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Abstract. We introduce D-modules adapted to study ideals generated by exponential polynomials.

1. Introduction

In this manuscript we introduce a new method to study ideals generated by expo-
nential polynomials, inspired by the theory of D-modules [ 17, 18, 19]. Let us recall
that an exponential polynomial f of n complex variables with frequencies in a
finitely generated subgroup r of en is a function of the form

where the sum is finite, the P, are polynomials, and 1 . Z = 03B31z1 +···+ 03B3nzn2022
Such a function belongs to the algebra A~(Cn) of entire functions F satisfying the
growth condition:

where the weight 0 can be taken as |z|, the Euclidean norm of z, or, more precisely,
if we choose a system 03B31, ... , 03B3N, of Q-linearly independent generators of 0393, as

where Rz denotes the real part of the complex number z.
In the case that F C iRn, the exponential polynomials are just the Fourier

transforms of distributions supported by finitely many points in the lattice -iF,
and Ao is a subalgebra of the Paley-Wiener algebra £’(Rn ) of Fourier transforms
of distributions of compact support. It is well-known that the spectral synthesis
does not hold for arbitrary systems of convolution equations as soon as n &#x3E; 2,
equivalently, not all ideals in the Paley-Wiener algebra are localizable [23]. If
an ideal is generated by polynomials then, it has been proved by Ehrenpreis and

* Both authors were partially supported by the NSF grants DMS-9225043 and CDR-8803012 and
NSA grant MDA90493H3012



132

Malgrange, that it is always localizable [21, 27]. The only fairly general criterion
to ensure localizability of a finitely generated ideal I is to verify that the generators
form a slowly decreasing sequence in the sense of [6]. Among other requirements,
the generators must define a complete intersection. The slowly decreasing condition
is not too easy to check, especially when the variety V of common zeros of the
generators is not discrete. The only general example given in [6] of a slowly
decreasing sequence of exponential polynomials is the following. Let Pl , ... , Pn
be polynomials defining a discrete (hence, finite) variety in Cn and  n, then
the sequence of functions

is slowly decreasing.
For these reasons, in our previous paper [9] we had considered the case of

finitely generated ideals of exponential polynomials with frequencies in a group F
of rank n and V discrete. Even when F = iZn, we could not find a general criterion
for localizability of the ideals generated by such exponential polynomials. Part of
the problem was of an arithmetic nature, namely localizability may depend not
only on the geometry of V and F, but also on the diophantine approximations
of the coefficients of the generators of I. For example, the ideal generated by
cos( ZI), cos(z2), Z2 - cxzl is localizable if and only if a is not a Liouville number.
As we pointed out in [10], there is a deep relationship between the localizability
issue and a conjecture of Ehrenpreis on the zeros of exponential polynomials of a
single variable with algebraic coefficients and frequencies.

In this paper we consider a situation that is fairly different from that of [9].
Namely, the group F has very low rank, either one or two, and the variety V
might not be discrete or complete intersection. We have obtained some results
very simple to state. For instance, if rank(r) = 1, any system of exponential
polynomials defining a complete intersection generates a localizable ideal in the
space Ao. Another example of localizability is that where the generators are of
the type (1) and define a non-discrete complete intersection. We have also studied
problems related to global versions of the Nullstellensatz and of the Briançon-
Skoda theorem, which could be useful when solving the ubiquitous Bezout identity
for exponential polynomials without common zeros. The solution of the Ehrenpreis
conjecture, as mentioned in [10], is precisely equivalent to solving in general the
Bezout identity.

The leitmotiv of our approach is to relate the division problems implicit in the
previous questions, to the study of the analytic continuation in 03BB1, ... , 03BBm of the
distribution

for exponential polynomials fj and the residues of this distribution-valued mero-
morphic function. This idea originated in our previous work about residue currents
[3] and their applications to the effective solvability of the polynomial membership



133

problem [12, 13]. The theory of D-modules, as introduced by J. Bernstein [17],
was precisely formulated to obtain an explicit form of the analytic continuation
in À of the distribution |P(z)|03BB when P is a polynomial. Bemstein’s results were
extended by Bjôrk to the holomorphic setting in [18].

Finally, we should mention that our results can be interpreted in harmonic
analysis as providing a representation of all the solutions of certain homogeneous
systems of linear partial differential equations with time lags, for instance, in
Theorem 3.4 below.

The authors would like to thank Jan-Erik Bjôrk for several estimulating con-
versations.

2. D-modules

The ideas we develop in this section are clearly related to those about the Weyl
algebra found in [ 18, Chapter 1 ], to which we refer for further developments.
We denote by N the set of non-negative integers. For an index a C Nn, its

length 1 ce = 03B11 +···+ 03B1n. We also let K be a field of characteristic zero, n and m
two positive integers, we define an extension En,m(K) of the Weyl algebra An(K).
It is realized as an algebra of operators acting on the algebra of polynomials in
n + m variables over K as follows.

Consider the polynomial algebra K[x1, ..., xn, y1,..., ym ] and derivations
D 1, ... , Dn on this algebra such that

The algebra En,m(K) is the algebra of operators on K[x1, ..., xn, y1, ..., 1 m gen-
erated by Xi,..., Xn, Y1, ..., Y, D 1, ... , D n, where X (resp. Yj) is the operator
of multiplication by zi (resp. yj). It is a Lie algebra, with the usual definition of
the Lie bracket [.,.] in terms of the composition of operators, i.e.,

The Lie bracket satisfies the following commutator relations

We note that for m = 0 our algebra coincides with the Weyl algebra. It is evident
that every element P of En,m ( K ) can be written in the form of a finite sum
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C03B1,03B2,03B3 E K, 03B1,03B3 E Nn, 13 E Nm. We want to prove the uniqueness of the repre-
sentation (2). For that purpose it is convenient to introduce the operators ad(Q)
acting on En,m(K) by ad(Q)(P) := [Q, P]. Once the uniqueness is proven, the
integer max(|03B1| + |03B2| +|03B2|: c03B1,03B2,03B3 ~ 0) will be denoted degP.
LEMMA 2.1. Every element of En,m(K) can be written in a unique way as in (2).
Proof. Let us assume we have an expression

as an operator on K[x1, ..., Xn, y1, ..., ym]. We rewrite P as

Observe that if 7 = (03B31, ..., 03B3n) = (03B31, 03B3’) then

which vanishes if,1 = 0. Hence

Moreover, for any other index 7 we have

if some 03B3i  i,, in particular, if |03B3|  |03B3|. It follows, using the lexicographical
ordering, that for all q

Since char(K) = 0, we have P03B3 = 0. As P03B3 is the operator acting on K[x1, ..., xn,
yi , ... , ym by multiplication with a polynomial all the coefficients of P03B3 are zero.

a

We shall need the following simple calculus rules.

LEMMA 2.2. For any integers a, b &#x3E; 0, 1  k  n, we have

COROLLARY 2.1. Let P(X, Y) = 03A3MK=0Xk1Pk(X’,Y)= 03A3Nl=0Yl1Ql(X,Y’),
where X = (Xi,x’),y = (Y1,Y’). Then
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Let us define the natural filtration £v on En,m(K) by

It is a K-vector space of dimension (2n+n+03BD03BD) ~ v2n+m. We can define the graded
algebra gr(En,m(K)) as

As always (cf. [ 18]), it is necessary to show that this is a commutative algebra. The
only thing to show is that

This is a consequence of the fact that deg [Xi, Dj] ~ 0, deg[Yi, Dj] ~ 1.
Finally, we want to show that gr(En,m(K)) is isomorphic to a polynomial ring

in 2n + m variables. As in [18] all we need to demonstrate is that if X i (resp.,
Yi, Di) denotes the class of Xi (resp., Yi, Di) and

in gr(En,m(K)), then all coefficients c03B1,03B2,03B3 = 0. Assume this is not true and let

We have that

where î(v) := 03B503BD/03B503BD-1. Thus, its representative 03A3|03B1|+|03B2|+|03B3|=03BD
belongs necessarily to 03B503BD-1. Since the degree is v, this is clearly a contradiction to
the uniqueness of the representation proved earlier, so we are done.

Let M be a (left) En,m(K)-module and 039303BD a filtration of M, i.e., an increasing
family of finite dimensional K-vector spaces 039303BD such that

Let 1(v) := l, / l, - and define gr(M) by

Due to property (ii), this graded module is a module over gr(En,m(K)). One says
the filtration is a good fil tration if gr(M) is of finite type over gr(En,m(K)). For
instance, if M is finitely generated over En,m (K) by a1, ..., ar and we choose
f v = £vai + ... + 03B503BDa03B3, then we have a good filtration.

As in [ 18, Lemma 3.4], one can prove the following lemma.
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LEMMA 2.3. Let (r v)v, (03A903BD)03BD be two filtrations of a En,m(K) module M, and
assume that (Tv)v is a good filtration. Then there is an integer w such that r v C
03A9v+w for all v ~ 0.

If gT(M) is of finite type over gr(En,m(K)), there is a Hilbert polynomial
H E Q [t] such that for all v y 1

H(v) = dimKTv

(see [18, Theorem 3.1]). As a consequence of Lemma 2.3, the degree and the
leading coefficient of H do not depend on the choice of the good filtration (Fv)v.
The degree d of H is called the dimension d(M) of gr(M) and the multiplicity
e(M) of gr(M) is the leading term of H times d!.

In the case m = 0, i.e., for the Weyl algebra An(K) one has the fundamental
theorem of J. Bernstein that asserts that, for any non-trivial An(K)-module M
such that gr(M) is of finite type,

An An (K)-module M such that d(M) = n is said to be holonomic.
One of the applications of the concept of holonomic modules is the existence

of the Bernstein-Sato functional equations [18, 31, 29], i.e., given polynomials
fl,..., fq in K[x1,..., xn] there are differential operators Q j in An(K[03BB]), with
A = (AI, - - -, Àq), and a non-zero polynomial b E K[03BB] such that the formal
relations

hold.

One of the most interesting examples, for us, of En,m(K)-modules, m  n,

is the following. Consider exponential polynomials Pl , ... , Pq of n variables with
positive integral frequencies and coefficients in a subfield K of C, that is, finite
sums

with Cj,k C K[x],j = l, ... , q. We consider a new field K(03BB) = K( À1, ... , aq)
obtained from K by adjoining q indeterminates, and define the module M freely
generated by a single generator denoted 03C103BB = 03C103BB11 ··· 03C1lqq, namely,

where, to pick up the earlier notation, Xi (resp., Yj) operates as multiplication by
x (resp., by exj) and D, acts as the differential operator V j, defined by
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The natural filtration of M is

where do : = 1 + degx,ex(P1··· Po). This is a good filtration and

Hence,

It is natural to ask whether for every non-trivial En,m(K)-module (or En,m
(K(03BB))-module) with m  n, one has d(M) &#x3E; n + m. Or, at least, to give
conditions that ensure this inequality occurs.

Let us start with the following simple examples where n = m = 1. Let rx E R
(or even e C) and denote by ba the Dirac mass at the point a. Consider K a
subfield of C, and the E1,I(K)-module M03B1, generated by 6,. Ma is a family of
distributions with support at the point a. When cx = 0 we have

so that

and hence,

On the other hand, when a ~ 0, we have

so that this time

Hence,

that is, it depends on the degree of transcendency of the extension of K by cx and
e03B1. For instance, if K = Q, cx ~ 0 is algebraic, then d(M03B1) = 2. In every case in
which K = Q, 03B1 ~ 0, d(M03B1)  3. If K = R or C, then d(M,) = 1.

What this example shows is that the choice of the field may play a crucial role
in deciding whether an En,m ( K )-module M verifies a(M) ~ n + m or not. On
the other hand, we are mainly interested in modules of the form M(P1, ..., Pq ),
their submodules, and quotient modules.

Let us now consider the case m = 1.
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PROPOSITION 2.1. Let M be a finitely generated En,1(K)-module, then, either
d(M) ~ n + 1 or for every element mo E M B {0} there exist two non-zero
polynomials A, B E K[s], and t E N such that

Proof. Let us assume that d(M)  n and let m0 E M B {0}. We complete mo to a
system of En,1(K)-generators of M and denote by fa the K-vector space spanned
by this system of generators. We define for v E N

This is a good filtration.
We claim that the map

cannot be injective for any sufficiently large v. If it were injective, we would have
the inequality

which implies 2n + 1  2d(M), in other words, d(M) ~ n + 2. This contradicts
the fact that we have assumed d(M)  n.

Hence, for all large v there are differential operators Pv = P e £v ) {0} such
that P · -1B = 0. In other words,

Let us write P = 03A3c03B1,03B2,03B3X03B1Y03B21D03B3, lai | + Q + |03B3|  v. Let ,0 be the largest
power of D, in the lexicographical order, that appears in P. Then, as in Lemma
2.1, we have

On the other hand, since P 0393v = 0, we have for any 1  k ~ n

because

and



139

and

Let us rewrite Pi as a polynomial in X’ = (X2,..., Xn ),

From Lemma 2.2, with D’ = (D2, ..., Dn ), we obtain

and, if for some i, bi  b2,

Therefore, if bo is the largest power of X’ in the lexicographic order, we have

Clearly, v - |03B30| - bo ( &#x3E; degP2 &#x3E; 0, if not, P2 would be a non-zero constant,
which contradicts the last identity.

Thus, we have reduced ourselves to the following situation. We have a non-zero
polynomial P of the variables XI, Y1, 1  degP  v, and P. f v = 0. Let us write
it in the form

Observe that if P(X1,Y1) = YN1QN(X1,Y1) (that is, Ql = 0 for 0  l  N - 1)
then

and we would already have proved the first part of the proposition, so that we can
assume that there is more than one index such that Ql 0 0. Obviously, we want
to reduce ourselves to the case of a single Q 10 0. Let us apply Corollary 2.1, then

where Q’l = dQl dX1· We let
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so that we still have

Let L be the largest index such that I,  N and Q L 0 0, then the leading coefficient
of P as a polynomial in Y, is

which is the sum of two polynomials of different degrees. The one of highest degree
is ( L - N)QNOL, which is evidently different from zero. This shows that P ~ 0,
degYl P = L, and P . 0393v- 1 = 0, so that we can repeat the procedure, and in at
most N - 1 steps arrive to a non-zero polynomial of the form Yt1A(X1), which
annihilates 0393v-N+1. This makes sense because lV  degP  v. This proves the

first part of the proposition.
To prove the second part, we rewrite the original polynomial P(X1, Y1) in the

form

and assume M &#x3E; 1, otherwise we are done. Hence, by Corollary 2.1 we have

which again kills 0393v-1. We consider

We claim that degX1 P = M - 1. In fact, the leading coefficient of P is

which we have to show is not identically zero. For that purpose, we prove the
following lemma.

LEMMA 2.4. Let R, S E K[03BE], R ~ 0, and a E K*, then, the polynomial

Proof. We want to reduce ourselves to the case where the coefficients are complex
numbers. For that purpose we consider the collection of a and all the non-zero
coefficients of R and S, say {03B11,..., a, 1. Then Q(03B11, ... , as) is a subfield of K,
since char K = 0, and, on the other hand it is a finitely generated extension of Q,
which we can decompose as a finite transcendental extension followed by a finite
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algebraic extension. The first extension can be embedded as a subfield of R, and
its algebraic extension as a subfield k of C.

Therefore, we really have two polynomials R, S E C[03BE], R ~ 0, and a e C * ,
and we need to show that the identity

is impossible. Namely, we would have the equation

The function f(03BE) := S(03BE) R(03BE) is rational, hence it is single valued and holomorphic
outside the set of its poles. On the other hand, the differential equation

has only the solutions - alog03BE + c, c E C, which are neither single valued nor
rational. This concludes the proof of Lemma 2.4.

D

Let us retum to the proof of the Proposition 2.1. We have just seen that deyx1 P =
M - 1, where P is defined by ( 4 ). We also have that P . 0393v-1 1 = 0. Repeating
this procedure a total of M times, we obtain a non-zero polynomial B(Yl ), i.e, a
polynomial of degree zero in X1, such that B(Y1) . Fv- M = 0. This is possible
because M  degP  v. This concludes the proof of the second part of the
proposition.

D

Let us give an application of Proposition 2.1 to the module

defined by equation (3), where Pj E K[x1, ..., 1 x , e’l ], K a subfield of C.

PROPOSITION 2.2. There are two non-zero polynomials AI, A2 of a single vari-
able s, with coefficients in K[03BB], 03BB = (03BB 1, ... , Àq), and 2q linear differential oper-
ators, Qi,j (i = 1, 2; j = 1,..., q), with coefficients belonging K[A, x, ex1, e-x1],
such that for every j

(To simplify the notation we have written -2- to denote (~ ~x1,..., aan ).)
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Proof. We follow an idea of Lichtin [29]. The module M,

is an En,1 (K( À )-module of finite type and d(M) = n + 1, as stated earlier.
Introduce the new En,1 (K(03BB))-module N defined by

consider the elements

and denote N(l) the submodule of N generated by el.
We have that

since it is a direct sum [18]. Hence (cf. [18]),

Moreover,

On the other hand, we can apply Proposition 2.1 to conclude that d(N(l)) = n + 1
for every 1. If not true, there would be a non-zero polynomial B e K[A, s], such
that

This is impossible, since we are just multiplying exponential polynomials. Further-
more, for every 1 [ 18],

Thus, either for every 1 we achieve this upper bound or there is a smallest index lo
such that

Let us show the first case cannot occur. If it did, consider the sequence of modules

which is clearly exact for every l. Since the dimensions of all the terms coincide
and it is possible to apply the proof of [18, Proposition 3.6], with An(K) replaced
by En,1 (K( À)), we conclude that their multiplicities are related by
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which implies that for all l &#x3E; 1

This is obviously impossible. Hence, the equation (9) holds for some minimal value
of lo.

It could occur that N(l0)/N(l0 + 1) = 0, then el0 E M(la + 1). In this case
there is a differential operator R = R(03BB, x, ex’, ~ ~x) E En,1 1 (K (A» such that

Consider the j th entry. We have

where Rj is another differential operator in En,1(K(03BB)) obtained applying Leib-
niz’s rules. Since 03BB1, ..., Aq are transcendental over K, this last formal identi-
ty is equivalent to a true identity involving only Pl , ... , Pq, and their deriva-
tives, instead of P03BB. We can therefore change variables À 03BB1 + lo, ... , Àj r-7
Ai + lo - 1, ... , 03BBq  03BBq + lo, and obtain

Finally, we can clear the denominators from K[03BB] in Rj and conclude that there is
some b E K[03BB]B 101, independent of j, and corresponding differential operators
Qj with coefficients in K[À, x, ex1] so that

If N(lo)/N(lo + 1) ~ 0, we can apply Proposition 2.1 to this En,I(K(À))-
module and find two non-zero polynomials A, B C K[03BB, s] and an integer t C N
such that

and

We can divide out by etxl the first relation and apply the earlier reasoning to
conclude there are non-zero polynomials A1, A2 e K[03BB, s] and linear differential
operators Q i,j with coefficients in K[03BB, x, exl, e-x1] so that



144

for j = 1, ..., q.
This concludes the proof of the functional equation in every case.

D

Let us denote by A the ring of all entire functions f in Cn+q satisfying the
growth condition

for some 03BA, N, D &#x3E; 0.

If we knew that Aj(03BB, s) = bj(03BB)Bj(s), j = 1, 2, then we could simplify the
equations (7) and (8) when K C Q, as follows. The only possible solution s E C
of the pair of equations

is s = 0, by the Gelfond-Schneider theorem [2]. Let us denote m E N is the
multiplicity of this solution. Then, appealing to [10] we know there are two entire
functions C1, C2 satisfying the growth conditions

for some N E N, j = 1, 2, and

We could then conclude that there would be a non-zero polynomial b(a) and linear
differential operators Qj with coefficients in A such that

Namely, multiply (7) by b2(03BB)C2(x1), (8) by b1(À)C1(Xl), and add.
In general, we do not have such a factorization of A1 and A2. The idea will be

to use an approximate factorization. We discuss this point in the following section.
To conclude this introductory section, let us make some remarks about general-

izations of the previous results. First, it is convenient to observe that the algebra A
is a subalgebra of the weighted Fréchet algebra usually denoted A03C1(Cn), p( x) =
log(1 + |x|) + |Rx|, where

The spaces En,m we are considering are subalgebras of this weighted algebra. In
this paper we will essentially consider only this weight p.

Let us now see how to apply the previous reasonings to the algebra of polyno-
mials in eZ1, eO:Z1, z2, ... , zn with coefficients in Q, where we assume a E Q B Q
and zl, ... , zn are n complex variables. For this purpose, we introduce the algebra
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K = K  Y1, Zl , X2,..., Xn, D1, ..., Dn &#x3E; of operators acting on the polynomi-
al algebra K[Y1, Z1, X2, ..., Xn], K a field of characteristic zero. The differential
operators Dj obey Leibniz’s rule, the Xj,Y1,Z1 act by multiplication, and we
define

As a consequence, we have the commutation rules

where p(Y1, D1) is a polynomial of degree  k - 2 in D 1.
We remark that the algebra of exponential polynomials in the variables eZ1, e03B1z1,

z2, ... , zn, cannot be isomorphic to the polynomial algebra in Y1, Zl, X2,..., Xn,
unless a (j. Q. Recall that the field K always contains a copy of Q.

LEMMA 2.5. Every element P of K can be written in a unique way as

Proof. Denote dey P =|i|+j+k+|l|. Suppose P = 0, as operator, we need to
verify that all the coefficients cijkl = 0. As in Lemma 2.1, we can reduce ourselves
to the case P is a polynomial in Y1, Zl , D 1. We use (13) to diminish the degree of
P in Dl, by commutations with Yi, and conclude we can assume there is no D1.
But, as a multiplication operator, a polynomial in Y1, ZI cannot vanish unless its
coefficients are zero.

D

We define the filtration ICv of K, by degrees, and the corresponding graded ring
gr(K) = ICo ~ K1/K0 ~... We conclude, as before, that gr(K) is commutative
and isomorphic to the polynomial ring in 2n + 1 variables over K. The concept of
good filtrations is the same as earlier and Lemma 2.4 and its consequences hold.

We need to prove the analogue of Proposition 2.2.

PROPOSITION 2.3. Let M be a finitely generated lC-module. Then, either d(M) ~
n + 1 or for every element mo E M B 101 there are two non-zero polynomials
A, B E K[s] and two non-negative integers a, b such that
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Proof. We use the same filtration Fv as in the proof of the Proposition 2.2, so that
mo E fo. Thus, if d(M)  n, for all large v there is P E K, B 101, such that
P . iv = 0. By the argument we have used in Proposition 2.2, we can assume that
P depends only on the variables Y1, Z1, D1, 1  degp  v. Using the relation
(13), we can even eliminate Dl. We just observe that ad(Y1)P . f v-l 1 = 0, and
ad(Y1)P is a non-zero polynomial whose degree in DI strictly smaller than that of
P. This is verbatim the procedure in Proposition 2.2 to eliminate D1. So that, from
the start, we could assume that 1  degP  v, P - f v = 0, and P e K[Y1, Zi].

If P were independent of Z1, then, either P(Y1) = cY1 d , e 0 0, d = degp,
and we can take a = 0, b = d, A(Y1) = P(Y1), B(Z1) = c, or P has at least
two terms. In the latter case, the polynomial ad(D1)P(Y1) - (degP)P(Y1) ~ 0,
it annihilates 0393v-1, and it has degree  degP. Iterating this procedure we would
be done. Thus, let us assume that P depends both on YI and on Z1. Consider

and assume there are at least two non-zero terms in this representation. (Otherwise,
we let A(Yl ) = Ql(Yl) and a = 1.) Then,

kills f v-l, and so does

which has degree in ZI  l. The only problem is to show that Pi fl 0. Since there
is an index j  1 such that Qi 0 0, if Pi = 0 we would have that

This leads to the formal differential equation

which, by an argument similar to that used in (5), can be shown to be impossible.
This concludes the proof of the existence of an a E N and an A E K[Y1] B 101
with the required properties. The other part of the proposition is proved similarly.

D

As pointed out above, the algebra generated over K by ex1, e03B1x1,x2,..., x n ,
~ ~x1, ..., aan , when K is a subfield of C and cx E K B Q, is isomorphic to the
algebra K = Kcy we have considered above ( YI = exl , ZI = e03B1x1). Therefore,
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we can consider a family Pl , ..., Pq of exponential polynomials in K, K(03BB) =
K( À1, ... , 03BBq), and the module

which is the module generated by the action of IC on the formal generator p03BB =
Pl 03BB1 ... Pq 03BBq So that we obtain the following result, corresponding to Proposition
2.2.

PROPOSITION 2.4. There are two non-zero polynomials AI, A2 of a single vari-
able s, with coefficients in K[03BB], 03BB = (À 1, ..., Aq), and 2q linear differential
operators, Q i,j (1 ~ i ~ 2; 1  j  q), whose coefficients belong to K[03BB, exl,
e -Xl e03B1x1, e-03B1x1, x2, ..., X,l such that for every j = 1, ... , q we have

3. Functional équations and analytic continuation

In the applications we have in mind, e.g., Bezout identities, division problems, and
the like, one needs to determine the principal part of the Laurent development of
|f|203BB for 03BB=-k, k~N, where f is an exponential polynomial. The reason for
this need will become clear later on. Meanwhile, we are going to explain how to
obtain sufficient knowledge of the coefficients of the principal parts, even if we do
not have the factorization of the polynomials Ai, A2 mentioned at the end of the
last section.

LEMMA 3.1. Let f be an exponential polynomial in En,1(K), k~N, there is
an integer q E N such that for any N E N one can find a non-zero polynomial
RN~ K[x1] and a functional equation of the form

where v N E K[03BB,x1] and Qk,N is a linear differential operatorwith coefficients in
K[À, x, ex’, e-Xl].
Proof. From Proposition 2.2 we know the existence of a non-zero polynomial
A E K[03BB, XI] and a differential operator Q with polynomial coefficients such that
one has the formal identity

We would like to iterate this identity, except that contrary to the usual Bernstein-
Sato functional equations, the coefficients of A(03BB,x1) depend on x1. We factor A
into two coprime polynomials
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In particular, for every fixed A the map x 1 ~ A1(03BB,x1) is not identically zero, and
hence we deduce the formal identity

Applying Leibniz’s rules one obtains

for some m 1 C N, and Q 1 a new differential operator with coefficients in

K[ À, x, ex1, e-x1]. Thus, we find

Iterating this procedure, for every k E N we find a non-zero polynomial Ak(03BB,x1)
and a differential operator Qk with coefficients in the same ring as above, so that

Since multiplication by the formal antiholomorphic function f03BB commutes with
the operators ~ ~xj, then

Note that this formal identity can also be interpreted as an identity among distri-
butions. It is convenient to factor Ak into coprime polynomials as follows

which allows us to write

Since Bk is coprime with À + k, for any N e N* we have a polynomial Bezout
identity

for some polynomials UN, VN C K[03BB,x1] and RN E K[x1], RN ~ 0. (It is clear
that UN, vN, RN, and q depend also on k. We suppress this index to simplify the
notation.) Therefore, we have
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with Qk,,V := UNQ k, which concludes the proof of the lemma.
D

The same proof yields relations of the form

where vN ~ K[03BB, ex1], SN(t) = SN,k(t) E K[t], and Qk,nr is a differential opera-
tor with the same properties as Qk,N.

We know a priori [1] that, in a neighborhood of À = - k, the distribution-valued
meromorphic function |f|203BB has the Laurent expansion

with ak,j E D’(Cn). The previous lemma allows us to compute explicitly the
products RN(1x)ak,j, SN(ex1)ak,j, for -2n ~ j ~ 0, as soon as we take N &#x3E;
2n + 1. Namely, the polynomial vN in (21) can be expanded in powers of A + k,
1,e.,

Let p C D’(Cn), then

where Q’k,N is the adjoint operator of Qk,N (obtained by integration by parts).
The first term of the last sum is holomorphic at 03BB = -k, and the series only

contains powers of À + k bigger or equal to q + 1, due to the choice N &#x3E; 2n + 1.
Thus, the distribution-valued function (À + k)qRN(x1)|f|203BB is holomorphic in a
neighboorhood of À = - k. Moreover, if we denote
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its Taylor development, then, for 0  h  q, the distributions bk,h are given by

where s &#x3E; 0 is chosen sufficiently small so that on a neighborhood of supp(~),
the function z - |f(x)|-203B5 is integrable.

We can rewrite the last integral as

which shows that the terms  bk,h, ~ &#x3E; are linear combinations of integrals of the
form

where j E N (in fact, 0 ~ j ~ h + 1) and the Ql are differential operators with
coefficients in K[x, ex1, e-x1]. Note that the term (f/f)k is bounded, and the same
holds locally for f(log |f|2)j.

Let us take, once for all, N = 2n + 1 and, since RN really depends now only
on k we shall denote it Rk from now on. Therefore, from (23) and (26) we obtain

Moreover, if we introduce the polynomials Sk in a similar way, the same
procedure leads to an explicit computation of Sk( eXl )ak,j for the same values of
j, -2n ~ j ~ 0. We summarize these remarks in the following statement.

PROPOSITION 3.1. Let f E En,1(K) and h E N, there exist non-zero polynomials
Rk, Sk of a single variable, with coefficients in K, Nk E N, and positive constants
Ck, Dk such that the distributions ak,j, -2n  j  0, defined by the Laurent
development
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satisfy the estimates

where

COROLLARY 3.1. If K C Q, there are integers mk E N, and two constants
Ct, D’k &#x3E; 0 such that the estimate (31) implies

Proof. We retum to the argument at the end of the preceding section. For each
k E N we can find two entire functions CPk,1/Jk in the Paley-Wiener class of
functions, i.e., 0((1 +|x1|)BeA|Rx1|), and an integer m = mk &#x3E; 0 such that

Thus, we can get estimates for the distributions xlak,j, using (28), (30), and (32).

In the following section, we shall use these estimates for the distributions
involved in the analytic continuation of distribution-valued holomorphic functions
of the form |f1|203BB1···|fp|203BBp/(|f1|2 + ... + |fp|2)m. These functions have already
appeared in our previous work [12, 3]. The existence of an analytic continuation as
a meromorphic function of À 1, ... , 03BBp follows from Hironaka’s resolution of sin-
gularities, but since we want to control the distributions that appear as coefficients
in the Laurent developments about some pole, that is, we would like to obtain
estimates similar to those of Proposition 3.1 and Corollary 3.1, we need to find
some kind of functional equation that provides the analytic continuation. Since it
is easier to provide functional equations for |f1|203BB1···|fp|203BBp, we need a technical
trick to reduce this kind of quotients of functions to products. It is based on a simple
lemma about the inverse Mellin transform. In order to simplify its writing let us
introduce the following notation.

For

Given

We also let s : := (s1, ..., sp-1), s* := ( s l , ... , sp), with sp as previously defined.
Recall also the somewhat standard notation,
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for complex values aj such that the Euler Gamma function is defined. Finally, as
long as there is no possibility of confusion, we shall use the following abbreviated
notation for multiple integrals on lines parallel to the imaginary axes. Let, =

(03B31, ... , 7p-i) be a vector of real components, then, for any integrable function F

LEMMA 3.2. Let t1, ... , tp &#x3E; 0, fll, ... , flp E C, R03B2 &#x3E; 1, P E C[03BC1,..., ppl,
then, with the previous notation,

for any qj &#x3E; 0 such that 03B31 + ··· + 03B3p-1  R03B2-1.

Proof. We start from a known formula about the inverse Mellin transform [24,
6.422.3,p.657], for 0  7  R(03B2- 1), t &#x3E; 0, one has

This integral is absolutely convergent because of the rapid decrease of 0393(s) along
vertical lines in the right-hand plane. (In fact, (34) follows inmediately from the
definition of Euler’s Beta function and the Mellin inversion formula.) Thus, when
p &#x3E; 2 we let T = t2 + ... + tp, and then, if 0  ,1  R(03B2- 1 ), we have

Since R(13 - si) &#x3E; 1, we can use a recurrence argument when p &#x3E; 3, which
will become clear after we write down the next step. We rewrite T = t2 + (J, so that

as long as Therefore, with
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which shows, by induction on p, that the formula (33) is correct when P -

1, 03BCj = 1 ( j = 1,..., p). In other words, with the notation introduced above, we
have proved that

Multiplying (35) by tlL = t03BC11 ··· tpP, we obtain the formula (33) in the case P - 1:

To obtain the general case, let us rewrite (36) by choosing new variables rl , ... , rp
defined by

It follows that for any r j &#x3E; 0, 03BCj E C,

If we now apply the differential operator rj ~ ~rj to both sides of (37) we find

It is clear now that for any polynomial P,

Replacing r j by their values in terms of the tk, we obtain the expression (33).

Let us now apply this lemma to the study of the coefficients in the Laurent
expansion about J1 = 0 of the analytic continuation of
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where t ~]0, ~[P is a vector to be chosen below, 03BC E C, k E Z, k is the

p-dimensional vector (k, ..., k), m E N*, fj e En,1(K), ~f~2m = (|f|2 +
... + |f|2)m, and, keeping with the previous notation |f|r = |f1|r1···|fp|rp for
any vector r = (r1, ..., rp) (Similar meaning for fr). From Proposition 2.2 we
conclude that there is a polynomial A(03BB1, ..., 03BBP, x1) and differential operators
Q1,j(03BB,x,ex1,e-x1,~ ~x)such that

As we have done in the proof of Lemma 3.1, for any E Z, 1 E N there is
a polynomial Al E K [A, xi] and a functional equation (in which we use the
abbreviated notation introduced earlier)

The polynomial Al and the new differential operator Q l;l depend also on k. Multi-

plying this equation by Ti ... TP we obtain a functional equation that has
also meaning in the sense of distributions

As a consequence of Lemma 3.2, and using the same notation, for any point x such
that fi (x) ... fp(x) 0 0 we have

Let us fix 1 = 2m + 2k + 1 and choose a vector 1 E]0, ~[P such that the one
variable polynomial 03BC ~ Al(03BCt, XI) is not identically zero. Almost every choice
of t works for all k and m. To emphasize the dependence on k, we now denote
,4k (M, XI) := Al(03BCt, x1). Factor ,Ak into two coprime terms,

Therefore, there are polynomials Rk(x1) ~ 0, uk(03BC, x1), and uk(03BC, x1), with the
property that

Consider from now on A = Mt. For R03BC » 1 and cp E D(Cn) we can integrate
p against (40) to obtain
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We remind the reader that Al(,x1) is really a polynomial in 03BC,s1,..., sp-1, and
x1. For s fixed we apply the functional equation (39) and integration by parts, to
conclude that

where Q’1;l represents the adjoint operator. Using Fubini’s theorem we get

Similarly to the case of a single equation considered earlier, we have that in
a neighborhood of M = 0, the distribution-valued function (38) has the Laurent
development

The choice 1 = 2m + 2k + 1, ensures that the distribution valued function

is holomorphic in a neighborhood W of it = 0, uniformly with respect to s , and
independent of x as long as x is near supp( Cf). Thus, the Taylor coefficients of
Il (03BC) about y = 0 are linear combinations of expressions of the form

where E, F are polymonials, a E NP, 13 e Nn, and we have written (log |f|)03B1 =
(log |f1| )0:1 ... (log |fp|)03B1P. Altogether, due to the choice of 1 and the constraints on
the 03B3j, there are constants 03BA03B1 and N E N such that these integrals can be estimated
by 
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with ~~~N denoting a Sobolev norm of ~. It is clear that there are distributions
bk,h E D’(Cn) such that

On the other hand, if uk(03BC, x1) = 03A3di=0 uk,i(x1)03BCi, then

Summarizing,

The second series on the right hand side does not contain any power of /1 smaller
than q + 1. This allows us to identify the coefficients on the left hand side with
indices -2n  j  0. Namely,

Note that if the fj are polynomials (no exponentials) then the polynomial factor can
be taken to be Rk ~ 1 for any k. This follows from the fact that En,0(K) is holo-
nomic and, hence, there are always functional equations (7) with A independent
of x and Q1,j with coefficients in K[03BB,x].

The same reasoning holds when we start with the system of formal identities
(8), and the only thing to remark is that we can choose the vector t e]0, ~[P
so that for every k, m the corresponding exponential polynomials in K [A, e" ]
are not identically zero on the complex line À = I1t. Correspondingly, we obtain
Sk E K[ex1],q =q(k) EN, and distributions ck,j, with the same properties as the
bk,j such that

In other words, we have proved entirely the following proposition.

PROPOSITION 3.2. Let fi,..., fp E En,1(K), then, for any t ~]0, 1 [P (outside
a countable union of K-algebraic hypersurfaces, which depend on the fj) and
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any k E Z, m E N*, there are polynomials Rk and Sk in K[u] and constants
Ck, Dk &#x3E; 0, Nk E N such that if ak,j E D(C’) denote the coefficients of the
Laurent expansion

then, for

where

Note that in this proposition, Rk, Sk, Ck, Dk depend also on m and t, while Nk
depends on k, m.

COROLLARY 3.2. If K C Q, there is an integer Vk E N, and positive constants
C’, D’k such that

Proof. It is the same as that of Corollary 3.1.

Let us examine now the situation where f1, fp are polynomials in exl , e03B1x1,
x2, ... , xn, with coefficients in Q, 03B1 e Q B Q. The same procedure as earlier
shows there are polynomials of a single variable A, B e Q[s] B {0} such that if
ak,j denote the distributions that appear in (42), then A(ex1 )ak,j and B(e03B1x1 )ak,j
have good estimates for -2n ~ j  0. In this case the two entire functions A(ex1)
and B(e03B1x1) can only have x 1 = 0 as a common zero. In fact, if x 1 = ( is a
common zero, then w = e( satisfies the algebraic equation A(03C9) = 0, so that
W E Q. For the same reason Wa E Q. Gelfond’s theorem [2] implies that ( = 0.
Let us factor

where

LEMMA 3.3. Let A(eXl) = xïA1(Xl), B(ec’xl) = xïB1(Xl), where v E N, and
AI, BI are entire functions without any common zeros. Then there are constants
Cl, C2, E, K &#x3E; 0 such that
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Proof. Clearly v = in f(v1, v2). For the sake of definiteness, let us assume v = V1.
The proof now follows from the fact that if A 1(x1)| |+ |1 BI (x1)| is small, then, either
|ex1-03BEj|+|e03B1x1-~l|is small for some pair of indices j, l, or |ex1-03BEj|+|+|03B1x1-2m03C0i|
is small for some index j and some integer m. Baker’s theorem [2] on lower bounds
for linear combinations over Q of logarithms of algebraic numbers yields the lower
bound of the lemma. (Otherwise, either 1 - log gj |+|03B1x1-log ~l| is too small or
1 x 1-log03BEj| |+|03B1x1- 2m7ril is too small. Since a e Q B Q these two simultaneous
estimates are impossible [2, 10].) The upper bound is clear.

As a consequence of this lemma, we conclude that xï akj’ can be estimated as
in Corollary 3.2. For future use, we state this in the form of a proposition.

PROPOSITION 3.3. Let fi ... , fp are polynomials in ex’, e03B1x1,x2,..., xn, with
coefficients in Q, a E Q B Q and t E]O, l[P (outside a countable union of K-
algebraic hypersurfaces, which depend only on the fj) and any k E Z, m E N*,
there are an integer Vk E N and positive constants Ck, Dk such that if ak,i ED’(Cn) denote the coefficients of the Laurent expansion

then, for -2n  j  0, cp E D (Cn), we have the estimate

4. Division formulas and représentation theorems

In [9] we gave some sufficient conditions, albeit sometimes hard to verify, so that
if fl , ..., fn are exponential polynomials in n variables with integral frequencies
whose variety of common zeros V = {z e C’ : f1(z) = ··· = fn(z) = 01 is
discrete or empty, then the ideal I generated by them in the space A p (Cn) 03C1(z) =
log(1 + Izl) + |Rz| coincides with Iloc the ideal of those functions in A03C1(Cn)
which can locally be obtained as linear combinations of the fj with holomorphic
coefficients. In particular, I is closed and localizable (i.e., I = I = Iloc). In fact, the
conditions given in [9] implied that the n-tuple fl, .. , fn was slowly decreasing
in the sense of [6]. This has a certain number of interesting consequences for the
harmonic analysis of the solutions of the system of difference-differential equations
in Rn with symbol given by the fj. In [8] we had proved that in case n = 2, the
discreteness of V was enough to ensure that the pair fl, f2 is slowly decreasing.
This led to the conjecture in [9] that if the coefficients of the fj are algebraic
numbers, the discreteness of V should be enough to prove that fi, ... , fn is slowly
decreasing or, at least, that I is closed and localizable. Examples were given



159

showing that this last statement could fail if the algebraicity of the coefficients was
not true. On the other hand, we show in this section that if fi, ... , f p e En,1(C)
define a complete intersection variety, that is dirnv  n - p, then I is closed and,
moreover, I = Iloe. In the case V is not a complete intersection we show that the
local algebraic closure Î and the radical VI are closed. That is, these theorems
are valid without any restrictions on the coefficients, whereas to extend them to

exponential polynomials with two main frequencies one needs to impose arithmetic
restrictions both on the frequencies and the coefficients.

The section ends with some representation theorems for the solutions of sys-
tems of difference-differential equations corresponding to exponential polynomials
fi, ..., f p E En, 1 (C), which define a complete intersection, as an illustration of
the applications of the previous results to harmonic analysis.

THEOREM 4.1. Let fi, ... , fp e En,1(C) define a complete intersection variety
V. The ideal I generated by them in A03C1(Cn),03C1(z) = log(1 + Izl) + IRz11 | is

localizable.

Proof. The first thing to do is to replace fi, ... , f p by some linear combinations of
them, g 1, ... , gp, that have the additional property that for any sequence of indices

We say that the sequence gi, ..., gp is a normal sequence. The existence of such a

normal sequence is guaranteed by the following lemma.

LEMMA 4.1. Given any collection of entire functions fl, ... , fp such that

There exist Cij E C such that the functions defined by

form a normal sequence. Moreover det(03BEij) ~ o.

Proof of Lemma 4.1. Let gl = f, l and Vi;i denote the irreducible components
of V(g1) = {z E Cn : gl(z) = 0}. Pick a regular point z’1;i in each V1;i. Since
dimh  n - p and we can assume p &#x3E; 2, for each z’ ’ there is a nearby regular
point zl;i E V1;i and some 2  k  p such that fk(zi)i) fl 0. Consider now the

system of linear equations
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Since the number of equations is countable, the Baire category theorem ensures
there is a complex vector (C2, ... , cp) such that g2 : = c2 f 2 + ... + Cpfp does not
vanish at any of the points zl;i . It is clear that the two vectors 03B61 = ( 1, 0, ... , 0) and
(2 = (0, c2, ... , c p ) are linearly independent. We claim that dim V(g1, g2 )  n - 2.
If not, g2 would be identically zero on a component of V (g1), which is impossible.

Assume now that p &#x3E; 3. By the previous reasoning we can choose regular
points z’ 2; .. ~ V(g2) (resp., zL2;h E V(g1,g2)). one for each component, such that
for some index 1  k  p, fk(z’2;j) ~ 0 (resp. fk(z’1,2;h) ~ 0). The index k clearly
depends on the point. Let us dénote now {z2;l}l l the collection of all the points
zi;i, Z2;3, zl,2;h. Then we consider the countable family of linear equations in CP

augmented by the linear equation in (3 = (03B63,1, ..., (3,p)

The earlier considerations imply the existence of a point (3 not satisfying any of
the equations. We define g3 := 03A3pk=1 03B63,kfk for this choice. It is clear now that also
dimY(gl, 93)  n - 2, dimY(g2, g3) ~ n - 2, and dimV(g1, g2, g3) ~ n - 3. If
p &#x3E; 3 it is easy to continue this process. This way we obtain a normal sequence
with the desired properties.

Let us return to the proof of Theorem 4.1. We assume henceforth that f1,..., fp
is a normal sequence. We recall from the proof of Proposition 3.1, applied to the
function f : := fm11··· f;P, mj E N, the existence of polynomials R1,m(x1) such
that the coefficients am;1,j, -2n ~ j  0, of the Laurent development of Ifl2À
at À = -1, have the property that the distributions R1,m(xl)am;l,j are linear
combinations of distributions of the form

where 1 C N and Qx are differential operators in ~ ~x with coefficients that are
polynomials in x, exl , e-xl . (See equation (28), note that k = 1 in this case.)

For simplicity, we define R to be the product of R1,m for all the choices of
indices m with length |m| ~ p. This choice allows us to control all the coefficients
am;1,j simultaneously.

Let 03B11, ..., ak be the distinct roots of the polynomial R(x1) and v1, ... , Vk
their respective multiplicities. Fix one such root al. Then each function fj can be
considered as a power series in x 1 - 03B1l, with coefficients that are polynomials
in x’ = (x1, ..., xn). It is clear that when we truncate this series at the term

(x1 - ai)"’, we obtain a polynomial Pj,l. Moreover, if a function is locally in
the ideal generatéd by f 1, ... , f p, (x1 1 - al )Vl, then, it is also locally in the ideal
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generated by Pl , l , ... , Pp, l , (x1 - 03B1l)vl. Let F E A03C1(Cn) belong to Iloc, then, for
each 1 it is locally in the ideal generated by P1,l, ..., Pp, 1, (x 1 - ce We can apply
Ehrenpreis’ Fundamental Principle to obtain a representation

with functions Gj,l E A03C1(Cn) (cf. [21, 18, 26]). If we write

then Qj,l E A03C1(Cn) and F can be expressed as

where Cp+1,l l := Gp+1,l - 03A3pj=1 Qj,lPj,l, so that this function also belongs to
A03C1(Cn).
We claim that there are functions Cj E A03C1(Cn) such that

In fact, for x’ fixed, we apply the Lagrange interpolation formula to the points
03B11, ..., 03B1k, with multiplicities v1, ..., vk, so that we construct functions Gj(x)
with the property that for each 1

The Lagrange interpolation formula guarantees that Gj E A03C1(Cn), and (45),(47)
imply that

Hence, F - Ej=1 Gjfj is divisible by the polynomial R, and the entire function
Gp+1 defined by (46) also belongs to Ap( en) by the Pôlya-Ehrenpreis-Malgrange
division lemma [21, 27].

Note that the remainder term in (46), namely := R(x1)Gp+1 1 e Iloc, since
F C Iloc and Lj=1 Gjfj ~ I. The idea of the rest of the proof of Theorem 4.1 is to
show that, thanks to the fact that H is also divisible by R, we have H E I, using
the explicit division formulas considered in [3].

Let us recall the construction from [3, 14], except that here we will need three
weights as in [ 14]. Let N be a sufficiently large integer and K » 1 (both shall be
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chosen below.) Let 0 E C~0(R2n), non-negative, radial, 03B8(x) = 0 for |x| &#x3E; 1,
f 0 dx = 1. The weights we consider are constructed starting with an auxiliary
entire function 1 ( t) of a single variable, r( 1 ) = 1, and a smooth (1,0)-differential
form Q in C2n. In fact, we take three such pairs, the first one depends on À and it is

The gj(x,03BE) are differential forms given by

where the entire functions
and satisfy the identities

The existence of such functions is well-known [27, 6]. The second pair is given by

Finally,

To every pair we associate a function

where A simple computation shows that
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Here We also need a few extra auxiliary functions

Following Henkin’s ideas [11, 5, 25, 16], we can represent an arbitrary function u
in C~0(Cn) by the formula

where

Let us now apply (52) to prove that H E l. We choose a radial function
X E C~0(Cn), X ~ 1 for l03BEl ~ 1, x ~ 0 for |03BE| &#x3E; 2,0 ~ X ~ 1. For a fixed R &#x3E; 1,
apply the representation formula (52) to the function u(03BE) := x(03BE/R)H(03BE) =
X(03BE/R)R(03BE1)Gp+1(03BE). Note that (52) is a priori defined only when the parameter
a satisfies R03BB» 1, and we apply it to a fixed x, |x|  R/2. The two integrals in
(52) admit an analytic continuation to the whole complex plane as meromorphic
functions of À. We are going to identify the zeroth coefficient of their Laurent
development at A = 0, which will provide a representation for H(x).

Following the computations in [3, p.42-43], we can conclude that because
H E Iloc, the first integral in (52) represents an element of the ideal generated by I
in Co (Cn). (It is here that one uses the fact that fl, ... , fp is a normal sequence,
a point left implicit in [3].) More precisely, if we consider
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it is possible to show (cf. [3]) that to compute the zeroth coefficient of the first

integral in (5 2) at À = 0, we can replace everywhere in P, 0393(03B11) by 03A3pj=1 fj(x)03B303B11,j
The other important terms where 03BB appears are (~Q1)03B11, al E N. We have

which is a linear combination of terms of the form

A typical term in

So that

for some differential form ’II 0:, independent of 03BB.
Similarly, for the second integral in (52)

Qc, a form independent of À, smooth on supp((~x)(03BE/R)). Finally, (57) and (58)
are both linear combinations of expressions of the following type

where rnj E N, 03A3Pj=1 1 m- 3 ~ p,nj E N,XlZ), the ith derivative of X, i = 0, l,
03A9 is a form of degree (n, n), smooth on the support of x(i)(03BE/R). The form 03A9

involves the coefficients of the second and third pairs. It is this formula (59) that
will eventually allow us to let R ~ oo.

Let us recall that H(03BE) = R(03BE1)Gp+1(03BE), Gp+i E Ap(en). Each expression
of the form (59), when analytically continued to À = 0, contributes one term to
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the zeroth term of the Laurent expansion of (52), namely, that corresponding to
the coefficient am;1,-03B11 of the Laurent expansion of |fm11··· fmpp|203BB at À = -1.
Therefore, the contribution of (59) is given by terms of the form

where 03C9(x,03BE) is one of the coefficients of 03A9(x,03BE). We know from (44) how the
distributions R(03BE1)am;1,-03B11 act on test functions, which shows that their limit exist
when R - oo and, in fact, are zero for i = 1 (i.e., the terms corresponding to
the kemel K), while that for i = 0 (i.e., those corresponding to the kemel P)
they are entire functions of x, with the correct growth conditions, that is, they
belong to Ap( en). All these estimates are achieved thanks to the previous choices
of Q2, r2, Q3, r3 for sufficiently large constants N,k. (We dot really need to use
the exact form (44) of the distributions R(03BE1)am;1,-03B11 it is enough to apply the
estimates of the Proposition 3.1.) This is similar to what we have done elsewhere,
[3], in the algebraic case, and [14], in the analytic case. In other words, we have
shown that H E I.

Let us consider now the case where we do not assume the ideal is either complete
intersection or its variety is discrete. We shall study several ideals containing
i = I(f1, ...,fp). First, let us recall that B/7, the radical of I, is the set of all
elements F E A03C1(Cn) such that F k E I for some k ~ N. Second, let Î, the local
integral closure of I, be the set of all elements F E A03C1(Cn) such that for every
point xo E Cn there is a neighborhood U and a constant C XQ &#x3E; 0 such that

For W open in C n, let Iw denote the ideal generated by f 1, ... , fp in H(W). It
follows from [28] that F E Î if and only if for every xo e Cn there is an open
neighborhood W, a positive integer N, and functions ~1, ..., ~N such that

Finally, let I(V) = {F E Ap(en) : F| 1 V = 0}. Note that for a function
F to belong to Iloc means that it vanishes on the points of the variety V with
some multiplicity, whereas in I(V) the common multiplicities of fil,..., f p are
disregarded. It is obvious that I(V) is a closed ideal, and we recall that the same is
true for Iloc. Some inclusions between these ideals are clear

It is also clear that, in general, we do not have Iloc = I(V). We are now ready to
state two important results.
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THEOREM 4.2. Let I be the ideal in A03C1(Cn) generated by fi, ... , fp E En,1 (C),
V = {x E Cn : fi (x) = ... = fp(x) = 01. Then Vi = I(V).

THEOREM 4.3. Let I be the ideal of the previous theorem and let m be given by
m = inf(p + 1, n), then Î2m C I.

The crucial step in the proof of these two theorems is the following proposi-
tion. We state it in a slightly more general form that actually needed for future
reference.

PROPOSITION 4.1. Let rp be a convex, non negative function in Cn, satisfying
the inequality

for some constants K0, K1 &#x3E; 0. Let A be the space of entire functions given by

Let f1, ..., fp, REA, m = i n f ( p, n), and assume there are t ~]0, ~[p, B &#x3E;

0, N E N such that the coefficients aj, - 2n  j  0, of the Laurent expansion

satisfy for any 03C8 E D( en) the estimates

Then

(i) If F e A and F(x) = 0 whenever

(ii) If F E A is such that every xo E en has a neighborhood Ux0 in which

for some constant CXQ &#x3E; 0, then
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Proof. The proof is based on the representation formula (52) with

for some R &#x3E; 0, k E N, x a plateau function as in the proof of Theorem 4.1. We
need to make explicit the three pairs Qj, fi that appear in the kernels P and K.
First, for Rp » 1,

where we have left implicit the variable 03BE of fj in the definition of Q1, as we
shall do elsewhere. The differential forms gj are defined exactly as in (48), for the
present growth conditions.

As before, for some N » 1 to be chosen later

Finally, for some r, » 1 and 0 C C°°, non-negative and radial, supp(

When the corresponding functions 4l j are defined as before, the function 4l2 is the
same as in (51 ). The function 03A63 is given by

We remark that the function p * 0 and all its partial derivatives of order a can be
estimated by

and, since the function p * 0 is also convex,

On the other hand, not only

by the hypothesis (61 ), but moreover,
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It follows that, for some C &#x3E; 0,

The function 03A61, here, is really different from that in the proof of Theorem 4.1.
Namely,

Moreover, it will tum out to be important to make the expression of (BQ 1 )0:1
explicit. We have

For al EN, ( 0Q 1)03B11 is a linear combination of terms of the form

where 0  l  al  p, il ...  il,j1 ...  jl, hl ...  ho:l-l, and, is
an (al, 0)-form with holomorphic coefficients, obtained from the wedge product
of several gi. It is clear that, for a 1 &#x3E; m, (~Q1)03B11 1 = 0, since there are either too
many d03BEi or too many gi. For al 1 = p, the expression of (~Q1)P is particularly
simple, namely

In fact, from (69) we see that 8Q 1 has the form

where A and B are 1-forms and C is a 2-form. Since 2-forms commute for the

wedge product,
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since clearly (A A B)3 = 0 for j &#x3E; 2. In [11, p.61-62] we have shown that CP = 0
(just set 03B5 = 0 in the expression obtained there.) Hence,

which yields the identity (71 ) after an easy computation.
With these simplifications at hand, let us retum to the analysis of the kemel P

that appears in (52). The following computations are all made for R03BC » 1, modulo
the ideal I generated by f 1, ... , f p in C~(Cn). Every term in P contains some
0393(03B11) as a factor, 0  a 1  n, then it contains 03A6q-03B111 when a 1  q (and vanishes
when cx &#x3E; q), thus the terms that do not belong to I are of the form

O03B11 = ~03B11(x,03BE) is a C~ form, which we do not make explicit for the time
being. From (70) we conclude that, modulo I, we need to consider the analytic
continuation of integrals of the form

where

e is a C~ form, and u is given by (64), so that it has compact support.
Let us distinguish two cases, p  n and p &#x3E; n. If p &#x3E; n, then q = n + 1, and

q - cx 1 &#x3E; 0 always. If p  n, (~Q1)03B11 1 = 0 once a &#x3E; p. On the other hand, when
a, 1 = p, (71) shows that the only possible non-trivial value for l is l = 1. Hence,
in every case, either l &#x3E; 0 or q - 03B11 &#x3E; 0 in (72).
We are now going to consider the case 1 = 0 in (72). Recall that we are only

interested in the zeroth term in the Laurent development of the analytic continuation
of (72) at p = 0. As a function of 11, (72) can be written as
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where we have absorbed all other terms into 0. Even though the powers |f|203BC(03B11+j)t
are different, their contributions to the zeroth term at it = 0 coincide. (This is
evident by considering the variable À = 03BC(03B1 1-f- j ) .) Therefore, the total contribution
of (73) is zero.

Consider now the case 1 &#x3E; 0. As in [3, Proposition 2.3] we can use Hironaka’s
resolution of singularities to study the current defined by the zeroth term of the
analytic continuation at y = 0 acting on test forms 0398,

where 13 = cx 1 + j, for some j, and we have absorbed ~(03BE/R)F(03BE)k into 0.
The first thing to observe is that these currents are supported by the variety V
of common zeros of fi,... , f p. Moreover, we shall show that these currents are
also annihilated by multiplication by the functions fj, as well as multiplication
by fn11 ... fnpp, whenever n, 1 + ··· + np exceeds the order of the current. The
order of these currents will be estimated using hypothesis (63). Recall that, after
using a partition of unity and resolving the singularities as in [3, p.33-34], we can
reduce ourselves to the case where all the f are invertible holomorphic functions
multiplied by monomials mj, all the mj are multiples are m 1, that is, 03C0*fi(w) =
ui(w)mi(w) = ui(w)m’i(w)m1(w), m’ = 1, where r is the blowdown of the

desingularized variety. Hence,

with Thus,

for some smooth WM. Similarly,

Finally,
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where, as above, w1, ..., wn are local coordinates in the desingularized variety
are smooth forms, 6 := (03B41, ... , 03B4r), 1  61  ...  br  n,161 := r ~ l, and

W := dw03B41 w03B41 039B ··· 039B dw03B4r w03B4r · Hence, in the coordinates w the integral in (74) is a
linear combination of

for some smooth form ~03B4. Recall we are assuming that 1 &#x3E; 0 and note that when

cx = 0 the integrand in (75) is integrable up to 03BC = 0, thus it contributes nothing to
the zeroth term of the Laurent development. We can therefore assume that a 1 &#x3E; 0
in what follows.

Let us assume now that 0 is a smooth multiple of some fj, then ~03B4 039B 03C0*(R03B8) =
m1 0398’, 0’ a smooth form in the w-coordinates (it depends on x also, but that is
irrelevant at this moment.) In this case we can integrate by parts (75) and obtain

Here 0" = 0398"(x, W, Jl) such that p - 0" is holomorphic at il = 0 and P is
a polynomial which does not vanish at fi = 0 (cf. [3, eqns.(1.20)-(1.22)] for the
details.) It is now clear that the integrand is integrable for y = 0, so that this term
cannot contribute to the zeroth term of the Laurent expansion. This is equivalent
to say that the currents we are computing are annhilated by 1fC~ + ... + fpc~,
which implies that their support lies in ~j{fj = 0} = V.

Remark that if F satisfies the local estimates in part (ii) of the statement of
this proposition and k &#x3E; m = min(p, n) &#x3E; al, then (03C0*F)k/m03B11 is bounded, so
that again the integral (75) will not contribute to the currents we are looking for,
because everything is integrable up to p = 0. We will use this remark in the proof
of part (ii) of the proposition.
We are now ready to conclude the proof of statement (i) in the proposition. We

observe that the integrand in (74) is a linear combination of terms of the form

where 0"’ is smooth and has absorbed some factors 1 fj 12 and 1 f 112. This expression
is obtained by using the definitions of hl, fj, k;M. The hypothesis (63) of the
proposition ensures that the orders of the currents that appear in (74) are at most N
(plus giving some precision in the estimates in terms of x.) As these currents are
supported by V, it follows that if the power k of F is N + 1 or larger, then these
integrals do not contribute to the zeroth Laurent coefficient at p = 0.
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We can summarize these statements in the observation that, for Ixl |  R/2, we
need only to consider the zeroth term of the Laurent expansion of (52) at y = 0
and obtain

where the distributions Tj are holomorphic in the variable and the kemel
K(x,03BE;03BB = 0) involves the distributions aj, -2n ~ j ~ 0, from (62), so that, as
we did in the proof of Theorem 4.1, we can choose the constants N,k in (66) and
(67) to ensure that all the limits exist when R ~ 00 and that the last term of (77)
vanishes for R = oo. It follows that the coefficients of the fj(x) in (77) belong to
the space A. This concludes the proof of part (i) of the Proposition 4.1.

Because of the earlier remark, the same representation (77) is valid for
R(x)f(x)m, m = in f(p, n), and the conclusion of part (ii) follows. This ends the
proof of the proposition.

Remarks
1. We have pointed out, in the proof of Proposition 4.1, the remarkable fact

that the currents involved in the remainder terms of the division formulas we have

used, are annihilated by the conjugates fj of the generators of the ideal. In the case
of a complete intersection, there is only one remainder term, given by the residue
current, and hence the remainder is also annhilated by the generators fj. The fact
that we do not know that the remainder terms are killed by the fj in the case of not
complete intersection, is what prevents us from obtaining holomorphic division
theorems.

2. In the algebraic case, that is, all the fj are polynomials, we know from the
Bemstein-Sato functional equations that hypothesis (63) is valid taking R ~ 1 and

a convenient choice of t.
Proof of Theorem 4.2. Let F E I(V), we need to show the existence of k ~ N

such that F k ~ I. We follow the lines of the proof of Theorem 4.1.
From Proposition 3.2 of the previous section we conclude there are t ~]0, ~[P

and a polynomial R(x1) so that the Laurent coefficients aj : = a1,j, -2n ~ j ~ 0,
of the expansion

have the property



173

for some positive constants C, D, No, and any p C D(Cn).
Let 03B11, ..., 03B1k be the zeros of R, with respective multiplicities vl , ... , vk.

Consider h, the ideal generated by f 1, ... , fp, (x1 - 03B11)vl. This ideal is generated
by polynomials Pl,l, ..., Pp,l, (x 1 - al)pl, as observed in the proof of Theorem
4.1. Since F vanishes on the set V of common zeros of I, it also vanishes on the
set Yl of common zeros of h. We can therefore apply Proposition 4.1, and obtain
a decomposition

for some Nl EN, Gj,l E A03C1(Cn). (There is no factor in front of FNl since we are
considering a polynomial ideal.) Let N = max ( Nl : 1 ~ l ~ k ), then, as done in
the proof of Theorem 4.1, we conclude there are functions G1, ... , G p+ 1 E A03C1(Cn)
such that

We can apply again Proposition 4.1 to F, this time with fi, ... , fp as generators
and R = R(x1) as in (78), to obtain

so that

which concludes the proof of Theorem 4.2.

Proof of Theorem 4.3. Let F E I. We follow the proof of the previous theorem
and introduce a polynomial R as in (78), polynomials Pl,l, ..., Pp,l, associated to
f1, ..., f p and a root 03B1l of R. For any xo E Cn we have

where Uxo is a neighborhood of x0, which we can assume is bounded, and Cx0 &#x3E; 0.

Hence, for x E Uxo ,

for some constant C’x0 &#x3E; 0. It follows that for another constant C"x0 &#x3E; 0,
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We can apply now Proposition 4.1 to the polynomials P1,l, ..., Pp,l, (x1-03B1l)vl,
and conclude that

for some Gj,l E Ap(Cn), m = min(p + 1, n). As earlier, we conclude that

Gi E A03C1(Cn). Let m’ = min(p,n), once more Proposition 4.1 ensures that

Hence Fm+m’ E I. Since m + m’  2m, the theorem has been proved.

As a corollary of the last two proofs we can obtain a theorem about representation
of entire functions in Ap(Cn), modulo an ideal I, which defines a zero-dimensional,
complete intersection variety.

PROPOSITION 4.2. Let fi, ..., fn E En,1 (Q) be such that dim V = 0. Assume
further that the algebraic variety in Cn-1 defined by fi (0, x’) = ··· = fn (O, x’) =
0, (x = (x1, x’) ), is empty. Then, there are constants N E N and r, &#x3E; 0 such that

any entire function satisfying the estimates

can be represented (modulo the ideal I) as

where

Bo is a smooth non-negative r-adial function in Cn, supp(03B80) contained in the ball
{|03BE|  1}, JenBo = 1, BI is an even non-negative function in C, supp(03B81) is

contained in the disk {|03BE1|  1}, Je 01 = 1, and ~1 f1 039B ··· 039B ~1 fn is the residue
current associated to fI, ... , fn. 

Proof. Before we start the proof we should remark that the residue current ~1 f1 039B
... 039B~1 f1 has been defined in [3] and the proof we give here follows the ideas in [14].
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Moreover, the theorem is valid for other growth conditions than |Rx| |+log(1 +|x|),
all we need is to work with a weight ~ |Rx1| -E-log( 1 + |x|). This is done by changing
the form Q3 to incorporate the new weight function, as in Proposition 4.1.

Let us recall from Section 3 that, due to the arithmetic hypothesis on the
coefficients of fl , ... , fn, there is an integer m &#x3E; 0 such that the distributions
xlak,j appearing in the division formula (52) have estimates of the type (63), with
~(x) = |Rx1|. On the other hand, as we already have seen, the ideal generated by
fi, ... , fn, Xl in Ap(Cn) is also generated by polynomials PI, ... , Pn, xm. Our
extra hypothesis on the zeros of fj(0, x’) translates exactly into the fact that these
polynomials have no common zeros. Thus, for any F C AP(Cn) we have

with G. entire functions satisfying

for some A 1, N1 &#x3E; 0. This is clear since, for some E &#x3E; 0, No &#x3E; 0,

Writing Pj = fj + xm1hj, we obtain

with the estimates

for some A2, N2, k0 &#x3E; 0.

We apply to xm1Gn+ 1 the division procedure described in the proof of Theorem
4.1, the only changes are in the more precise choice of the weight Q 3 and the fact
that xm1Gn+1 is not in the ideal Iloc, hence there is a remainder term coming from
the kemel Il in (52). We set

with r, &#x3E; 0 to be chosen conveniently.
In [3, Theorem 3.2] the explicit form of the remainder is given as
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where W is given by (82), with N, r, are chosen so that all the integrals appearing in
the representation (52) for u(03BE) = X(03BE/R)03BEm1Gn+1(03BE) converge. This expression
shows that

On the other hand, one of the properties of the residue current in (84) is to kill all
the functions in Iloc. This shows that, with the help of (83), we can replace in (84),
03BEm1Gn+1 (03BE) by F(03BE). This proves the proposition. D

In the particular case when the set of common zeros of fi, ... , fn is discrete
and the zeros are simple, we can obtain that V is an interpolation variety for
the weight |Rx1| + log(2 + |x|), thus also for the space A03C1(Cn) for any weight
03C1 ~ | |Rx1| +log(2+|x| ). This follows from [7] and the following proposition.
PROPOSITION 4.3. Let fI,..., fn E En,1 (C) be such that dimV = 0 and
J(x) 0 0 for every x E V, where J is the Jacobian determinant of the fi.
Then there is a constant C &#x3E; 0 such that

Proof. We only need to apply Theorem 4.3 to the ideal Io generated by f1, ..., f n , J,
with weight |Rx1| + log(2 +|x|) instead of p. Then Io2m C Io. Since V(I0) = 0,
then 1 E Îo, so that 1 E Io. It follows that there are gl , ... , gn+ 1, entire functions,
satisfying the inequalities

for some C &#x3E; 0, and also the Bezout identity

Considering a point x E V, we obtain the inequality (85) from the earlier estimate
of gn+1.

Remark. In fact, one has a stronger result. Let f1, ..., fp E En,1(C) be such
that dirnv = k and assume that, at every point x ~ V, there is a k x k minor
of the Jacobian matrix D f of f 1, ... , f p, which does not vanish. Then, the variety
V is an interpolation variety for any weight ~ |Rx1| + log(2 + |x|). Namely, if
we let Jl , ... , Jl denote all the k X k minors of D f, then the ideal Io generated
by fi,..., fp, J1, ..., Ji does not have any common zeros, and the previous proof
applies, allowing us to conclude that for x ~ V

From [7, Theorem 1], one obtains that V is an interpolating variety.

Let us now observe that essentially all the previous results of this section
are valid for exponential-polynomials fj(ex1, e03B1x1, x2, ..., xn),03B1 e Q B Q, fj E
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Q[y1,z1,x2, ..., X n]. As before, one could replace the weight p by |Rx1| + log(2 +
1 xi), if necessary for the applications.

LEMMA 4.2. Let f1, ..., fp be polynomials in ex1, e03B1x1, X2, ..., xn, with coeffi-
cients in Q, and ce E Q B Q. Assume dim V  n - p. Then, there are linear
combinations ~1, ..., ~p of fj with integral coefficients such that the fj are also
linear combinations of the ~j, and, moreover, ~1, ..., ~p form a normal sequence.

Proof. We follow the procedure of Lemma 4.1. We can assume that f1 ~ 0,
and choose ~1 = f 1. Assume that we have already found a normal sequence
~1, ... , ~k, k  p, such that çj = 03A3pi=1 cj,ifi, Cj,i E Z, 1 ~ j ~ k, and
rank(cj,i) = k. We need to choose ~k+1 so that for any subfamily ~j1, ..., ~ji
of {~1, ..., ~k} we have dim V(~j1, ..., ~jl, ~k+1) ~ n - (l + 1). To simplify
the notation consider ~1, ... , çi, then V(~1, .... cpz) is a countable union of irre-
ducible varieties of dimension n - l. There are two kinds of components, those
contained in some hyperplane {x1 1 = const}, say {Ui}, and those that are not,
say {Vh}. Let Q1, ..., Qp, Pl, ... , Pk be the polynomials in Q[y1,z1,x1, ..., xn]
such that fj(x) = Qj(ex1,e03B1x1,x2, ..., xn), ~j = Pj(ex1,e03B1x1,x2, ..., xn) and
consider the finitely many irreducible components Wr of the algebraic variety
Pl = ... = Pl = 0 in Cn+1. Each of the varieties Vh is contained in some Wr. We
have that

Locally, near a point in Vh, t y, = exl , zi - e03B1x1} is the analytic variety z, = yf ,
so that either (locally) Wr ç f z, - yî 1 or n + 1 - l &#x3E; dimWr ~ 1 + dimVh =
n - l + 1. If yl is not constant on Wr, we can fix generic x2, ... , xn, so that near a
point in Vh we have that z, is an algebraic function of yi . Considering the Puiseux
development of z, we see that only rational powers of YI can appear in it, which
contradicts the fact that z, = yl (since a ~ Q. On the other hand, if yl is locally
constant, then x 1 is constant in Vh, which is impossible by the definition of Vh.
Hence

dimWr=n-l+1.

Assume all the polynomials Q1, ... , Qp vanish identically on Wr, then f1, ... , fp
vanish identically on Vh, which contradicts the hypothesis dlmv  n - p. Thus,
for A E CP outside a hyperplane, we have 03BB1Q1 + ... + 03BBPQP ~ 0 on Wr. We
claim that 03A3pj=1 03BBjfj(x) ~ 0 on Vh. If this were not the case, let

Then
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and dimWr  n - 1. This implies that Wr C tyl = ex1, z1 = e"I 1, which, as
we have just seen, leads to contradiction. So that for À outside a finite union of
hyperplanes, we have 03A3pj=1 03BBjfj ~ 0 on any Vh. In particular, one can always
choose all the 03BBj E Z.

There are also finitely many components Ui contained in the hyperplane {x1 1 =
0}. This is the case for those that are components of the algebraic variety P1(1,
1, x2, ..., xn) = ··· = Pl(l, l, x2, ... , xn) = 0. The previous reasoning shows
that we can choose integers 03BB1, ..., 03BBp such that 03A303BBjfj ~ 0 in any Vh, that
E 03BBjQj ~ 0 on any Wr, which contains points of V (~ 1, ..., ~l) and has dimension
dimWr = n - l + 1, and that 03A303BBjfj ~ 0 on those Ui which lie in {x1 = 01.
If we run over all possible families ~j1, ..., ~jl, 1  l  k, we can obtain the

03BBj simultaneously satisfying these conditions, not only for ~1, ..., ~l, but also for
all such families. Moreover, we can also assume that the rank of the matrix of
coefficients of ~1, ..., ~k, 03A3 03BBjfj in terms of all fj is exactly + 1. We claim that
this is a good choice of 03BBj.

Consider now whether there are any Ui not contained in {x1 = 0}. For such
Ui we would have a unique Wr such that Ui Ç Wr ni y, = ex1, zi = e,,, i. If
Wr c (yj = e", zi = e"I 1, we have already seen that YI and ZI are constant
on Wr. Let us denote these constants by yl = q, zi = (, and let x 1 = 03BE be such
that ~ = e03BE and ( = e03B103BE. Now, Noether’s Normalization Theorem allows us to
choose, near a regular point, n - l(= di mWr ) coordinates, which parametrize Wr
by algebraic functions with algebraic coefficients. Choosing a point with algebraic
coordinates shows that il and ( are algebraic numbers. Since they are related by
q = e03BE, 03B6 = e03B103BE, it follows from Gelfond’s theorem that 03BE = 0 andq = ( = 1. This
implies that Ui is contained in {x1 1 = 0}, a contradiction. The only possibility left is
that Wr is not contained in lyl = ex1, z, = 603B1x1}. In this case dim Wr = n - l + 1.
Then, by the earlier choice of E 03BBjQj ~ 0 on Wr, thus

Since both sides have the same dimension n - l , Ui is a component of the algebraic
variety Wr ~{03A903BBjQj = 0}. On this component y, = rl, z, = (. For the same
reasons as above, the constants iî, ( are algebraic, so that x 1 = 0 on Ui. Again a
contradiction.

This proves that the choice ~k+1 = 03A3 Ai fj, defines a normal system ~1, ... , ~k+1
such that the rank of the integral matrix (cj,i)1~j~k+1,1~i~p is exactly k + 1. Iter-
ating this procedure we conclude the proof of the lemma.

With the help of this lemma and Proposition 3.3, we can repeat the proofs of
the previous results of this section and obtain the following statements.

PROPOSITION 4.4. Let a E Q B Q and f 1, ... , fp be polynomials in c’l, e03B1x1,
x2, ... , X,, with coefficients in Q. Assume that the exponential polynomials
f 1, ... , fp define a complete intersection variety. Let I be the ideal they generate
in the space Ap( en). Then I = Iloc.
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PROPOSITION 4.5. Let a E Q B Q and let I be the ideal in Ap( en) generated
by f1, ... , fP, polynomials in Xl 0: xl. h coefficients in Q. Denote
V = tX E Cn : f1(x) = ... = fp(x) = 01. Then VI = I(V) and Î2m C l,
where m = min(p + 1, n).

PROPOSITION 4.6. Let a E Q B Q, let fi,..., fp be polynomials in e , e03B1x1,
X2, ..., xn, with coefficients in Q, and let the variety of common zeros be V =
{x E Cn : f, (x) = ... = fp(x) = 01. If V is discrete and all the zeros are simple
(or if the fi define a manifold), then V is an interpolation variety for Ap(Cn).

We conclude this manuscript with an indication of some simple applications to
harmonic analysis that can be obtained from the earlier results and the methods
of [6]. For that purpose, let us recall that a linear differential operator P(D) with
constant coefficients and commensurable time lags is a finite sum of the form

t ~ R, x ~ Rn, (n~0),D=(~ ~t, ~ ~x1, j~Nn+1, k~Z, T&#x3E;0, and
pjk E C. The symbol of this operator P(T,03BE) is the element of En+l,1 (e) given
by

with ( = (T. 03BE). (By the introduction of the new coordinate 03BE0 = iTT, we are in the
case of exponential polynomials considered at the beginning of this section.)

THEOREM 4.4. Let P1 (D), ... , Pn+1 (D) be differential operators with time lags
as in (86), with the property that the characteristic variety

is discrete and all the points of V are simple. Then, every solution ~ E 03B5(Rn+1)
(resp., cp E D’(Rn+l)) of the overdetermined system

can be represented in a unique way in the form of a series of exponential solutions
of the system (88), namely,

This series is convergent in the topology of 03B5(Rn+1) (resp., D’(R n+ 1 ».
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Similarly, if we allow two non-commensurable time lags, but we assume that:
(i) their ratio is algebraic, (ii) there are no derivatives in the time variable, and
(iii) the coefficients of the operators are algebraic, then we can prove the same
representation theorem for the solutions of a corresponding system.

We shall present the applications of this type of result to Control Theory else-
where. Meanwhile, we refer the reader to [20, 22, 30] for some results in that
direction, and to [32, 4] for related applications to deconvolution problems.

References

1. M.F. Atiyah, Resolution of singularities and division of distributions, Commun. Pure Applied
Math. 23 (1970), 145-150.

2. A. Baker, "Transcendental Number Theory," Cambridge University Press, London,1979.
3. C.A. Berenstein, R. Gay, and A. Yger, Analytic continuation of currents and division problems,

Forum Math. 1 (1989), 15-51.
4. C.A. Berenstein and E.V. Patrick, Exact deconvolution for multiple operators-an overview plus

performance characterizations for imaging sensors, IEEE Proc. MultidimensionalSignal Pro-
cessing 78 (1990), 259-287.

5. C.A. Berenstein and D.C. Struppa, Complex analysis and convolution equations, in "Contem-
porary Problems in Mathematics. Fundamental Directions", vol. 54, VINITI, Moscow, 1990,
5-113.

6. C.A. Berenstein and B.A. Taylor, Interpolation problems in Cn with applications to harmonic
analysis, J. Analyse Math. 37 (1980), 188-254.

7. C.A. Berenstein and B.A. Taylor, On the geometry of interpolating varieties, "Seminaire Lelong-
Skoda 1980-81," Springer-Verlag, Heidelberg, 1-25.

8. C.A. Berenstein, B.A. Taylor and A. Yger, Sur les systèmes d’équations différence-différentelles,
Ann. Inst. Fourier 33 (1983), 109-130.

9. C.A. Berenstein and A. Yger, Ideals generated by exponential polynomials, Advances in Math.
60 (1986), 1-80.

10. C.A. Berenstein and A. Yger, On Lojasiewicz type inequalities for exponential polynomials, J.
Math. Anal. Appl. 129 (1988), 166-195.

11. C.A. Berenstein and A. Yger, Analytic Bezout identities, Advances in Applied Math. 10 (1989),
51-74.

12. C.A. Berenstein and A. Yger, Effective Bezout identities in Q[z1,..., zn], Acta Math. 66 (1991),
69-120.

13. C.A. Berenstein and A. Yger, Une formule de Jacobi et ses conséquences,Ann. scient. Éc. Norm.
Sup. 24 (1991), 363-377.

14. C.A. Berenstein and A. Yger, About Ehrenpreis’ Fundamental Principle, "Geometric and alg.
aspects in several complex variables," C. A. Berenstein and D.C. Struppa (ed.), Editel, Rende,
1991, 47-61.

15. C.A. Berenstein and A. Yger, Formules de représentation intégrale et problèmes de division, "Dio-
phantine Approximations and Transcendental Numbers," P. Phillipon (ed.), Walter de Gruyter &#x26;
Co., Berlin, 1992, 15-37.

16. B. Bemdtsson and M. Andersson, Henkin-Ramirez formulas with weight factors, Ann. Inst.
Fourier, 32 (1982), 91-110.

17. I.N. Bernstein, The analytic continuation of generalized functions with respect to a parameter,
Funct. Anal. Appl. 6 (1972), 273-285.

18. J.-E. Björk, 
" 

Rings of Differential Operators," North-Holland Publ. Co., Amsterdam, 1979.
19. A. Borel, Operations on algebraic D-modules, "Algebraic D-modules", A. Borel (ed.), Academic

Press, Boston, 1987, 207-269.
20. A.G. Butkovskiy, "Green’s functions and transfer functions handbook," Ellis Horwood, Chich-

ester, 1982.
21. L. Ehrenpreis, "Fourier Analysis in Several Complex Variables", John Wiley &#x26; Sons, 1970.



181

22. B. Frankpitt, Frequency domain methods for the control of distributed parameter systems, M.S.
thesis, Univ. of Maryland, 1992.

23. D.I. Gurevich, Counterexamples to a problem of L. Schwartz, Funct. Anal. Appl., 9 (1975),
116-120.

24. I.S. Gradshteyn and I.M. Ryzhik, "Table of integrals, series, and products," Academic Press,
New York, 1980.

25. G.M. Henkin and J. Leiterer, "Theory of Functions on Complex Manifolds," Birkhäuser, Basel,
1984.

26. L. Hörmander, "An Introduction to Complex Analysis in Several Complex Variables", second
edition, North-Holland Publ. Co., Amsterdam, 1991.

27. L. Hörmander, "The Analysis of Linear Partial Differential Operators", II, Springer-Verlag,
Berlin, 1983.

28. M. Lejeune and B. Teissier, Quelques calculs utiles pour la résolution des singularités, Séminaire
École Polytechnique, 1972, 130.

29. B. Lichtin, Generalized Dirichlet series and B-functions, Compositio Math. 65 (1988), 81-120.
30. D.L. Russell, Nonharmonic Fourier series in the control theory of distributed parameter systems,

J. Math. Analysis Appl. 18 (1967), 542-559.
31. C. Sabbah, Proximité évanescente II. Equations fonctionnelles pour plusieurs fonctions analy-

tiques, Compositio Math. 64 (1987), 213-241.
32. W. Symes, A trace theorem for the wave equation and remote determination of acoustic sources,

preprint, Math. Dept., Michigan State Univ., June 1981.


