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0. Introduction

Let X be a proper and integral curve over an algebraically closed field k.
If we suppose the curve to be smooth, the set made up by the isomorphism
classes of the invertible sheaves of degree 0 over X is the set of rational
points of the jacobian, an abelian variety. But, when we allow singularities
for X, the jacobian is not proper anymore. Nevertheless, we get a natural
compactification by considering the isomorphism classes of rank 1 torsion

free sheaves over X. The related compactified functor Pic(X) is representa-
ble. Let g be the areithmetic genus of X. Then, we can define the theta
divisor on the reduced g - 1 component, the points of which correspond
to the rank 1 torsion free sheaves having non-zero global sections. This
work endeavours to prove that the theta divisor on Pic (X) 9 -1 1 is ample.
In the first chapter, we recall the definition and basic properties of
Pic(X). In the second, we define the theta divisor, and we show that two
times theta is generated by its sections on the normalization of Pic(X).
Then, in the third chapter, the ampleness of theta is proved by demonstrat-
ing that no proper curve is included in the complement of its support.
Finally, we give some applications.

I. The compactified Picard functor

We suppose that all schemes are locally noetherian. We recall the definition
and basic properties of the compactified Picard scheme following [AK 1].
For this sake, it is natural to work in the relative situation.

Let f : X --&#x3E; S be a morphism of finite type, flat and projective, whose
geometric fibers are integral curves. Moreover, let us denote by (Qx(l) an
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invertible and S-ample sheaf on X. In this chapter, T will be an S-scheme.

DEFINITION 1. A sheaf M on X T = X x s T is a (relative) quasi-invertible
sheaf, if it is coherent, T flat, and if its restriction to every geometric fiber of
f is rank 1 torsion free.

It is useful to have a definition for the degree of a sheaf on a proper and
integral curve, even with singularities. This definition will yield de facto the
Riemann-Roch formula.

DEFINITION 2. Let C be an integral and projective curve on an algebrai-
cally closed field k, and M a quasi-invertible sheaf on C. We define the degree
of M and we write d(M), or simply d, the integer such that:

where g is the arithmetic genus of X, and hi’(M) denotes dimkHi(X, M).

LEM MA 3. Let C be a proper and integral curve on an algebraically closed
field k, M a quasi-invertible sheaf, and 2 an invertible sheaf corresponding
to a Cartier divisor with support in the smooth locus. We then have:

Proof. We only need proving this result for 2 = (9c(x) where x is a

smooth point. We have the exact sequence:

This yields the following exact sequence:

where V is a sheaf in k(x)-vectorial spaces of dimension 1, concentrated at
the point x.
By the long exact sequence, we get

Let P’ be the functor that takes every S-scheme T to the set of ail

quasi-invertible sheaves on X T. Moreover, let d be an integer. Then P’d
denotes the subfunctor of P’ made up by the quasi-invertible sheaves of
degree d.

DEFINITION 4. The compactified Picard scheme is the sheaf.f’or the étale

topology associated to the functor P’. We shall denote it by Pic(X/S). In the
same way, Picd(X/S) is associated to P".
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Pic d(X/S) is an open and closed subfunctor of Pic(X/S).

The following theorem has been proved by Altman and Kleiman [AK 1
(6.6)], following Grothendieck’s sketch [G].

THEOREM 5. Let d be an integer. The functor Picd(X/S) is representable
by a scheme, that is projective, locally on S.

We shall denote this scheme again by Picd(X/S).
Suppose now that there is a section 8 with values in the smooth locus:

03B5: S --&#x3E; X.

Consider the functor P of the quasi-invertible rigidified sheaves: for any
S-point T, P(T) is the set of isomorphism classes a) such that A is
quasi-invertible on X T and a is an isomorphism between 8*(A) and (QT-

PROPOSITION 6. The,functor P is a sheaf for the étale topology. More-
over, the natural composite map

is an isomorphism of étale sheaves.
Proof First of all, let us show that rigidifying cancels the non-trivial

automorphisms.
Indeed, all quasi-invertible sheaves are simple i.e. for any S-point T, there

is a canonical isomorphism

where A is any quasi-invertible sheaf on X [AK 1 (5.2)].
Now, to show that P is a sheaf, let T be an S-point, and suppose we have

an exact diagram:

where T’ covers and

We get the following diagram:

Take a point in P(T’) whose image by both arrows corresponding to the
projections coincide, then the cocycle condition is fullfilled in P(T"’),
because, as we saw, a rigidified sheaf has only trivial isomorphisms. By étale
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descent of coherent sheaves, we get a T point of P making commutative the
above diagram. D

II. The thêta divisor

Now, the base S is the spectrum of an algebraically closed field k. The

choice of a smooth point x in X gives us a rigidification e. We write simply
Pic(X) for Pic(X/k).

Let z be a rational point of X x k Pic(X)9-1. It corresponds to a

quasi-invertible sheaf A on X of degree g - 1. Thus we have

h°(M) = h1(M). We are going to prove that, if we neglect the embedded
components of Pic(X) 9-1, the set of the points z such that hO(M) = h1(M)
do not vanish, is the support of a Cartier divisor, namely the theta divisor.

Let 5’ be the universal sheaf of Pic(X)g-l. We consider an affine open
set Spec(A) of Pic(X)9-1. There exists a complex (Kj) of locally free

A-modules of finite type such that the following holds for any A-module N
(see e.g. [H] III 12.2):

In particular this complex computes the cohomology of the quasi-invertible
sheaves corresponding to the various points of Spec(A):

where a is a point of Spec(A), and k(«) denotes its residual field.
Universally there is no cohomology in degree greater than one, thus we

can concentrate the complex K ’ in degree (0, 1). Moreover, as we work on
the component of degree g - 1, K° and K’ have the same rank.
Working for the moment locally, we introduce the determinant -9 of the

map K° ~ K1 
1 defined by det(K 1) Q det(K°)-’. It is an invertible sheaf on

Spec(A). Tensorizing by det(K°)-’, the map K° - K1 gives rise to a

map (OA -D. This last map defines in turn a section ô of -9 whose set of
zeros we denote by 0. 0 is a closed subscheme locally defined by one
equation, but we do not know whether 0 is a Cartier divisor or not.
We do not modify 0 if we replace K ’ by a quasi-isomorphic complex of

the same type. Glueing up, we get 0 globally on Pic(X)9-’.

REMARK. Making use of the (quasi)-projectivity of Pic(X)9-1, we could
have constructed globally on Pic(X)9-1 a complex KO ~ K1 1 which com-
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putes universally the cohomology of f . This is an other way of proving
the global existence of 0.

We denote by U the complement of the support of 0. It is an open
subscheme of Pic(XY- 1.
We first notice that there is a natural action of the Picard group scheme

Pic(X) on Pic(X) given by the following formula:

In particular, Pic°(X) acts on Pic(X)9 - 1 .

PROPOSITION 7. The saturation PicO(X) + U of the open set U under the
action of Pico(X) is the whole scheme Pic(X)9-1.

Proof. Let A be a quasi-invertible sheaf on X of degree g - 1. We are
going to prove that there exists an invertible sheaf 2 on X of degree 0 such
that

To see this, let JV be an invertible sheaf of degree n on X sufficiently ample
such that:

Lemma 3 yields: d[M Q N] = d(M) + n.
Let us denote now by Mo the sheaf JI Q ae. If Ao has no global section,

the problem is solved with 2 = ae. Otherwise we consider a non-zero

global section s of Mo and a point x, of the smooth locus where s does not
vanish (i.e. where s generates Mo). Consider Mo Q Ox ( - x 1 ); s is not any
more a global section of M1 Q (9x( -X 1). Thus we have:

On the other hand, we have:

Hence the two equalities below hold:

We set M1 = Mo O (OX ( - x 1 ). It is a sheaf of degree (g - 1) + (n - 1).
We now go on by descending induction. We denote by xi the various points
appearing in the process, and by Ai the various sheaves obtained. We find
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that An belongs to U and arises from A tensorizing by the sheaf

N Q9 O(- Il, i,,, Xi) we shall denote by 2 which is of degree 0. D

Let us notice that we do not know in general if Pic(X) is reduced or

whether it has embedded components. Let Y be the sheaf of those nilpotent
ideals of the structural sheaf of Pic(X)9 -1 1 generated by the sections whose
support are closed sets with empty interior. From now on pg-1 will denote
the closed subscheme of Pic(X)g- 1 defined by the sheaf J.

THEOREM AND DEFINITION 8. The closed subscheme 0 induces on

pg- 1 a Cartier divisor, namely the theta divisor that we denote again by 0.
Moreover we have D/pg-1 = (opg-1( 0).

Proof. Pic°(X) being connected, we find, as a corollary of Proposition 7,
that U does not contain any generic point of Pic(X)g-1. Thus b induces a
non-zero divisor on D/pg-1 D

We endeavour to show that 0 is an ample divisor. Let P,g- 1 be the
normalization of (Pg - 1 )red. Notice that, as PicO(X) is smooth, the action of
Pic°(X) on Pg-1 1 lifts to an action of Pic°(X) on P’9-’. We shall denote
Pic°(X) by J.
The analog of Proposition 7 holds on P,g- 1. In fact, if x’ is a point of

P,g- over a point x of pg- 1, J + x meets U, hence J + x’ meets the
pullback U’ of U in P’9- l. Set also 0’ the pullback of O in P,g- 1.

PROPOSITION 9. The invertible sheaf (9(20’) on the scheme P’9-1 is

generated by its global sections.
Proof. Let éP be the Picard scheme of P’9- 1. For any point a of J, let Ta

be the translation by a operating on P,g - 1 .
The map: a - Ta(0’) - 0’, taking divisor classes, defines a morphism of

schemes h: J --+ Po, where f!JJ° denotes the neutral component of P.

The next result is a variation on the theorem of the square.

LEMMA 10. h is a morphism of group schemes.

Let us prove this lemma. Studying the representability of J we find by
([BLR] 9.2) that, if we start with the jacobian B of the normalization of X
(an abelian variety), J arises as an extension of B by a linear group, namely
a successive extension of additive groups Ga and multiplicative groups Gm.
Thus J is an extension of B by a smooth and connected group H which is
a rational variety. On the other hand Yroed is an abelian variety as P’9-’ 1 is

normal ([G] Th. 2.1). Now, every map going from a rational variety to an
abelian variety is constant. Hence the map h from J to ’pr’ed factorizes

through B. We get a morphism of schemes from B to Yr’ed which sends the
origin to the origin. By the rigidity lemma (see [M] Ch. 6 Cor. 6.4), this
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morphism is a morphism of group schemes. Thus h has the same property.

COROLLARY 11. For any point a in J, Ta(O’ ) + T-a(0’) is linearly
equivalent to 20’.

End of the Proof of Proposition 9. To show that 20’ is generated by its
sections, we reduce to proving the following fact: for any point x in P,g- 1,
there is a point a in J such that x does not lie in Ta (O’ ) + T-a(0’).
Let us then fix x in J and let us consider the subset V+ (resp. V_ ) of the
elements a of J for which x + a (resp. x - a) belongs to U’. By Proposition
7, V+ and V are non-empty open sets of J. But, J being irreducible, V+
meets V_. We take a to be any element in V+ n V_. D

III. The ampleness of the thêta divisor

In this chapter, we work over an algebraically closed field k. We fix a

section c with values in the smooth locus of X and we call x its image. First
of all, notice that 0 is ample on pg-1 if and only if 0’ is ample on P’g-1.

PROPOSITION 12. The followiny properties are equivalent:

(i) 0’ is ample
(ii) U’ is affine
(iii) No irreducible complete curve lies in U’.
Proof (i) =&#x3E; (ii) =&#x3E; (iii): well known.

(iii) =&#x3E; (ii): 20’ is generated by its sections, so there exists a morphism 9
from P’9-’ to a projective space pn defined by the linear system 20’. 20’
appears as the pullback by ç of a hyperplane section H of pn. Denote by
Q its complement. Then U’ = qJ - 1 (Q), and the morphism ~’ from U’

to Q, restriction of 9 to U, is proper. ç’ is also quasi-finite, otherwise at
least one of its fibers would contain an irreducible curve C. C would be

closed in p,g-l, and that would contradict (iii). The morphism ~’ is now
proper and quasi-finite, hence it is also finite, and in particular affine. We
conclude that U’ is affine, being the pullback of an affine open set by an
affine morphism.

(ii) =&#x3E; (i): As U’ is affine, we have the same property for 7§(U’), where
a is any point in J. P’9-’ being separated, Ta(U’) n T-a(U’) is again affine.
In other words, this holds also for the complement of the divisor

T (0’) + T-a(0’). Moreover, we saw before that these open sets cover
P,g - 1 .
Thus any fiber of 9 is contained in an affine open set. From this, we get

that any fiber of 9 is finite because it is proper. Hence 9 is finite and 0’ is

ample. Q
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We are going to prove the amplitude of 0’ using condition (iii) of

Proposition 12. So, let us assume that U’ contains a proper and integral
curve, the normalization of which we denote by C. Then, the composite
morphism C --- &#x3E; U’ ---&#x3E; U --&#x3E; Pg - 1 corresponds to a quasi-invertible C-sheaf
-9Y on X x C, rigidified along the section c. This rigidification corresponds
to an isomorphism a from (9c to 8*(A).

In the sequel, S will be the surface X x C, and p: S --+ X, q: S - C will
denote the two projections. By hypothesis, C is above U, so q*(M) and
R 1 q* (M) vanish; this holds also after base-change, and in particular by
restriction to the fibers of q. We are going to show that under these
hypotheses the sheaf -eV is p-constant i.e. is in the form p*(M 0), where -97o
is a quasi-invertible sheaf on X. The map from C to pg-l 1 being non-
constant, we will get a contradiction.

The proof runs through six steps.

Step 1. Recall that x denotes the image of the section e. Let (Os(x) be the
pullback of (9x(x) by p i.e. the invertible sheaf of degree 1 on X consisting
of rational functions having at most a pole of order 1 along x.

Let us write the exact sequence:

Taking tensor products by (Ox(x), we get:

where V is a vector space over k of dimension 1 concentrated at x.

Taking the pullback by p of the above exact sequence, we now get an
exact sequence on S:

Next, we take the tensor product by M of this sequence. As M is
invertible in the neighbourhood of E, the sequence we obtain on S remains
exact:

As A is rigidified along the last term can be identified with V Qk (9c,
making use of the isomorphism a. Finally we get the exact sequence:
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Step 2. As q* (M) = R1q*(M) = 0, we get by the cohomological exact
sequence for q an isomorphism between q* [M(x)] and V Qk (9c. Choose a
base e of V. It then corresponds to a global section of M(x) we shall also
denote by e, which in turn induces a non-zero section on the fibers of M(x)
over C, and which generates aV(x) in the neighbourhood of c. From now
on we set a7’ = A(x). Thus the section e defines an injective morphism
from into M that remains injective after any base-change. Let fi’ be
the quotient sheaf M/os. Its support is closed in S, hence is proper. As it
does not meet [x] x C, it is finite over C.

Step 3. Here we want to show that the support of 1’ is horizontal i.e. it

is the pullback by p of finitely many points of X.
Let Ci be an irreducible component of the support of 1’. Projecting Ci

by p on X, we get a single closed point of X. Otherwise, the restriction of
p to Ci would be a surjective map from Ci onto X, because Ci is proper. In
particular, Ci would intersect the curve [x] x C at one point (x, c) at least.
A contradiction.

Step 4. We are now going to show that q*(N’) is constant.
The section e gives rise to the exact sequence:

The long exact sequence then yields:

Now q.«(Os) - q.(M’) is an isomorphism by construction. On the other
hand, R1q*(M’) vanishes. Hence the map from q* (N’ ) to R1q*(Os) is an
isomorphism. By flat base-change, we get the equality

We set E = H1(X, (Ox). Thus we find that q*(N’) is the sheaf E 0, (9c.

Step 5. We shall now embed JI’ into an invertible and p-constant sheaf on
S, that is to say a sheaf in the form p*(2), where 2 is invertible on X. Let

{X1.......,Xn} be the projection by p of the support of 1’. We can find an
affine open set W of X containing xl, ... , Xn, and a function f on W whose
zero-locus, looked upon from the set-theoretical viewpoint, is (xi, ... , ,Xn}.
We consider the open set p-1(W) and the function f ’ = f Qk 1 = p -1 ( f ).
As the support of fi’ is contained in the zero-locus of f’, 1’ is annihilated
by a power of f’, say f’m.

Let Ox(D) be the invertible sheaf on X, generated on W by f - m and
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outside W by 1. We just saw that -e7’ is contained in p* [(9x(D)] (that we
shall simply denote by OS(D)). Hence we get the inclusions:

Step 6. We now prove that N’ and A’ are constant sheaves. Taking
quotients by Os, the inclusions (Os 4 -l7’ q (OS(D) correspond to an inclu-
sion from 1’ = -97’/Ws into O9s(D)/(9s. Direct image by q yields:

By flat base-change, the sheaf q*[(Os(D)/(Os] is isomorphic to the sheaf
HO[X, (9x(D)/(9 x ] Q9k (OC.

Set F = HO[X,(Ox(D)/O9x], so that q*[(Os(D)/(Os] = F ©k Oc. Thus we
have got two constant sheaves over (9c namely q* (N ) and q*[(Qs(D)/Os].
The curve C being proper, the canonical embedding from q* (N’ ) to

q*[(Os(D)/Os] is forced constant and arises from a k-linear injective map
from E into F. In other words, the global sections of 1’ are constant
sections of Os(D)/Os. Fiber to fiber, they generate N’, hence N’ is a

p-constant subsheaf of (9s(D)/(9s, that is to say N’ is the pullback by p of
a subsheaf %0 of (9x(D)/(9x. We now define ..,/(0 to be the subsheaf (9x(D)
making the diagram below commutative with exact rows:

Pullback by p over S yields the following diagram:

We now see that A’ = p*(M 0). Hence aV’ is constant, and that ends the
proof of the amplitude of the theta divisor. D

IV. Applications and additional remarks

1. The relative case

Suppose we work in the relative situation where f: X -S is a morphism of
finite type, flat and projective, whose geometric fibers are integral curves of
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genus g. Suppose that f has a section e: S --&#x3E; X with values in the smooth

locus.

In a similar way to that of part II, we define the sheaf -9 o Pic9 -1 (X/S)
to be the determinant of the relative cohomology of the universal sheaf on

THEOREM 13. The sheaf -9 on Picg-1(X/S) is S-ample.
Proof As Picg-1(X/S) is proper, to prove the amplitude of -9 on

Picg - l(X /S), it suffices to show it for the restriction of D to

Pic9 -1 (X Os k(s)/k(s)) where s is any geometric point of S. So, we reduce
to the case worked out in chapter III. D

2. The case of’ locally planar curves

Recall that an integral curve X on a field k is said to be locally planar (for
the étale topology), if the Zariski tangent space at any point x of X is of
dimension not exceeding 2. This condition is equivalent to saying that the
completed local ring at x is the quotient of the ring k[[u, v]] by a reduced
non-zero equation. In view of ([AIK], Theorem 9) (see also [R]), Pic9 -1 (X)
is then the schematic closure of Picg-1(X) and is a local complete
intersection. Thus we get a theta divisor on Pic(X}q - 1 .

COROLLARY 14. Let X be a planar curve. Then, the theta divisor is an
ample positive Cartier divisor on Picg-1(X), the schematic closure of

When one accepts curves that are not locally planar, recall (see [R]) that
the compactified jacobian is not anymore the closure of the usual jacobian
and may have in particular components of dimensions exceeding g.
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