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0. Introduction

In [1, 2, 4, 5, 6] ideas of Deligne are used to prove the factoriality of the
surface ZP = f (X, Y) for a generic choice of polynomial f (X, Y) of

arbitrary degree &#x3E;, 4 (with p &#x3E; 3). In this paper we study the class group of
surface Zn = f’(X, Y) for arbitrary positive integer n.
The above mentioned calculation leads us naturally to conjecture that

the class group of Zn = f (X, Y) is factorial for a generic choice of f. To be
more precise, let f = E TijX’Yi be a generic polynomial with indeterminate
coefficients and let An = K[X, 1’: z]/(zn - f) where K is the algebraic
closure of FP(TJ) with Fn the prime field of p elements (p &#x3E; 3). Assume the
degree of f is at least 4. Then we conjecture

0.1. For all nE 7L+, An is factorial.

In this paper we prove that (0.1) reduces to the case gcd(p, n) = 1. We
feel that this latter case can be approached by adapting a theorem of
Steenbrink [9] from characteristic 0 to characteristic p by systematically
replacing singular cohomology by étale cohomology; a project we are
currently working on.

In Sections 1 and 2, descent techniques are used to study the class group
of arbitrary surfaces Zn = f Two main results proved are (2.16), which
reduces (0.1) to the case n = pm where gcd( p, m) = 1, and (2.5), which
shows that if (0.1) is true for some n, then it is true for all divisors of n.

In Section 3 the reduction of (0.1) to the case gcd(p, n) = 1 is accom-

plished by analyzing the action of W = Gal(K, FP(Tij)) on the divisor class
group of ZP’ = f (3.8).
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1. Galois descent

1.1. NOTATION. If R is a commutative ring with unity and P is a prime
ideal of R, denote the residue field of R at P by k(P) = Rp/PRp.

If R is a Krull domain, let Cl(R) denote the divisor class group of R as
defined in P. Samuel’s Tata notes [7] (also see [3]).

1.2. DISCUSSION. This section makes use of Galois descent techniques
and the next section imploys radical descent methods. Suppose G is a finite
group of automorphisms acting on a Krull domain B and A is the fixed

subring of B. Denote the multiplicative set of units in B and A by B* and
A*, respectively. Since G is a finite group, the ring B is integral over A. The
inclusion A -+ B induces a homomorphism 9: CI(A) ~ Cl(B) by the follow-
ing theorem.

1.3. THEOREM. Let A c B be Krull rings with B integral over A or with

B flat as an A-module. Then there is a well defined group homomorphism
~: CI(A)  Cl(B) such that for each height one prime P of A

where the P’ are the prime ideals of B lying over P and e(P’, P) is the
ramification index of P’ over P ([7], pp. 19-20).

1.4. TH EO R E M . Let A and B be as in (1.2). Then ~ induces an injection
0: ker ç - H1(G, B*). If every prime divisorial ideal of B is unramiJied over
A, then 0 is a bijection ([7], p. 55).

1.5. REMARK. If G in (1.2) is a finite cyclic group generated by an
element rc, then H1(G, B* ) is the homology of the complex B* h B* N A *
where h(x) = rc(x)/x for x G B* and N is the norm on B* ([7], p. 57).

1.6. LE M M A. Assume in (1.2) that G is cyclic of order n and B is a unique
factorization domain. Assume that for each prime element b E B either

(i) rc5(b)B =1= rct(b)B whenever s =1= t(mod n), or
(ii) b E A.

Then H 1 (G, B* ) = 0.
Proof By (1.5) H’ (G, B* ) is the homology of the complex

B* h B* --N A *. Assume u is a unit in B and N(u) = 1. Let L dénote the field
of fractions of B. Each element of L* can be written as a fraction b/a where
b E B, a E A. Then by Hilbert’s Theorem 90 there exists x E B such that
h(x) = u. x can be written as a product x = wbe11 ....... brr where w E B*, the bi
are prime elements in B and e; G Z+, 1  i  r.
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Note that since 7r(x) = ux, ifn(bJB = b f B, then 03C0(bi) multiplied by a unit
must appear in the prime factorization of x in B with the same exponent
as b j. Therefore, in order to show that u E h(B*) we may reduce to the case
x = wb03C0(b) ... 03C0m-1(b) where m is the smallest positive integer such that
nm(b)B = bB. By hypothesis either b E A and m = 1, or m = n, in which case
x = wN(b). In either case u = 03C0(x)/x = 7r(w)/w, so that u is a boundary. 0

1.7. LEMMA. Assume in (1.2) that G is cyclic of order n and B is a unique
factorization domain. Assume for each prime element b E B either

[k(bB): k(bB n A)] - 1 or b E A. Assume also that B is unramified over A.
Then H1(G, B*) = 0.

Proof. Let b be a prime element of B and b E A. Then by hypothesis there
are exactly n height one primes of B lying over bB n A and each of them
is generated by a conjugate of b. Thus b satisfies condition (i) of (1.6). 0

1.8. NOTATION. If E is a field, A = E[X 1,..., Xn] is the polynomial ring
in s variables over E and h # 0 is an element of A, let deg(h) denote the
degree of h and h+ the highest degree form of h. If g # 0 also belongs to A
define deg(h/g) = deg(h) - deg(g).

1.9. ASSUMPTIONS. Throughout K will be an algebraically closed field
of characteristic p &#x3E;, 3. Assume f E K[X, Y] is an irreducible polynomial in
two variables X, Y of degree at least 4. We will assume that af/aX and
ôf /ô Y meet transversally and in the maximum possible number of points
of K 2. This number is (deg f - 1)2 if deg/0(modp) and

(deg f )2 - 3 deg f + 3 otherwise (see [5, pp. 287-288]). Implicit in these
assumptions is the fact that f+EK[XP, Y’’]. We remark that a generic f
of degree at least 4 satisfies the conditions stated above.
For each nEZ+, let An = K[X, y:z]/(zn - f ) and En denote the field of

fractions of A". Let x, y, z denote the images of X, Y, Z in An. Then the
subring of K[x, y] of An is isomorphic to K[X, Y].

Let Wn = Spec(A" ). Since Wn has only finitely many singular points, A"
is noetherian integrally closed and hence a Krull ring.

1.10. LEMMA. Assume nEZ+ and CI(An) = 0. Then CI(Am) = 0 for all
m c- Z ’ such that m divides n and gcd( p, n/m) = 1.

Proof It’s enough to prove the case n = mq where q is a prime number.
Let CE K be a primitive q-th root of unity and let 71 be the K(X, Y)-
automorphism on K(X, x Z) defined by 03C0(Z) = cZ. Then 7r induces an
automorphism on A,,. Let G be the cyclic group generated by 03C0 and A be
the fixed subring of An. Then A = K[x, y, zq] ~ Am.

Let b a prime element of An . Then b can be written b = £ilé aiz’ for
unique ai E A. Since unless ai = 0 for
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1 a 1; i.e., unless b E A.
Since f is irreducible in K[X, Y], z is a prime element in An. Since

is unramified over we obtain by (1.7) that

By (1.3) and (1.4) it follows that

which by Nagata’s lemma implies Cl(A m) = 0. D

2. Radical descent

2.1. DISCUSSION. Let B be a Krull ring of characteristic p ~ 0, and let
L be its quotient field. Let A be a derivation of L such that à(B) c B. Let
L’ = ker(A) and A = L’ n B. Then A is a Krull ring and B is integral over
A since BP c A c B. By (1.3) there is a well defined group homomorphism
9: Cl(A ) - CI(B).

Set 2 = {t -’ Ot: t -1 Ot E B, t E L* ) and 2’ = u -1 Du: u E B*} . Then is
an additive subgroup of B and 2’ is a subgroup of 2.

2.2. THEOREM. (a) There exists a canonical monomorphism 0: kercp 2/
2’. (b) If [L: L’] = p and if 0(B) is not contained in any height one prime of
B, then 0 is an isomorphism ([7], p. 62).

2.3. PROPOSITION. If [L: L’] = p in (2.1) then there exists a E A such

that AP = aA ([7], p. 63).

2.4. PROPOSITION. If [L: L’] = p in (2.1), then an element XEL is

logarithmic derivative (i.e. x = t- 1 ~t for some teL) if an only if
~P-’x - ax + xP = 0, where 0’’ = a~ ([7], p. 64).

2.5. PROPOSITION. Assume ne Z+ and Cl(An) = 0. Then CI(AN) = 0 for
all positive divisors m of n.

Proof. It’s enough to prove the case n = mq where q is a prime number.
The case gcd(p, q) = 1 is (1.10). Thus we are left with the case n = mp.
The derivation d = %Z defines a derivation on An with kernel

K[x,y,zP] ~ By (2.2) CI(Am) ~ L/L’, where L = {u-1dU:UEEn
and U-1dUEAn} and L’ = {u-1dU:UEA:}. Let tELB{0}. We have

t = £?Il tiz’ for unique t, E k[x, y]. By (2.4) dP- 1 ttP. If we compare
coefficients of z{r-l}p on both sides of this equality, we obtain for each
r = 1, 2,..., m,

Since z" = ,f; we have for each r = 1, 2,..., m,
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Choose s such that deg(tsp _ 1 ) &#x3E; deg(trp -1 ) for each r. tfp-l 1 appears on
the right side of one of the equations in (2.5.2). Let tup-1 1 be the element on
the left side of this equation. Since 1, f +, ... , (f+)P- 1 are independent over
K(XP, YP), deg tS p -1 &#x3E; deg tu p -1 , ) &#x3E; deg(tfp-Ifj) &#x3E; p deg(tsp-1)’ which is

impossible. Therefore 2 = 0. D

The next proposition follows easily by (2.2), (2.3) and (2.4). Details are
provided in [5]. Also see the proof of (2.13).

2.6. PROPOSITION. Let D be the derivation on K(X, Y) defined by

(a) ker D n K [X, Y] = K [XP, YP, f];
(b) A p is isomorphic to K[XP, YP, f];
(c) CI(A p) is isomorphic to L0 = {u-1Du:UEK(X, Y) and u-1Du

E K [X, Y] };
(d) There exists ao E K[XP, YP, f ] such that DP = aoD and deg(ao) 

( p - 1)(deg( f ) - 2) ([5], pp. 616-622).

2.7. THEOREM. Let (D be an algebraically closed field of characteristic

p # 0. Let g E ~[X, Y], D = 
a a 

and a be such that DP = aD. Letp = 0. Let gE1&#x3E;[X, Y], D = 9x a a - Y qY aX a and a be such that DP = aD. Let
QE03A62 be such that gx (Q) = gy(Q) = 0 and IH(Q) a root of T2 = H(Q),
where H = gxxgyy = gx2y. Then a(Q) = (H(Q))P-I (see [4, Theorem 1.5]).
2.8. NOTATION. Let S = IQ c- K 2: f X(Q) = f y (Q) O}.
2.9. LE M M A. If t E K [X, Y], then { Q E S: t(Q) = 01 has less than or equal
to deg(t). (deg(f) - 1) elements.

Proof. Let t = t1ei t’- be the prime factorization of t in K[X, Y]. Since
fx and ,f’Y have no common factors, t, is relatively prime to either fx or fy,
1  i  s. By Bezout’s Theorem [8] the number of points Q E S such that
ti(Q) = 0 is at most (deg ti)(deg f - 1). It then follows that the number

of Q E S such that t(Q) = 0 is at most (E deg ti). (deg f - 1) 
deg t(deg f - 1). ~

2.10. LEMMA. lftEK[X, Y] and t(Q) = 0 for each Q E S, then either t = 0
or deg t &#x3E; deg f - 2.

Proof. Assume t =1= 0 and deg t  deg f - 2. By (2.9), the number of
points Q E S such that t(Q) = 0 is at most (deg f - 2)(deg ,f - 1). By (1.9),
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there is at least one point Q E S such that t(Q) # 0. D

2.11. LEMMA. Assume aoGK[XP, YP, f] is such that Dp = aoD. If
t E K [X, Y], deg t  deg f - 2 and Dp -1 t - aot = 0, then t = 0.
Proof Given Q E S, (DP-lt)(Q) = 0 and ao(Q) # 0 by (1.9) and (2.7)

(recall that af/ax and ôf /ô Y meet transversally at Q). Therefore t(Q) = 0.
By (2.10) we obtain t = 0. D

2.12. NOTATION. The derivation D on K(X, Y) extends to a derivation
on K(X, 1’: Z) with Zn - f in its kernel. Thus D induces a derivation on En
which we denote by Dn. 2n will denote the additive group of logarithmic
derivatives of Dn in An’ 2n = {u-1Dnu:UEEn and u-IDnUEAn}.Ln will
denote the subgroup of 2n of logarithmic derivatives of units in An.

2.13. PROPOSITION. (a) An p is isomorphic to ker Dn n An; (b) there

is a well defined group homomorphism ~n: CI(Anp) ~ with ker qJn
~ Ln/LN’ ·
Proof ker Dn n An ;2 K[xP, yP, z], the latter is clearly isomorphic to

K[X, 1’: z]/(znp - fp»), where fp) is obtained from f by raising each
coefficient of f to the p-th power. Since K is perfect, the automorphism
a - aP of K induces an isomorphism Anp  K[xP, yP, z]. It follows that

K[xP, yP, z] is integrally closed. Since [En : K(xP, yp, z)] = p, ker Dn n An and
K[xP, yP, z] have the same field of fractions. Since ker Dn n An is integral
over K[xP, yP, z], we obtain (a). (b) is an immediate consequence of (a) and
(2.2). D

2.14. PROPOSITION. Let t = £n-1 i=O tiziEAn, where tiEK[x,y], 0  i  n.
For each i = 0,1, ... , n - 1, let J(i) = {j: 0  j  n and pj == i(m od n) } . Then
t E 2n if and only if for each i = 0,1, ... , n - 1,

where ao is such that DP = aoD.
Proof By (2.4), tELn if and only if Dpn - 1t - aot = -tP; which holds if

and only if L (DP-1ti - aoti) Zi = -L tf ZiP. Since 1, Z,..., zn-l, is a basis for
En over K(x, y) and since Z" = f we obtain the desired result by comparing
powers of z on both sides of the above equation.

2.15. LEMMA. Let t = Li==-J tiziEAn, where tiEK[x,y], 0  i  n. If
t E 2n, then deg ti deg f - 2 for each i.

Proof Let r be such that deg tr &#x3E; deg ti for each i. We consider two cases.

Case 1. gcd(p, n) = 1.

We have pr = nq + s for q, s E Z with q &#x3E; 0, 0 K s  n. By (2.14),



249

DP-lts - aots = -tpr fq. By (2.6), deg ao  (deg f - 2)( p - 1). A simple
induction shows that deg(DP- ’1ts)  deg ts + (deg f - 2)( p - 1). Thus

p deg tr  deg(Dp- ’ts - aots)  deg t, + (deg ,f’ - 2)(p - 1)  deg tr + (deg
f - 2)( p - 1). Hence deg tr  deg f - 2.

Case 2. p 1 n.

Again pr = nq + s as in Case 1. By (2.14),

. Since p divides n and each j E J(s)
is less than n, the integers (pj - s)/n are distinct modulo n. Since

f ’ E K(xp, yP) by (1.9) and since r E J(s) it follows

Hence deg tr  deg f - 2. D

2.16. THEOREM. Let mEZ+ such that gcd( p, m) = 1. If CI(Anm) = 0 then
CI(A prm) = 0 for all r &#x3E; 0.

Proof. The case r = 0 follows by (2.5). The case r = 1 is by hypothesis.
To prove the remaining cases we need to establish the below claim.

CLAI M. If p divides n, then the composition An/p  K [x, y, zP] q An maps
2n/p isomorphically onto fi/n.

Proof of Claim. Let t = Y-1-’ ti zi’E- Ln where ti c- K [x, y] and n = pSm.
Since s &#x3E; 1, we have that if gcd(i, p) = 1, then by (2.14), DP- lti - aoti = 0;
which by (2.11) and (2.15) implies ti = O. Thus t E K [x, y, zP] ~ An/p.
Therefore the isomorphism that maps AnIp onto K[x, y, zP] maps 2n/p onto
Ln

Now CI(Apm) = 0 and (2.13) imply Lm/L’m = 0. Then the claim shows
that 2prm/2;rm = 0 for all r &#x3E; 1. The remaining cases of the theorem follow
by (2.13) and a simple induction. D

2.17. PROPOSITION. The kernel of qJn: CI(Anp) --&#x3E; CI(An) isfinite p-group
of type ( p, ... , p) of order pM, where M  n deg f (deg f - 1 )/2.

Proof. By (2.13) we need only show that 2n has the stated properties. By
the claim in the proof of (2.16) we may reduce to the case gcd(p, n) = 1.

Let t = Li==- J tizi E Ln, where ti E K[x, Y ], 0  i  n. By (2.15), each

ti = 03B1 ars(i) xr yS where each ars E K and deg ti  deg f - 2. pi = nq + j for
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q, j c- Z, q &#x3E; 0, 0  j  n. gcd(p, n) = 1 implies J(i) = {i}; which by (2.14)
yields

Comparing the coefficients of x°p ybp on both sides of (2.17.1) we see that
for each triple of nonnegative integers (e, a, b) with e  n and

a+b,degf -2,a (e) must satisfy an equation of the form

where Lab is a linear expression in the otrs with coefficients in K. There are
a total of n deg f (deg f - 1)/2 such equations. The ring R = K[..., 03B1(i)rs, ... ]
with these relations is a finite dimensional K-vector space spanned by all
monomials in the ars of degree  (p - 1)ndegf(degf - 1)/2. This shows
R is Artinian and has a finite number of maximal ideals. Thus the equations
in (2.17.2) have only a finite number of solutions in K, which by Bezout’s
theorem [8, p. 198] is at most pn deg f(deg f - 1 )/2.

Since 2n c K [x, y, z], each element of 2n has p-torsion. D

2.18. REMARK. Our main objective is to reduce conjecture (0.1) to

the case gcd(p, n) = 1. Theorem (2.16) allows us to reduce to the case
n = pm where gcd(p, m) = 1. In the next section we use results concerning
Gal(K(Tij)IK(Tij» to complete the project. Proposition (2.5) gives us some
flexibility when attempting (0.1). For example, we may reduce (0.1) to the
case n --- 1 (m od p).

3. The action of the Galois group

3.1. NOTATION. In this section Fp is the prime field of characteristic
p &#x3E; 3, Tij are indeterminates algebraically independent over Fp where
0  1 + j  M with M a positive integer greater than or equal to 4. We
denote the following:
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For nE Z+, let Sn = {(03B1, {03B2, y) E K3: (a, 03B2) ES and yn = ,f’(03B1, 03B2) 1.
In [l, 4] it is shown that S has the maximum possible number of

elements as described in (1.9). Let Q 1, .... QI be a listing of the elements of
S. Then we can list the elements of Sn as Qij, where if Qij = (a, 03B2 y), then

(a, fi) = Qi. Finally, for each i, let IH(-Q i) denote a fixed root of the
equation T 2 = H(Qi).

The next two theorems are proved in [2] and [4].

3.2. THEOREM. ~ acts on S as the full symmetric group (see [4, p. 353]
and [2, p. 296]).

3.3. THEOREM. For every pair Qi =1= Qj E S, there exists u c- e such that u
acts as the identity on S, and

([4, p. 354] and [2, p. 297]).

3.4. REMARK. Assume neZ+ such that gcd( p, n) = 1. Let CE K be a

primitive n-th root of unity. Let 7c be the K(X, Y)-automorphism on
K(X, 1": Z) defined by 03C0(Z) = cZ. Then 7c induces an automorphism on An
and let T: An - K[x, y] dénote the trace map.

Since the points QijE Sn lie on the surface zn = f, we may define t(Qij)
for t E An by evaluating any preimage of t in K [X, Y, Z] at Qij. Observe that
if for a fixed i, t(Qij) = 0 for all j, then for each j, T(t)(Q ij) = 0, which yields
T(t)(Q i) = 0.

3.5. LE M M A. Assume gcd( p, n) = 1 and t = £)r=On-1 trzr E An. If for a fixed i,
t(Qij) = 0 for each j, then tr(Qi) = 0 for each r = 0, 1,..., n - 1.

Proof It is well known that f(Qi) # 0 for each i (it also follows by (3.2)).
Let s be a nonnegative integer less than n. Then t(Qij) = 0 for each j implies
zn-st(Qij) = 0 for each j. As we saw in (3.4) we obtain T(zn - S t)(Q 1 )
= nZn ts (Q i ) = nf(Qi)t s(Qi) = 0; hence ts(Qi) = 0.

3.6. LEMMA. Assume gcd( p, n) = 1. For each t E Ln and Qi ES, there is an

rij E Fp such that t(Qij) = rij,J H(Qi). Furthermore, the ma p

defined by (03A6(t) = (t(Q ij)) is an injection of groups.
Proof. Given tE2n, Dh-It - aot = - tP where aoEK[xP,yP,f] such

that DP = aoD by (2.4). Evaluate both sides of this equality at Qij to obtain
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aO(Qi)t(Q ij) = tP(Qij). Now use (2.7) to obtain the first statement of the
lemma.

Write t = Ls ts zs (D(t) = 0 implies ts(QJ = 0 for each i by (3.5). By (2.10)
and (2.15), each ts = 0. D

3.7. THEOREM. Assume gcd(p, n) = 1. Then the map Cl(Anp) - CI(An) is
an injection.

Proof. By (2.13) it’s enough to show 2n = 0. Let tE 2n and suppose
t ~ 0. Assume 03A6(t) = (rij H((Q i)). If 6E G then u(t) E 2n and the action of
J on t is compatible with the action of J on 03A6(t). By (3.2) we may assume
that r 11 ~ 0. By (3.3), there is 03C3’, 03C3" 03B5- 03BE such that

Then t = t - u’(t) - a"(t) + 6" 6’ (t) E 2n and has the property that

î(Qij) = 0 for all i ]&#x3E; 2, 0  j  n, and î =1= 0 since the first coordinate of 03A6(t)
is 4r11. H(Q 1) = O.
We have t = Es=on-1 tszs, where ts E K[x, y], 0  s  n. By (3.5) ts(QJ = 0

for each s and each i &#x3E; 2. We now show that this implies each ts = 0; thus
obtaining a contradiction.

If deg f ~ 0 (mod p), then S has (deg f - 1)2 distinct points. By (2.15),
deg ts  deg f - 2. lf ts =1= 0 then ts(Q) = 0 at most (deg f - 2)(deg f - 2)
points Q E S by (2.9). Hence ts = 0.
The case deg f n 0(modp) requires a bit more effort. For each

s = 1,..., n - 1, let m(s) be the smallest positive integer m such that

pms &#x3E; n. We proceed by induction to show that ts = 0.
If m = 1, then ps = nq + r where q,rEZ+,r  n. By (2.14)

DP- 1 tr - aotr = - tpsfq. The degree of the left side of the equality is at most
p(deg f - 2) by (2.6) and (2.15). Since q &#x3E; 1, we obtain deg ts  deg f - 3.
By (2.9) and the fact that S has (deg f)2 - 3 deg .f’ + 3 points, we have
tS=O.
Assume that ts = 0 whenever m(s)  d and 1  so  n with m(so) =

d &#x3E; 2. By (2.14), DP- 1 tpso - aotpso = - tfo. Since rri(ps o) = m(s o) - 1,
tpso = 0; hence tso = 0. From this it follows that t = to E K[x, y]. In the

introduction we mentioned that CI(AP) = 0 for a generic g of degree &#x3E; 4,
which shows to = 0 by (2.13). D
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3.8. THEOREM. For a generic f of degree at least 4 the following two
statements are equivalent:

( 1) CI(An) = 0 for all nEZ+;
(2) CI(An) = 0 for all nEZ+ where gcd(p, n) = 1.
Proof. By (2.16) and (3.7). D
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