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0. l. Hida’s deformation

Let p be a prime number, p  5, and X o the modular curve X o(p) over Q.
Let Jo = Jo(p) be its Jacobian, and V = Hom(Jo[p~], Qp/1Lp) the p-adic
(contravariant) Tate module of Jo. V is a representation module for

Gal (Q/Q). Hida [Hi] introduced and studied an important deformation V
of V, obtained from the ordinary parts of the Tate modules of J1(pn) passing
to the limit over n. This big representation space V is a module over the
Iwasawa algebra A = 1Lp[[r]], where 0393 = 1 + pZp acts through the so-
called "diamond operators". V is finitely generated and free over A, and V
is identified with its I-’-coinvariants (loc. cit., Proposition 5.5).

Hida’s original approach relied on Eichler-Shimura cohomology. Mazur
and Wiles ([M-W2]) studied the geometry behind Hida’s construction, and
proved that the restriction of V to a decomposition group at p, has a 2-step
filtration with well-understood graded pieces. (This was taken up by Hida
too.)

0.2. The work of Greenberg and Stevens

Recently, Greenberg and Stevens [G-S] realized the relevance of V to a
conjecture of Mazur, Tate and Teitelbaum [M-T-T] about the "fe-invari-
ant" of (modular) elliptic curves with split multiplicative reduction at p. We
want to review certain ideas used in their proof of this conjecture, because
they are central to our paper too, and to subsequent work [dS2].
We shall assume that the elliptic curve in question has a prime conductor

p. This restriction, whether here or in 0.1 above, is not essential. We stick
to it to simplify the notation and highlight the main points.
Thus let E be an elliptic curve of conductor p, and assume without loss

of generality that it is contained in Jo(p) (one calls such an E a strong Weil
curve; others are isogenous to it). E has multiplicative reduction at p, and
we assume that this reduction is split. (In terms of the newform of weight
2 corresponding to E, this is equivalent to the pth Fourier coefficient ap
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being equal to 1.) Let q ~ Qxp be the Tate-period of E. The fi/-invariant
fi/p(E) is defined to be logp(q)/ord p(q), where logp is normalized by
logp(p) = 0, and ordp by ordp(p) = 1. Clearly YP(E) is an isogeny invariant.

Since we assumed that ap = 1, the p-adic L function of E, Lp(E, s)
vanishes at s = 1 (see [M-T-T]). The conjecture of Mazur, Tate and
Teitelbaum, proved by Greenberg and Stevens, predicted the relation

Here 039B~(E, 1), the algebraic part of the special value of the classical

L-function of E at s = 1, is a certain rational number expressed in terms of
modular symbols.

REMARK. Both sides of (1) vanish if E(Q) is infinite. In this case Mazur,
Tate and Teitelbaum made further conjectures in the style of Birch and
Swinnerton-Dyer about the leading term in the Taylor expansion of

Lp(E, s) at s = 1, but the methods of Greenberg and Stevens are far short
of treating them.

Let V(E) = Hom(E[p°°], Qp/7Lp). As a representation of the decomposi-
tion group gp at a prime of Q above p, V(E) is naturally filtered, because
E is ordinary. Denote the filtration by

Then U(E) z Zp and W(E) ~ Zp(-1) as gp-modules.
The idea of Greenberg and Stevens was to interpret q as a certain

restriction on filtered deformations of V(E). This is done as follows. Pass-
ing to the p-adic completion of Qxp, the period q maps to (Qxp)^ ~
H1(Q p’ 7Lp(l». This last space is isomorphic to 7 p via (ordp, logp). Thus
YP(E) determines a line 1 in H1(Qp, Zp(1)).
An infinitesimal deformation of V(E) with its filtration (as a representa-

tion for the local Galois group at p) is a commutative exact diagram of

gp-modules

where the modules in the top row are endowed with an action of Zp[8],
E2 = 0, commuting with Galois, and the vertical arrows are surjective and
identify U(E) (resp. V(E), W(E)) with the s-coin variants of U(E) (resp.
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V(E), W(E)). We further demand that U(E) and W(E) be free of rank 1

over Zp[03B5]. By local class field theory, the left column of such a diagram
defines a linear functional on H1(Q p’ Zp(1)). A standard diagram chasing
proves that this functional must vanish on the line 1. One extracts from here

a certain relation that must hold between YP(E) and the representation of
gp on Û(E). For precise definitions and details see [G-S] Section 3, and in
particular Theorem 3.14.
Now V(E) is a quotient of V, so V, in view of the results of Hida and

Mazur-Wiles quoted in 0.1, supplies us with a concrete filtered deformation
of V(E). The information that it carries about YP(E) was translated by
Greenberg and Stevens to prove (1). This translation procedure is far from
trivial, but involves a different circle of ideas, in particular the study of a
2-variable p-adic L function associated with E, with a functional equation.

0.3. Description of the main results of this work

Following the brief review of the work of Greenberg and Stevens, let us
explain what we intend to do. Our final goal is to prove a "refinement" of
(1), conjectured by Mazur and Tate in [M-T] (the "refined conjecture"at
the bottom of p. 712). The present paper deals with the first half of the
project.
We shall (a) establish a "refined" analogue of Hida’s deformation

(Theorem 1, §2.10), (b) prove an analogue of the theorem of Mazur and
Wiles (Propositions 3.2 and 3.7), and (c) draw the information that this
"refined deformation" carries about the projection of q/pord(q) to Fx
(Theorem 2, §3.6, and Theorem 3, §3.10). Note that this projection is

precisely the part lost by taking logarithms in making 2p(E), hence the
adjectives "refined" or "exponentiated" that are used in conjunction with
the conjectures of Mazur and Tate. Note also that the quantity we are after
is highly sensitive to isogenies. In fact, in contrast to [G-S], all that we do
below is "trivial up to isogeny".
The second half of our project, involving the construction of a "two-

variable" theta-element with a functional equation (see [M-T], p. 173 for
the one-variable theta element, called there the modular element), and a
proof of the conjecture of Mazur and Tate, will be given in another paper
[dS2].

Finally, let us stress that restricting to prime conductor, or to elliptic
curves (i.e. eigenforms of weight 2 with coefficients in Q) should not be
considered serious limitations. In fact although, as explained above, we
stick to prime level, we shall treat all of Jo(p) at once, and instead of the q
of E, we shall consider the full p-adic period matrix of Jo(p). Generaliz-
ations to higher weight, however, introduce an interesting challenge.
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Throughout, compatibility with the action of the ring of Hecke operators
is important, both to test the naturality of our maps, and to allow later on
the deduction of results pertaining to individual elliptic curves.

0.4. We shall use the following conventions. If A is a group or a group
scheme, and r an endomorphism of A, A[r] will denote its kernel, and
A* = Hom(A, Q/Z) the Pontrjagin dual of A, in a category where it makes
sense. If A comes equipped with a Galois group action, we put the usual
contragradient action on A*, i.e. for oc E A *, a E A and (1 E Galois,
(Qa)(a) - oc«(1-1(a». If A comes equipped with a ring of endomorphisms T
(e.g. Hecke operators), we put the dual action on A*, i.e. (Ta)(a) - a(Ta).
If T and Galois commute in their action on A, they will commute in their
action on A *.

Let r = ln be the highest power of a prime l ~ 2, 3 dividing p - 1. Let
0 = Fxp = 03BCr x Jlr’, (r, r’) = 1, R = Z/rZ, A = R[0394], A’ = R[03BCr’], and A =
R[pr]. Then A is a local R-algebra, and A’ is étale over R. We have

A = A Q A’, and A is a direct summand (as an R-algebra) of A, since R is
a direct summand of A’ (the corresponding idempotent is (1/r’)03A303B6~03BCr’ ~03B6~).
If 1 is the augmentation ideal in A, then 1 = 7 Q A’ Q A Q l’, where 7 and
l’are the augmentation ideals in A and A’ respectively. Observe that 7 is
nilpotent and 1/12 = R Q 03BCr = R(1) ~ R, but I’ = I’2, so l/12 = 1/12. Define

where J1 = Jac(X1), X1 = X1(p)/Q. The group à acts on J 1 via the

"diamond operators" (A is the Galois group of the cover X1/X0), and on
V it acts through Jlr’ hence V is a A-module. These should be thought of
as the "refined" versions of the V and V described above. The fact that

Spec(A) is connected guarantees that the resulting deformation theory is
not trivial. The natural map from V to V is almost surjective-the
cokernel is the dual of the r-torsion in the Shimura subgroup, and is small
and well controlled. In particular, when we localize at a non-Eisenstein
prime of the Hecke algebra, it disappears. Moreover, one can show that
"away from the Eisenstein primes" V is the I-coinvariants of V. An even
better strategy, which will eventually allow us to include the Eisenstein
primes in the discussion, is to replace V and V by V# and V#, which are
obtained from the generalized Jacobians of X o and X1 with respect to the
modulus consisting of the cusps (each counted with multiplicity one). We
call this modulus the (reduced) cuspidal modulus. See [Se] for generalized
Jacobians, which show up once more, in a different context, in this work.
In the rest of the introduction we shall ignore the complication coming
from the #-ed modules, and consider only V and V.
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Having defined our modules, we shall analyze regular models of X1 over
7Lp and over the ring of integers of K = Qp(03B6) (03B6 is a primitive pth root of
unity), and study the Néron models of J1 over the same fields. We shall
construct a 2-step filtration of V as a representation of Gal(Qp/Qp),

Of the graded pieces of this filtration, W will be dual to the kernel of l’ in
the r-torsion of the generalized Jacobian of the Igusa curve Ig(p), with

respect to the modulus of the supersingular points. This piece will therefore
be unramified. The other piece U will be dual to W under the "twisted Weil
pairing" of [M-W2], p.243, a pairing which is only defined over K. As a
result, the inertia group Gal(K/Up) will act on it through the "geometric
inertia group action" ([M-W2], p. 236). The eigenvalue of Frobenius in its
action on W will be related to Atkin’s Up-operator on J 1 (compare
[M-W1], Ch. 2, §9).

Finally, we shall draw the information that our "refined deformation"
carries about q/pord(q), except that we do it for the full p-adic period pairing
of Jo, and we do not "project" to E, if an E as in the introduction exists
(see [dS2] §6 to see how this is done).

0.5. Comparison with [M-W2]

Our analysis clearly relies on the results of Mazur-Wiles. The difference is
in two aspects. First, since we deal with r-torsion rather than p-torsion, we
cannot "decompose" our modules with respect to characters of 03BCr (we can,
and we do, isolate the identity character on 03BCr’). In fact, that is the whole
point! Otherwise, we would not get any interesting deformation. Thus, we
shall not be able, and not want, to discard the part on which A acts

trivially, coming from Jo (as Mazur and Wiles do in [M-W2]). Accord-
ingly, we shall deal with the special fiber of the Néron model as a whole,
and not just with its "abelian variety part". This is why we get generalized
Jacobians. We emphasize that our deformation is captured exactly in the
extension class of the Jacobian of lg(p) by the toric part of the generalized
Jacobian.

Another curious difference between our results, and those of [M-W2],
concerns the question, Which of the graded pieces in the filtration of V is
unramified? In [M-W2] the analogue of U is unramified. This is because
in the filtration that they define on the p-divisible group of J 1 the quotient
is unramified. This is a general fact about ordinary p-divisible groups: first
comes the "kernel of reduction", and the quotient is unramified. In our
work W is unramified. This is because in the filtration that we define on

Jl[r], the submodule J1[r]sub is unramified. Here too, this can be traced to
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a general fact about the 1-divisible group of a Néron model over a p-adic
discrete valuation ring (1 ~ p): the "partie fixe" (under inertia, to use

Grothendieck’s terminology [Groth]) of the 1-divisible group is a subgroup.
In contrast to [M-W2], we do not encounter problems arising from

points of order p lying in the kernel of reduction, since p does not divide r.
No "ordinariness" assumption intervenes in our work. On the other hand,
the obstruction to splitting that we face, having to do with the generalized
Jacobian of Ig(p) with respect to the supersingular modulus, is irrelevant
to [M-W2], because the inclusion of the p-divisible group of Jo in the
p-divisible group of J 1 does split up to isogeny.

1. The déformation modules V and V#

1.1 Let the notation be as in 0.4. Let X be the Shimura subgroup of

Jo([M], §II.11). Then we have an exact sequence

Let To be the subring of End(J0/Q) generated over Z by the Hecke operators
Tq (q prime ~ p) and Up. Let Ti be the subring of End(J1/Q) generated by
7§, Up, and the diamond operators ~03B1~, for a ~ 0394. To avoid misunderstand-
ing, we emphasize that if T is a Hecke correspondence on a modular curve,
we let T denote also the endomorphism of its Jacobian that is induced by
Picard functoriality. Thus, in the notation of [M-W1], Ch. 2, §5, Tq = T *
etc., contrary to the convention used there. This is necessary because we
shall study the map J0 ~ J1 induced by Picard functoriality, and we need
this map to be Hecke compatible.t
Both To and Tl are commutative, finite and flat over Z, and T, contains

Z[0394/~±1~] as a subring. Since X is finite and Hecke stable, we may
identify the Hecke ring in End(J0) with that in End(J o/E), so we get a
surjection from T1 to To.

Let r be the maximal power of a prime l ~ 2, 3 dividing p - 1, and
(notation as in 0.4)

tThis remark is slightly misleading. Since T* = T* on J°(p), we could have worked with the T* and
the maps Jo - J1 would still be Hecke compatible. But in the presence of an auxiliary level of type
03931(a), it will become important to consider the endomorphisms induced by Picard functoriality. A
reflection of the same problem is present in [M-W1], Ch. 2, §9. In general (i.e. with an auxiliary
r, (a) level), only U*p preserves what we call below Jét -loc. cit. Proposition 3, and not Up* - loc.
cit. Proposition 1. However, in the case of J1(p) (a = 1) it is easily checked that in the diagram of
Proposition 1 [M-W1] p. 253, Up* too preserves the Jacobian of the Igusa curve Jét =
Po(Pic°(Igusa(p) /k)’ in the notation used there.
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Then we have an exact sequence of Hecke and Galois modules

In particular, V is a A-module.

1.2. Eisenstein ideals

Let J*o (resp. J*1) be the generalized Jacobian of X o (resp. X1) with respect
to the (reduced) cuspidal modulus. It is an extension of Jo (resp. J 1) by
Do = Gm (resp. a (p - 2) dimensional torus D1) defined over Q. Since the
Hecke correspondences on X0 (resp. X 1) preserve the cusps, they define
endomorphisms of J#o (resp. J*1). Let T*o (resp. Tt) be the rings generated
by them. For i = 0 or 1, Ti# maps to End(Di) (by restriction) and we let Ii#
be the kernel of this homomorphism. On the other hand, T*i maps
surjectively onto Ti and we let Ii dénote the image of It under this map.
We call Ii the Eisenstein ideal in Ti. Any prime ideal in spcc(TJ containing
it is called an Eisenstein prime.

EXAMPLE. Io contains, and in fact is generated by, Tq-q-1, for q ~ p,
and Up - 1. Indeed, we have to show the same thing for Iô (caution: the
symbol Tq or Up stands for différent operators in different Hecke rings...).
But End(D o) = Z is faithfully represented on the tangent space to Do,
whose dual may be identified with the line spanned by the unique
(normalized) Eisenstein series of weight 2 for r o(p). It is well known that

this Eisenstein series is annihilated by Tq - q - 1 and Up - 1. Since

T*o/I#o = Z, these elements generate It. Thus 10 coincides with the Eisen-
stein ideal as defined in [M].

EXAMPLE. Il contains (Tq - 1 - ~q~q)(Tq - (q) - q) for any q ~ p (this
follows from [M-W1], p. 238 by arguments similar to the above).

1.3 PROPOSITION. The natural map of Je’ into Jf (induced by Pic
functoriality) is injective on r-torsion. Furthermore ( for any natural number r)
J*o[r] = J*1[r]0394. If we let

and denote by 1 the augmentation ideal in A, we get an isomorphism

Proof. The proof is based on the identifications
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(Yl(p) - the affine part of X1(p)) (see [Mi] 111.1.30). Thus

Hom(

(Poincaré duality)

(Artin’s comparison theorem)

(since 03931(p) contains no elliptic elements).

Under these identifications the action of ~d~, d ~ 0394, on J#1[r]* corresponds
to the following action of à on H1(03931(p), R). First, identify A with

0393o(p)/03931(p) as usual, sending (d) to the class of a matrix y whose lower
right corner is d mod p. Next, if qi is a 1-cocycle of 03931(p) in R (i.e. a
homomorphism), and 03B3 ~ 0393o(p), 03B303C8 is the 1-cocycle (03B303C8)03C3 = 03C803B3-103C303B3. This

defines an action of 0393o(p)/ 03931(p) = A. We now invoke Shapiro’s lemma

H1(r 1(p), R) ~ H1(r 0(P), A). (6)

It can be checked that the A action on the left gets translated to the "obvious"
A structure on the right, coming from the action on the coefficients. This is a
well-defined action because ro(p) acts on A via the abelian quotient A, thereby
in a manner that commutes with A’s own action on itself, rendering the
cohomology group a A-structure.
Now as à is cyclic, 1 is principal, say 1 = ocA, with a = ~d~ - 1, d a

generator of A. The 1-cohomological dimension of 0393o(p) is 1, because
1:0 2, 3, and 0393o(p) (r’ = 0393/~±1&#x3E;) is a free product of cyclic groups of
orders 2 or 3, corresponding to elliptic conjugacy classes, and a free group.
From the exact sequence 0~ I ~ 039B ~ R ~ 0 we get that

is exact. From the exact sequence 0 - 039B[03B1] ~ A - 1 ~ 0 we get that

multiplication by x maps H1(I’o(p), A) surjectively onto H1(0393o(p), 1), hence
we may identify the image of H1(0393o(p), 1) in H1(0393o(p), A) with

IH1(ro(p), A). We conclude that there exists an isomorphism

Since r is odd, H1(0393o(p), R) = H1(f o(p), R). Now, even if ro(p) has elliptic
elements, they are of order prime to r, so an argument similar to the string
of equalities at the beginning of the proof shows that H1(0393o(p), R) = V#,
and (5) follows.
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The injectivity of the map from J#o[r] to J#1[r] then follows by duality.
What really happens here is that the Shimura subgroup dies in J1, but
survives in D 1, the toric part of Jf. D

2. The filtration on V and V#, and structure over A

2.1. In Section 1 (2) and (4) we defined Hecke modules V and V#, which
carry a commuting Gal(Q/Q) action, and which we view as deformations of
the corresponding V and V# (despite the fact that for V, the map from V
to V is not quite surjective). Of course, V and V are submodules of V# and
V# respectively. From many respects, the # modules are better behaved
than the ones obtained from the ordinary Jacobians. This is already evident
if we compare Section 1 (5) to Section 1 (3).

In this section we define a 2-step filtration on all of our four modules.
This filtration will be stable under Hecke and the local Galois group at p.
Once again, it will be better behaved for the # modules.

2.2. Let us start with V. Let S be the set of supersingular elliptic curves in
characteristic p. Then = 1 + genus(Xo(p)), and Xo has a well-known
semi-stable model Pro over Z, whose special fiber at p consists of two
projective lines Pét1 and Pl intersecting transversally at |S| points which are
in a natural bijection with S. In terms of the moduli problem [ro(p)] (see
[K-M]), the smooth points of Pt classify ordinary elliptic curves with an
étale subgroup scheme of order p, and those of P03BC1 elliptic curves with a
connected subgroup scheme of multiplicative type (i.e. whose Cartier dual
is étale) of order p. The intersection points are defined over IF p2. As a
2-dimensional scheme Pro is not regular (unless p ~ 1 mod 12), but its

singular points, which belong to the special fiber above p, and correspond
to supersingular elliptic curves with j-invariant 0 or 1728, are inconsequen-
tial in the sense of [M-W1], p. 230. In the desingularization iio of Pro, the
singular points are replaced by a string of (one or two) P1’s.

Let N = Z[S] and let No be the augmentation subgroup of N. Let k be
the quadratic unramified extension of Qp. The Galois group Gal(k/Up) acts
on S via the action of Gal(1F p2/1F p). Hence N and No are Galois modules
for the local Galois group. The Jacobian Jo has a rigid analytic uniformiz-
ation by the torus Hom(No, Gm). In fact, there exists a symmetric non-
degenerate period pairing

(not only Q, but even ord, - Q is nondegenerate) which induces an inclusion
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q: No ~ Hom(No, Qxp), and an isomorphism of rigid analytic spaces over k

Jo Hom(No, Gm)/ q(N 0). (2)

For all this, see [dSl] and [dS3]. (Something has to be said to justify the
fact that (1) is into Qxp and not merely into kx. Thus the two sides of (2)
are defined over Qp. The isomorphism between them is only defined over
k, where Jo attains split multiplicative reduction. However, as Galois
modules Jo(Qp) ~ Hom(No,Qxp)/q(No) over Qp if we let 03C3 ~ Gal(Qp/Qp)
act on h ~ Hom(N 0’ Qxp) as u(h) = 0’ 0 h 0 03C3-1.) It follows that we have a

short exact sequence of Gal(Qp/Op)-modules

Dualizing, and setting U = (N olr N 0)* and W = Hom(N 0’ Jlr)*’ we get our
first filtration

Alternatively, the Néron model go of Jo over Zp is semi-abelian. Let
go(OL)o denote its points in (the ring of integers of) an unramified
extension L of Qp, which specialize to the connected componnt (g0/Fp)o of
the special fiber. Since (p, r) = 1, the map on r-torsion

is an isomorphism (03BAL is the residue field of L). In the model (2) the points
in /0«(9 L)O correspond to Hom(No, U(L)), where U(L) are the units of the
local field L. Their reduction corresponds to Hom(N°, xL ).
Raynaud gave a characterization of go(OL)o in terms of Cartier divisors

on the regular scheme Yo. We refer to [A], §1.20-1.21 for a concise

description of his results, and to [B-L-R] (§9.5/4, see also §9.2/13) for full
proofs. Raynaud’s theorem says that /O«(9L)O classifies line bundles 2 on
if 0 defined over L, whose restriction to each irreducible component of the
special fiber is of degree 0. More generally, the functors /8 and picî o /(9 K
on (9,-scheme, coincide. It follows that (fo/F)o classifies divisors ô supported
(without loss of generality) on the smooth part of X0/Fp, which are of degree 0
on each irreducible component, modulo divisors of functions. By a "function"
on the reducible curve X0/Fp we mean a collection of functions, one for each
component, which agree at the intersection points, and get there finite non-zero
values.
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In either language, of line bundles or of divisors, we can now make the
isomorphism (g0/Fp)o(03BAL) ~ Hom(N°, Ki) explicit as follows. For simplicity, let
us assume that p ~ 1 mod 12. The modifications in the remaining cases are
straightforward. Let ué’, 03C303BC be sections over the two components of the special
fiber trivializing 2. Taking the ratios of the J’s at the intersection points,
labeled by S, we get a homomorphism from N to bm, whose restriction to No
is well defined (i.e. independent of the trivializing sections), and completely
determines the restriction of 2 to the special fiber.

Thus Hom(N 0’ Jlr) is just the part of Jo[r] which specializes to the

connected component (g0/Fp)o. In the language of [Groth], this is the "partie
fixe", and also the "partie torique". On the other hand, N°/rN° is the kernel
of r in the group of connected components of the Néron model over a

sufficiently ramified extension of Op (e.g., any extension over which all the

r-torsion in Jo is defined).

2.3. We now repeat the same analysis for the generalized Jacobian Jg. For a
treatment of Néron models of generalized Jacobians, see the last chapter of
[B-L-R]. From the rigid analytic point of view, the Manin-Drinfeld uniform-
ization of Jacobians of Mumford curves [M-D] can be nicely extended to
generalized Jacobians, using a larger class of p-adic theta functions. In the case
of Xo(p) this was done in [dS3].
The two cusps cét and c" of Xo (represented by 0 and i oo under the usual

complex uniformization) specialize to the corresponding components in Eto.
Let fif be the Néron model of J* over Zp. Then (,f -* )0 consists of classes of
divisors ô supported on the smooth part of X0/Fp and away from the cusps,
which are of degree 0 in every irreducible component, modulo divisors of
functions which give the same (finite, nonzero) value to the two cusps. We
identify (g#0/Fp)o with Hom(N, Gm/Fp) in the following way. Given a divisor 03B4 as
above, we may first assume, if p is not 1 mod 12, that ô does not pass through
the components of X0/Fp obtained by blowing up the singular points of the
arithmetical surface Eto. Then ô corresponds to a pair of functions (fét, f03BC) as
above, but this time we normalize them to have the same value at the two

cusps. The map S ~ fét(S)/f03BC(S) (S ~ S) defines a well-defined homomorphism
from N to G., that depends only on the class of ô in the generalizaed Jacobian.
The group of connected components of fwo: is the same as that of g0/Fp. We

conclude that we have a short exact sequence of Gal(QpIOp)-modules

as in (3), with a similar interpretation regarding the Néron model.
We can arrive at the same conclusion from the rigid-analytic uniformization

of Jg. It was shown in [dS3] how to extend the period pairing Q to a pairing
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of N x No into Qxp, and how to get a corresponding uniformization of rigid
analytic spaces over k

Now (5) follows from (6) easily.
Dualizing, and making the obvious definitions V# = Jt[r]*, U# = U,

W# = Hom(N, 03BCr)*, we get from (5) the exact sequence

2.4. Similar analysis applies to X and J except that the picture is more com-
plicated. First, J 1 only attains semi-abelian reduction over K+ = Qp(03B6 + 03B6-1)
(C = a primitive pth root of 1). In fact, we shall work over K = Qp(03B6). Second,
when we pass to J#1 there are p - 1 cusps, so the toric part is bigger.

Let fI’1 be the model of X1(p) over (!)K discussed in [M-W1], p. 246 (Example
1 of §8, with n = 1, a = 1), or in [W] §5. In the language of [K-M], it corre-
sponds to the moduli problem [bal. rl(p)]. Its special fiber is reduced, and
consists of two smooth components, 03A3ét and 03A303BC, intersecting transversally at a
set of points which is in bijection with S. The two components Eét and Eu, are
both isomorphic to the Igusa curve lg(p) over IF p. In fact, the involution w, of
XI extends to an involution of X1 which interchanges them. For more details,
and proofs of the statements made here see [W] §5 and [M-W1]. Our notation
is borrowed from there too.

Let fi be the Néron model of J1 over (9,. The connected component of the
special fiber g1/Fp is a semi-abelian variety. Let fil be the desingulaization of
. Its special fiber is semi-stable. By the above-mentioned theorem of

Raynaud, the connected component (g1/Fp)o of /l/F. consists of classes of
divisors b which are supported on the smooth part of fI’l/Fp and are of degree
0 on every irreducible component, modulo divisors of functions ("functions"
have the same meaning as above). As in the case of Xo, the singularities of fI’1
are inconsequential, and every class is represented by a ô not passing through
the !p1’S which arise from the resolution of the singularities of fI’ 1. By pull-back
to Eét and 03A303BC we get a surjective map from (g1/Fp)o to Jét x J03BC, the product of
the corresponding Jacobians, which are each isomorphic to the Jacobian of
Ig(p), and are interchanged by the involution w,. (Mazur and Wiles [M-W1]
call Jét x Je the abelian-variety part of the Néron model, and denote it av(J 1).)
The kernel of this map is the toric part, and as above it is isomorphic to
Hom(N°, Gm). We have established the existence of an exact sequence
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REMARK. There is another way to obtain (7), avoiding the study of any
model of X1. Consider the exact sequence of abelian varieties over K +

and the corresponding sequence of Néron models over (9K’. Langlands’
theorem ([M-W1], Ch. 3, § 2, Prop. 2) shows that A1 acquires good reduction
over K + . It follows that J 1 has semi-abelian reduction. By Theorem 4 of
[B-L-R] §7.5, the sequence of Néron models is exact, and this gives (7).

DEFINITION. Let J1[r]sub be the pre-image in (g1/Fp)o[r] of Jé’[r] x {0}. Let
J 1[r]quot = J 1 [r]lJ 1[r]sub.
PROPOSITION. J1[r]sub is identified with the r-torsion in the generalized
Jacobian of Ig(p) with respect to the (reduced) modulus consisting of the set S of
supersingular points.

Proof. By definition we have an exact sequence

A class in (g1/Fp)o maps to Jét if and only if it contains a divisor ô supported
on (the smooth part of) Eét. It is furthermore a divisor of a function in the
above sense if an f can be found which is constant on 03A303BC, has the divisor ô on
03A3ét, and agrees at the intersections. Thus the pre-image of Jét in (g1/Fp)o
classifies divisors prime to S on lé’ = Ig(p) modulo divisors of functions which
are constant along S, and this is precisely the generalized Jacobian. J1[r]sub is
simply the r-torsion in it. ~

2.5. PROPOSITION. (i) J1[r]sub is a Gal(Qp/Qp)-submodule of JI Er], stable
under the Hecke algebra T1.

(ii) Let f’ be the Néron model of JI/op over Zp. From the universal property
of Néron models we get a map g’1 x z p (9K --+ g1, which induces a map of special
fibers g’1/Fp ~ cf l/IF p. Then J 1[r]sub is the image of (g ’1/Fp)o[r] under this map.

(iii) Fix a primitive pth root of unity ,. Then the twisted Weil pairing of
[M-W2] §6, defined by

where ~·,·~ is the usual Weil pairing, sets J 1[r]sub and J 1[r]quot in duality.
(iv) J 1[r]quot is an extension of the r-torsion in the group of connected components

of the Néron model of J1 over a sufficiently ramified extension of K, by J03BC[r].
Proof. We start with part (ii). Let Hp be the subgroup of G L2(1F p) consisting

of matrices whose left column is t(:t 1, 0) (but where no restriction is put on
the lower right entry). Let X’1 be the model of X 1 over 7 p corresponding, in
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the notation of [M-W1] §8, to this Hp. In the language of [K-M] it

corresponds to the moduli problem (non-balanced) [rl(p)]. This X’1 may not
be regular, but again it has at worst inconsequential singularities. Its special
fiber consists of two irreducible components. One, which we call 03A3’ét, is

reduced, and its normalization is Ig(p). The other, which we call 03A3’03BC, is the j-line
with multiplicity (p - 1)/2. See [K-M], p. 417. The two components intersect at
181 points, which are in bijection with S. The natural map Et - Et’l 1  Zp OK
identifies S’é’ with 03A3ét. We may now compute the connected component of the

special fiber (g’1/Fp)o using the model X’ as we did over K before. The result is
that we obtain an extension of Jét by a connected affine algebraic group, whose
multiplicative part is Hom(N°, Ga, but which has a unipotent part as well. In
fact, the argument given in the previous proposition for the Néron model over
K shows that CfÍ/F)O is precisely the generalized Jacobian of Ig(p) with respect
to the non-reduced modulus which consists of the supersingular points with
multiplicity (p - 1)/2. Note that the unipotent part of the generalized Jacobian
contributes nothing to the r-torsion in the special fiber because (r, p) = 1.

At any rate, since the map between Néron models is induced from the map
between regular models, (ii) follows.

Part (i) follows from (ii), because we may identify J 1[r]sub with (f ’1/Fp)o[r],
and now we are considering Néron models over Qp, not over K. Note that
J1[r]sub, and therefore its abelian-variety quotient Jét[r], are stable under all
the Hecke operators, including Up, despite the fact that Up does not define a
correspondence on the Igusa curve 03A3ét. Compare [M-W1] Prop. 3, Ch. 2, §9.

Let us prove (iii). Hom(N 0’ Ilr) is stable under w03B6. By a theorem of

Groethendieck it is orthogonal to the whole kernel of r on the connected
component f1«(9L)0[r] under the Weil pairing ([Groth], "Théorème d’orthog-
onalité" IX.2.4), hence also under the twisted Weil pairing. It follows that the
twisted Weil pairing, when restricted to g1(OL)o[r], factors through
Jé’[r] x Je[r] (see (7)). But here w, evidently interchanges Jét with J03BC. Since

the Weil pairing pairs Jét[r] trivially with J4[r], the twisted Weil pairing pairs
Jét[r] trivially with itself. It follows that J1[r]sub is a maximal isotropic
submodule for the twisted pairing, which is of course a non-degenerate pairing
into Ilr. Part (iii) follows from here.

Part (iv) is clear from the definition. D

2.6. We make a digression to explain the relation between the filtrations on
Jo[r] and J1[r]. Consider the following diagram of Galois modules

where the middle vertical arrow is induced from Section 1 (1), hence its kernel
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is E[r]. The left vertical arrow is induced from the map between go(OL)o[r]
and g’1(OL)o[r], where L is a large enough unramified extension of Op. As
before, the superscript 0 denotes sections reducing to the connected component
of the special fiber. From the description of the filtration of J°[r] given in
Section 2.2, it is clear that the left vertical arrow in (9) identifies Hom(N°, Ilr)
with the same module inside J1[r]sub (see (7)), and is therefore injective. This
is not new. The Shimura subgroup in fact gets mapped injectively into the
group of connected components, and surjectively onto those connected com-
ponents which are defined over Op. See [M], Ch. II, §11.
The right vertical arrow is induced by the first two. Now, as mentioned

above, J1 [r]quot has a filtration

where 03A61 is the group of connected components of the special fiber of the
Néron model of J1 over a sufficiently ramified extension M of K. Now it can
be checked that, since r divides (p - 1)/2, the map on connected compo-
nents No/rNo = 03A6o[r] ~ 03A61[r] is identically zero. Nevertheless, we have

PROPOSITION. 03A3[r] maps isomorphically onto the kernel of the right
vertical arrow in (9).

First proof. Recall that Jo[r]/03A3[r] and J1[r]sub are both subgroups of
J1[r] stable under Up. Furthermore, on H = (Jo[r]/03A3[r]) n J1[r]sub the
involution w03B6 acts like - Up because this is true on Jo (where all the w, are
equal to wp). Thus H is stable under w, . But clearly w, interchanges Jét and
J03BC in its action on the connected component of the Néron model, so H
must be contained in the toric part Hom(No, p,) (see (7)). This proves our
assertion.

Second proof. Instead of using Up, one may use Mazur’s result on the
"multiplicity-one" of the mod 1 representations obtained from Jo. We leave
the details to the reader. D

2.7. Since R is a direct summand of A’, taking invariants under the diamond
operators ~a~, for a E Jlr’ (i.e., taking the kernel of I’) is an operation that
preserves exact sequences. Write U = J1[r][I’]quot*, W = J1[r][I’]sub*.
Then we get a diagram

with exact rows and columns. This diagram is dual to (9).
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Finally, we wish to extend the analysis of J 1 [r] carried out in Section 2.4
to J#1[r], the r-torsion in the generalized Jacobian of X with respect to the
(reduced) cuspidal modulus C. The set of cusps is the union Cét ~ Cil of the
cusps above cét and those above cil. Each contains (p - 1)/2 cusps, on which
0 acts transitively. In the model X1 over (9K, the cusps reduce (mod 03C0K)
injectively, those in cét to the cusps of the Igusa curve Lét, and those in C4
to the cusps of the Igusa curve 1 e. The two groups of cusps are inter-
changed by the involution w03B6.

Let g#1 be the Néron model of Ji over (9K’ It is an extension of fl by
the torus D 1 (defined over (9K). Similarly, the connected component of its
special fiber is an extension of (ft/F)O by D1/Fp. Now (g#1/Fp)o classifies
divisors (5 on X1/Fp, relatively prime to C and the singular points, which are of
degree 0 on every irreducible component, modulo divisors of functions f which
get a constant finite non-zero value along C. (See Section 2.3 for the notion of
a "function" on the reducible scheme X1/Fp.) Once again, since the singularities
of X1 are inconsequential, we may assume that à is supported on 03A3ét ~ 03A303BC.

When we restrict to those divisors supported in the smooth locus of 03A3ét (and
away from Cét), we see that the divisors by which we have to mod out are
divisors of functions f for which there exists an a such that f restricted to
03A303BC u Ce’ gets the constant value a. We therefore define

DEFINITION. Jt[r]sub = r-torsion in the group

However, this group is nothing but the generalized Jacobian of Ig(p)
respect to the modulus S ~ cét. It admits a filtration

Under the map of J#1[r] to J1[r], whose kernel is D1[r] = Hom(Z[C]o, Jlr)’
J#1[r]sub maps to J1[r]sub with kernel Hom(Z[Cét],03BCr). The inclusion of

Hom(Z[Cét], Jlr) in Hom(Z[C]o, Jlr) is obtained from the exact sequence

A similar séquence gives the inclusion
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PROPOSITION.

Then we have a commutative diagram with exact rows and surjective vertical
arrows

Proof. To prove the surjectivity of the vertical arrows recall that the middle
one is surjective by Proposition 1.3. The map between the W’s is therefore

surjective also. The following lemma concludes the proof of the surjectivity.

LEMMA. The map J#o[r]quot ~ ,li Lr,quot is injective.
Proof. Let

From the snake lemma we see that we have to prove that the natural map
A ~ B is injective. Consider the commutative diagrams with exact rows and
columns
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and

from which we get the following diagram with exact rows

Proposition 2.6 asserts that the right vertical arrow is injective. On the other
hand, 1[r] is invariant under the w03B6(=wp) involution, which acts on it via

multiplication by -1. If an element h of Hom(Z[Cét]o x Z[C03BC]o, Jlr)’ which is
obtained from E[r] via the connecting homomorphism in (16), also vanishes
on Z[C03BC]o, it vanishes as well on w03B6(Z[C03BC]o) = Z[Cé’],, so h = 0 identically.
This proves the injectivity of the left vertical arrow in (18), hence of the map
A -+ B. D

2.8. PROPOSITION. U# is free over A, and we have an isomorphism

Proof. We proved a similar statement for V# in Proposition 1.3. Our proof
here is more subtle, because the arguments of Section 1.3, involving Eichler-
Shimura cohomology, are not well-adapted to the study of the filtration

introduced in Section 2. We proceed in several steps.
Step 1. V# ~ (039B/I) ~ A2m, where m = genus(Xo), as A-modules.

Proof. In Section 1.3 we got the isomorphism
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where Z and B denote cocycles and coboundaries respectively. Furthermore,
rois a free product of cyclic subgroups of orders 2 or 3, one for each elliptic
conjugacy class, and a free group on 2m + 1 generators. Let T denote the
normal subgroup of ro generated by the elliptic elements. Then io/T = TC 1 (Yo)
is free of rank 2m + 1. We may choose Yo,..., Y2m in ro so that 03B3i ~ 03931 for
1  i  2m, and the images of the 2m + 1 elements mod T generate nl(Y.). It
follows that the projection of yo to A generates A, so (yo - 1)A = I. Observe
that T acts trivially on A since (r, 6) = 1. A cocycle in Z 1 is therefore a

homomorphism when restricted to T, and since (r, 6) = 1, it vanishes on

generators of T, hence on all of T. Now Z 1 and B 1 are A-modules, so
Z1 ~ A2m+1 via Z ~ (Z(03B3i))o~i~2m· Since ro acts on A via its quotient li,, B is
identified with 7 x 0 x ... x 0, and the structure of H’ follows (although
non-canonically).

Step 2. Choose a set of generators v., Vl’ ... U2m for V# over A compatible
with the decomposition of Step 1. Let ui be the image of v, in

Now giving a homomorphism u in V# is the same as giving X, a cyclic cover
of X o of degree dividing r, which is unramified outside the cusps, together with
a generator of the Galois group of X/Xo. Such a u comes from Y if and only
if XIX, is everywhere unramified. From the rigid analytic interpretation of
U = Hom(No, R) it is clear that u belongs to U if and only if X is a Mumford
curve. Indeed, No is canonically the abelianization of the (free, rank m)
subgroup r of PGL2(k) giving the p-adic Schottky uniformization of Xo. Finite
quotients of r are in one-to-one correspondence with unramified coverings of
Xo by Mumford curves.

Consider in particular the unique cyclic cover X of degree r between X o and
X1. Any u corresponding to it should vanish on ri, hence on Yi for i  1, and
should provide an isomorphism of R Q (f o/r 1) = R (D A = ,ur with R. Hence
we may assume that uo is this u (note that uo corresponds to an everywhere
unramified cover of Xo because it lies in the parabolic cohomology its
restriction to the standard parabolic subgroup P is trivial because P g ri). We
conclude that uo in fact lies in V, but not in U, because it is well known that
no subcover of X1 ~ X0 except for X o itself is a Mumford curve.
For the same reason, the projection of u0 to W ~ W# is of order r. A fortiori,

the projection of A/I = 039B/I·vo to W# is an isomorphism and U# is mapped
injectively into A2m = Et)AVi (1  i  2m), when we mod out by (A/I)vo.

Step 3. We conclude by a counting argument. The rank over R of U# = U =
Hom(N 0’ R) is m. Changing the original bases we may assume that U# has
ul, ... , um for a basis over R. Choose x,,..., xm in U# ~ A2m = Ef)Avi lifting
the ui. Mod I, the vectors Xi look like the first m standard basis vectors vi. It
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easily follows that the sum E Axi is a direct sum, isomorphic to Am. Indeed, the
first m x m minor in the m x 2m matrix (03BBij) giving Xi = E Âjvj is congruent to
1 mod I, hence so is its determinant. Since I is a nilpotent ideal, this minor is
invertible as a matrix over A.

But the rank over R of U# is the rank of J#1[r][I’]quot, which is

Denote by X the unique cover of X o of degree r, dominated by X 1 (as above).
Since [X1 : X] = r’/2 is relatively prime to r, it is easy to see that J#1[r][I’] =
J#X[r], where by J#X we of course mean the generalized Jacobian of X with
respect to its cuspidal modulus. Now X has a regular model similar to the one
constructed for X o or X 1 over Zp[03B6p]. Also, X is an unramified cover of Xo,
and has 2r cusps. We compute

Here the subscript X refers to the objects related to the regular model of X.
For example, Igx is the quotient of Ig by the action of y,,. But

2 genus(Igx(P)) + m = genus(X),

so we get rk U# = rm. Since we already found a copy of Am in U#, it follows
that U# = ~ 039Bxi ~ Am, and, incidently, that W# ~ Ail (B Am.

Finally, (19) follows from the freeness of U# and from the analogous result
for the full V#. D

2.9. COROLLARY. We have

The first isomorphism in (20) is non-canonical. It depends on choosing a
generator for A. Nevertheless, it is an isomorphism for both the Hecke action
and the Galois group action, facts that will be crucial later on.

2.10. For future reference we gather the main results of Sections 1 and 2 in the
following theorem.
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THEOREM 1. Let p be a prime, and r = ln the maximal power of a prime l ~ 2, 3
dividing p - 1. Then we have a commutative diagram of Hecke and Gal(Q p/Qp)-
modules, with surjective vertical arrows

In this diagram U# = Hom(N 0’ R), W# = Hom(N, 03BCr)*. W# is dual to the

kernel of l’on the r-torsion in the generalized Jacobian of lg(p), where

"generalized" is with respect to the modulus consisting of the (p - 1)/2 cusps of
lg(p) and the supersingular points (each counted with multiplicity 1).
As A-modules U# ~ Am, V# ~ AIl E9 039B2m, and W# ~ AIl E9 Am. The bottom

row is identified with the top row ~039B/I. D

3. Galois structure and consequences for the Q-pairing

3.1. For any R-module M we denote by M(l) or by M(X) the module
M ~R 03BCr. M and M(X) are isomorphic, even as Gal(Qp/Qp) modules, in
case M is equipped with a Galois action, but non-canonically. We think of
X as the mod-r cyclotomic character, although since r p - 1, it is trivial.

Let

and similarly for W and V. Consider the commutative diagram of

Gal(Qp/Qp)-Hecke-modules with exact rows and columns
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Here the bottom two rows repeat the diagram of Theorem 1, except that
we work mod 12 everywhere. The first row is defined by the diagram. Note
that by Corollary 2.9 (20) the kernel of U# ~ U# is isomorphic to U#, but
more canonically it is U# ~039B/I I/I2. To identify it with U# we need to fix
a generator d of A, by means of which we can identify III’ = R Q A with
A/I = R, sending d - 1 mod 12 to 1.

3.2. Let us examine the Galois action on

It is evidently unramified, so we only have to specify the action of Frobp,
the (absolute) Frobenius automorphism. For the next result compare

Proposition 3 in Chapter 2, Section 9 of [M-W1].

PROPOSITION. The Hecke operator Up is invertible in its action on V#,
and therefore on any of the modules in Theorem 1 or (2) above. On W#(1)
we have the identity

Proof. The first statement is clear, since Up acts invertibly on V#, which
is the I-coinvariants of V#, and 7 is a nilpotent ideal. According to the
conventions explained in 0.4, it is definitely enough to show that on

Jf[r,Jsub we have

induced by Pic functoriality).

Let x = (E, P) be a point of XI. Then U p (E, P) = E (E’, P’) where the sum
is over all pairs having a subgroup C’ of order p not containing P’

such that (E, P) ~ (E’/C’, P’ mod C’). Clearly E’ xr E’/E’[p] = E’/(C’ + ~P’~) =
E/(P) for such a pair. For P’ we may take any pth root of P, mod ~P~.
There are p possibilities.
Now look at the Zariski closure of the point x in X1, and assume

(recalling the definition of J#1[r]sub) that its specialization falls in Lét. Then
P does not reduce to 0, and therefore it generates (in the special fiber) the
kernel of Verschiebung, and E’ = E(p-1). We claim that P’ reduces to P(p-1).
Indeed, applying Frobp to E’ is like dividing E by the kernel of p, a

homomorphism that sends P’ to P (all in the special fiber).
We get that in the special fiber Up has the same effect on divisors of degree

0 passing through Sé’ as Verp = p. Frob, 1. Since p = 1 mod r, this proves our
proposition. D
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Let 0 be the unramified character of Gal(OP/Op) with values in (the group of
units of) the image of the Hecke algebra Tf in End(V#), defined by
~(Frobp) = Up. If M is a Galois and Hecke module over R, let M(~~-1) be
the module M(x) on which Gal(Qp/Qp) acts via the original action twisted by
the character ~-1. This is well defined because the actions of Galois and Hecke
commute.

Since the homomorphisms in (2) preserve the Hecke action we may
apply - (~~-1) to the whole diagram. When we do so, the right column
(of the W’s) acquires the trivial Galois action. Apply the long exact
sequence in Galois cohomology. We write a portion of the resulting
diagram.

Now the arrow between the H° terms on the left is surjective, because the
modules carry the trivial Galois action. Thus we conclude

Our purpose is to identify the modules participating in (4), and to make the
homomorphisms qR and ô explicit using Kummer theory and local class field
theory.

3.3. LEMMA. We have the following canonical identifications (as Hecke modules;
the Galois action is trivialized after we take cohomology)

Proof. with trivial Galois action

The effect of the twist by 0 - ’ on Hom(No, Jlr) is to trivialize the Galois action
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(on No, Frobp and Up act the same, via the quadratic unramified character).
We may therefore write

(iii) It is enough to prove that H2(Qp, U#(~~-1)) = Nj Q R. But as in (ii)
we get

H2(Qp, Hom(N0, 03BCr)(~-1)) = Hom(N0, H2(Qp, 03BCr)) = Hom(No, R). D

3.4. LEMMA. Via identifications (i) and (ii) made in Lemma 3.3, the map qR of
(4) is (up to a sign, depending on how one normalizes the connecting homomor-
phism) the map "q mod r" where q : N ~ No Q 0; is the map obtained from the
p-adic period pairing Q : N x No ~ 0; . (See § 2.3 and [dS3].)

REMARK. Previously (§2(6)), we called q the dual map No ~ N~ ~ Qxp
obtained from Q. Of course, either q or q completely determines Q, and vice
versa. In terms of 1-motives we are considering dual 1-motives: previously we
talked about the 1-motive given by J#o. Now we talk about the 1-motive given
by Jo plus the map of 7L into it sending 1 to the class of the divisor c03BC-cét. The
restriction of Q to No is symmetric and defines the self-dual 1-motive Jo.

Proof. The proof is a standard application of Kummer theory. See [G-S]
(3.12) for a similar situation. We have to consider the exact sequence (5) of
Section 2.3, twisted by ~~-1 and dualized, and compute its connecting
homomorphism. Since the effect of ~-1 is to trivialize the Galois action on N
and No in their appearances in this exact sequence, instead of carrying the
notation - (~-1) everywhere, we shall pretend that N and No have trivial
Galois actions (i.e. replace J t by its "quadratic twist" which has a totally split
reduction over Op).

Let 03C3 ~ Gal(Qp/Qp), x ~ N, and yeNo. Let XRENQ9R = W#(~~-1) be the
induced homomorphism Hom(N, Jlr) ~ Jlr. Let yR be the image of y in No Q R.
Recalling the exact sequence (5) in Section 2.3, and the identification

J#o = Hom(N, Gm)/q(No), let xR be an extension of xR to a homomorphism
from J#o[r] to Jlr. We view xR as a homomorphism from q(N o)l/r
(~Hom(N, Gm)) into ,ur, trivial on q(No). Since (03C3 - 1)(xR) is trivial on

Hom(N, 03BCr), it induces a homomorphism No Q R ~ J1r’ and we may evalu-
ate it on yR. Since 03BCr ~ Op, Kummer theory supplies us with a certain

03B2(x, y) e 0; ~ R, independent of 0’, such that
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By the définition of the connecting homomorphism, [R(xR)](yR) = 03B2(x, y)
(here we have used Lemma 3.3 (i) and (ii)).
To compute 03B2(x, y) lift YR to a yR ~ J#o[r] and let y ~ q(No)1/r ~ Hom(N, Gm)

represent it. Then q(y) = Q(., y) = r mod q(No)r, and

Since r is in q(No), hence invariant under Galois, (a-1 - l)(y) is a homomor-
phism from N to Jlr. On such a homomorphism the extended xR is simply given
by the original XR and we end up with

We conclude that 03B2(x, y) = Q(x, y)-1 mod rth powers, which is the desired

result (up to a sign). D

3.5. Consider the left vertical column of (2), twisted:

The local Galois action on U #(~~-1) = Hom(N 0’ 03BCr)(~-1) is trivial, hence the
extension in (6) defines a homomorphism P

which we write P(u) = P a. To compute P03C3(u) lift u E U#(~~-1) to ù E U#(~~-1),
and let P03C3(u) = u(ù) - ù.

LEMMA. Let t ~ Qxp, and let a = (t, Qapp/Qp) be its local Artin symbol. Then,
using the identifications of Lemma 3.3 (ii) and (iii), for every x Q 1 E Nô Q R

1 n other words, Pais obtained by contracting ô with t.
Proof. This is a standard application of local class field theory and Tate

duality. See [G-S] Theorem 3.11 for a similar situation. Q

REMARK. Choosing a generator d for 0 as above, we may identify P03C3 with a
P03C3 ~ End(N~o) ~ R = End(No) ~ R. With such a choice also 039B/I2 = R[03B5],
B2 = 0 (under E = d - 1 mod I’) (the ring of dual numbers), and the action of
Galois on U#(~~-1) is via multiplication by 1 + P aB. Thus our Pais the
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analogue of "d03C8/dT" in [G-S], and their choice of T is the analogue of our
choice of e. The module Û#(~~-1) is the infinitesimal deformation of U#(~~-1).

3.6. THEOREM 2. Let b be the map defined by (8), i.e. the homomorphism

which corresponds (after we identify 0; (8) R with the Galois group of the
maximal abelian extension of Op of exponent r via the Artin symbol) to the
infinitesimal deformation (6) as explained above.

Let qR : N 0 R - N’ 0 0; 0 R be the homomorphism obtained from the
(extended) p-adic period pairing Q as above.

Then 03B4 ° qR = 0.
Proof. Combine all the preceding lemmas with (5). ~

3.7. To go any further we need to know how Gal(Qp/Qp) acts on U#. We know
the Galois action on W#, which is unramified (Proposition 3.2). Unfortunately,
the dulity with respect to the twisted Weil pairing is only between U and W
(Proposition 2.5 (iii», and not between U# and W#. If we wished to apply this
duality to compute the Galois action on U# (following [M-W2], end of Section
8 the character called there ri is our ~), we would have to localize at a prime
of the Hecke algebra which is non-Eisenstein. Instead, we shall compute the
Galois action on U# directly from the definition.

PROPOSITION. Let ~·~ : Gal(Qp/Qp) ~ 0394 = F p 1 be the character which
associates to a the operator ~03C3~ : = (aa)’ if 03B603C3 = 03B603B103C3 for a primitive pth root of
unity ,. Let 0 be the unramified character defined in Section 3.2. Then

Gal(Qp/Qp) acts on U# via ~·~ ~-1.

REMARK. Identifying the Galois group of the maximal abelian extension of
exponent r of Qp with 0’ p R, the assertion is that the Artin symbol of t acts
on U# via the Hecke operator ~tp-ord(t)~. U-ord(t)p.

Proof. We have to show that u acts on Ji*[r]qu,l via ~03B103C3~-1 ~(03C3). It is enough
to consider u’s whose restriction to Qurp is Frobp because they generate the local
Galois group. Fix such a u, so that 0(a) = Up.

Let x = (E, P) ~ X1(M) (M :a finite extension of Qp, which we assume
contains K, E: an elliptic curve over M, P: a point of order p in E(M)). It is

enough to prove that the divisor
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extends (by Zariski closure) over the scheme P£1 to a divisor meeting the special
fiber only in Eét. Indeed, this is then true for any divisor of degree 0 on X1,
relatively prime to C. Passing to J#1[r], we conclude that for any x ~ J#1[r], the
divisor class 03B103C3&#x3E;*03C3(x) - Up(x) is represented by a divisor meeting the special
fiber in 03A3ét, and therefore its image in J#1[r]quot is trivial.

So let x = (E, P) be as above. Then (an)*a(x) = (03C3E, ~03B103C3~-103C3P). We may
assume that E has good ordinary reduction (every class in J([r] is represented
by a divisor not meeting the special fiber of P£1 in the finite collection of points
Sue). The Zariski closure of x is a point 03BE ~ X1(OM) written as 03BE = (E, P, Q
mod ~P~) where E is an elliptic curve over (9m, P and Q sections of order p,
and the Weil pairing pairs them to ( (a fixed pth root of 1): ~P, Q~E = 03B6. The
Zariski closure of (an)*a(x) is 03BE’ = (E’, P’, Q’ mod ~P’~) where E’ = 03C3E, P’ =
~03B103C3~-103C3P, and Q’ = Q mod (P’). Check that ~P’, Q’~E’ = ,!
We have to show that U*p(03BE) - 03BE’ specializes to a divisor supported on Eét.

But

where the sum is over the p triples satisfying: (a) there exists a cyclic sub-
group of order p, E g E, not containing P, such that (E/C, P mod C) = (E, P),
(b) (P, Q)Ë = (. 
For any triple of this sort, E ~ E/E[p] = Ê/(è + ~P~) = E/(P), and under

this isomorphism C ~ p-1C mod E[p] = p-1C mod(C + ~P~) = E[p] mod~P~.
For P there are p choices, forming a principal homogeneous space under C,
and Q is determined by (b).
There are two possibilities. If P is not in the kernel of reduction, the triple

(É, P, Q mod(P)) will specialize to lé’ and may therefore be ignored. (This is
always the case if P is not in the kernel of reduction. If P is in the kernel of
reduction, p - 1 of the p triples will be of this form.) Otherwise, P is in the
kernel of reduction, and E is not contained in it, so P is unique. Assume that
we are in this case.

Write red for the image under the reduction map. Then red(E’) = red(E)(p) =
red(E). Now 03B6 = ~P, Q~E = (P mod è, Q)E. If C is the kernel of the dual

isogeny E ~ Ê, namely C = E[p]/C, we get Q mod C = Q. But C reduces to
the kernel of Frobenius, so red(Q’) = red(Q)(p) = red(Q ). Thus the reduc-

tion of the triple (E, P, Q mod~P~) considered here coincides with the reduc-
tion of 03BE’. D

3.8. COROLLARY. Consider U#(~~-1) = No 0 R (with trivialized Galois

action), and its infinitesimal deformation U#(~~-1). Then Gal(Qp/Qp) acts on
U#(~~-1) via the character (. ~~-2. D
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3.9. A-Adic Brandt matrices

The Hecke ring T* is faithfully represented on N. When one writes this
representation in terms of the canonical basis S of supersingular elliptic
curves, one gets the famous Brandt matrices. See [Gr] §§1 and 2. Restrict
the Brandt matrices to No. Our result that U# is free of rank m ( = rank No)
over A has the following implication. Since the Hecke operators commute
with A, they act on U# via m x m matrices with coefficients in A, which
mod 7 give the usual Brandt matrices (restricted to No). We call these the
A-adic Brandt matrices, and think of them as deformations of the usual
Brandt matrices.

Mod I2, picking a generator of 0 and identifying A/12 with R[B] as
above, the A/12-adic Brandt matrices can be written as A + BE, where A
and B are in End(No ~ R) = End(Nô Q R). With the notation of the
remark at the end of Section 3.5, what we have proved is that

3.10. With some non-canonical choices, we can make our results very
explicit, and amenable to computations too.

Let d be a primitive root mod p. Then d mod + 1 is a generator of the

cyclic group A, and d mod rth powers a generator of A (D R = 03BCr. Let
B = ~d~ - 1 ~ I/I2 = RE, so that A/I2 = R[03B5].

Identify Qxp Q R = R p R under (dapb modulo r th powers) H (a, b).
Fix a basis of N, and a basis of No. Of course, a natural basis for N is

S = {eo, ... ,em}, and for No we can take {e1 - eo, ... , em - e0}. We have
the dual basis for U# = Hom(No, R). Choose a basis for U# as a free
R[03B5]-module that projects modulo B to this basis of U#. Write Up in terms
of this basis. It is an m x m matrix with entries in R[E]. Clearly
L2p = 1 + BE, and we write

(a more suggestive notation might have been dU2p/d03B5). Note that B is

independent of the choice of a basis for U#, and depends only on the choice
of basis for No, which is somewhat "natural".

Let Q : N x N0 ~ Qxp Q R = R Q R be the p-adic period pairing "mod
rth powers", and write Q for its first coordinate, and ordpq for its second
coordinate. These are m x (m + 1) matrices with entries in R. The matrix

ordpQ is a particularly simple one. Indeed, the pairing ordp Q is the

restriction to N x No of the pairing N x N - Z given (with respect to the
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basis S) by a diagonal matrix indexed by S, whose entries are 1, 2 or 3 (if
p - 1 mod 12, this is the identity matrix).

THEOREM 3. With the choices made above

REMARK. This is the "refined" analogue of Theorem 3.18 in [G-S].

Proof Compute 03B4: N~o ~ Qxp ~ R = (No ~ R)2 ~ N~o O RE = No Q R
using Lemma 3.5 (8) and Corollary 3.8. We get that for oc, 03B2 in No, a, b in R

We have used here the fact that in R[E], ~da~ - 1 = a(~d~ - 1). The
theorem follows now from Theorem 2, since qR is given by the matrices
(Q, ord p Q). D

In [dS2] we shall show how to obtain from Theorem 3 the "refined"
conjecture of Mazur and Tate for elliptic curves of prime conductor.

3.11. A numerical example

We end the paper with a numerical example. The data is taken from

Antwerp IV. Let p = 61, and 1 = r = 5. The modular curve Xo(61) is of
genus m = 4. The Jacobian Jo(61) has 2 simple factors: an elliptic curve A1
and an abelian variety A2 of dimension 3. The Up operator acts like -1
on A, (thus A i has non-split multiplicative reduction at 61), and like + 1
on A2. It follows that Ai n A2 is a 2-group. In fact, tables of Cremona show
that #(A1 n A2) = 4 (this number is the square of the degree of the strong
Weil parametrization Xo(61) - Ai, which turns out to be 2). In particular
Jo[5] = Al[5] Q A2[5]. The Eisenstein quotient of Jo[5] is A2[5]. This
means that the filtration

splits over A1[5], but not over A2[5].
The p-adic period pairing of Jt is determined by the formulas of

[dS3]. Let S = {eo, ... , e4} be the five supersingular elliptic curves in

characteristic 61. Their j-invariants are j(eo) = 9,j(e1) = - 20, j(e2) = -11,
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and are the two roots of Define the pairing

The resulting matrix is

Let us use d = 2 as a primitive root modulo 61. Then the matrix

ordp~ei, ej) is the identity matrix (this is so whenever p ~ 1 mod 12), and
the matrix of the "logarithm to base 2" of the "unit part" of the above is

which modulo 5 is the matrix

From here it is easy to compute the matrices ordp Q and Q that figure out
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in Theorem 3. As a basis of No we choose ei - eo, 1  i  4. Then ordp Q
is the matrix

and Q is the matrix

The structure of the various modules studied in the paper can be also

worked out explicitly. The ring A is F5[03BC5], and as a generator of the
augmentation ideal 7 we may take a = ~2~5 - 1, where ~2~5 is the

projection of ~2~ E Fx61 to Jls. The ring A’ is F5[03BC12], and as a generator of
I’ we may take ce’ = ~2~12 - 1. The module V# is the dual (as a vector
space over F5) of Jl(61) #[5][03B1’]. We have Jl(61)11[5][a’] ~ F5 Q AS. In
particular we see that it is of dimension 41 over F5. The graded pieces U#
and W# are of dimensions 20 and 21 respectively. The module U# is of
dimension 8, and in the filtration given by the left column of diagram (2)
each piece is of dimension 4. Since, canonically, U# = U = Hom(No, IFs),
the endomorphism of U# induced by the action of Up - 1 on U# can be
expressed as a 4 x 4 matrix in the basis {ei - eol. The contents of Theorem
3 is that this matrix is related to the period matrix computed above by (11).
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