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1. Introduction

Let G be a connected reductive p-adic group, and let ’Y’(G) denote the set
of tempered virtual characters of G, that is the set of finite linear combina-
tions of characters of irreducible, tempered representations of G. Every
0 E j/( G) satisfies the following weak estimate. Given any Cartan subgroup
T of G there is a positive constant r so that

We say that 0 is supertempered if it satisfies the following strong estimate.
For every Cartan subgroup T of G and every positive constant r we have

(In the above, DG is the usual discriminant factor [S, 4.7], u measures
polynomial growth on G, and G* measures polynomial growth on GIZG
[S, 4.1]). If 0 is the character of an irreducible tempered representation 03C0,

then 0 is supertempered if and only if 7c is a discrete series representation.
In [A], Arthur singled out a set of tempered virtual characters which he
conjectured spanned the space of supertempered virtual characters. In this
paper we will show that his conjecture is correct.
More precisely, let P = MN be a parabolic subgroup of G and let u be

a discrete series representation of M. Let iG,M(G) denote the equivalence
class of the tempered representation of G parabolically induced from a and
let R be the corresponding R-group. It is a finite group with the property

*Supported by NSF Grant DMS 9007459.
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that the commuting algebra of iG,M(a) is naturally isomorphic to C[R]",
the complex group algebra of R with multiplication twisted by a cocycle ri.
Let R be a central extension

of the R-group as in [A]. (When q is trivial, we can take R = R.) Then there
is a character X of Z so that the irreducible constituents of iG,M(6) are
parameterized by OCR, X), the set of equivalence classes of irreducible
representations p of R with Z-character X. For p E OCR, X), let rcp denote the
corresponding irreducible constituent of ;G,M(U) and let 0p denote its

character. The representation 03C0p is called elliptic if 0. is not identically zero
on the elliptic set of G.

Let a, z denote the real Lie algebras of the split components of M, G
respectively. Then R acts on a and for each r c- R we set

Define

and let Rreg denote the inverse image of Rreg in R. Arthur proves in [A, 2.1]
that for p6n(R,/), 03C0p is elliptic if and only if the character of p does not
vanish on Rreg. (In particular, for iG,M(a) to have any elliptic constituents
it is necessary that Rreg =1= 0.) For each r E R, define

We will prove in Section 3 that, as predicted by Arthur in the introduction to
[A], 0(M, (j, r) is supertempered if r E Rreg. We also prove that every supertem-
pered virtual character is a linear combination of ones of this form.
The method of proof relies on ideas of Harish-Chandra [HC2]. For every

0 e Y(G) and parabolic subgroup P = MN, we will define a weak constant
term 0; E Y(M). In the case that 0 is the character of an irreducible tempered
representation (n, V) of G, then Op is just the (normalized) character of the
maximal tempered quotient of the Jacquet module V/V(N). In Section 2 we
show that 0E Y(G) is supertempered if and only if Ow = 0 for all P # G.

In Section 3 we use the R-group machinery developed by Arthur in [A, §2]
and the Geometrical Lemma of Bernstein and Zelevinsky [B-Z] to compute
the weak constant terms of the elliptic virtual characters O(M, (j, r), r E Rreg,
and show they are zero. We also prove that any 0 e Y(G) which is supertem-
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pered and zero on the elliptic set of G must be zero. This allows us to show
that every supertempered virtual character is a linear combination of ones of
the form O(M, 0’, r), i’ E Rreg.

2. Constant terms

Let F be a locally compact, non-discrete, nonarchimedean field of characteris-
tic zero. Let G be the F-rational points of a connected, reductive algebraic
group over F. In this section we will define constant terms and weak constant
terms of tempered virtual characters and prove that a tempered virtual

character is supertempered if and only if all of its weak constant terms vanish.
We use Silberger’s book [S] as a convenient reference for Harish-Chandra’s
theory of constant terms of matrix coefficients. We note however, that it must
be used with care since there is an error in the definition of the weak constant
term.

For any admissible representation 03C0 of G, let den) denote the set of all finite
linear combinations of matrix coefficients of n. Set d(G) = ud(n) where the
union is over all admissible representations n of G. Given any f E d(G) and
parabolic subgroup P = MN of G, there is a constant term fp E A(M) with the
property that given ME M, there is t &#x3E; 0 so that

for all a E A +(t). Here ô. is the modular function of P, A is the split component
of M, and A +(t) is the set of all a E A such that l03B1(a)l &#x3E;, t for every simple root
a of P with respect to A [S, 2.6].

Suppose that (n, V) is an admissible representation of G and that P = MN
is a parabolic subgroup. Write P = MN for the opposite parabolic subgroup.
As usual we let YeN) be the subspace of V generated by elements of the form
n(9)v - v, 9GN, v E V, and define VN = V/V(N). Let p: V - VIV(9) be the
projection map, and for mE M, v E V, let

Then (nÑ, VN) is called the normalized Jacquet module of (n, V) corresponding
to P. It is well known to be an admissible representation of M [S, 2.3.6].

Let (ir, V) denote the contragredient of (n, V). For any b G É v E V, define the
matrix coefficient

As in [Ca2, 4.2], the dual of VN is VN with the pairing
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denotes its constant term as above.) For
define the matrix coefficient

Then it is easy to check using [S, 2.7.1] that

for all Thus we have

Suppose that O = O,03C0 is the character of n. Then define Op = OnN, the

character of 03C0N, and call OP the constant term of 0 along P. Let G’ denote the
set of regular semisimple elements of G, M’ = M n G’.

for all a E A +(t). Further, a 1---+ 0p(ma) is the only A-finite function with this

property.
Proof. The equality is a rephrasing of Casselman’s theorem [Cal, 5.2]. The

uniqueness follows from [S, 2.6.2]. Q

L et f E d(G) and let P be a parabolic subgroup of G. Then as in [S, 3.1] we
can write fp = Ex fp,x where the X are quasi-characters of A, and define
X f(P, A) = {X: fp,l # 01. Now if 03C0 is an admissible representation of G we set

As in [S, 3.3.1], we can decompose VN as an M-module direct sum

Let Op,X dénote the character of the restriction of nN to VN,,. Then
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and

for all mEM, aEA.
Given parabolic pairs (P, A) and (Pi, Ai) we write (P, A) - (P i’ A 1) if

P c P1 and A c= A. In this case, if P1 = MINI, we write P* = P n M 1. Given
x 1 E X n(P 1, A 1), let X 1t(P, A, Xt) = {X E X1t(P, A): xIA1 = X 1}’ The following
lemma is an easy consequence of the définition of the constant terms as

characters of Jacquet modules. 
’

LEMMA 2.2. Suppose that (P, A) - (P l’ Al). Then

For any continuous function f on G, we say f satisfies the weak inequality
if there exists a positive constant r so that

Here a is the usual polynomial growth factor defined in [S, 4.1] and E is the
usual spherical function defined in [S, 4.2]. Let ’WT(G) denote the set of

functions in A(G) which satisfy the weak inequality.
Fix a parabolic pair (P, A) and let a be a variable element of A. Following

Harish-Chandra [HC1, Section 21], we say that a --p oo if there exists a

number s &#x3E; 0 so that (1) log.lot(a)l &#x3E;, E6(a) and (2) l03B1(a)l l - 00 for every root a
of (P, A). For any f E AT(G) there is a weak constant term fp E AT(M) defined
as in [S, 4.5.5]. It is the unique element of AT(M) such that

for every m E M. Note Silberger’s definition of a --p oo in [S, p. 101] does not
have property (1). This is needed for the validity of [S, 4.5.5]. For f E d T(G),

Now let03C0 be an irreducible tempered representation of G and let P = MN
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be a parabolic subgroup of G. Decompose the Jacquet module

Define X (P, A) = X03C0(P, A) n Â. Then as in [S, 5.4.1.3], the maximal tempered
quotient of nN is

the character of (VÑ)w. Thus we have

Let 4&#x3E;: A --&#x3E; C be an A-finite function. Then we can write 4~ = x ~x’ We say
a quasi-character X of A is an exponent of ~ is 4&#x3E;1 =f:. 0, and say ~ is a tempered
A-finite function if an of its exponents are unitary. Fix m E M’. Then

a -- 0p’(ma) is a tempered A-finite function.

LEMMA 2.3. Let m E M’. Then

Further, a -- OP (ma) is the only tempered A-finite function with this property.
Proof. Using Lemma 2.1 it is enough to show that

But by [S, 4.5.3], for all x E X (P, A), we have lima -+p 00 x(a)) = 0. The unique-
ness follows from [S, 4.1.6]. D

Let &#x26;,(G) denote the set of equivalence classes of irreducible tempered
representations of G. For nE ae’t(G), write 0x for the character of n. We will say
that 0 is a tempered virtual character of G, and write e E j/(G), if there are
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such that

For any we can define constant terms ep and OP by

Define Xe(P, A) to be the set of all quasicharacters x of A such that 0P,1 =1= 0.
Let (P, A) be a parabolic pair with simple roots 03B1 1, ... , ai. Let A + denote the

positive chamber of A with respect to P and let a denote the real Lie algebra
of A. Finally, let x be a quasicharacter of A which is unitary when restricted to
Z, the split component of the center of G. Then as in [S, 4.5.10], we can define

by setting

We will say that X is rapidly decreasing on
XE G define

Then X is rapidly decreasing on A + implies that for every t &#x3E; 0 we have

LEMMA 2.4. Let e G Y(G). The following are equivalent.

Proof. Let 0 E Y(G). Using [S, 4.5.2, 4.5.3], we see that for every (P, A) and
XE Xe(P, A) we have IX(a)l  1 for all a E A + . Thus if we define y = - Ei -1 1 ciai
as above associated to x, we have ci &#x3E;, 0 for all i. Further, 0’ is the sum of the

OP,x where x runs over the unitary characters XEXe(P, A), that is the X for
which ci = 0 for all i. Thus (ii) clearly implies (i).
Now assume that 0’ = 0 for all P = G. Fix a parabolic pair (P, A) and

XEXe(P, A). If (P, A) = (G, Z) there is nothing to check. Assume that (P, A) is
proper. Define the constants ci &#x3E; 0 associated to x as above. Suppose that
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c = 0. Let (P 1, A 1 ) be a proper parabolic pair such that (P, A) - (P 1, A 1 ) and
ai, Hp(a» = 0 for all a E A 1, 2  i  1. Note that if 1 = 1 we take Pl = P. Let
Xl 1 be the restriction of x to A 1. Then x 1 is unitary since c 1 = 0. Since Pl#- G,
we have 0P1 = 0 so that 0P1,lt = 0 for every unitary character x 1 of A 1. Now
using Lemma 2.2 we see that 0P,I’ = 0 for every quasicharacter X’ of A such
that the restriction of x’ to A 1 is X l’ But this contradicts the assumption that
XEXe(P, A). D

Let 703C0 be an irreducible, admissible representation of G. By [CI, 3.4] we know
that n is tempered if and only if given any Cartan subgroup T of G there is a
positive constant r so that

Here DG is the standard discriminant factor defined in [S, 4.7]. Let 0 E ’Y(G).
Then we say that 0 is supertempered if and only if for every Cartan subgroup
T of G and every positive constant r we have

THEOREM 2.5. Let e G Y(G). Then 0 is supertempered if and only if 0; = 0
for all P # G.

Proof Suppose that OP = 0 for P # G. We will use the argument of Clozel
in [CI, 3.4] to show that 0 is supertempered. Let T be a Cartan subgroup of
G. As in [Cl, 3.4] we can write T as a finite union of subsets T(Mc+ ) where
P = MN runs over a set of representatives for conjugacy classes of parabolic
subgroups of G. Here T(Mc+ ) = 0 unless T c M modulo conjugation. Thus we
assume that the P are chosen so that T(Mc) ) = 0 unless T c M. For regular
tE T(M:) we have

If P = M = G, then T(Gc+ ) is compact modulo center so that we know that

Now suppose that P # G. Now T(Mc+ ) can be written as a finite union of sets
of the form A + Tc ti, where Tc is the maximal compact subgroup of T and ti E T.
Now for t = act E A + Tcti we can write
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Now since Tc is compact,

for all x. But using Lemma 2.4, every x E X ©(P, A) is rapidly decreasing on A +
so that

for any r &#x3E; 0.

Conversely, suppose that 0 is supertempered. Let P = MN # G be a

parabolic subgroup of G and fix m E M’. Let T = ZG (m). Then for all a E A,
ma E T so that for any r &#x3E; 0 there is C, &#x3E; 0 so that

for all a E A with ma E T’. Thus

Thus by Lemma 2.3, Op (ma) = 0 for all a E A. 0

COROLLARY 2.6. Let nEtCt(G). Tlzen 0n is supertempered if and only if n
is a discrete series representation.

Proof. Let nEtCt(G) and write 0 = 0n. Then for any parabolic pair
(P, A), we have X,(P, A) = Ufe.W’(7t) X f(P, A). Suppose that n is a discrete
series representation. Then using [S,4.5.10], for every fc-sl(n), every

X E X f(P, A) is rapidly decreasing on A +. Thus using Lemma 2.6 and Theorem
2.7 we see that 0 is supertempered. Conversely, if 0 is supertempered, again
using Lemma 2.6, Theorem 2.7, and [S, 4.5.10], we see that every f E A (03C0) is

square integrable mod center so that n is discrete series. D

3. Supertempered characters

Suppose that P = MN is any parabolic subgroup of G and let A be the split
component of M. Let W(G/A) = NG (A)/M be the Weyl group of A. Elements
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of W(G/A) normalize M and act on representations of M. Let uecC2(M) and
define WQ = f w E W(G/A): wJ = ul. As in [A, §2], corresponding to each w E W
there is an intertwining operator for the representation Ind(u 01) of G
unitarily induced from a. Write W° for the subgroup of all w E W such that
the corresponding intertwining operator is scalar. Let 10 be the set of reduced
roots a of (G, A) such that the corresponding reflection wa E W°. Then it is

known that Eo is a root system. Let Ao be the set of simple roots for a choice
of positive roots in E° and define R1 = {w E W w0° = Ao}. Then W is the
semidirect product of Wo and Ra and R = Ra is the R-group for Indp 0 1).
R has the property that the commuting algebra C(a) of the induced

representation is naturally isomorphic to the complex group algebra C[R]’’
with multiplication twisted by a cocycle ~. Fix a finite central extension

over which the cocyde q splits and a character x of Z as in [A, §2]. Then the
irreducible constituents of 1 ndGP ( Q 1 ) are naturally parameterized by II(R, X),
the set of equivalence classes of irreducible representations of R whose central
character on Z is x. For each p E II(R, x) we will write np for the corresponding
irreducible constituent of IndpG (6 Q 1) and 0 for its character. Corresponding
to each r E R we can define a virtual character as in [A, 2.3] by

Let a denote the real Lie algebra of A and let z denote the real Lie algebra
of Z, the split component of G. For each r E R, let

Set

and let Rreg denote the inverse image of Rreg in R. If r E Rreg, we say (M, 0’, r) is
an elliptic triple. Arthur says in the introduction of [A] that when (M, 0’, r) is
an elliptic triple, then the virtual character 0(M, 0’, r) should be supertempered,
and that virtual characters of this type should span the set of supertempered
virtual characters. In this section we will prove the following theorems.

THEOREM 3.1. For every elliptic triple (M, a, r), the virtual character

0(M, J, r) is supertempered. Conversely, given 0 G Y(G) supertempered, there
are finitely many elliptic triples (Mi, ui, ri) and complex numbers ci so that
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THEOREM 3.2. Suppose that O E’(G) is supertempered and that 0 is zero on
the elliptic set of G. Then 0 = 0.

In order to prove these two theorems we will first need some lemmas. We
first recall a result of Bernstein and Zelevinsky [B-Z] on Jacquet modules of
induced representations. Fix a minimal parabolic subgroup Po = MoNo of G
and let Ao be the split component of Mo. Let 2(G) denote the finite set of Levi
subgroups of parabolic subgroups P of G containing Po. For each M E 2(G),
set 2(M) = {M’E2(G): M’ c M} and let WM = NM(Ao)/Mo. Each ME2(G)
is the Levi component of a unique parabolic subgroup PM = PoM containing
Po.

Let ME E 2(G). Given any admissible representation i of M we write ’iG,M(03C4)
for the equivalence class of the admissible representation Ind G (T p 1) of G. If
0, is the character of i, we also write iG,M(O03C4) for the character of ’G,M(-r)-
Given any admissible representation 03C0 of G, we write rM,G(n) for the equival-
ence class of the admissible representation 03C0N of M where as in Section 2, nN
denotes the normalized Jacquet module of n corresponding to PM = MN. If
On is the character of n, we also write rM,G(O,,) for the character of rm,G(n)’ ’t
is the constant term (0-)p of 8x with respect to PM . We will also write

Then WM’L gives a complete set of coset representatives for the double cosets
WLB WG /WM and for each WEWM,L, wMnLE!e(L) and Mnw-1LE!e(M).
Now the Geometrical Lemma [B-Z, 2.12] implies the following character
formula. Let M,LE!e(G) and let i be an admissible representation of M. For
each w E WM’L, write Lw = LnwM. Then as above we can define rW-1LW,M(03C4)· It

is an admissible representation of w-1Lw. Now wrw-1Lw,M(03C4) is an admissible

representation of LW and iL,Lw(wr w-1Lw,M(03C4) is an admissible representation of
L. We will also denote this representation by iL,Lw(rLW,wM(wi)). Then the

character formula can be written as

Let LE 2(G) and suppose that e’ E ’f"(L), the set of tempered virtual

characters of L. Then by linearity we can define 0 = iG,L(0’) E ’f"(G). Let Le"
denote the set of regular elliptic elements of L. Thus x E Leu just in case x is a
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regular semisimple element of L and the centralizer of x in L is compact
modulo the center of L.

Proof. First, using (3.3) which clearly extends by linearity to virtual charac-
ters, we have

Now suppose that s E WL°L and ]LS = L n sL is a proper Levi subgroup of L.
Then iL,Ls (r Ls,sL (s0’)) is a properly induced character of L and hence is zero
on Lell. But when Ls = L = sL, then iL,Ls(r Ls,sL(s0’) = sO’. Thus for all x E Leu
we have

But since 0’ is tempered, so is s0’ for all s E WOL,L, and so

Proof of Theorem 3.2. Let e E Y(G) such that the restriction of 0 to Gell is
zero, but 0 =1 O. Then using Theorem D and Proposition 1 of Kazhdan [K],
there are proper Levi subgroups Mi c- Y(G) and tempered virtual characters
OiE c- Y(M ) such that 0 = li’G, m, (0 ). Let di be the dimension of Mi and let
d be the maximum of the dl. The expression of 0 as a sum of induced virtual
characters is not unique, but we can assume that we have chosen the Mi, Oi,
so that d is as small as possible. We can also assume that Mi is not conjugate
to Mi for i :0 j.
Now assume that 0 is supertempered. Pick M such that d 1 = d is maximal

and let x E Mill. Using (3.3), for all i we have

Let se WM‘’M1 and suppose that Mi,s = M 1n sM, = M i. Then M 1 c sMi. But
dim MI &#x3E;, dim sMi so that M 1 = sM,. But we assumed that Mi is not conjugate
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to Mi 1 for i ~ 1. Thus for all i =F 1 and SE WM ,M 1, M i,s is a proper Levi

subgroup of M 1, so that the induced characters are all zero on elliptic elements
of M 1. Thus for i =F 1 we have

But O is supertempered, so this implies that

Define

where k is the cardinality of WoMt,Mt. Then iG,Mt(0’1) = iG,MJ0l). But, by
Lemma 3.4, we see that for xE Mi«, eh(x) = k-liG,MJ0 1)Myx) = 0. Thus O1
is zero on the elliptic set of M 1. Now using Kazhdan’s theorem [K], there are
proper Levi subgroups L j of M1 and 0’J E 1’(Lj) so that 0l = I;jiMl,Lj(0’j).
Thus iG,Mt(0t) = I;jiG,Lj(E&#x3E;’j). We have seen that for any M1 such that d = d
is maximal, iG,M,(O1) can be written as a sum of virtual characters induced
from Levi subgroups of strictly smaller dimension. This contradicts our

assumption about the expression of 0. Thus 0=0. D

Let ME2(G), a E- g2(M), and define Wa, R = RQ, and II(R, x) as in the
beginning of this section. Define = iGm(a) and for each p E OCR, X), let 7r. be
the irreducible constituent of n corresponding to p and 0 p its character. Let
LE ..L( G) such that M c L and assume that L satisfies the compatibility
condition in [A, §2]. Then the R-group for iL,M(6) is R(L) = R n W(L/A). Let
R(L) denote the inverse image of R(L) in R. Then II(R(L), x) parameterizes the
irreducible constituents of iL,M(Q). Given p E OCR, X), p’c- O(R(L), X), write

Res(p) for the restriction of p to R(L) and Ind(p’) for the representation of R
induced from p’. It follows easily from the remarks of Arthur in [A, §2]
explaining the compatibility of formula [A, 2.4] with induction, that if ip, is the
irreducible constituent of iL,M(Q) corresponding to p’ E II(R(L), X), then

LEM MA 3.5. Suppose that Ra = W,, and let LE!f(G). Then given p E II(R, x),

Proof. Using (3.3) we can compute
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where the y, are quasicharacters of the split component A, of L,. Since

VUES2(vM), 0va is supertempered by Corollary 2.6. Now as in Lemma 2.4,
every exponent y, of (0va)Lv is unitary on AvM c Av, and is rapidly decreasing
in the appropriate chamber of Av/AvM’ But the central character of

iL,Lv«0 va)Lv,}’v) is the restriction of Yv to AL. Thus iL,Lv((0 va)Lv,}’v) can have
unitary central character only if AL c AVM so that vM c L. In this case

L, = vM. Thus we see that

where WOM,L = {VE WM’L: vM c: L}. Fix VE WpM’L. Then iL,vM(va) = Vil’-lL,M(U),
There is no compatibility condition since RQ = Wu, and we can write the
irreducible constituents of il,-lL,M(U) as 1:p" p’ E n(R(v-l L), X). Further, 1:p’
occurs in il’-lL,M(U) with multiplicity deg p’. Thus iL,vM(vu) has irreducible

constituents V1:p’ occuring with multiplicity deg p’.
Given v 1, v2 E Wf,L, iL,vtM(VIU) and iL,v2M(v2u) have constituents in common

if and only if they are equal. In this case there is SE WL such that v2M = SVl M

V2 are in the same double coset of

occurs in (OJ)Lw with multiplicity deg p’ [W/W(v -1 L)] = deg p’ [R/R(v -’ L)]
since R = W by hypothesis.

Let p E OCR, x). By the standard Frobenius reciprocity result [Ca2, 3.2.4], for
any 7: E Ct(L),

where we use normalized induction and the normalized Jacquet module.
However, since (03C0p)NL is the maximal tempered quotient of (03C0p)N,, and we are
assuming that i is tempered,
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Thus et occurs in (Op)L with multiplicity
Fix tE6f(M). If i is not of the form v’tp’ for some VE W!"L,

p’ E II(R(v-1 M), x), then 0t does not occur in (07)L’ and so m(p, i) = 0 for all
p. It is an easy consequence of [A,1.1], that m(1tp, !G,MM) = 0 for all p also.
Thus m(p, ’t) = m(np, iG,M(’t» = 0 in this case. Now let i = v’tp’ for some

VEWOM,L, p’ETI(R(v-lM),X) and suppose that m(p,v’tp,»m(1tp,iG,L(V’tp,))
= m(p, Ind(p’)) for some p. Now since the multiplicity of np in 1t is deg p, we
see that the multiplicity of 011Tp. in (07t)L is strictly greater than

But this contradicts the above calculation using the Geometric Lemma. Thus

LEMMA 3.6. Suppose that Rreg =1= QS. Then Ra = Wa.
Proof. Suppose that Ra =1= W,. Then Ao # 0. For each a E Do, define Hx E a

dual to a. Set Ho = EaEeo Hx . Then for any r E R, rAo = Ao so that rHo = Ho.

Proof° of Theorem 3.1

Let (M, u, r) be an elliptic triple. Thus M c- Y(G) is a Levi subgroup of

G,(1EG2(M), and r E Rreg. We must show that O=O(M,u,r)=
pEn(R,x) tr(p(r» 0p is supertempered. Since Rreg =1= Qf, we know from
Lemma 3.6 that Ra = W. Now from Lemma 3.5 we know that for any
LE 2(G),

for all p unless there is v E WG so that
Assume that this is the

But if L i= G, r E Rreg cannot be conjugate to an element of R(v- 1L), and so
tr(Ind(p’ )(r)) = 0. Thus OL = 0.
We have proven that 0’ = 0 for every LE2(G), L # G. But 2(G) contains
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representatives for all conjugacy classes of Levi subgroups of G. Further,
although the definition of 0 = OpL depends on the choice of the parabolic-
subgroup PL with Levi component L, the formula from Lemma 3.5 shows that
it is independent of all choices. Thus 0 is supertempered.

Conversely, suppose that e E Y(G) is supertempered. As in [A, §3], virtual
characters of the form O(M, a, r), M c- Y(G), Q E c!2(M), r E Rtf’ span Y(G). Thus
there are triples (Mi,,7i, ri), 1  i  k, as above and complex numbers ci so that

Now by the results of is zero on unless

is supertem-
pered. Thus

is supertempered and zero on the elliptic set of G. Thus O’ - 0 by Theorem
3.2. n
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