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1. Introduction

One of the main tools in the topological classification of continuous maps
f : X - Y between manifolds when dim X  dim Y, is the study of the
topology of the complement of f(X) in Y In the codimension 1 case, the
simplest significant invariant is the number of its connected components.
The first theorem related to this number is the well known Jordan-

Brouwer theorem, which asserts that the complement of any embedded Sn
in R" ’ 1 has exactly two connected components. This separation property
has been recently generalized in many different ways.

In [4], Feighn shows that for any proper e2 immersion f : X Y""
with H l(Y; ïl2) = 0, the complement of f(X) in Y is disconnected. Here,
the C2 hypothesis is necessary, since there is an example due to Vaccaro
[10] (the "house-with-two-rooms") of a PL immersed S2 in R’ whose
complement is connected.
For the topological case, another approach is given in [7], where the

following theorem is proved: let f : X" -+ Y"’ 1 be a proper continuous
map with H1(Y; ïl2) = 0, such that its selfintersection set, A(f) =

{xEX:f-lf(x) "# x}, is not dense in any connected component of X ; then
YB/(X) is disconnected.
On the other hand, a result by Saeki [8] gives that, under certain

restrictions, the number of connected components of YB f (X ) is &#x3E; m + 1,
provided that f has a normal crossing point of multiplicity m. Other results
about separation properties of immersions with normal crossings are

obtained in [1,2,3]. ..
Here, we give a formula for the number of connected components of

YB f (X) in a similar setting to that of [7]: let f : X" -+ Y" ’ 1 be a proper
continuous map between connected manifolds with H l(Y; ïl2) = 0, and
suppose that A = A( f ) :0 X and YB f (A) is connected; then

Work partially supported by DGICYT Grant PB91-0324 and by Fundaciô Caixa Castellô
Grant MI.25.043/92.



38

where flo denotes the number of connected components and ),, is the

induced map in the Alexandcr-Cech cohomology with compact support:

We prove that the imposed conditions, A =1= X and YB f (A) connected, are
generic and some computations are made in the low dimensions n = 1, 2
and for n &#x3E; 3 in the case of an immersion with normal crossings having
only double points. Our results are compared with similar results obtained
by Izumiya and Marar in [6].

2. Proof of the main theorem

The proof of the main theorem is based on the use of the Alexander-Cech
cohomology with compact support and the Alexander duality in its more
general version [9]. On the other hand, the algebraic tools we shall need
are the five lemma and the following consequence of the ker-coker lemma.

LEMMA 2.1. Consider the following commutative diagram of R-modules,
where the rows are exact and g is an isomorphism

Then, ker h #é coker( f + À), where f + À: A EB D - A’ is the induced map.
Proof. We apply the ker-coker lemma to the following diagram, which is

obtained in a natural way from the above

getting the exact sequence:

Since ker g = coker g = 0, we have that ker h -- coker f and the lemma
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follows from the isomorphism

THEOREM 2.2. Let f : Xn -- yn+ 1 be a proper continuous map between
connected manifolds with H1(Y;Z2) = 0 and let A be the closure of the
selfintersection set A(f) = {x E X : f - lf (x) xi. Suppose that A # X and
YB f (A) is connected. Then

where

is the induced map.

Proof To simplify the notation, we shall omit the coefficient group 7 2 in
all the homology and cohomology groups.

Since f is proper (and hence closed), f(A), f(X) are closed and we can
consider the Alexander-Cech cohomology of the pairs (X, A), ( f (X), f(A»
and get the following commutative diagram, where the rows are exact:

But some of these cohomology groups are computed using the Alexander
duality:

where the last isomorphism cornes from the exact sequence of the pair
(1: YBf (X»:
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This gives a formula for the number of connected components of YB f (X):

We apply also the Alexander duality to A and f(A):

where the last equality cornes from the exact sequence of the pair
(1: YBf (A»:

On the other hand, note that the maps (3) and (6) in the above diagram
are isomorphisms. In fact, in the following commutative diagram

the horizontal arrows are isomorphisms in general (see [9]), and in this
case the map on the right is also an isomorphism because it comes from
the homeomorphism

Then, we can apply the five lemma to the maps (2),..., (6) and deduce
that f* : H)( f(X)) - H)(X) is an epimorphism. Therefore

But the above lemma implies that ker(f *) --- coker(i * + f[ Q), where

is the induced map. D

COROLLARY 2.3. In the conditions of the above theorem, the number of
connected components of the *complement of the image only depends on the
behavior of the map on the seffintersection set. That is, let f, g : X - Y be
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maps satisfying all the hypothesis of Theorem 2.2 and suppose that

A( f ) = A(g) and f = g on this set; then we have that

REMARKS. (1) An interesting special case of Theorem 2.2 is when

H,(X; Z2) = 0 (e.g., X = Sn, with n &#x3E;, 2). Then the Alexander duality gives
c 2) = 0 and the statement of the conclusion ôf the theorem is:

where

is the induced map.

(2) If the manifold X is compact, A and f (A) are also compact, in which
case FI c *(U; Z 2) = Fl*(U; Z2) for U = A, f(A), X. Moreover, if A and f(A)
are taut (for instance, they are ANR [9]), we have H*(U ; Z2) = H*(U; Z2)
for U = A, f (A), X. Therefore, in this case it is enough to study the coker
of the map

But since Z2 is a field, we can identify the cohomology groups with the dual
vector spaces of the corresponding homology groups (by the universal
coefficient theorem) and the above map with the dual of the induced map
in homology:

which implies

(3) Finally, note that if X and Y are orientable manifolds, then in
Theorem 2.2 we can use any field for coefficients of homology and
cohomology (e.g., the field of rational numbers). In some cases this would
lead to sharper estimates than the use of 7 2 coefficients.

EXAMPLES. We give now some examples in order to show that all the
hypothesis in Theorem 2.2 are necessary. The complément of any SI
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embedded into SI x SI as a meridian or a parallel is connected, which
shows that the condition Hi(V; Z2) = 0 is essential. The same happens with
the condition A * X: if n &#x3E; 1, for any constant map f : X Y the

complement of its image is connected. The following example is constructed
to show that the condition that YB f (A) is connected is essential too.

Let f : I = [0, 1] --+ SI be the immersion given by f (t) = exp(4nit) and
consider the composition of the product 1 x f : S1 x I ---+ S 1 x S 1 with the
standard embedding SI x SI __+ R3. Then we attach an embedded 2-disk at
each boundary curve of the cylinder S 1 x I as in Fig. 1. The result is an

immersion g :X - R3 where X is homeomorphic to S2, and such that
PO(R 3 Bg (X» = 3. On the other hand, the selfintersection set A is the

cylinder SI 1 x I, its image g(A) is the embedded torus in R 3and the induced
map in homology (gIA) *: H l(Sl x I; Z 2) , H l(Sl X SI ; Z2) is injective,
which implies that ker(i *) n lçer«g A)*) = 0 and the formula is not true in
this case.

3. Genericity of the conditions

In this section we prove that the conditions imposed to f in Theorem 2.2
(A * X and YBf(A) connected) are generic. That is, if X, Y are smooth,
they are satisfied for a residual subset in the set of proper COO maps,

Prop°°(X, Y), with the Whitney C°°-topology. We first recall the concept of
topological dimension.

DEFINITION 3.1. A topological space X is said to have covering
dimension  n, abbreviated dim X  n, if every open covering of X has an
open refinement 11/ = Vil such that for any V1, ... , T 1"+1 E 11/ we have

We say that X has covering dimension n, denoted by dimX = n, if dim

X  n but dim X 4;. n - 1.

Fig.1.



43

We shall use the following property of the covering dimension related to
the Alexandcr-Cech cohomology with compact support [9]: if the space X
is locally compact, Haussdorff and dim X  n, then H"(X; G) = 0, Vq &#x3E; n

and for all G. Then, the genericity follows from the two following results.

LEMMA 3.2. Let f : Xn _+ yn l’ be a proper continuous map between

connected manifolds with Hl (Y; 7 2) = 0; and let A be the closure of the
selfintersection set A( f ) = {xEX:f-lf(x) =1= xl. Suppose that dim A,
dim f(A)  n - 1. Then A =1= X and YB f (A) is connected.

Proof. Since dim X = n, the first part is obvious. For the second one, we
use again the Alexander duality:

which gives that Y) f(A) is connected. D

LEMMA 3.3. Let Xn@ ynl’ be smooth manifold. Then there is a residual

subset of maps f E Prop"O(X, Y) with the Whitney CX)-topology, for which
dim A, dim f(A)  n - 1, where A is the closure of the selfintersection set
A(f).

Proof. The set of Boardman maps satisfying the condition NC is residual
in CX)(X, Y) with the Whitney C’-topology (see [5]). Therefore, its

intersection with Prop °° (X, Y) will be residual here. We see that if f is in
this set, then dim A, dim f(A) n - 1.

Since f is proper, we have A A (f ) u Y- (f ), where E(/) is the singular
set of f Moreover, f admits a Whitney regular stratification so that A,
A( f ), E(/) and their images by f are union of strata. In this situation, it
is enough to show that A ( f ), Y- (f) have dimension  n - 1.
Any Boardman maps satisfying the condition NC is in particular a map

with normal crossings. This implies that f(2) if) 1’: where f(2) is the

restriction of f 2: X x X - Y x Y to X(2) = X x XB,AX. Thus,
B = (f(2» - 1 (A y) is a submanifold of X(2) of codimension n + 1, A(f) is
the image of the projection

and we have dim A(f)  dim B = n - 1.
For the singular set, note that any Boardman map is also 1-generic,

which means that j 1 f ffi Sr, for any r = 0,..., n, where
Sr = {UEJ1(X, Y) : corank of a = r}.
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In particular, each set Sr(f) = (jl f) -l(S r) is a submanifold of X of
codimension r(r + 1) and thus Y-(f) U"= 1 S,(f) has dimension  n -1. 

4. Some computations in special cases

In this section we study generic maps f : X n - yn + 1, with X compact and
H,(Y; Z,) = 0, and discuss separately the cases n = 1, n = 2 and n &#x3E;, 3. The
results obtained in each case will be more restrictive than the preceding
ones.

A. The case n = 1. In this case, wé must have X = S 1 and Y = R’ or S2.
Since we can embedd R’ into S2 through the stereographic projection so
that f(S’) has the same number of connected components in the comple-
ment, it is enough to consider the case Y = S2. To guarantee that A #- X
and Y) f(A) is connected, we put the condition that A is finite.

THEOREM 4.1. Let f: SI S2 be a continuous map with a finite number of
selfintersections tl,...,tmESl. If #{f(tl),...,f(tm)} = r, we have

Proof. We must study the kernels of the maps i* : Ho(A; Z2) ---+ Ho(S1; Z2)
and (f 1,)*: Ho(A;Z2)  Ho(f(A); Z2), and compute the dimension of their
intersection. But obviously ker(fIA)* c ker i* and dimz2 ker(fIA)* = m - r.

0

B. The case n = 2. Now, we consider topologically stable maps f : X2 , y3,
with X compact and H1(Y; Z2) = 0. In this case, A and f (A) have a graph
structure, the vertices being the triple points and the cross caps, and the
edges corresponding to the double points of f Moreover, the incidence
rules in these graphs are as follows: in A, four edges are incident with each
triple point and the number of edges incident with a cross cap is equal to
two; in f(A), we have six edges incident with each triple point, but only
one edge is incident with a cross cap (see Fig. 2).

THEOREM 4.2. Let f: X2 _&#x3E; y3 be a topologically stable map with X
compact and H l(y; Z2) = 0, and let A be the closure of the seffintersection
set A (f) = {xEX:f-lf(x) -# x}. Then
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Fig. 2. Graph structure at a triple point and a cross cap.

where T( f) is the number of triple points, C( f) is the number of cross caps
and Pl (X) denotes the 7L2-dimension of Hi(X ; 7L2).

Proof. If we consider the map

we have that

and

But the Euler characteristic of the graph A, x(A) - PO(A) - fil(A), is also
computed by the formula
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which gives fil(A) = PO(A) + 3F(/).
Analogous computations in /(/4) give that

and this concludes the proof.
0

In [6], Izumiya and Marar get better upper bounds in a more restrictive
case. In particular, they prove that if C( f ) = T( f ) = 0, then

and the equality is true provided that A is homologous to zero in X. We
generalize this to higher dimensions in the next case.

C. The case n a 3. In general, it would be very ambitious to obtain some
nice result if we consider a topologically stable map f:Xn _ -+ Y’ " 1 with X
compact and Hl (Y; Z,) = 0, because we do not have a complete descrip-
tion of the local behavior of the map. Even in the case of an immersion

with normal crossings, we have not got at the moment any interesting
result. We just consider the case of an immersion with normal crossings
having only double points, which is the generalization of the situation in
the Izumiya-Marar formula. The following result has been obtained inde-
pendently by Biasi, Motta and Saeki in [2].

THEOREM 4.3. Let f: xn  yn + 1 be an immersion with normal crossings
with X compact and H l(y; Z2) = 0. Suppose that f has only simple or double
points and let A c X be the subset of double points. Then

and the equality holds if Hl (X; Z2) = 0.
Proof. It is enough to prove that thé kernel of (fiA) * : H n - 1 (A; Z2)

H,, - 1(f(A); Z2) has Z2-dimension PO(f(A». But this map is the direct sum
of the maps (f Jj.- -(c»*: H.- 1(f - I(C); Z2) --+ H,, - 1 (C; Z2), where C are the
connected components of f(A). We prove that the kernel of each of these
maps has Z2-dimension 1.
Note that f -1(C), C are compact (n - 1)-manifolds and the map

/!/ ’(C) f - l(C) --+ C is a double covering. By the path lifting property of
the covering maps, f -1(C) only can have one or two connected compo-
nents. If it has two connected components, Dl, D2, the composition
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is an isomorphism, which implies that (/!/ i(c)) is an epimorphism and
the kernel is 1-dimensional.

On the other hand, if f -’(C) is connected, we prove that the map
(f If - (c» * is zero and the result is also true. Let D = f-l(C) and consider
x E C and f - 1(x) = {Yl’Y2} cD. Then we have a commutative diagram

where the map in the bottom is an isomorphism, for C is Z2-orientable. By
using the excision property, it is easy to see that the composition f3 0 r1 is

zero and thus (flD)* must l1e zero. D
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