
COMPOSITIO MATHEMATICA

SUSAN JANE COLLEY

GARY KENNEDY
The enumeration of simultaneous higher-order
contacts between plane curves
Compositio Mathematica, tome 93, no 2 (1994), p. 171-209
<http://www.numdam.org/item?id=CM_1994__93_2_171_0>

© Foundation Compositio Mathematica, 1994, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1994__93_2_171_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


171-

The enumeration of simultaneous higher-order contacts between
plane curves

SUSAN JANE COLLEY AND GARY KENNEDY*
Oberlin College, Oberlin, Ohio 44074; Ohio State University at Mansfield, 1680 University Drive,
Mansfield, Ohio 44906, U. S. A

Introduction

Two plane algebraic curves are said to have contact of order o at a common
point P if each curve is smooth at P and if the intersection number at P is
o. Thus, for example, a contact of order 1 is a transverse intersection, a
contact of order 2 (sometimes called an ordinary contact) is a point of
tangency; more generally, a contact of order o is a point at which, in
appropriate local coordinates, the Taylor expansions of the curves agree up
to order o - 1.

In [11], Fulton, Kleiman, and MacPherson consider, inter alia, a

p-parameter family of plane curves together with p individual curves. They
compute, in terms of certain "characteristic numbers", the number of
members of the family which simultaneously have an ordinary contact with
each of the curves. The analysis has two parts, the first of which is a formal
calculation of an intersection number. The second part consists in estab-

lishing that, under stipulated hypotheses, this intersection number and the
characteristic numbers have their intended geometric meanings. (The
tendentious description we have just given greatly understates the scope of
the contact formula of [11]. The contact formula for plane curves is an
implicit special case-see further remarks in the next paragraph.)

In the present paper, by a similar two-part procedure, we derive a
higher-order contact formula. We suppose that Cl, C2, ... , Cp are plane
curves, and that Y is an s-parameter family of plane curves of fixed degree.
We suppose that o 1, 02, ... , 0p are specified positive integers, with sum equal
to s + p. Our formula then counts, under stipulated hypotheses, the

number of members of the family which simultaneously have a contact of
order o with Ci, a contact of order 02 with C2,..., and a contact of order

op with Cp. The formula is both a specialization and a generalization of the

*During the preparation of this paper, the second author was also an Affiliate Scholar of Oberlin
College.
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general contact formula of [11]: a specialization in that we consider only
plane curves, a generalization in that it counts contacts of arbitrary order.
Our formula, like that of [11], is stated using the formalism of "modules",
a notion which we explain in Section 3.
The principal tool used in the proof, and in defining appropriate

higher-order characteristic numbers, is a tower of P’-bundles implicitly
introduced by Semple [27] and later reintroduced by Collino [7]. These
bundles, which parametrize in a particularly lucid way the higher-order
curvilinear data of the plane, are naturally adapted to the study of

higher-order contact. They generalize the variety of second-order data of
p2 studied by J. Roberts and R. Speiser in [23] and [24], and, in turn, are
currently being generalized by E. Arrondo, I. Sols, and R. Speiser [4].
(They are developing a theory of "derived triangles" that provides a general
approach for obtaining the higher-order data, both curvilinear and higher-
dimensional, of any scheme.) The Semple bundles conform to the intuitive
heuristic that (n + 1)st-order curvilinear data should fiber over the nth-
order data. Moreover, since the (n + 1)st Semple bundle variety is a

P’-bundle over the nth variety, the intersection rings are straightforward to
calculate. Thus the Semple bundles are superior to the canonical parameter
space for data, namely the Hilbert scheme Hi1bnP2 of zero-dimensional
subschemes of P’, in this respect. Indeed, considerable effort has been
devoted recently to determining the homology and cohomology of punc-
tua] Hilbert schemes and to using these results to develop enumerative
applications. (See, for example, [8], [9], [10], [20].) We have not explored
the connections between Semple bundles and punctual Hilbert schemes in
any detail, however. Nor have we begun to understand the apparently close
connection between Semple bundles and certain subschemes of Kleiman’s
iterative multiple-point schemes [15].

In the first two sections of this paper we describe the Semple bundle
varieties and their intersection rings. In Section 3 we obtain a "proto-
contact formula", and in Section 4 we show that under stipulated hypothe-
ses this formula counts, as intended, the number of simultaneous contacts
between a generic family and specified curves. The proof involves a detailed
analysis of the relationship between the universal family of plane curves of
degree d and the Semple bundles which should be of independent interest.
The fifth section briefly discusses the ingredients of the contact formula, i.e.,
the "higher-order characteristic numbers". The final section treats special
cases and variants of the contact formula, compares the formula with those
of de Jonquières and Fulton-Kleiman-MacPherson, and presents an

example.
We assume that all our varieties and schemes are defined over an

algebraically closed field of characteristic zero. However, the results pres-
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ented remain true with only minor modifications if the characteristic is

sufficiently large, provided one recognizes that in positive characteristic our
intersection numbers only count weighted numbers of contacts.

1. Semple bundles

We briefly recall here the definition of Semple’s bundles of higher-order
curvilinear data; for further discussion see [5] or [6]. The inductive
construction begins by declaring that F(O) is the projective plane and that
the first Semple bundle variety F(l) is PTF(O), the total space of the

projectivized tangent bundle. (We use PE for the variety representing rank
1 subbundles of the vector bundle E, rather than for the variety represen-
ting rank 1 quotient bundles.) Inductively suppose that F(n) is the projec-
tivization of a rank 2 subbundle of the tangent bundle TF(n - 1). The focal
plane at a point p E F(n) is defined to be the preimage, via the derivative of
the projection fn:F(n) --+F(n -1), of the line in Tfn(p)F(n -1) represented
by p. This construction gives rise to a rank 2 bundle of focal planes, denoted
fn; we define F(n + 1) to be the total space of the projectivization of this
bundle. In this manner we obtain a tower of pt-bundles:

Suppose that C is a reduced plane curve, and that P E C is a nonsingular
point. The fiber of F(1) over p parametrizes the various tangent directions at
p, including the tangent direction p 1 of C. The totality of such tangent
directions to C form a curve in F(1); the closure of this curve is called the first
lift of C, and denoted C(l). Now observe that the tangent direction p, of C(l)
at pl maps, via the derivative of the projection fi: F(l) --+ F(O), to pi, the

tangent direction of C at p. Hence the second lift C(2), i.e., the lift of the lift of

C, is in fact a curve in F(2). The same argument shows that there are
higher-order lifts C(3) c F(3), C(4) c F(4), etc. We call the rational map À from



174

C to F(n) the lifting map; it is regular away from the singularities of C and a
birational map to C(n). We note that the nth lift C(n) is just the nth blow-up
of C at its singular points. However, for our enumerative purposes we need to
understand the embedding of C(n) in the Semple bundle variety F(n).

It is sometimes convenient to regard a point of F(n) as an equivalence class
of irreducible germs of plane curves. Thus we sometimes say that the irreduc-
ible germ of a curve C represents the point Pn E F(n), meaning that the lift of C
passes through Pn above the closed point of the germ.
To illustrate the transparent nature of calculations in these Semple bundles,

let us consider a reduced plane curve C defined, in an affine chart with

coordinates x and y, by f(x, y) = 0. Then one can show that on F(n) there is
a primary chart isomorphic to affine (n + 2)-space, with coordinates x, y, y’, y",
y(3),..., y(n), and that the ideal defining the nth lift C(n) includes the sequence
of functions g f’, f ", f(3),..., f(n) obtained by repeated implicit differentiation
with respect to x. (There is a second primary chart in which the roles of x and
y are reversed.)

In general these functions may not generate the ideal defining the lift.

Consider, for example, the cuspidal cubic y2 = x3. Then the first lift is defined
in the primary chart by

The variety defined by just the first two equations contains a spurious
component over the origin. (To obtain the third equation, we square both sides
of the second equation, then use the first equation to replace y2; since the curve
is singular at the origin it is then legal to cancel X3 from both sides. The fourth
equation is obtained in a similar fashion. Clearly the third and fourth equations
define an irreducible curve in A3, and the first two equations are redundant.)

If we continue this example one step further we see that the lift of a curve
may leave the primary charts. Indeed, if we implicitly differentiate the third
equation of (1), we obtain this equation for C(2):

Since the unique point pl of C(1) over the origin is (x, y, y’) = (o, 0, 0), and
since C(2) must be complete, the unique point p2 of C(2) over p 1 must be the
one point over p 1 missed by the primary chart, the point which, intuitively,
represents infinite curvature. There is one such point on each fiber of F(2) over
F(l) ; taken together, these points form a section of the P’-bundle which we call
the divisor at infinity and denote by I2.
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Here is another characterization of the divisor at infinity. The derivative of

maps a 3-dimensional vector space to a 2-dimensional vector space. The kernel
is one-dimensional, so there is a unique direction annihilated by d fl. This
direction is represented by a point on the divisor at infinity. More generally,
the derivative of fn, at a point pn,

likewise has a one-dimensional kernel. Hence there is a divisor at infinity 1,,, 1
on F(n + 1); intuitively, a point on this divisor represents (in addition to
certain lower-order data) infinite curvilinear data of order n + 1. To avoid
clumsy notation, we will also denote by In+ 1 the pullback of this divisor to any
Semple bundle variety above F(n + 1) in the tower, and continue to call the
pullback a divisor at infinity. Note that the divisors at infinity have normal
crossings; in particular, the intersection of two such divisors has codimension
two.

The simplest sort of chart meeting a divisor at infinity is a secondary chart.
To specify such a chart on F(n) -over the affine chart of p2 with coordinates x
and y-choose an integer j between 2 and n. Then there is a chart isomorphic
to affine (n + 2)-space, with coordinates x, y, y’, y",..., y(j-l), x’, x",..., x(n - j+ 1 &#x3E;.
For i = 1,..., j - 1, the coordinate y(i) measures dy (i- 1)/dx, a ratio of differen-
tials of coordinates on F(i - 1); for i = 1,..., n - j + 1, the coordinate x(i)
measures dx(i- I)Idy(j- 1), a ratio of differentials of coordinates on F( j + i - 1).
(See [5] for an explanation of a full system of charts.) If C is a reduced plane
curve defined by f(x, y) = 0, then the ideal defining the nth lift C(n) includes
a sequence of functions obtained by repeated implicit differentiation. In the first
j - 1 of these differentiations we treat x as the independent variable, and
denote the derivative dyldx of y by y’, the derivative dy’/dx of y’ by y", etc. In
the remaining n - j + 1 differentiations we treat y(j- t) as the independent
variable, and denote the derivative dxjdy(j- 1) of x by x’, the derivative

dx’ jdy(j-l) of x’ by x", etc. The derivative dy(i)ldy(j - 1) of y(i) (0 i  j - 1) is
obtained by the chain rule:

In other words, the defining ideal for C(n) includes the functions
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where P and Q are the differential operators

Away from the singularities of C, the sequence of functions in (2) generates the
ideal, but additional generators will be needed to eliminate spurious compo-
nents over the singularities. In this j th secondary chart the divisor at infinity 1 j
is defined by the vanishing of x’.
To illustrate the rules for calculating in secondary charts, we continue our

example of the cuspidal cubic y2 = x’. Implicitly differentiating the third
equation of (1) with respect to y’, we obtain

Here x’ is the coordinate of the secondary chart measuring dx/dy’. (In other
words, x’ is the reciprocal of the ordinary second derivative coordinate dy’/dx.)
From the equations of (1) one easily sees that the first lift is tangent to the fiber
of F(1) over the origin. Note that, as expected, the second lift hits the divisor
at infinity 12 over the origin.
We note for future reference that, taken together, the primary and secondary

charts cover all of the Semple bundle variety except for intersections of two or
more divisors at infinity.
By definition F(n + 1) is a subvariety of PTF(n), the total space of the

projectivized tangent bundle of F(n). If n &#x3E; 2, then PTIN, the total space of the
projectivized tangent bundle of the divisor at infinity, is likewise a subvariety
of PTF(n); its codimension is 2. Now one can easily verify, e.g., by a calculation
in local coordinates, that F(n + 1) and PTIN are transverse. Hence their

intersection is a codimension 2 subvariety of F(n + 1) which we call the locus
of tangency to ] n’ A point of this locus represents a point of 1" together with a
tangent direction belonging to the fiber of the focal plane at that point. Again
to avoid clumsy terminology, we continue to speak of the "locus of tangency"
when we ought to say "the pullback through the Semple bundle tower of the
locus of tangency". The jth secondary chart on F(n) meets only one such locus,
namely the locus of tangency to Ij; this locus is defined by the vanishing of
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both x’ and x". (But if j = n, there is no such locus meeting the secondary chart
at all.)

Suppose now that Et is a family of plane curves, and that its general member
is reduced. For each reduced member there is a (rational) lifting map to F(n);
these maps fit together to form a rational map Â: X - --&#x3E; F(n). We call the
closure of Â(X) the lift of the family, and denote it by X(n). By definition, X(n)
is the union of the graph of À and a closed subvariety y(n), each point of which
lies over a singular or nonreduced point of the corresponding member of X.

2. Intersection rings

Since the variety F(n) is the projectivization of the rank 2 bundle !Fn - 1 over
F(n - 1), the intersection rings may be determined inductively from standard
theory. Specifically, the Chow ring A*(F(n)) is an A*(F(n - 1))-algebra gener-
ated by the tautological class 0,,:= C1(OF(n)(1)), which satisfies a single quad-
ratic relation

(Note: Here and in the sequel, we omit pullbacks of classes when convenient
and when no confusion should result.) The base variety F(0) is P’, whose Chow
ring is generated by the hyperplane class h, subject to the relation h3 = 0. Thus
A* (F(n» is generated by h, 01, - - ’,’On subject to the relations mentioned above.
For the purpose of studying contact between plane curves, however, this

description is not desirable. Instead, we provide an equivalent formulation
using more geometric classes. In particular, we will eliminate the 4Jn’s in favor
of h, the dual hyperplane class on p2, and the classes ii of the divisors at
infinity 1 j.
THEOREM 1. For n a 1, the Chow ring A* (F(n» is generated by h, h, i2, ..., in
subject to the relations

Proof. To begin, F(1) is the incidence correspondence of P2. Thus

F(1) c P2 x P2 and it is well known that



178

It follows from a change of basis calculation that

To finish the proof, we need to rewrite (4) without using any Ok’S. To do this,
we note first that the focal plane bundle Fk, k &#x3E;, 1, fits into the following
commutative diagram of exact sequences:

(This is the dual of diagram 1 of [6].) Let

be the composite of the tautological map and the pullback to F(k + 1) of the
map in the top row of diagram (6). Then J has zero locus equal to

PTF(k)/F(k-1) = Ik+ 1. In addition, 6 defines a section of HOM«9F(kl 1)(- 1),

Now the Euler sequence

and the top sequence of (6) together imply that, for k &#x3E;, 1,

Using (7) to substitute for 1&#x3E;k+ 1 in (4) and simplifying, one finds

Note that the inductive formula for c 1(F k) in (8) yields the closed-form
formula
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Hence (9) can be rewritten as

In view of (5) and (7), this is equivalent to, for k &#x3E; 1,

In [6] we studied the action of the projective general linear group
PGL(2) on the Semple bundles induced from the PGL(2)-action on P2.
Since this action preserves incidence in P2, there is a special orbit Zk on
each F(k), k &#x3E; 1, that is isomorphic to F(1) and is represented by the germ
of a line. (The intuition is that Zk measures "zero data" of orders 2 through
k.) Since Zk is represented by the germ of a smooth curve, it must be

disjoint from the divisors at infinity Ii for all j  k. Thus if zk:= [Zk], we
have

Also each Zk is a section of the P’-bundle obtained by restricting the
Semple bundle to Zk _ 1. Hence the intersection of Zk with the fiber of F(k)
over a point of F(1) has degree 1. Thus, for k &#x3E; 1,

In a similar manner, it follows that

(Note that Z1 1 is all of F(l), so that z, = 1; in this case the claims above
are vacuous or obvious.)

In view of these remarks and the calculation of the Chow ring of F(n)
above, it is not difficult to deduce the following matrix for the intersection
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pairing of A1(F(n)) with An+ 1(F(n», in which fo = f, = 1 and fj denotes
the j th Fibonacci number:

3. The proto-contact formula

We associate to each reduced plane curve C a sequence d, d, K2, K3’.’. of
(higher-order) characteristic numbers, beginning with the degree and class. Each
of the other numbers is defined by

i.e., as the intersection number of a lift of the curve with a divisor at infinity;
this intersection is defined on the jth Semple bundle variety, or any Semple
bundle variety above it in the tower. Since the lift of a curve cannot hit a

divisor at infinity over a nonsingular point, these characteristic numbers count
certain sorts of singularities. A point of C over which C( j) meets 1 j will be
called a jth-order cusp, and the corresponding characteristic number Kj will be
called the number of j th-order cusps on C. For example, the singularity at the
origin of y2 = x2’-’ is a jth-order cusp and contributes 1 to Kj’ Note that Ki
may count with multiplicities; for example, a curve may have a singularity at
which distinct branches each contribute to Kj’ One can easily show that
repeated lifting will desingularize a specified curve, hence that only finitely
many characteristic numbers are non-zero.

The nth contact module of a reduced plane curve C is a certain element of
the polynomial algebra over the integers in the following indeterminates:
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Specifically, it is

In particular the Oth and lst contact modules are

If we assign weight n to each of An, IIn, and rn, then the nth module is
homogeneous of weight n.
Now suppose that C 1, C2, ... , C p are reduced plane curves. Suppose that

is a family of plane curves over S, a parameter space of dimension s; suppose
that the general member of the family is reduced. Suppose that n 1, n2, ... , n p are
specified positive integers, with sum equal to s. Let F(n) be the product of
Semple bundle varieties F(n 1) x F(n 2) x ... x F(n p), and let nl,n2,...,np be
the various projections to the factors. The fiber product

is a subvariety of F(n) x S; its fiber over a point s of S is the product of p lifts of the
curve X sin the family. Let 6 denote the projection of F(n) x S onto its first factor.

We define the proto-contact number of type (n 1, n2, .. , n p) by

THEOREM 2. The proto-contact number is obtained by multiplying the contact
modules mnl(C 1), mn2(C 2)........ mnp(C p), evaluating each monomial in the resulting
product, and performing the indicated arithmetic. Each monomial in the product
is of weight s and of the form y 1 y2  y p, where each yj is either Ani or nnj or
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some F’,njk ; to evaluate this monomial means to replace it by

where

Proof. Our discussion in Section 2 shows that the set

forms a basis for An+ 1(F(n», and that the dual basis for A’(F(n» is

(For n = 0 the singleton {h} is a self-dual basis.) The characteristic numbers of
a reduced plane curve C are determined by

Hence the rational equivalence class of the nth lift of C is given by
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(For n = 0, the class of C(O) = C is of course dh.) The theorem follows
immediately from this formula. D

4. The simultaneous contact formula

Suppose that C and X are reduced plane curves. A contact (or honest contact)
of order o between them is a point xe C(o - 1) n X(o - 1) whose image in p2
is a nonsingular point on each curve. Note that, for nonsingular curve germs,
the following statements are equivalent:

. There is a contact of order o between them.

. In appropriate local coordinates, the Taylor expansions agree up to order
o- 1.

. The intersection number is at least o.

We will call a point x c- C(o - 1) n X(o - 1) whose image in p2 is a singular
point on C or X a false contact.
Next suppose that C 1, C2, ... , C p are reduced plane curves. A simultaneous

contact of order (0 t, 02, ... , op) between X and these p curves is a p-tuple
(x 1, x2, ... , xp) in which the point x EF(OI -1) is a contact of order o 1
between X and CI, the point X2 E F(o2 - 1) is a contact of order o2 between X
and C2, etc.
We say that a plane curve C has a profound cusp if, for some j, the j th lift

C( j) meets the intersection of Ii and the pullback of another divisor at infinity;
i.e., C has a profound cusp at P if some branch of C has simultaneously a
j th-order cusp and a cusp of lower order. For example, y3 = X5 has a profound
cusp; its lifts meet both 12 and 13. We say that C has a flat cusp if the jth lift
of C meets the locus of tangency to the divisor at infinity Ij-1’ If C( j - 1)
happens to be nonsingular over P, then C has a flat cusp if and only if C( j - 1)
is tangent to 1 j - l’ For example, the second lift of y3 = X4 is tangent to 12;
hence this curve has a flat cusp at the origin.
A family of plane curves of degree d over a parameter space S determines,

and is determined by, a morphism from S to the projective space pN(d)

parametrizing such curves, where

We call such a family generic if it is obtained from one particular specified
family by composing the morphism from S to pN(d) with a generic motion of
the projective space. In other words, "proposition Y is valid for a generic



184

family" means that if PI is a family of curves over S determined by (1: S - pN(d),
then, for all y in some Zariski open dense subset of the projective linear group
PG4N(d», proposition Y is valid for the family determined by y O (1.

THEOREM 3. Suppose that PI is a generic family of degree d plane curves over
S, a parameter space of dimension s = 01 + 02 + ... + op - p. Suppose that each
°i &#x3E; 1, and that d + 1 &#x3E;, Y-,Pi= 1 oi,. Suppose that CI C2, ... , 1 Cp are reduced plane
curves, none of which has a profound cusp or a flat cusp. Suppose that these curves
have only pairwise transverse intersections. Then the number of simultaneous
contacts of order (0 t, 02, ... , op) between some reduced member of PI and
cli- C2, ... , C p is the proto-contact number of type (01 - 1, 02 - 1,..., o p - 1).

We have assumed that each °i &#x3E; 1 only to avoid a clumsy exposition. For
remarks concerning the omitted cases, see Section 6(c).
To prove Theorem 3, we begin in Lemmas A and B by analyzing a lift of the

universal family rc of degree d plane curves over pN(d) ; a point of rc is an

ordered pair (P, C) consisting of a degree d plane curve C and a point P E C.
Over the affine chart with coordinates x and y, the hypersurface W is defined
in A2 x pN(d) by

Since we wish to study simultaneous contacts, in Lemmas C and D we analyze
the fiber product of several lifts of the universal family. Finally, in order to
ultimately rule out the possibility that our proto-contact formula counts false
contacts, in Lemmas E and F we analyze the higher-order data carried by a
singular point of a curve. Our analysis uses, faute de mieux, explicit and
detailed calculations.

LEMMA A. Suppose that d &#x3E;, n.
. Except possibly above intersections of two or more divisors at infinity and

above the loci of tangency to divisors at infinity, the nth lift W(n) is smooth

over F(n).
. Over the primary chart with coordinates x, y, y’, y", y(3),..., yen), the nth lift

6(n) is defined in An+ 2 x pN(d) by an ideal generated by the function f of
(13) and the functions f’, f ", f(3),... f(n) obtained by repeated implicit
differentiation with respect to x. Over each point of the primary chart the
matrix of this system of linear equations has rank n + 1.

. Over a point on the exceptional divisor of the secondary chart with

coordinates x, y, y’, y",..., y(j-1 ), x’, x",..., x(n- j+ 1) (i.e., a point at which x’
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vanishes) the nth lift W(n) is defined by an ideal generated by the function f
of (13) and the sequence offunctions (2) obtained by the procedure explained
in Section 1. Over this point the matrix of this system of linear equations has
rank n + 1.

Proof. Recall that, taken together, the primary charts cover all of F(n) except
divisors at infinity, and that the primary and secondary charts cover all of F(n)
except intersections of two or more divisors at infinity. And note that the
codimension of W(n) in An+ 2 X pN(d) is n + 1. Hence the first claim follows from
the other two.

Consider the primary chart. Let M denote the (n + 1) x (N(d) + 1) matrix
of partial derivatives of the functions f, f’, f",f(3),..., f(n) with respect to each
of the auv. (Equivalently, since all these functions are linear in the auv’s, M is
the matrix of the system of linear equations.) If the rank of M at a point of
6(n) is n + 1, then at this point f, f’, f", f(3),..., f(n) generate the defining
ideal, and the projection to F(n) is smooth. Each column of M begins with a
monomial in x and y, and the other entries are obtained by repeated implicit
differentiation:

To see that M has rank n + 1 at every point, consider the square submatrix
consisting of the partial derivatives of f, f’, f",..., f(n) with respect to

Now consider the secondary chart. Let M denote the (n + 1) x (N(d) + 1)
matrix of partial derivatives of the functions in (2) with respect to each of the

auv. (Once again we may interpret M as the matrix of a system of linear
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equations.) Each column of M begins with a monomial in x and y, and the
other entries are obtained by repeated implicit differentiation:

If the rank of M at a point of 6(n) is n + 1, then at this point the functions in
(2) generate the defining ideal, and the projection to F(n) is smooth.

To complete our analysis of this matrix, we need the following formulas
concerning the polynomial ring in the variables x, y, y’, y",..., y(j-l), x’,
x" ,..., x(n-J+ 1) .

LEMMA B. (a) For each integer k &#x3E; j,

modulo the ideal generated by x and x’.
(b) For each pair of positive integers i and m,

where [ ]x = 0 indicates evaluation.
(c) For each nonnegative integer h  j - 1 and each nonnegative integer i,

(d) For each nonnegative integer h  j - 1,
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modulo the ideal generated by x and x’.
(e) For each polynomial 0 in x and y, for each h &#x3E; 1, and for each i &#x3E;, 2,

modulo the ideal generated by x and x’.
(f) For each nonnegative integer k and each nonnegative integer h  j - 1,

modulo the ideal generated by x and x’.
(g) For each nonnegative integer k,

modulo the ideal generated by x and x’.
Proof. To prove statement (a), declare the weight of x(’) to be 2 - t. Then Q

decreases the weight of a polynomial in x, x’,..., x(n -j+ 1 ) by 1, so that

is a polynomial of degree k - j + 1 and weight 2(k - j + 1) - i. If

i  2(k - j + 1) then the weight is positive, so each term involves either x or
x’. If i = 2(k - j + 1) then the weight is zero, so the only term not involving x
or x’ is a multiple of (X")k - j+ 1. Clearly the coefficient of this term is positive.

Observe that

where the sum is over all functions s from {1,...,(} to { 1, ... , m}, and ek is the
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number of elements of {l,..., i} for which the value of s is k. (The function can
be regarded as an instruction to differentiate x. x . x ... x first at factor number
s(1), then at factor number s(2), etc., thus obtaining one of the mi terms created
by i applications of the product rule.) The left side of formula (b) is the same
sum, taken over the set of surjections. The first term on the right side of (b) is
again this sum, now taken over the set of those s for which the restriction to
( 1, ... , i - 1} is surjective. The second term is the same sum, but taken over the
set of those surjective s for which the restriction to {l,..., i - 1} is not

surjective. From these descriptions the equality is clear. (This is essentially a
proof of the basic recurrence formula for Stirling numbers of the second kind;
cf. formula (23), p. 33 of [28].)
We prove (c) by induction on i. When i = 0 each term of the sum except the

first is divisible by x; in this case the required polynomial in x, x’,
x",..., x(n- j+ 1) is zero. For the inductive step, apply Q to both sides of the
equation to obtain

(Note that Q(x (n-j+ Il = 0 by definition of the differential operator Q in (3).) In
the first sum on the right, replace b by c - 1; in all terms except the last replace
Q( y(b» by its chain rule equivalent y(c) x’; and absorb the last term into the
polynomial in x, x’,..., x (n-j+ 1). In each term of the second sum, use formula
(b). With these manipulations, we find that

as required.
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To begin the proof of (d), observe that ph(Xb) vanishes if b  h and

equals (b!/(b - h)!)xb -" otherwise. Hence

By statement (c), the right side of (16) is, modulo the principal ideal
generated by x, a polynomial in x’, x",..., x(n- j+ 1). Since each term of the
summation involves some y(b), the polynomial in question is obtained by
expanding Qi(y(h» and ignoring all terms divisible by x or any y(b). Clearly
all the coefficients of this polynomial are nonnegative.

Let us define a Z Et) Z grading by declaring the degree of x(t) to be
(2 - t, 1) and the degree of y(t) to be (2(j - t) - 1, j - 1 - t). Then Q is a
homomorphism of degree (-1, 0). (Note in particular that y(j-1) has degree
(1, 0) and that Q(y(j-t» = 1.) Each term in the expansion of Qi(y(h» has
degree

If i  2( j - 1 - h) + 1 then the first component is positive. Hence each
monomial in the expansion of Qi( y(h») involves either x or x’ or some y(b).
Hence the right side of (16) is contained in the ideal generated by x and x’.
Similarly, if i = 2(j - 1 - h) + 1 then the first component is zero. Hence
each monomial in the expansion of Qi( y(h») either involves one of the same
variables or is a power of x"; the second component of the degree tells us
that the relevant power is (X)"j-1-h. Clearly the coefficient of this term is
not zero. Hence the right side of (16) is, modulo the ideal generated by x
and x’, a positive multiple of (x" j- 1 -h.
The binomial formula for differential operators tells us that the left side

of formula (e) equals

Note that ph-b(X) vanishes unless b equals h or h - 1; that Q’-’P(x)
vanishes unless a = i; and that Q’-’(x) = X(i-a). Hence
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Modulo the ideal generated by x and x’ the last two terms of the sum
vanish.

We prove (f) by induction on k. The base case is statement (d). For the
inductive step, apply statement (e) to each term on the left side of (f). We
find that, modulo the ideal generated by x and x’,

Apply the inductive hypothesis to both bracketed expressions. If

i  2(k + j - 1 - h) + 1 then they both vanish. If i = 2(k + j - 1 - h) + 1
then the first term yields a positive multiple Of (X,,)k 1 i - 1 - h, as does the last
term (a = i - 2) in the sum. Hence Qiph(Xk y) is likewise a positive multiple
Of (x ,)k+j- 1 -h. .

Statement (g) is the special case h = j - 1 of statement (f). D

We now return to the proof of Lemma A. Recall that the first row of the
matrix M consists of all monomials of degree at most d in x and y, and
that a typical column is shown in (15). We wish to show that this matrix
has rank n + 1 except possibly above the locus of tangency to the divisor
at infinity, i.e., whenever x’ # 0 or x" # 0. There are compatible actions of
the projective general linear group PGL(2) on the universal family W and
on F(l), the incidence correspondence of points and lines in the plane.
Hence we may assume that we are studying a point of W(n) over the point
x = y = y’ = 0 of F(l). We may also assume that x’ = 0, i.e., that the point
lies over the divisor at infinity, since we have already dealt with other
points when we examined the primary charts.

Consider the square submatrix of M obtained by extracting the columns
headed by these n + 1 monomials:

It is of the form
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where the upper left j x j submatrix A is upper triangular, with diagonal
entries 0!, 1!, 2!, 3!, 4!, etc. The lower left (n - j + 1) x j submatrix B is a
zero matrix. The upper right j x (n - j + 1) submatrix C is irrelevant. We
look at the lower right (n - j + 1) x (n - j + 1) matrix D modulo the ideal
generated by x and x’. Statement (a) of Lemma B then says that columns
2, 4, 6, etc.--corresponding to the monomials xi, xj+ t, xj+ 2, etc.-are zero
above the diagonal, and have positive multiples of powers of x" on the
diagonal. Statement (g) of the same lemma says that if one modifies

columns 1, 3, 5, etc.-corresponding to the monomials y, xy, x2 y, etc.-by
adding suitable linear combinations of previous columns, then one again
obtains, modulo the ideal, columns which are zero above the diagonal, and
have positive multiples of powers of x" on the diagonal. Hence, modulo the
ideal, the submatrix D is nonsingular whenever x" = 0. Hence the full

square matrix is likewise nonzero, and M is of maximal rank n + 1. Q

We now consider CCpN(d)(n), the fiber product over pN(d) of the lifts of W to
F(n 1), F(n 2)’ ... , F(n p). We assume that each ni is positive. Let F(n)’ denote
the open subvariety of F(n) = F(n 1 ) x F(n2) x ... x F(np) obtained by
removing the following points:

. each point (P 1, P2, ... , P p) for which some P, lies on the intersection of
two divisors at infinity;

. each point for which some P, lies on a locus of tangency to a divisor at
infinity;

. each point for which some Pi and some Pj (i # j) lie over the same point
of P2 (i.e., each point lying over a large diagonal of P2 x P2 X ... x P2).

Let rcpN(d)(n)O denote the inverse image of F(n)° in rcpN(d)(n).

LEMMA C. Suppose that d &#x3E; p - 1 + 1,&#x26;P= 1 ne. Then the morphism rcPN(d)(n)O -

F(n)’ is smooth, with relative dimension N(d) - ( p + ZtPi= 1 ni).

Let F(n) + denote the open subvariety of F(n) obtained by removing the
following points:

. each point (P1, P2, ... , Pp) for which some P, lies on the intersection of two
divisors at infinity;

. each point for which some Pi lies on a locus of tangency to a divisor at
infinity;

. each point for which some Pi and some Pj (i # j) lie over the same

point of F(1) (i.e., each point lying over a large diagonal of

F(1) x F(1) x ... x F(1));
. each point for which some P,, Pj, and Pk (i, j, k distinct) all lie over the

same point of P’;
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· each point for which some P, and some Pj (i = j) lie over the same point
of P2, and one of them lies on a divisor at infinity.

Note that F(n)+ is larger than F(n)°, since a point (P1, P2,..., Pp) of F(n)+ may
project to a point (Q 1, Q2, ... , Q p) of P2 x p2 x ... x p2 for which Q 1, Q2, etc.,
are not all distinct. Let us stratify F(n) + by declaring a point (P l’ P 2’ ... , P p)
to be in F(n)" if it projects to a point (Q 1, Q2, ... , Q p) of P2 x P2 x ... x P2 for
which the number of distinct points among Q 1, Q2, etc., is exactly q. The

possible values for q are p2 , r7p] + 1,..., p ; the stratum F(n)P = F(n)° is open
and dense. Let 6p.N(d)(n)q denote the inverse image of F(n)q in 6pN(d)(n).

LEMMA D. Suppose that d &#x3E;, p - 1 + Ipi’= 1 ni . Then for each q (from  p21
to p) the morphism CCpN(d)(n)q  F(n)q is smooth, with relative dimension

N(d) - (q + Y-,pi= 1 ni).
Proof of Lemmas C and D. Lemma C is a special case of Lemma D.
Over each point (Pl, P2, ..., Pp) of F(n)q the fiber of WpN(d&#x3E;(n)q is a subspace

of pN(d) of codimension at most q + fpi= 1 ni’ as can be seen by a naive count of
the number of imposed conditions. Hence to prove Lemma D it suffices to
show that this fiber is a linear subspace of pN(d) of codimension at least

q + Epi= ni. This fiber is the intersection of the fiber of 16(n 1) over P l’ the fiber
of 16(n2) over P2, etc. Lemma A therefore provides an explicit set of generators
for its defining ideal in pN(d). These generators include, for each P, not on a
divisor at infinity, the functions

(where x,, y,, etc., are coordinates on a primary chart of F(ni) containing Pi,
and f generates the ideal of CC) together with, for each Pi on a single divisor
at infinity Ij,, the functions

(where Xi’ y,, etc., are coordinates on a secondary chart of F(n,) containing Pi).
Each of these generators is a linear function in the auv’s; thus the fiber of
pN(d)(n) over (P 1, P2, ... , Pp) is defined by a system of p + E ni linear equations.
Let Mn denote the matrix of this system.
Note that it suffices to prove the lemma in case d = p - 1 + £1= 1 nl, since

increasing d will only enlarge Mn by adding more columns.
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We will use induction on q; the case q = 0 is vacuous. The inductive step has
two cases. Suppose first that the image of P in p2 is distinct from the images
of P2, P3, ... , P p. Let n - n i denote (n2’ n3, ..., n p). On p2 choose an affine
chart, with coordinates x and y, so that the chart contains the images of
P2, P3, ..., Pp and so that the image of P1 is the point at infinity on the y-axis.
Around each P;(1 #- 1) choose, as appropriate, a primary or secondary chart
on F(ni) whose first two coordinates are xi = x and y, = y. (Choose a

secondary chart only if the point lies on a divisor at infinity.) Let x = x/y and
yi = 1/y; then the image of Pl is at the origin of the A2 with coordinates xi
and y 1. Note that over this affine chart the defining equation for the universal
family is

Around P 1 choose, as appropriate, a primary or secondary chart on F(n 1)
whose first two coordinates are x and YI.
We may assume that the matrix Mn has been arranged so that the initial

columns correspond to those a""’s for which u + v  d - 1 - n 1. Then Mn
takes the form

By the inductive hypothesis the rank of the upper left submatrix is at least
q - 1 + IF 2n,. The (1 + nl) x (1 + N(d - 1 - ni)) submatrix B records the
partial derivatives of the functions defining the fiber of 16(nl) over Pl with
respect to the au"’s just mentioned. In (18) the coefficient of each such auv is
divisible by y1"’+ 1. If we implicitly differentiate this monomial n or fewer times,
as we do when applying the differential operator P or Q, the result is still

divisible by y 1. Hence all the entries of B vanish at P 1. Submatrix C is

irrelevant. Matrix D contains the submatrix Mni; by Lemma A its rank is

1 + n 1. Hence the rank of Mn is at least q + £pi= tni.
Next suppose that the image of P1 in P2 coincides with the image of some

Pi(i =1= 1). Without loss of generality we may assume that Pl and P2 project to
the same point of P2, but that this point is distinct from the images of

P3, P4, ... , P p. We may also assume that n 1  n2. Furthermore the images of
Pl and P2 in F(1) are distinct points, and neither Pl nor P2 is on a divisor at
infinity. As in the previous case, we choose on P2 an affine chart, with
coordinates x and y, so that the chart contains the images of P3, P4, ... , Pp and
so that the common image of P1 and P2 is the point at infinity on the y-axis.
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Around each P, (i &#x3E; 2) we choose, as appropriate, a primary or secondary
chart on F(ni) whose first two coordinates are xi = x and Y, = y. Let

x = x2 = x/y and y = Y2 = 1/y; then the common image of P 1 and P2 is at
the origin of the A2 with coordinates x 1 and y 1. Without loss of generality we
may assume that the image of Pl in F(1) represents the tangent direction of
the y 1-axis. Hence we may use the primary chart with coordinates y1, x 1, x’1,
etc. on F(n 1) and the primary chart with coordinates x2, y2, y’, 2 etc. on F(n 2)’
We may assume that the matrix Mn has been arranged so that the initial

columns correspond to those auv’s for which u + v  d - 2 - (n 1 + n2). Then
Mn takes the form

By the inductive hypothesis the rank of the upper left submatrix is at least

q - 1 +E’p 3n,. The (2 + n 1 + n2) x (1 + N(d - 2 - n 1 - n2)) submatrix B
records the partial derivatives of the functions defining the fiber of W(n 1 ) over
P 1 and the fiber of W(n2) over P2, with respect to the auv’s just mentioned. In
(18) the coefficient of each such auv is divisible by yn1+n2+2. If we implicitly
differentiate this monomial at most n2 = max{ nt, n2} times, the result is still

divisible by y 1. Hence all the entries of B vanish at (P 1, P2). Submatrix C is
again irrelevant. Matrix D contains, after reordering the columns, the following
submatrix:

We can then rearrange the rows:
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Evaluating at x 1 = y 1 = x i = X2 = Y2 = 0, we obtain

which clearly has rank n 1 + n2 + 1. Hence at (P 1, P2) the rank of D is at least
n + n2 + 1, and the rank of Mn is at least q + I:.f= 1 ni. Q

By definition W(n) is the union of Â(W) (where 03BB, is the lifting map
6 ---&#x3E; F(n)) and a closed subvariety yen), each point of which lies over a

singular or nonreduced point of some member of 6. Since the codimension of
W(n) in A" + 2 x pN(d) is n + 1, the codimension of yen) is at least n + 2.

LEMMA E. Suppose that d &#x3E;, n. Suppose that P is a point of F(n) which is
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not on any divisor at infinity. Then the fiber of S;(n) over P has codimension
at least n + 2 in pN(d).

Proof. It suffices to check over the primary chart of F(n) with coordi-
nates x, y, y’, y", y(3),..., Y("). Over this chart the defining ideal of 03BE(n)
contains the functions f, f’, f ", f(3),..., f(n) defining W(n) (obtained from
the function f of (13) by repeated implicit differentiation) and the partial
derivative ôflôy. Let M denote the (n + 2) x (N(d) + 1) matrix of partial
derivatives of these functions with respect to each of the auv. (Once again
we may interpret M as the matrix of a linear system.) The square submatrix
consisting of the partials with respect to aoo, al o, a2o, - - - , ano, and ao t is

nonsingular at each point:

Hence at each point the functions f, f’, f ", f(3),..., f(n), and ôflôy define a
variety of codimension n + 2 which is smooth over the primary chart of
F(n). D

Let £(n) denote the fiber product

Let F(n)finite denote the open subvariety of F(n) obtained by removing,
from each factor, all divisors at infinity; let 03BE(n)f’nite denote its inverse

image in Y(n). Let

LEMMA F. Suppose that d &#x3E; p - 1 + Y-,IP= ni. Then each fiber of the
morphism Y(n)’ --&#x3E; F(n)’ n F(n)finite has codimension at least 1 + p + Lf = 1 ni .

Proof. The proof is similar to that of Lemma D. In this instance, we need
only to work in primary charts. The defining ideal for the fiber of 9’(n) over
a point (Pl, P2, ... 1 PP) of F(n) finite includes the functions of (17) and the
partial derivative (oftjoYt)(x ,y,). Each of these functions is linear in the
au"’s; let M denote the matrix of this linear system. As in the proof of
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Lemma D, we note that it suflices to prove the lemma in case

If (P 1, P2, ... , P p) is in 99(n)’, then the images in P2 of these p points are
all distinct. By Lemma D, the fiber of pN(d)(n2’ n3’...’ np) over

(P2, P3, . - . , P p) has codimension p - 1 + Y-’p 2 ni. By Lemma E, the fiber of
Y(n 1) over P1 has codimension at least nl + 2. Since the image of Pl is

distinct from the images of P2 through P p’ we may argue as in the first case
of the inductive step in the proof of Lemma D. By an appropriate choice
of affine charts, in particular, by choosing a chart on p2 containing the
images of P2, P3, ... , Pp and so that the image of P1 is the point at infinity
on the y-axis, we see that M takes the form

where Mn-n, has rank p - 1 + Ef=2ni, B is a zero matrix, and D has rank
at least n + 2. Hence M has rank at least 1 + p + ELP= ni. D

Proof of Theorem 3. Let

By Lemma D, each morphism CCpN(d)(n)q - F(n)" is smooth.
Let us assume for the moment that S is nonsingular. Let r: S - pN(d) be

the morphism determined by the family Et. Then the morphism

is smooth. (This assertion is justified in the course of the proof of Theorem
2 in [14].) Hence the projection

which is obtained from (20) by base extension, is smooth. Composing it
with the smooth morphism CCpN(d,(n)q - F(n)q, we obtain

which fits into the following diagram. (The vertical morphism on the left is
the composite of two projections; the one on the right is inclusion.)
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The fiber of pN(d)(n)q x PN(d) (S x PG4N(d») over a point y E PGL(N(d) is the

fiber product pNa(n)q X pN(d) S, where S is regarded as a Pn(d)‘’-variety via the
morphism y - T, i.e., via i followed by translation by y. Kleiman’s transversality
lemma (Lemma 1 of [14]) tells us that for generic y the map

pN(d)(n)q X pN(d) S-F(n)q is transverse to C 1 (n 1 ) x ... x ]CP(np)nF(n)q. Our
assumption that the family X is generic means that we may assume y is the
identity.
We now count dimensions. By Lemma D,

Since the morphism i is generic,

To specify a point of C 1 (n 1 ) x ... x C pen p) n F(n)q, one can first specify p - q
points lying on the intersection of two of the p curves C,,..., Cp, then specify
2q - p additional points, each of which lies on one of the curves; there may be
further choices involved in specifying higher-order data, but these choices
cannot contribute to the dimension count:

If q  p, the dimension count shows that the image of PNa,(n)q x pN(d) S is

disjoint from C1(n 1) x ... x Cp(np). Hence the morphism pN(d)(n) + X pN(d) S
--+ F(n) + is transverse to CI (n 1) x... x C pen p) n F(n) +, and all the intersec-
tions lie in the open dense stratum F(n)°. Our assumptions on the p curves
guarantee that C1(n 1) x ... x C pen p) is contained in F(n)+. Hence enlarging
 pB’(d){n) + to pN(d){n) creates no further intersections: the map from

6p«d&#x3E;(n) x pB’(d) S to F(n) is likewise transverse to the p-fold product.
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Note that Xs(n), the fiber product over S of the various lifts of X, is a

subvariety of pN(d)(n) x pN(d) S, and that it has the same dimension. Hence the
morphism 0’: Xs(n) --+ F(n) (the restriction of the projection of F(n) x S onto its
first factor) is also transverse to C 1(n 1 ) x C2(n 2) x ... x CP(np). Each intersec-
tion between u(Xs(n» and the p-fold product is a p-tuple (x 1, x2, ... , xp) in
which x 1 is a contact or a false contact between C 1 and some member of X’,
and x2 is a contact or a false contact between C2 and the same member of X,
etc. The number of such intersections is

which is equal to the proto-contact number as defined by (11) in Section 3.
We must show that each point of intersection is a p-tuple (x 1, x2, ... , xp) of

honest contacts rather than false ones. Consider C1(n 1)s;ng, the (zero-dimen-
sional) subvariety of C 1(n 1) lying over the singularities of C 1. The dimension
of Cl(nl),.,i.g x C2(n2) x ... x C p(n p) is p - 1. Hence by Kleiman’s transversal-
ity lemma the image of pN(d)(n) X pN(d) Sin F(n) is disjoint from this p-fold
product. A fortiori, the image of Xs(n) is disjoint from this p-fold product.
Hence x 1 does not lie over a singular point of C 1. Note this implies that x 1
does not lie over a divisor at infinity on F(n 1). Similarly one sees that x2 does
not lie over a singular point of C2, and hence that X2 does not lie over a divisor
at infinity on F(n 2), etc. Lemma F, together with the appropriate dimension
count, shows that the image of ,91(n)’ x pN(d) S is disjoint from

Cl(nl) x ... x Cp(n p). As we have already seen, enlarging 9’(n)O to 9’(n)finite
creates no intersections. Hence for every point of intersection (x 1, x2, ... , xp)
between the image of Xs(n) and the p-fold product, X lies over a nonsingular
point of the relevant member of X. Similarly one sees that X2 lies over a

nonsingular point of the relevant member of X, etc.
If S is singular, we can apply our argument above to the singular locus Ssing.

The morphism

is now flat rather than smooth. (Again, this assertion is justified by Kleiman
in the proof of his Theorem 2.) Kleiman’s lemma now tells us, after the

appropriate dimension count, that the image of q’S..ing(n) in F(n) is disjoint from
C1(n 1) x ... x Cp(n p). Hence, for a generic family gr, the members over Ssing
have no simultaneous contacts with C 1, C2, ... , C p. Thus we may assume, as
we did, that S is nonsingular. D
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5. The higher-order characteristic numbers of a family of plane curves

At the beginning of Section 3 we defined the higher-order characteristic
numbers of a plane curve. The degree and class are well known. Each of
the other numbers counts, perhaps with multiplicities, the number of cusps
of a specified order. These numbers are readily calculated, either implicitly
or from a parametrization of the curve; in fact one needs only a local or
even formal parametrization at each singular point. (See the algorithm
presented in the proof of Proposition 3.9 of [5].)

For a family of curves, the numbers defined by (12) are likewise called
characteristic numbers. For an s-parameter family PI, this formula associates
such a number to each monomial of weight s in the indeterminates of (10).
To denote this number we use the monomial itself, with lowercase Greek
letters replacing their uppercase counterparts.
Note that Ao has weight 0. If M is a monomial of weight s with

associated characteristic number m, then it is easy to show that the

characteristic number associated to AoM is dm, where d is the degree of the
general member of PI. In the remainder of this section we consider

monomials not involving Ao.
If M is a monomial in A i and II 1, then we call its associated character-

istic number ordinary. It is well known that, under mild hypotheses on PI,
the characteristic number ()I.t)r(n t)s-r is the number of members tangent to
r specified general lines and passing through s - r specified general points.
These characteristic numbers, especially those of plane cubics, have been
the subject of numerous investigations, both classical and contemporary.
(For example, see [1], [2], [3], [16], [17], [18], [19], [22], [25], [31].) If
M also involves the indeterminate 1-’, then it should perhaps still be called
"ordinary", since its definition uses only the notion of ordinary contact. For
example if Et is a general two-parameter family then

is the number of members tangent to a specified line at a specified point.
This characteristic number does not, however, appear in classical ordinary
contact formulas. It does appear in Schubert’s formula for triple contacts
between a two-parameter family and a single specified curve. (See [6], [24],
[26], and Section 6(a) of the present paper.)

If M involves other indeterminates, then the associated number m is
called a higher-order characteristic number. For example, a two-parameter
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family has six characteristic numbers. The ordinary characteristic numbers
are {)"t)2, .03BB103A01, (nl)2, and y2. The higher-order characteristic numbers are

and

Theorem 3 tells us that, for a generic family of curves of degree &#x3E; 2, )"2 is
the number of triple contacts between a member of X and a specified line.
(More generally, Â., is, for a generic s-parameter family X of curves of
degree at least s, the number of contacts of order s + 1 between a member
of X and a specified line.) One can show that 1C2 is the number of members
of X having a cusp at a specified point (See [6], Theorem Al. Note that a
"dual" characteristic number involving flexes rather than cusps is consider-
ed in [26] and [24].)
The definition

suggests that this characteristic number measures, for a generic s-parameter
family X of curves of sufficiently large degree, the number of member curves
of X whose lift, at a specified point, meets the divisors at infinity
12,13, ... , IS. (One might call such a point a "super-profound cusp".) To
justify this interpretation would involve an appeal to Kleiman’s transver-
sality lemma, to rule out contributions to the intersection number created
by the way in which curvilinear data specializes at a singular or nonreduced
member of the family. But our crucial Lemma A fails in precisely this
"super-profound" situation, and we cannot use Kleiman’s lemma. We

suspect that the naive interpretation of 1ts is incorrect, and that one cannot
even guarantee that the intersection in question can be made proper.

Similar difficulties plague the interpretation of other characteristic numb-
ers. The number of characteristic numbers also grows rather quickly with
the number of parameters. For example, a five-parameter family possesses
70 characteristic numbers.
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6. Variations, further remarks, and an example

(a) Contacts between a family and a single curve

When p = 1, the special case of the contact formula says that the number
of contacts of order o = n + 1 between a specified curve C (with no
profound cusp) and a generic n-parameter family X is

where

Note that this formula is essentially implicit in the definition of the contact
module mn(C).

(b) Simultaneous contact with nonsingular curves

Suppose that the curves C1, ... , Cp are all nonsingular. Then for each curve
the characteristic numbers Kt, x2, ... vanish and (by the Plücker formula) the
class is J = d(d - 1). In this case the contact formula tells us that the number
of simultaneous contacts of order (ol, ... , op) = (n 1 + 1,..., np + 1) between
Cl,..., Cp and some member of a E nj-parameter family X is obtained from

by the expansion and evaluation of monomials described in Theorem 2.
This contact formula is valid under the assumptions of Theorem 3, that

is, when X is a generic family of plane curves of sufficiently high degree.
There is, however, a certain freedom in choosing hypotheses. We could
assume, for example, that each individual curve Cj is generic (hence
nonsingular) of degree d, &#x3E; oj - 1, but make no assumption whatever
about the family (except, of course, that the generic member is a reduced



203

curve). Then, if the base field is either of characteristic zero or of charac-
terstic at least max{o1, ... , op}, formula (21) counts (again, after expansion
and evaluation of monomials) the number of simultaneous contacts.

Moreover, if each dj &#x3E; oj, then all contacts are of order exactly (ol,..., op)
(that is, none of the contacts with any of the Cils is of higher order). The
proof is essentially that of Proposition 2.5 of [5], which treats the case
p = 1.

(c) Bézout’s Theorem

As we remarked in Section 4, Theorem 3 is valid even if we drop the
requirement that each specified order of contact °i be at least 2. Suppose,
for example, that C and C 1, C2, ... , Cp are reduced plane curves of degrees
d, dl, d2, ... , d p respectively. Then our contact formula says that the number
of simultaneous intersections between C and Cl, C2, ..., Cp is dP dl d2 ... dp.
This is just a silly formulation of Bézout’s Theorem. Indeed, a simultaneous
intersection is a p-tuple (x 1, x2, ... , xp) in which the point xi lies in the

intersection of C and Cl, the point X2 lies in the intersection of C and C2,
etc. There are dd 1 possibilities for x 1, together with dd2 possibilities for x2,
etc. The other cases omitted from our statement of Theorem 3 are of the

same ilk.

(d) The formula of’ Fulton, Kleiman, and MacPherson

The overlap of our contact formula and that of Fulton-Kleiman-MacPher-
son [11] is the following formula:

The number of simultaneous ordinary contacts between the members of a
p-parameter family X of plane curves and p specified plane curves C 1 (of
degree dl 1 and class d 1 ), ... , C p (of degree dp and class d p) is obtained from
the product of modules

by expansion and evaluation of monomials. To evaluate ArTIP-r means to
replace it by the (ordinary) characteristic number )"rnP-r, the number of
members of X tangent to r specified general lines and passing through p - r
specified general points.

Fulton et al. assume that the individual curves Cl, C2, ... , Cp are in
general position, whereas our hypotheses involve genericity assumptions
about the family X of curves, as well as different, but mild, conditions on

C1, ... , Cp. (See (f) below for further comments along these lines.)
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(e) The formula of de Jonquières

The classical formula of de Jonquières [13] gives the number of plane
curves of degree d making contacts of orders 01, 02, ... , Op with a given
curve C and which pass through k points, where k = d(d + 3)/2 + p - Ejoj.
It is tempting to use our set-up to obtain this formula by calculating

where now

each nj = 0j - 1, and W denotes the universal family of degree d plane
curves. However, Theorem 3 itself will never apply to the universal family.
We have dimpN(d)(n)=N(d)+p+k and dimF(n)=2k+p+Ljoj so
that the map PNd(n)  F(n) is smooth only if N(d) - k &#x3E; Ejoj while we
must have N(d) - k = LjOj - p for the proto-contact formula to be valid.
Thus our formula represents an approach to problems of higher-order

contact distinct from that provided by the formula of de Jonquières. Note
that de Jonquières’s formula can lose its enumerative significance when, for
example, members of the family have nonreduced components of sufhcient-
ly high multiplicity, whereas the hypotheses of Theorem 3 guarantee
validity of our formula for suitable families of plane curves of fixed degree.
(See [11] p. 184ff for further discussion of the enumerative significance of
de Jonquières’s formula.) Moreover, our results are in keeping with the
spirit of Hilbert’s 15th problem which asks "to establish rigorously and
with an exact determination of the limits of their validity those geometrical
numbers..." [12]. Finally, Fulton, Kleiman, and MacPherson [11] note
that "[i]t was observed long ago that de Jonquières’s formula yields via
symbolic multiplication a formula in the case of several given curves." The
proto-contact formula of Theorem 2 involves just such a general multipli-
cation.

Other contemporary treatments of de Jonquières’s formula include [21]
and [29]. In these cases, the problem is formulated in terms of systems of
divisors of degree d cut out on the fixed curve C by a family X of curves.
The formula so produced counts the number of such divisors on C that
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have coalesced in a prescribed manner. In particular, the support of such
degenerate divisors could include points that are singular either on C or on
the relevant member of X. In our language, such divisors represent "false
contacts" and are not counted by our formula. (See Example 3.8, pp.
503-504 of [5] for an illustration of this phenomenon.)

(f) An example: triple contact with two curves

In this case we have two specified curves C and D, and seek the number of
simultaneous contacts of order (3,3) with members of a 4-parameter family
Et. If C and D intersect transversely and have no profound or flat cusps,
and if X is a generic family of curves of degree d &#x3E; 5, then Theorems 2 and
3 show that the desired number

is obtained from the product of modules

where dc, dc, x2c are the characteristic numbers of C, etc. Explicitly, the
number of simultaneous contacts is

Another approach can be taken to establishing the validity of this
contact formula. In [6] and [24], the PGL(2)-orbits of F(2) are identified.
There are three of them: the dense orbit (9(-), each point of which is
represented by the germ of a nonsingular curve without a flex, the special
orbit W(0) = Z2, each point of which is represented by the germ of a line,
and the divisor at infinity (9(oo) = 12, each point of which is represented by
the germ of an ordinary cusp. Thus the action of PGL(2) x PGL(2) on
F(2) x F(2) has nine orbits:
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If C, D, and X are suitably transverse, i.e., if Xs(2,2) is mapped
transversely to C(2) x D(2) by a and the intersection (C(2) x D(2)) n
u(Xs(2, 2)) is contained in the dense orbit (D( -) x (D( -), then we can

argue, as in the proof of Theorem A2 of [6], that the proto-contact number
(22) correctly counts the number of simultaneous contacts. In particular,
we have the following result.

THEOREM 4. Suppose that the curves C and D contain no lines, and that
the general member of PI contains no line. If C, D, and PI are in general
position with respect to the action of PG42) x PGL(2) on F(2) x F(2), then
(22) counts the number of simultaneous contacts of order (3, 3) between C and
D and the members of PI.

Proof. We will show that, for each nondense orbit (D listed above, we
have

Since C, D, and X are in general position with respect to the action,
transversality theory [14] then tells us that the intersection

is empty. Therefore the intersection of u(Irs(2,2» and C(2) x D(2) is

transverse, with all intersections occurring in the dense orbit (9(-) x &#x26;( -).
By definition Xs(2, 2) = X(2) x s X(2), where Et(2) is the closure of the

graph of a function defined on a dense subset of Et, and C(2) x D(2) is the
closure of the graph of a function defined on a dense subset of C x D. By
a general position argument, all intersections between u(Xs(2,2» and
C(2) x D(2) are intersections between the graphs of these functions. Hence
each intersection point corresponds to a pair of points (c, d), in which c is
a nonsingular point of both C and some member X, of the family, and d
is a nonsingular point of both D and Xs. The second-order data of C and
XS at c are identical, as are the second-order data of D and X, at d. Hence
each intersection point is a simultaneous triple contact.
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To see that (23) holds for the nondense orbits, note that the intersection
of C(2) or D(2) with the divisor at infinity is finite. Thus

If C and D contain no lines, then C(2) n (9 and D(2) n (9 are each finite.
Hence

The dimension of X,(2,2) is 6, and, since the general member of X is
reduced (hence generically smooth), we obtain

If the general member of X contains no line, then likewise

Thus (23) is true in each of the eight cases.
Theorem 4 has a clear advantage over Theorem 3 in that the hypotheses

are readily verified. Thus results like Theorem 4 appear to be highly
desirable. To establish such a result, however, one needs an understanding
of the PGL(2)-orbit structure of F(n), which becomes increasingly compli-
cated as n grows. For example, there are 8 orbits on F(3) and 21 orbits
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on F(4). (For a derivation of the first number, see Theorem 2 of [6].
The second number was first obtained by Oberlin College student Dan
Frankowski by Mathematica calculations [30] and later confirmed by us.)
Even worse, since PGL(2) has dimension 8, there are infinitely many orbits on
F(n), none of them dense, when n &#x3E; 7. (In fact, the authors, along with Oberlin
College students Ian Robertson and Susan Sierra, have found that there are
infinitely many orbits on F(6).) Hence theorems such as Theorem 4 cannot
exist for simultaneous contacts of arbitrary order. This is why Theorem 3 is
stated as it is, and appears to be the best possible result of its type.
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