression
is obtained by using the definitions of Ay, f7, kas. The hypothesis (63) of the
proposition ensures that the orders of the currents that appear in (74) are at most V
(plus giving some precision in the estimates in terms of z.) As these currents are
supported by V, it follows that if the power k of F'is N + 1 or larger, then these
integrals do not contribute to the zeroth Laurent coefficient at y = 0.

R GIII



172 C.A. BERENSTEIN AND A. YGER

We can summarize these statements in the observation that, for |z| < R/2, we
need only to consider the zeroth term of the Laurent expansion of (52) at u = 0
and obtain

R(z)F(z)N*! = foa: (Tj(2,€), RIOF(ENT'X(E/R))

]_

(76)

1 N+1(7 o ey
t BRR Jo ROFEO N @OE/R) A K (2,61 =0)
where the distributions T; are holomorphic in the variable z and the kernel
K(z,& XA = 0) involves the distributions a;, —2n < j < 0, from (62), so that, as
we did in the proof of Theorem 4.1, we can choose the constants A,  in (66) and
(67) to ensure that all the limits exist when K — oo and that the last term of (77)
vanishes for R = oo. It follows that the coefficients of the f;(z) in (77) belong to
the space .A. This concludes the proof of part (i) of the Proposition 4.1.

Because of the earlier remark, the same representation (77) is valid for
R(z)F(z)™, m = inf(p,n),and the conclusion of part (ii) follows. This ends the
proof of the proposition.

Remarks

1. We have pointed out, in the proof of Proposition 4.1, the remarkable fact
that the currents involved in the remainder terms of the division formulas we have
used, are annihilated by the conjugates f; of the generators of the ideal. In the case
of a complete intersection, there is only one remainder term, given by the residue
current, and hence the remainder is also annhilated by the generators f;. The fact
that we do not know that the remainder terms are killed by the f; in the case of not
complete intersection, is what prevents us from obtaining holomorphic division
theorems.

2. In the algebraic case, that is, all the f; are polynomials, we know from the
Bemnstein-Sato functional equations that hypothesis (63) is valid taking R = 1 and
a convenient choice of ¢.

Proof of Theorem 4.2. Let F' € I(V'), we need to show the existence of £ € N
such that F'* ¢ I. We follow the lines of the proof of Theorem 4.1.

From Proposition 3.2 of the previous section we conclude there are ¢ €]0, oo[?
and a polynomial R () so that the Laurent coefficients a; := a; ;, —2n < j <0,
of the expansion

| f|2(ut=1) 0

S = Y ag! 7
1717 ]2 ’

have the property

[(R(z1)a;, )| < Cexp(Dmaz{p(z): = € supp()})|| flln (78)
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for some positive constants C, D, Ny, and any ¢ € D(C™).

Let «y,...,ar be the zeros of R, with respective multiplicities vy, ..., V.
Consider I;, the ideal generated by fi,..., fp, (z1 — oqg)*t. This ideal is generated
by polynomials P; ..., P, (21 — o)™, as observed in the proof of Theorem
4.1. Since F vanishes on the set V' of common zeros of I, it also vanishes on the
set V7 of common zeros of I;. We can therefore apply Proposition 4.1, and obtain
a decomposition

14
FN = Z GjiPji+ (21 — )Gy (79)
i=1

for some N; € N,G;; € A,(C™). (There is no factor in front of F’ Nt since we are
considering a polynomial ideal.) Let N = maz(N;: 1 <[ < k), then, as done in

the proof of Theorem 4.1, we conclude there are functions Gy, ..., Gpt1 € A,(C")
such that
p
=Y Gif; +GpuR. (80)
J=1
We can apply again Proposition 4.1 to F, this time with fj,..., f, as generators
and R = R(z;) as in (78), to obtain
RFN0+1 el,

so that

FN+Notl ¢ 1.
which concludes the proof of Theorem 4.2.

Proof of Theorem 4.3. Let F' € I. We follow the proof of the previous theorem
and introduce a polynomial R as in (78), polynomials P i, ..., P, , associated to
fi,..., fp and a root a; of R. For any z¢p € C" we have

|F(2)] < Coll f(2)]| for 2 € U,

where Uy, is a neighborhood of z(, which we can assume is bounded, and C;,, > 0.
Hence, for z € Uy,

1£i(@)] < |Pja(@)] + Cppl(z1 — en)™],
for some constant C'; | > 0. It follows that for another constant C7; > 0,
P

C” Z | _I_I )l|2)1/2
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We can apply now Proposition 4.1 to the polynomials P ..., Py, (71 — a7)”,
and conclude that

ZG],I 1+ (21— )" Gpyr,

for some G;; € A,(C"), m = min(p + 1,n). As earlier, we conclude that

P
= Gifj+ GpuR,

3=1
G; € A,(C™).Let m’ = min(p,n), once more Proposition 4.1 ensures that
RF™ €.

Hence F™1t™' ¢ I.Since m + m’ < 2m, the theorem has been proved.

Asacorollary of the last two proofs we can obtain a theorem about representation
of entire functions in A,(C"™), modulo an ideal /, which defines a zero-dimensional,
complete intersection variety.

PROPOSITION 4.2. Let fi,..., fn € E,1(Q) be such that dimV = 0. Assume
further that the algebraic variety in C"~! defined by f1(0,2') = --- = f,(0,2') =
0, (z = (z1,2")), is empty. Then, there are constants N € N and k > 0 such that
any entire function satisfying the estimates

|F(2)] < A(1+ |2])® exp(C|Rz]),
can be represented (modulo the ideal I) as

Fz) = <5% Aceon 33—@) FOW(@ 0@ ) A+ ga(,6) ), B)

where

—\ B+N
14+z-£

x exp(2CO(|RE[ + bo) - (z — &) + £O(IRE1| + 1)(z1 — £1))(82)

8o is a smooth non-negative radial function in C™, supp(8y) contained in the ball
{I€] < 1}, Jen 00 = 1, 81 is an even non-negative function in C, supp(6,) is
contained in the disk {|&1| < 1}, [ 01 = 1, and —6—% A A 5%" is the residue
current associated to fi,..., fn-

Proof. Before we start the proof we should remark that the residue current 5% A
. -/\5?1; has been defined in [3] and the proof we give here follows the ideas in [14].

a
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Moreover, the theorem is valid for other growth conditions than |Rz | +1og(1+|z|),
all we need is to work with a weight > |Rz;|+log(1+]|z|). This is done by changing
the form ()3 to incorporate the new weight function, as in Proposition 4.1.

Let us recall from Section 3 that, due to the arithmetic hypothesis on the
coefficients of fi,..., fs, there is an integer m > 0 such that the distributions
xT"ak, ; appearing in the division formula (52) have estimates of the type (63), with
¢(z) = |Rz1|. On the other hand, as we already have seen, the ideal generated by
fiseoos fa, 27 in A,(C™) is also generated by polynomials Py,..., P,,z7". Our
extra hypothesis on the zeros of f;(0, z') translates exactly into the fact that these
polynomials have no common zeros. Thus, for any F' € A,(C"™) we have

F= Xn:GQPj + 27 Gy,
j=1
with G; entire functions satisfying
|G5(2)] < Ai(1 + |2] )7+ exp(C[Rz]),
for some Ay, N; > 0. This is clear since, for some ¢ > 0, Ng > 0,
[Pr(@)? 4 - 4 [ Pae)P + 2P 2 e(1+ |2]) =70
Writing P; = f; + z"h;, we obtain
F =) Gifi+27'Gnt, (83)
j=1
with the estimates
|Gj()] < AAx(1+ |2])PH N2 exp(C|Re| + rolRe1]),

for some A;, No, kg > O.

We apply to 27" G 41 the division procedure described in the proof of Theorem
4.1, the only changes are in the more precise choice of the weight )3 and the fact
that "G 41 is not in the ideal /.., hence there is a remainder term coming from
the kernel K in (52). We set

Q3 = 2CO(|RE| * Op) + kA(|RE | * 01),

with k > 0 to be chosen conveniently.
In [3, Theorem 3.2] the explicit form of the remainder is given as

1 _

S(e) = (7 A~~-Aa;‘;)(&),ernH(s)w,s)gl(z,s)
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where V is given by (82), with N, k are chosen so that all the integrals appearing in
the representation (52) for u(§) = x(&/R)E7 G n+1(€) converge. This expression
shows that
e Gpy1(z) = S(z) (mod I).

On the other hand, one of the properties of the residue current in (84) is to kill all
the functions in I;,.. This shows that, with the help of (83), we can replace in (84),
E7"Gry1(€) by F(€). This proves the proposition. O

In the particular case when the set of common zeros of fi,..., f, is discrete
and the zeros are simple, we can obtain that V' is an interpolation variety for

the weight |Rz| + log(2 + |z|), thus also for the space A,(C") for any weight
p > |Rxq|+log(2+]|z|). This follows from [7] and the following proposition.

PROPOSITION 4.3. Let fi,..., fn € En1(C) be such that dimV = 0 and
J(z) # 0 for every x € V, where J is the Jacobian determinant of the f;.
Then there is a constant C' > 0 such that

()] > exp(—C([Ray| + log(2 + [z]))) ¥z € V- (85)
Proof. We only need to apply Theorem 4.3 to the ideal Iy generated by fi, ..., fn, J,
with weight [Rz1| + log(2 + |2|) instead of p. Then fo-" C Io. Since V (Io) = 0,
then 1 € Iy, so that 1 € . It follows that there are g1, ..., g,+1, entire functions,
satisfying the inequalities

|95(z)] < exp(C(|Rz| + log(2 + [z]))),

for some C' > 0, and also the Bezout identity

A(@)g1() + -+ Ju(@)ga(@) + J(@)gnsi(z) = 1 Vo € C™.

Considering a point € V/, we obtain the inequality (85) from the earlier estimate
of In+1-

Remark. In fact, one has a stronger result. Let f1,..., f, € E, 1(C) be such
that dimV = k and assume that, at every point z € V/, there is a £ X k minor
of the Jacobian matrix D f of f1,..., f,, which does not vanish. Then, the variety
V' is an interpolation variety for any weight > |Rz| + log(2 + |z|). Namely, if
we let Ji,...,J; denote all the £ x k& minors of D f, then the ideal [y generated
by fi,..., fp,J1,..., J; does not have any common zeros, and the previous proof
applies, allowing us to conclude that forz € V'

|J1(2)] + - - - + | Li(2)] = exp(—C(|Rz1| + log(2 + [z]))).
From [7, Theorem 1], one obtains that V' is an interpolating variety.

Let us now observe that essentially all the previous results of this section
are valid for exponential-polynomials f;(e”', e, z5,...,2,), @« € Q\ Q, f; €
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Qly1,21,22,...,2,]. As before, one could replace the weight p by |Rz ;| +log(2 +
|z]), if necessary for the applications.

LEMMA 4.2. Let f1,..., fp be polynomials in e™',e*"', x5, ..., Ty, with coeffi-
cients in Q, and o € Q\ Q. Assume dimV < n — p. Then, there are linear
combinations 1, . .., v, of f; with integral coefficients such that the f; are also
linear combinations of the ¢ ;, and, moreover, ¢, ..., @, form a normal sequence.

Proof. We follow the procedure of Lemma 4.1. We can assume that f; # 0,
and choose ¢; = fi. Assume that we have already found a normal sequence
©O1,..., Pk, k < p, such that ¢; = 3F ¢;ifi, e € Z,1 < j < k, and
rank(c;;) = k. We need to choose @41 so that for any subfamily ¢;,,...,¢;
of {¢1,...,¢r}, we have dimV (¢j,,..., 05, ¢k+1) < n — (I 4 1). To simplify
the notation consider ¢, ..., ¢, then V(¢1,..., ;) is a countable union of irre-
ducible varieties of dimension n — . There are two kinds of components, those
contained in some hyperplane {z; = const}, say {U,}, and those that are not,
say {Vi}. Let Q1,...,Qp, P1,..., Py be the polynomials in Q[y1, 21, z2, . .., 2]
such that f;(z) = Q;(€", €%, x3,...,2,),0; = Pj(e*, e, z5,...,2,) and
consider the finitely many irreducible components W, of the algebraic variety
Py =---= P, = 0in C™t!, Each of the varieties V), is contained in some W,. We
have that

Wr ﬂ{yl = exlvzl = eaxl} 2 Vh-

Locally, near a point in V3, {y; = €1, z; = e**1} is the analytic variety z; = y{,
so that either (locally) W, C {z; = yf}orn+ 1 —1 > dimW, > 1+ dimV}, =
n — [+ 1. If y; is not constant on W, we can fix generic z», ..., Z,, so that near a
point in V};, we have that z; is an algebraic function of y;. Considering the Puiseux
development of z; we see that only rational powers of y; can appear in it, which
contradicts the fact that z; = y{* (since a ¢ Q. On the other hand, if y; is locally
constant, then z; is constant in V}, which is impossible by the definition of V.
Hence

dimW, =n -1+ 1.

Assume all the polynomials ()1, ..., (), vanish identically on W, then fi,..., f,
vanish identically on V}, which contradicts the hypothesis dimV < n — p. Thus,
for A € CP outside a hyperplane, we have \;Q; + -+ -+ A\,Q, # 0 on W,. We
claim that 3-%_; A; f;(2) # 0 on V4. If this were not the case, let

W, = W,ﬂ{zp: A;Q; = 0}.

J=1
Then
W, (y1 = €7,21 = e} DV,
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and dimW, < n — [. This implies that W, C {y1 = €1,z = e®"'}, which, as
we have just seen, leads to contradiction. So that for A outside a finite union of
hyperplanes, we have E?:l A;fi # 0 on any V},. In particular, one can always
choose all the \; € Z.

There are also finitely many components U; contained in the hyperplane {z; =
0}. This is the case for those that are components of the algebraic variety Pi(1,
1, z3,...,2,) = -+ = P(1, 1, z2,...,2,) = 0. The previous reasoning shows
that we can choose integers Aj,..., A, such that }_ A;f; # 0 in any V}, that
> A;Q; # Oonany W,, which contains points of V'(¢1, ..., ¢) and has dimension
dimW, = n— 1+ 1,and that }_ A, f; # 0 on those U; which lie in {z; = 0}.
If we run over all possible families ¢;,,...,%;,,1 < | < k, we can obtain the
A; simultaneously satisfying these conditions, not only for 1, ..., ¢, but also for
all such families. Moreover, we can also assume that the rank of the matrix of
coefficients of ¢1,..., ¢k, y_ A; f; interms of all f; is exactly k£ 4 1. We claim that
this is a good choice of A;.

Consider now whether there are any U; not contained in {z; = 0}. For such
U; we would have a unique W, such that U; C W, N{y; = "',z = e**1}. If
W, C {y; = €',z = e**1}, we have already seen that y; and z; are constant
on W,. Let us denote these constants by y; = 7, 2; = (, and let 1 = £ be such
that = e and ¢ = e®¢. Now, Noether’s Normalization Theorem allows us to
choose, near a regular point, n — (= dimW, ) coordinates, which parametrize W,
by algebraic functions with algebraic coefficients. Choosing a point with algebraic
coordinates shows that 7 and ¢ are algebraic numbers. Since they are related by
n = €%, = e°¢, it follows from Gelfond’s theorem that £ = Oand 7 = ¢ = 1. This
implies that U; is contained in {z; = 0}, a contradiction. The only possibility left is
that W, is not contained in {y; = €*, z; = €°*' }. In this case dimW, = n—[+1.
Then, by the earlier choice of A;, >~ A\;Q); # 0 on W,, thus

Ui €W, ({D_AQ; =0}
Since both sides have the same dimension n — [, U; is a component of the algebraic
variety W, N{3_ A;&; = 0}. On this component y; = 7, 21 = (. For the same
reasons as above, the constants 7, { are algebraic, so that z; = 0 on U;. Again a
contradiction.

This proves that the choice px+1 = 3 A; f;, defines anormal system ¢, . .., k41
such that the rank of the integral matrix (¢;;)1<;<k+1,1<i<p is exactly & + 1. Iter-
ating this procedure we conclude the proof of the lemma.

O

With the help of this lemma and Proposition 3.3, we can repeat the proofs of
the previous results of this section and obtain the following statements.

PROPOSITION 4.4. Let o« € Q\ Q and f1,..., f, be polynomials in *1,e>"1,
Lo, ..., Ty, with coefficients in Q. Assume that the exponential polynomials
fi,..., fp define a complete intersection variety. Let I be the ideal they generate
in the space A,(C"). Then I = Ij,..
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PROPOSITION 4.5. Let « € Q \ Q and let I be the ideal in A,(C") generated
by fi,..., fp, polynomials in €', e**\, x5, ..., x,, with coefficients in Q. Denote

V={zecC: fi(t)= = fo(z) = 0}. Then VI = I(V) and I*™ C I,
where m = min(p+ 1,n).

PROPOSITION 4.6. Let o« € Q\Q, let fy,..., f» be polynomials in e*!,e*"1,
T3,...,T,, with coefficients in Q, and let the variety of common zeros be V. =
{zeC™: fi(z)=---= fp(x) = 0}.If V is discrete and all the zeros are simple
(or if the f; define a manifold), then V is an interpolation variety for A,(C™).

We conclude this manuscript with an indication of some simple applications to
harmonic analysis that can be obtained from the earlier results and the methods
of [6]. For that purpose, let us recall that a linear differential operator P(D) with
constant coefficients and commensurable time lags is a finite sum of the form

(P(D)g)(t,z) = > pix(DIg)(t — kT, z), (86)

teR,z€R", (n>0),D=(5,5%,....,52=),j e N"* k€ Z, T > 0,and
p;r € C. The symbol of this operator P(T €) is the element of F,4;,1(C) given
by

P(T,f) - ei(tT+a:~§)P(D)e—i(t7+z-£)

_ ijk(_ic)jeikTr’

with { = (7, ). (By the introduction of the new coordinate £y = iT'T, we are in the
case of exponential polynomials considered at the beginning of this section.)

@87

THEOREM 4.4. Let Py(D),..., P,41(D) be differential operators with time lags
as in (86), with the property that the characteristic variety

Vi={¢eC: P(()=0,1<1<n+1}

is discrete and all the points of V are simple. Then, every solution » € E(R"t1)
(resp., p € D'(R™1)) of the overdetermined system

PI(D)QOZ"': n+1(D)99:07 (88)

can be represented in a unique way in the form of a series of exponential solutions
of the system (88), namely,

.Z') — Z c<€i(tr+x-§) .

eV

This series is convergent in the topology of £(R" 1) (resp., D'(R™*1)).
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Similarly, if we allow two non-commensurable time lags, but we assume that:

(i) their ratio is algebraic, (ii) there are no derivatives in the time variable, and
(iii) the coefficients of the operators are algebraic, then we can prove the same
representation theorem for the solutions of a corresponding system.

We shall present the applications of this type of result to Control Theory else-

where. Meanwhile, we refer the reader to [20, 22, 30] for some results in that
direction, and to [32, 4] for related applications to deconvolution problems.
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