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1. Introduction

The integral representation is a fundamental tool to study analytic proper-
ties of the zeta function. For example, the Euler p-factor of the Riemann
zeta function is

where dx is a Haar measure of Q, and p/( p - 1) is a normalizing constant
so that measure of the unit group is 1. What is necessary to generalize such
integrals to a completion of a ring finitely generated over Zp? For example,
let T be an indeterminate. The two dimensional local field Qp«T» is an

infinite dimensional Qp-vector space. It is not locally compact, and no Haar
measure exists over it. So, before considering integral representations, we
must establish a u-additive measure on an infinite dimensional space.

In case of real vector spaces, Wiener [10] constructed au-additive
measure on the space of continuous functions on [0, 1] vanishing at the
origin. Gross [5] generalized this and constructed abstract Wiener

measure. In this paper, we construct a non-Archimedean version of Wiener

measure over a normed vector space with an orthonormal Schauder basis

(which corresponds to notion of real separable Hilbert spaces). (Theorem
3.17).

Following Kuo [6, Chap. I] we summarize construction of abstract
Wiener measure. Let (H,  -, - » be a real separable Hilbert space, and
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FOP(H) the set of all orthogonal projections whose image have finite
dimension. A set of the form

where P E FOP(H) and F is a Borel subset of P(H) is called a cylinder set
in H. We denote by Cyl(H) the set of all cylinder sets in H. The Gauss
measure

(with variance 1) is a measure in H. Here, dx is the Lebesgue measure in
P(H). This is finitely additive but not cr-additive. The seminorm Il - Il in H

is called measurable if, for any e &#x3E; 0, there is P E FOP(H) satisfying

for all Q E FOP(H) with P(H) -L Q(H). A measurable norm induces a
weaker topology than the topology induced by the inner product of H. Let
B be a completion of H with respect to the II ’ II -topology. Generally, B is
a Banach space but not a Hilbert space. A subset of the form

where n is a suitable integer, y 1, ... , Yn E B* and F is a Borel subset in R",
is called a cylinder set in B. We denote by Cyl*(B) the set of all cylinder
sets in B. If Te Cyl*(B), then T n H E Cyl(H). Now put

The measure P is a u-additive measure on the Borel field of B ([6, Chap. I,
Theorem 4.1, 4.2]).

Let K be a non-Archimedean local field and H a normed K-vector space.

Unfortunately there is no inner product (bi-linear map) on H which gives
the norm of H. There is notion of orthogonality in H, but a norm direct
supplement (analogue of orthogonal complement) may not exist. Even if it
exists, uniqueness does not hold. The problem what is non-Archimedean
analogue of the normal distribution is another difncuity. We define admiss-
ible measure on K in Definition 3.3. For each admissible measure v, we

define the notion of cylinder sets in H and a non-Archimedean version of
Gauss measure G, in Lemma 3.6 for some class of H. This is canonical in
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the sense that G y is independent of choice of particular coordinate system.
Section 2 is a preparation. For normed vector spaces with orthonormal
Schauder basis (cf. Definition 2.9) we study sufficient conditions for

existence of norm direct supplements, orthogonal projections, and so on.
(E.g. Lemma 2.6 and Lemma 2.13). Then, we define measurability of
seminorm on H in Definition 3.8. Once these are established, we can
construct non-Archimedean Wiener measure G y with parameter v by the
similar method to the real case. One of the merits of our method is that we

can compute some integrals associated to arithmetic objects. Two examples
are explicitly calculated in Section 5. In the Archimedean case, the abstract
Wiener measure is a generalization of the classical Wiener measure corre-
sponding to stochastic process on C([0, 1]). We note Evans [3,4], and
Albeverio and Karkowski [1], have studied stochastic process on local
fields. Finding the relation between our work and these works would be
interesting.
The result of this paper for a special v is announced in the symposium

"Construction of automorphic L-function and its application" held on Nov.
5-11, 1991 at RIMS, Kyoto [9].

2. Review on non-Archimedean analysis

Following Bosch, Güntzer and Remmert [2, Chap. II], we summarize some
basic facts on non-Archimedean analysis. We introduce a notion of

orthogonal projections and prove some lemmas which are necessary to
construct Wiener measure.

Let K be a field with non-Archimedean multiplicative valuation 1 . 1. Let
H be a normed K-vector space with a norm also denoted by In other
words, H is a normed K-vector space whose norm satisfies

We denote the identity operator of H by 1H. For A c H and x E H, we put

For an integer n  1, let K" be a normed K-vector space provided with the
norm
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DEFINITION 2.1. Let Vl, V2,..., V be subspaces of a normed K-vector
space H. The spaces Vl, V2,..., V,, are mutually orthogonal if

holds for any uk E Vk . If this is the case, we say that the sum space

V, + V2 + -.. + V,, is a norm direct sum and denote it V, Et) V2 (B - Et) V".
Especially, for two normed K-vector spaces V and W, we write V 1 W if V
and W are mutually orthogonal.
As is readily verified, norm direct sum space is a direct sum of each

component as a K-vector space.

DEFINITION 2.2. A subspace V of H admits a norm direct supplement (in
H) if there is a subspace W of H satisfying H = V EB W

This notion corresponds to an orthogonal complement of real Hilbert
spaces. Although there always exists the unique orthogonal complement of
a closed subspace of a real Hilbert space, a norm direct supplement may
not exist and may not be unique even if it exists for non-Archimedean cases.
For example,

holds for any a c- K satisfying jal  1.

DEFINITION 2.3. The subspace V of H is strictly closed if, for all h E H,
there is v = v(h) E V satisfying

If a subspace V is strictly closed, then it is closed. Conversely, a closed
subspace V is strictly closed if V - {O} is discrete (in {x ER: x &#x3E; 01) ([2,
Lemma 1.1.5/3, Proposition 1.1.5/4]).

DEFINITION 2.4. A normed K-vector space V is spherically complete if
each descending chain of open balls B(vn, rn) = {x E V : lx - vnl $ rn}’ where
rn &#x3E; 0, Vn E V and n &#x3E; 1, always has non-empty intersection.

Spherically complete spaces are complete. Conversely, if V is complete
and 1 V - {O} is discrete, then V is spherically complete. If K is spherically
complete, then every finite dimensional normed K-vector space is spheri-
cally complete ([2, Lemma 2.4.4/4]).
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LEMMA 2.5. Let V be a strictly closed subspace of H, and U a spherically
complete subspace of H. If U is orthogonal to V, then U Et) V is a strictly
closed subspace of H.

Proof. Let v E H - (U Et) V). Then there are vectors an E U and bn E V such
that the sequence dn = iv - (an + bn)1 is strictly monotone decreasing and
that limn-+oo dn = Iv, U Et) VI. We have

On the other hand,

since U L K Hence, lan+ 1 - anl  dn. We put Bn = {xe U : lx - anl  dn} to
obtain a descending chain of open balls {Bn}= 1. Because U is spherically
complete, the set B = n#i= 1 Bn is non-empty. Let a be any element of B. Since
V is strictly closed, there is b E V satisfying Iv - a, VI = Iv - a - bl. For an
integer n &#x3E; 1, we have

Therefore Iv - (a + b)l = Iv, U Q+ VI. D

LEMMA 2.6. Let K be a spherically complete field. Let V be a strictly closed
subspace of H with finite codimension. Then V has a norm direct supplement.

Proof. We use induction on n = codim E For the case of n = 1, we pick an
a c- H - E Since V is strictly closed, there exists x c- V satisfying lx - al =
la, V[. Put W = K(x - a). Then H = V + W since n = codim V = 1. Moreover,
V .1 W follows from [2, Observation 2.4.2/2]. Let n &#x3E; 1. A similar argument
shows the existence of an E H satisfying Ka,, 1 V. Since K is spherically com-
plete, so is Ka". By Lemma 2.5, Kan Q+ V is strictly closed and

codim Kan (B V = codim V - 1. By the induction hypothesis, Kan (D V has a
norm direct supplement W,, Then, Wn (9 Kan is a norm direct supplement
of V. 0

DEFINITION 2.7. Let V be a finite dimensional normed K-vector space and
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put n = dimk E A basis {e l’ e2, ..., e,,l of V is an orthogonal base if

holds for all cl, ... , Cn E K. Moreover, if leil = 1 for all i, this basis is called an
orthonormal basis.

Such a basis may not exist. If K is spherically complete, every finite

dimensional normed K-vector space has orthogonal basis. Moreover, if V also
satisfies I VI c IKI, then V has an orthonormal basis ([2, Proposition 2.4.4/2,
Observation 2.5.1/2]). However, if K is not spherically complete, there exists a
two-dimensional K-vector space which has no orthogonal basis ([2, p. 193]).

DEFINITION 2.8. A normed K-vector space H (of arbitrary dimension) is
called K-cartesian (resp. strictly K-cartesian) if every finite dimensional sub-
space of H has an orthogonal basis (resp. an orthonormal basis).

DEFINITION 2.9. A countable subset eil,-= , 1 of H is called an orthogonal
Schauder base if it satisfies the following two conditions:

(1) For any v E H, there is the unique {c,eK}=i 1 such that Y-,’=Iciei
converges to v.

(2) For any converging series 1 ciei, we have

In addition to above conditions, if le,l = 1 for all i, we call {ei} 1 an

orthonormal Schauder basis of H.

If H has an orthogonal Schauder basis, H is K-cartesian ([2, Proposition
2.7.2/7]), and if H has an orthonormal Schauder basis, it is strictly K-cartesian
([2, Proposition 2.7.5/1]).

DEFINITION 2.10. A linear map Pc-HomK(H, H) is called an orthogonal
projection if p2 = P and lm P 1 Ker P. We denote by FOP(H) the set of all
orthogonal projections of H with d’MK P(H)  00. We order FOP(H) by
putting P  Q whenever P(H) c Q(H) and Ker P :::&#x3E; Ker Q.
An orthogonal projection P is continuous because

Let x E H - Ker P. For all y e Ker P we have
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where y = x - P(x) attains equality. Hence Ker P is a strictly closed subspace
of H.

LEMMA 2.11. Let P and Q be orthogonal projections of H. Assume

Ker P c Ker Q. Then PQ(H) 1 Ker Q.

Proof. We have only to show

for x E PQ(H) and y E Ker Q satisfying Ixl = Iyl. Since Q is an orthogonal
projection,

This proves (2.1). Q

LEMMA 2.12. Let K be spherically complete. Let H be a normed K-vector
space with an orthogonal Schauder basis. Assume that IH - {O}I [ is discrete. Then
(FOP(H), ) is a directed set.

Proof. Reflexivity and transitivity are obvious. For any P1, P2 E FOP(H), let V
be the sum space P,(H) + P2(H). Since K is spherically complete and V is
finite dimensional, V is spherically complete. Since H has orthogonal Schauder
basis, V has a norm direct supplement U by [2, Proposition 2.7.2/7]. Put

Then A is a closed subspace of H with finite codimension because all subspaces
appearing in the right side of (2.2) have the same properties. Since IH - {O} is
discrete, A is strictly closed. Noting V 1 A, we see V Et) A is a strictly closed
subspace with finite codimension by Lemma 2.5. Let W be a (one of) norm
direct supplement of V, which surely exists by Lemma 2.6. Let Q E FOP(H) be
the projection to V ffi W component of the decomposition H = V OE) W Et) A.
By definition, Q a Pl and Q &#x3E;1 P2. D

LEMMA 2.13. Let K be spherically complete. Let H be a normed K-vector
space with an orthonormal Schauder basis and IH - {O}I be discrete. For any
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given {FnEFOP(H)}=l’ there exists a sequence {PnEFOP(H)}=l satisfying
the following four conditions:

Proof. Let {eJ 1 be an orthonormal Schauder basis of H. Define En E FOP(H)
by

Let Po be the zero map. Assume Pn- 1 is defined. We define Pn as any element
of FO P(H) satisfying P,, &#x3E;, P,, - 1, P,, &#x3E;, F,, and Pn &#x3E; E", whose existene follows
from Lemma 2.12. By the definition of order, (2.3), (2.4) and (2.5) hold. Using
Pn(H) :D E,,(H), we have Pn En = En. For any x E H,

Since {ei} Í= 1 is an orthonormal Schauder basis of H, we see that (2.7)
converges to 0 as n - oo. This proves (2.6). D

We end this section with two simple measure theoretic lemmas. Let n be a
nonnegative integer. A Borel measure ), on K" is isometry invariant if

),(T(E» = ;,(E) for all linear isometries T of K" and all Borel sets E. Note the
Haar measure Jin of K" is isometry invariant. We normalize M,, as

LEMMA 2.14. Let n a 1 be an integer and V an n-dimensional normed K-vector

space with an orthonormal base {eJi= 1. Define t/J E Hom(K", V) by

. 
- 

..

Then for any Borel set E of V, the value À(t/! -1(E)) is independent of choice of
an orthonormal base of V.

Proof. Let {ei}i= i be another orthonormal base of V and put
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is an isometry of K n , the lemma follows from

In the rest of this paper, we put

and

which are well defined by Lemma 2.14.

LEMMA 2.15. Let H be a normed K-vector space with an orthonormal Schauder

basis. Let P and Q be elements of FO P(H) satisfying Ker P c Ker Q. Then for
a real valued function f and a Borel subset D of Q(H), one has

(If one value exists, then the other exists and two values are equal.)

Proof. The assumption Ker P c Ker Q implies QP = Q. Since

for x E Q(H), the restriction of P to Q(H) is a surjective isometry from Q(H) to
PQ(H). Especially, if en=1 1 is an orthogonal basis of Q(H), then {P(ei)}i= 1 is

an orthogonal basis of PQ(H). By Lemma 2.14, both hand sides of (2.12) are

where § is defined by (2.9). D

3. Construction of non-Archimedean Wiener measure

In the previous section, we defined the notion of orthogonal projections of
normed K-vector spaces with orthogonal Schauder basis. Using them, we
construct Wiener measures on non-Archimedean local fields. In our con-

struction, Proposition 3.7, Lemma 3.10, Lemma 3.11, Lemma 3.12, Lemma
3.13, Theorem 3.17 and Theorem 3.18 correspond to Proposition 4.1,
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Lemma 4.1, Lemma 4.2, Lemma 4.4, Lemma 4.5, Theorem 4.1 and

Theorem 4.2 of Kuo [6, Chap. I], respectively where real Wiener measure
is constructed. However our definition of a measurable seminorm (see
Definition 3.8) is différent from that of real case (1.1).
Throughout this section, K denotes a non-Archimedean local field.

Therefore K is spherically complete. We normalize a valuation of K as
Inl = 1/q, where q is a cardinality of residue class field of K and 7r = n. is
a prime element ouf 1 - 1. We denote by H a normed K-vector space with an
orthonormal Schauder basis. The existence of orthonormal Schauder basis

implies that IH - {O}I 1 (= IK - {O}D is discrete.

DEFINITION 3.1. A subset E of H of the following form is called a

cylinder set,

where PE FOP(H) and F is a measurable subset of P(H). We denote by
Cyl(H) the set of all cylinder sets in H.

LEMMA 3.2. The set Cyl(H) is a , field of sets.

Proof. Let E 1 P 1 ’(F ) and E2 = P2 ’(F 2), where P 1, P2EFOP(H) and
F, and F2 are measurable subsets in P,(H) and P2(H), respectively. Since
both Ker Pl and Ker P2 are closed subspaces of H with finite codimension,
Ker Pl n Ker P2 is also a closed subspace with finite codimension. Hence
it is strictly closed because IH - {O}I is discrete. By Lemma 2.6, there is
P c- FOP(H) satisfying Ker P = Ker Pl n Ker P2. Then, for i = 1, 2, we have

Since P is a projection and Ker Pi iD Ker P,

By the definition, F, is a measurable set in P,(H). Since restriction of Pi to
P(H) is continuous, Ei n P(H) = {x E P(H) : Pi(X) E FJ is a measurable

subset in P(H). Therefore both

and



91

belong to Cyl(H). On the other hand,

Thus Cyl(H) is closed under taking union, intersection and complement.
D

For a nonnegative integer n and a nonnegative real number r, put

Under our normalization (2.8) of the Haar measure of K", we have

,M,,(C,,(1» = 1. We abbreviate ,ut as p for simplicity.

DEFINITION 3.3. A probabilistic measure v on K is said to be admissible
if v satisfies the following two conditions:

(1) The measure v is isometry invariant absolute continuous measure
with respect to M.

(2) The value of Radon-Nykodim derivative dv/d,u(x) at x = n" is a

non-decreasing functiou on n.

Let v be an admissible measure on K. For mE Z, put

The condition (2) implies fl,,, &#x3E;, 0. Since

we have

Noting convergence, we obtain
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and

LEMMA 3.4. Let v be an admissible probabilistic measure on K and /3m as
in (3.3). Define -9v,,, c- M ap(j KI, R) by

Then -9,,n(l . .1) EL l(Kn, ,un). Moreover, for any Borel set E in K n@

Proof. Put an,m = fi2v.n(qm) for simplicity. Noting C
we obtain

Assume E c An(qm) for some mE Z. Then the left hand side of (3.7) is a,,,,,, M,, (E),
whereas the right hand side of (3.7) is

Therefore, (3.7) holds for E c An(qm). Note £&#x26;",l(lxl) = dv/dJ1(x) EL1(K, y). We
also see that Ix .@",l(lxl)dJi(x) = v(K) = 1. Assume IK. = 1. Using
(3.7) for E = A"(q‘) we have
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where XE( - ) is the characteristic function of E. Letting M, N --+ oo, we see that
v,n+l(I.I)EL1(Kn+l,Jln+l) and fK" -9,,n+ (Ixl)dPn+ I(X) = 1 by Levi’s the-

orem. This and Lebesgue’s convergence theorem establish (3.7) for an arbitrary
Borel set E. D

We define a probabilistic measure v "" on Kn by

which is (7-additive since ,n E L1(Kn, /ln). Then (3.7) is rephrased as

For simplicity, we define v" = (v""’)v (cf. (2.10)) for a finite dimensional
normed K vector space V. It is straightforward to obtain

and hence

DEFINITION 3.5. The cylinder measure G, with parameter v is the function
on Cyl(H) defined by the following formula:

LEMMA 3.6. The measure G, is well defined.

Proof. For EECyl(H), take any PEFOP(H) and a measurable subset F of
P(H) satisfying E = {xEH:P(X)EF}. We set

(Note U depends on only E, not on the choice of P and F.) Then, U is a
subspace of H and U:J Ker P. Let Q be an arbitrary element of FOP(H)
satisfying Ker Q = U. To show Q exists, we note that since P(H) is K-cartesian,
[2, Proposition 2.4.1/5] implies U n P(H) has a norm direct supplement V in
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P(H), i.e. P(H) = V $ (U r) P(H». Let Q E FOP(H) be an orthogonal projec-
tion to the V component of H = V Q (U n P(H)) Q Ker P. Since Ker P c U,
we see (U r) P(H» G) Ker P c-- U. On the other hand, for XE U we have

P(x) = x - (x - P(x)) E U because U is a subspace containing Ker P. There-
fore x = P(x) + (x - P(x)) E (U n P(H)) Q Ker P. Thus

and this Q is the desired one.
We note Q = QP because of Ker P c Ker Q. We show

how we choose Q. Let x E F. Using QP = Q = Q2, we see x - PQ(x) E Ker Q.
Hence decomposition x = PQ(x) + (x - PQ(x)) shows that the right hand side
of (3.10) contains F. Conversely, for MeKerg n P(H) and v = PQ(t) with any
t E F, we have u + PQ(t) - t E Ker Q = U. Using t E F c E and the definition of
U we have u + v E E, namely, P(u + v) E F. Hence u + v E F by u + v E P(H).
Therefore F contains the right hand side of (3.10). Moreover, for x E F, vectors
U E Ker Q n P(H) and rePQ(F) satisfying x = u + v are unique by Lemma
2.11. For simplicity, we put S = KerQ n P(H). Lemma 2.11 also yields
PQ(F) 1 S. Summarizing above results, we have

(See (2.11) for the definition of PP(H) etc.) By repeated use of (3.8),

The last formula is independent of choice of P and F.
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The measure G y is finitely additive by (3.1) and (3.2). However, we have the
following result.

PROPOSITION 3.7. The measure G, is not a-additive.

Proof. Let U(x; r) be the open ball in H with center x and radius r. Suppose
G, is 6-additive. Then Gy extends to a u-additive measure r on u[Cyl(H)]. Let
{ei}¿X; 1 be an orthonormal Schauder basis of H and Pi the orthogonal
projection to e;-component. Observe that

and that H is a separable Banach space. Hence a[Cyl(H)] contains the Borel
field of H. This implies r is a Borel measure on H satisfying r(H) - 1.
Therefore r is a tight measure by Parthasarathy [7, Chap. II, Theorem 3.2].
That is, for every 8 &#x3E; 0, there exists compact set FE of (H, 1. . [) satisfying
T(FE)&#x3E;1-E.

Let Pm be as in (3.3). Choose N E Z so that r= - 00 qiPi  1-. Since F 1/3 is

compact, there are finitely many elements Xl’...’ Xl of F 1/3 satisfying F 1/
3 c U}=l U(Xj;qN). Let Xj = X cjiei. Since !im ICjil = 0, there is an M E Z
such that ICj,il  qN for all 1 x j x 1 and all i &#x3E; M. Hence

where m is any integer satisfying q-m  3. This and (3.9) imply

which is contradiction. D

For P, Q E FOP(H) satisfying P  Q, put j# = PIQ(H). It is easy to see

ç = P ° Q for P  Q  R. By Lemma 3.6, ({v x P(H)} PeFOP(H)-, {}p) a
consistent family of tight Radon probabilistic measure on completely regular
spaces (actually on completely separable metric spaces). Moreover, is a
surjective continuous map. Put Q = proj.limQc-FOP(H) Q(H), where projective
limit is taken in the category of topological spaces. For P E FOP(H), let çp be
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the projection from Q c IIQEFOP(H) Q(H) to P(H). Especially, {ÇQ}QeFOP(H) sep-
arates points of Q (i.e. for each co :0 co’ in Q, there is a Q E FOP(H) with

çQ(w) -# çQ(w’)). For all (O)Q)Qc-FOP(H)C-n and P  Q, we have Wp = ’2(coQ),
which implies çp = ç 0 çQ. On the other hand, let PE FOP(H) be arbitrary.
For each x E P(H) c H, put x = (Q(x)) QeFOP(H). · We see xEQ and çp(x) =
P(x) = x. Therefore, çp is surjective. By the Prokhorov’s theorem on the
existence of product measure on projective limit (see e.g. Rao [8, Sect. 6.4,
Theorem 7]), there is a Radon probabilistic measure v on Q satisfying

for all P E FOP(H) and all Borel set F c P(H).

DEFINITION 3.8. A seminorm Il - Il in H is called measurable if for every
e &#x3E; 0, there exists P E FOP(H) satisfying Il x Il  Blxl for all x E Ker P.

EXAM PLE: Let {an}=l i be a decreasing sequence of positive real numbers
with lim,, - . a n = 0. Let {ei}i= 1 be an orthonormal Schauder basis of H. The
norm defined by

is a measurable norm in H.

LEMMA 3.9. A measurable seminorm Il on H satisfies the following condition:

(*) For every e &#x3E; 0, there exist P E FOP(H) such that

Gv({xEH: IIQ(x)1I Il &#x3E; el)  c for all Q E FOP(H)
satisfying lm Q c Ker P.

Conversely a seminorm )) lion H satisfying (*) is measurable f there is a

monotone increasing function 9: (0, 1) - (0, oo) such that lim,-o 9(e) = 0 and
that infr&#x3E;o rqJ(v(C 1 (rY)) = M &#x3E; 0.

Proof. Let e &#x3E; 0 be arbitrary. Take N E N so that v x n( C n(qN)c)  e for all n E N by
(3.9). By the measurability of Il . Il, there is P E FO P(H) satisfying Il x Il  eq - ’Ixl
for all XE Ker P. Assume Q E FOP(H) satisfies lm Q c Ker P. We have

i.e. (*) holds.



97

Conversely, let ô &#x3E; 0 be arbitrary. Put e = min(M, p) where p is any real
number satisfying 0  p  1 and 9(,o)  ô and take P E FOP(H) in (*). It is

enough to show Il x Il  ô for x E Ker P satisfying [x[ = 1 and ))x Il i= 0. Let x be

such an element of Ker P, Q an orthogonal projection whose image is Kx. Since
Im Q c Ker P, we have

By the definition of M and monotone increasing property of 9,

LEMMA 3.10. Let )) . )) be a measurable seminorm. Then the net {llçp(. )II}PEFOP(H)
converges in probability on S2. This limit is denoted by Il . Il -.

Proof. It is easy to see that P a R and Q a R for P, Q, R E FOP(H) imply
Im(P - Q) c Ker R. Note also, for P x Q,

since PQ = P and çp = PçQ. Therefore, this lemma follows from the same
argument as that of [6, Lemma 4.1]. D

LEMMA 3.1 l. Let Il. Il be a measurable seminorm in H. Then there exists a

positive constant c satisfying ))x )) x clxl for all x G H.

Proof By the measurability of " . . )) , there is PEFOP(H) such that Ilxll x Ixl for
all xeKerP. Since dim P(H) is finite, there is an orthogonal basis (v;)?= 1 of
P(H). Using )y) a ICillvil for y = E?= 1 CiVi E P(H) we have

Hence,
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LEMMA 3.12. Let /1. /1 be a measurable seminorm in H. Let

{an E R : an &#x3E; 01 ’ 1 be a sequence of positive real numbers. Then there exists
c- FOP(H)J ’ 1 satisfying the following four conditions:

(3.12) Qm Qn = bmnQn for all positive integers m and n.
(3.13) £#i= 1 Qn = IR (strongly).
(3.14) an Il Qn (X) Il  n-1lxl for all x E H and n &#x3E; 2.
(3.15) Il x Il 0 = max 1 _,, , an 1 Qn (X)l is a measurable seminorm. in H. If /1 Il

is a norm, so is Il . 110. 

Proof. By the definition of measurable seminorn, there is Fn E FOP(H)
satisfying

for each n. Using Lemma 2.13, we find P,, c- FOP(H) satisfying (2.3)-(2.6).
Put Q 1 = P2 E FOP(H), and Qn = Pn + 1 - Pn for n &#x3E; 2. We note

by (2.4) and (2.5). So we see Qn satisfies (3.12). For n &#x3E; 2,

and

follow from (3.17). The subspaces Pn H, Ker Pn + 1 and Ker Pn n P,, , (H) are
mutually orthogonal by (2.4). Especially, Qn(H)..l Ker Qn. Therefore,
Qn E FO P(H) for n &#x3E; 2. Now, En 1 Qn = PN + 1 and this converges to 1 H
strongly by (2.6), which proves (3.13).

For n # 2, (3.14) follows from (3.18), (2.3) and (3.16). This yields
limn-+oo an )) Qn(X) Il = 0, which proves existence of Ilxllo. We prove measur-
ability of )) . "o. Let c &#x3E; 0 be arbitrary. Take an integer N # max(2,1/E).
Using (3.17) and (3.14), we see
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Hence Il - Il 0 is measurable.
Finally, suppose II Il is a norm and Ilxllo = 0. Then, for all n &#x3E; 1 we have

)) Qn (x) II = 0, namely, Qn(x) = 0. Hence x = l’ 1 Qn(x) = 0 by (3.13), and
this implies that Il . Il 0 is also a norm. This completes proof. ~

LEMMA 3.13. Let II Il be a measurable norm in H and B. a completion of
H with respect to II . 11-topology. Then, there exists a measurable norm Il . II o
in H such that, for all r &#x3E; 0,

is precompact in B.

Proof. By Lemma 3.11, we can choose a positive real number a satisfying
alllxll  Ixl for ail x E H. Let {anER:an &#x3E; Oln’=2 be a sequence of positive
real numbers satisfying "Mn-. an = 00 . We show Il . 110 defined in Lemma
3.12 is desired one.

To prove that S,, is precompact, it is sufficient to show that any infinite
sequence - , 1 in S, has a Cauchy subsequence. We put x(o) = xn and,
for k &#x3E; 1, define a subsequence xnk of x(k- 1) as follows. Note that

for any y c-S,. Since Q,(H) is a finite dimensional space with an orthonor-
mal basis, there is a subsequence x n (k) 1 10 1 of X(k - 1)1 -1such that

(k) )1’ 1 is a !H!-Cauchy sequence. Then (n»l ,1 i is a Il.11-
Cauchy sequence for each k &#x3E;, 1.

Let e &#x3E; 0 be arbitrary. Let M be an integer such that ak &#x3E; rle for all
k &#x3E;, M. By Lemma 3.11 and (3.13),

For terms with k &#x3E; M, (3.19) yields II Qk(xn" - xlm»Il m  (rla k)  V-- On the
other hand, there is an integer N satisfying
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for all 1  k  M and m, n &#x3E; N, since Qk (xnn)}° 1 is a Il - 11-Cauchy
sequence. Therefore (3.20) is less than s for all m, n &#x3E;, N. Namely, xn (n) In= o 1
is a Il . "-Cauchy sequence. D

DEFINITION 3.14. Let Il ’ Il be a measurable norm in H. Let B be a

completion of H with respect to the II -Il -topology and B* a set of all
continuous linear maps from B to K. The subset T of B of the following
form is called a cylinder set in B,

where n &#x3E; 1 is an integer, E is a measurable set in K" and P1, ..., Pn E B*.
We denote by Cyl*(B) the set of all cylinder set in B.

LEMMA 3.15. If T E Cyl*(B), then T n HE Cyl(H).

Proof. Let T E Cyl*(B). There is an integer n &#x3E; 1, a measurable set E in K"
and Pl, ..., P" e B* satisfying

Since restriction of Pi to H is continuous by Lemma 3.11,

is a closed subspace of H. By assumption, jH - {O}I is discrete, so V is

strictly closed. On the other hand, codim V  n. Hence V has a norm direct
supplement W in H. Let P E FOP(H) be a projection to W component of
H = W(B V. Put

We see E’ is a measurable subset in W and

DEFINITION 3.16. Let v be an admissible probabilistic measure on K.
The Wiener measure fl with parameter v is the function on Cyl*(B) defined
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by the following formula:

where T E Cyl*(B).
It is easy to see that Cyl*(B) is a field of sets and that W is a finitely

additive measure. We denote by u[Cyl*(B)] the u-field generated by
Cyl*(B). The next theorem is the main result of this paper.

THEOREM 3.17. The Wiener measure W,, extends to au-additive measure
on u[Cyl*(B)].

Proof. First we show that for any e &#x3E; 0 there is a compact set CE in B
such that W,,(T)  2e for ail T E Cyl*(B) and T n CE = QS. Choose (and fix)
a measurable norm 0 on H as in Lemma 3.13. There is an r &#x3E; 0

satisfying

Let CE be the closure of {x e H: Il x Il 0  r 1 in B, which is a compact set of
B by Lemma 3.13. As we have proved in Lemma 3.10, there is Q E FOP(H)
satisfying

for all P a Q. On the other hand, by Lemma 3.15, there are P E FOP(H) and
a Borel set E of P(H) such that T n H = {xEH:P(x) c- El. Using Lemma 2.12
and well definedness of the cylinder set measure Lemma 3.6, we may assume
P a Q. Then,

since 

by (3.21). Hence W,(T)  1 - (1 - 2e) = 2e. Once this has been established, we
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obtain 6-additivity of g by the exact same method as [6, Theorem 4.1,
Step 1]. D

THEOREM 3.18. The Borel field of B is a[Cyl*(B)].

Proof. By [2, Proposition 2.7.2/8], there is a norm Il - Il’ in B equivalent to
Il. Il with respect to which B has an orthonormal Schauder basis {}i. It
suffices to show

since (B, Il Il’) is a separable metric space. Define Pn E B* by -

By the orthonormality of

Hence

and this shows 1

4. Multiplicative measurable norms

Throughout this section, let K denote a complete field with respect to a
non-trivial non-Archimedean valuation 1 j. In Definition 3.8 we introduced
the notion of measurable norm on normed vector space. This notion

especially makes sense for a normed K-algebra H with a multiplicative
norm. The subset

is a subring of H. In this section, we associate a maximal ideal of R with
each multiplicative measurable seminorm.

LEMMA 4.1. Let H be a K-cartesian space with respect to the norm 1.1. Let
P E FOP(H) and put n = dim P(H). Let xo,..., xn be n + 1 vectors in H. If
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holds for all 0  i  n, then there exist constants ai E K satisfying

Proof. Since H is K-cartesian, there is a K-orthogonal basis {ei}i = i of
P(H). Thus, there are constants cijEK satisfying P(x,) = Lj=lCijej. Since
{ei}i= is orthogonal, Ic,@jejl  IP(xi)1 for all j. Put

By (4.1), we have !P(xJ! = lxil. Therefore

On the other hand, there are constants ai for 0  i  n satisfying

Thus,

In what follows, we assume that H is a normed K-algebra with an
orthonormal Schauder basis (as a normed K-vector space) and that the
norm 1 - of H is multiplicative. We denote by K the residue field of K.

LEMMA 4.2. Let Il - Il be a multiplicative measurable norm on H. Then
Ilxll  Ixl for all x E H.

Proof. There is a constant c satisfying Il x"ll  clx"l for all x c- H and n &#x3E; 1
by Lemma 3.11. The assertion follows from multiplicativity of il - Il and
1-1 n
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PROPOSITION 4.3. Let Il Il Il be a multiplicative measurable norm on H.
Put

and

Then, m(Il Il) is a maximal ideal of R properly containing the prime ideal p
and Rlm(11 . Il) is an algebraic extension of K.

Proof. Take PEFOP(H) satisfying II x Il  Ixl/2 for all x E Ker P. Put

n = dim P(H) and L = LI,. jj = R/m( (I 11). Using Lemma 4.2 and multiplica-
tivity of Il . Il, we see that m(1I . II) is a prime ideal of R containing p. So, L
is, at least, an integral domain. We denote the image of x E R in L by x. Let
xeR 2013 m( Il 11). There are n + 1 constants ao, ... , an E K satisfying
Li= 0 aiP(xi) = 0. Without loss of generality, we assume lail  1 for

0 1  n. Put v = Li=o aixi. Then we see v E R n Ker P c m(11 11). Hence
b Y-7=0 àixi = 0. Therefore x is algebraic over K, which implies that x is
a unit in L. So, L is a field and m( I) . II) is a maximal ideal of R. Finally, we
prove m( II ’ II ) #- p. Let (e;)x i be an orthonormal Schauder basis of H.
By Lemma 4.1, there is a positive integer i satisfying I(1H - P)(ei)l =
leil 1. By the definition of P, we have ll(lj - P)(e;)))  ]. Thus

(1 H P)(e i) c-:p’ n m(l 1 - 11). D

5. Examples

Let T be an indeterminate. For a valued ring A with a norm !, we put

Let p be a prime number. We denote by 1 - [ a p-adic valuation of Qp
normalized as [p[ = p-’. Let H = QpT). Then, H is a complete normed
Qp-algebra with the norm

With respect to this norm, H has an orthonormal Schauder basis T"I’
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We fix an integer k &#x3E; 1. The norm Il - Il defined by

is a multiplicative measurable norm. Let B be the completion of H with
respect to !! . I) - We see that

Let v be an admissible measure on Qp defined by v(E) - J1(E n Cl(l»
where p is the Haar measure of Qp normalized as in (2.8). In this case, we
have

and

For simplicity, we denote by W the Wiener measure on B with parameter v.
The first example is based on a suggestion of Prof. S. Bloch. Let Qp be

the algebraic closure of Qp and Z p the integral closure of Zp in Qp.. Each
f E B defines a map from Dk to Qp where

By the continuity of roots, U(z) is a II - 11-closed set of B. So U(z) is

measurable by Theorem 3.18. We show W(U(z)) = 0. Let M be an

arbitrary positive integer. Put
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for an integer N à l. Since Izi p-l/B we have B = UN=O AN and

U(z) = UN=O(U(Z) n AN). Taking account of U(z) n AN C SN’ we majorize
W(SN). We note

where

and

Since {Tn}:=o is an orthonormal Schauder basis of H,

where

Using the translation invariant property of the Haar measure, we have

Since the sequence {AN} is monotone increasing and W is cr-additive, we have

Jo" 

Since M is arbitrary, W(U(z)) = 0. This value is independent of k.
The second example seems to be rather awkward. For each integer M, we

compute measure of
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Since {Tn}:=o is an orthogonal Schauder basis of B (with respect to II II), we
have KM = n§§/= o Em.M where

Using a-additivity of W, it holds that

We have

where

Hence,

where M = kq + r with integers q and 0 , r  k. For s E C with Re(.s) &#x3E; 0 we

see that

Using the notation of Proposition 4.3, we see R = Z,T&#x3E;, p = (p) and

m(Il - 11) = (p, T). From a number theoretic point of view, it seems to be

necessary to condense all the integrals of type (5.1) arising from a multiplicative
measurable norm II ’ Il with m(Il - Il) = (p, T). It is not clear whether a two-
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dimensional local field has an orthogonal Schauder basis. Unfortunately, the
author does not obtain results of these types.
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