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1. Introduction

Let A denote the unit disc {z:|z| < 1} in the complex plane and let H(A)
denote the space of analytic functions in A with the topology of the uniform
convergence in compact subsets of A. Given a function f:C —» C we
associate to it the operator F, defined by

Fr(ufz) = f(u(z)), ueH(A).

This operator is known as the autonomous nonlinear superposition (or
composition) operator [1]. If 4 and B are linear subspaces of H(A) and
F;(u) € B whenever ue A we shall say that F, acts from A to B. It is easy
to see that if F, acts from H(A) to H(A), then f must be an entire function
and conversely. In this case mere action implies the continuity and the
boundedness of the operator [2]. That mere action implies continuity has
already been proved for various spaces of real functions, for instance L? spaces
[6] and Sobolev spaces [7]. Necessary and sufficient conditions have been
given in [2] in order that F acts from H” to H% 0 < p,q < + oo, where H?
denotes the classical Hardy space in the unit disc. It is also true in this case
that mere action implies continuity [2]. If N denotes the Nevanlinna space
of functions in H(A) of bounded characteristic then the actions from
Up<qH?to N and from N to N have been studied in [3].

In this note we shall consider the problem of action and continuity
between the Bergman space B, defined by

B,={ueH(A):ueL”(dxdy)}, 0<p< 0.

The space B, is the usual one of bounded analytic functions in A. The
topology in these spaces is given by the metric induced (when p > 1) by

1 1/p
lullg, = (; H [u(2)l” dxdy) .
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If p < 1 the topology induced by the metric ||u[|}, is used. We also consider
the action between B, and the Hardy space H? and vice versa. For
functions in H? we use the standard notation

1 2n . 1/p
M (r, u) = (— f [u(r e’)? d0> and |ul, = }Erll M (r, u).

2n |,

The symbol BN (which stands for Bergman-Nevanlinna) shall denote the
set of functions u in H(A) such that

J:[ log* |u(z)] dxdy < oo.
A

Clearly H? = B, and B, < BN for all p. Finally, we study the action
between Hardy functions and Bergman-Nevanlinna functions.
We would like to thank the referee for his helpful comments.

2. The action in B,

We shall need the following lemma.

LEMMA 1. Let 0 < p < 0. If ue B, then

lull s,

(T——.—lz—l)z/p, zeA.

lu(z)l <

Proof. This is an easy consequence of the subharmonicity of [ul?.

Next we are ready to prove the following result. In what follows the
symbol “[s]” denotes the integer part of s.

THEOREM 1. Let f:C — C be an entire function. Then F, acts from B, to
B,, 0 < p, q < oo if and only if fis a polynomial of degree less than or equal

o2
q
Proof. If f is a polynomial of degree n < |:§] then feueB,, YueB,. In

fact, it is enough to see that if k < [—Z:I ,keN, then ufe B,. This is true since

1 1/q 1 1/kg\ k
!Iuk”Bq — <; Jf lu(z)|** dx dy) = ((; JJ‘A (lu(2)))* dx dy) )
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1 kip
< (- 4” (lu(2)l)? dx dy) = [lulk,-
T JJa

Next, we assume that F; acts from B, to B,, 0 < p, g < 0. Let ¢ > 0 and

1 2/pte
define ut)(z) =< —1) . Clearly u{" belongs to B,. Therefore

1—z 2
fouVe B, and by Lemma 1 one can write

ILf o utVlls,

]f(u(gl)(z))l < (_ITTZW,

eA. 2.1)

Set w;, = u{!(z). Assume first that p < 1 and take ¢ < 1 — p. Then the range
set of u{! is C\0. Given w, e C\0 let ze A such that w, = u{!(z) and

1
L
e+

Thus, from (2.1) we get

ILf > ufVlls,

w <
|f( 1)' \< — |w11)+s/2 _ %I>2/q

W *e2 + 3|

oDl g wE T2+ 3
(W5~ + 31— g™ = 37

If w, is such that |w,| > e'/2®*® then z, = w§*¥*(—n < Argw, < m) satis-
fies Rez, > e'*cos(—n/2(p + ¢)) > 0. In fact, since Arg w, > —n then
((p + ¢)/2) Argw, = —n/2(p + ¢). On the other hand

p+eé
2

Re z, = |w,|?*¥2% cos (

Arg w1> > |w,|P*¥2 cos <— g o+ s)).

Hence, if |w,| > e!/2?*9 then Re z; > e'/* cos(n/2(p + ¢)) > 0. Therefore,
one can find a positive constant ¢ (depending on ¢ and p) such that

[WE* 2 4] — W2 — 3] >, Jwy| > el/20 o,
If we use this inequality in (2.2) we obtain

[fw)l < C(p, g, e)lw [P + 27209
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for all w; such that |w,| > e!/?®*9 Thus f is a polynomial of degree less
than or equal to p + &/q. By letting ¢ — 0 we obtain the desired result when

p <l
Now, we assume that p = 1. Let

—T s
_ 15.
S, {wl 2(p+ ) < Argw, < 2(p+£)’|w1|> }

If w, €S, we choose z, such that w, = z}?*¢ with —n/4 < Arg z, < n/4.
Thus ((wW8*%2 + 4| — [wE*#2 — }))11 > ¢ > 0, for some constant ¢. Combin-
ing this inequality with (2.2) we obtain

If o
ol <AL 8 vz e

1
S c(s, q) (lw |P+ a + 22/q> (2'3)

Let

7 3n
W2€S2={W2 2(p—|—s) Arg w, < m,|w2|>l}

and

1 1 2/p+e .
(2), — P in/p+e
u(z) (1 — 2) e .

Clearly u{” € B,. By hypothesis f°u{®eB, and by Lemma 1

ILf ou? i,

<G zeA. (2.4)

If@P)2) <

Given w, e S, we choose z, such that |z,| > 1 and w, = z3/P**e"™P*¢ with
—7n/4 < Arg z, < n/4. From (2.4) we obtain

Lf e u g,

Ifwy)l < < |wB*e/Z iz _ ll)Z/q
1 2 2

- |W5+a/2 ein/2 + %|

Lfo 4l |, [wg "% /2 + 32/

2.5)

- (Iwg+a/2 ein/2 + %l _ |Wg+a/2 ein/2 __ %l)Z/q .

Since —7n/4 < Arg z, < n/4 then
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Iwgﬂ/ze—in/z + %I — |wBte2eTin2 %| > 12 > 0.
Hence, from (2.5) we obtain
fW)l < e IS oul®| g, Iwg* 2 e /2 + 374,

By repeating the same argument n times, where n is such that
A = C\|JI-, S;, we obtain

fW) < cy(iwlP ™2 + 5?9, weC\A,

where ¢, depends on f, ¢ and g. This proves that f is an entire function of
order at most p + ¢/q. Letting & tend to zero gives the desired result for
p=1

3. Continuity of F,

We shall prove in this section that if F, acts from B, to B, then it is
necessarily continuous. We also prove local Lipschitzness.
First of all let us prove the following lemma.

LEMMA 2. Ifuy, »u in B,, neN and n < [e] then uy — u" in B,.
q

Proof. The proof is similar to the analogue lemma given in [2]. We give
it here somewhat simplified. The case n = 1 is obvious. Let us assume that
n > 1. The functions u; and u" belong to B,. In fact, since ng < p then for
every ue B, we have

4"l 5, < llullg,

On the other hand,

1 r 1/q
luk — u"llg, = <— f luk — u"*dx d)’)
T JJa
1 r 1 ng\ n
(— f (Juf — w"|Ymy" dx d_\'> )
n JJA

~

n/p
luf — u"|P"dx dy)

A

1 ([ nr
=(- lu, — wlP™up ' + - +u" Y P"dxdy ) .
k
o

A
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Now we use Holder inequality

Jat=([) (o)

with f = |u, —ulP", g=|ut '+ - +u" " r=n>1and

1 1 < n )
—+-=1(s= ,
n s n—1

and obtain

1 1/p
luk — u"|p, < (— Jf [uy — ulPdx dY)
T JJa
1 n—1/p
<— Jf lug ™'+ -+ ut TP dx dy>
T JJa
n—1

<clu —uls, Y lui™ ' "Wlls,, (3.1)
1=0

where ¢ is a constant. Again by a refined version of Holder inequality we get
that up "' "w'eB,,-1,1=0,1,...,n— 1 and

Tk ™" ', < llug ™' 'lls,,, ., Wlls,, = w b, " " lulls, (3.2)

This inequality implies that all summands on the right-hand side of (3.1) are
bounded (for all k). Hence u; — u" in B, as required.

THEOREM 2. If F acts from B, to B, then it is necessarily continuous, bounded
and locally Lipschitz.
Proof. Since F, acts from B, to B, then, by Theorem 1, f is a polynomial of

degree n < [g] Set f(z) = a,z" + --- + a,. Let u,(z) - u(z), as k- oo, in B,
Then

Fr(u)z) — Fu)z) = a,(ui(z) —u"(2)) + - + a,(uy(z) — u(2)).
Thus
1Fp(u) — Fp(w) g, < C(lluk — u"||lp, + -+ + lluy —ullp) >0 ask— oo

by Lemma 2. The boundedness of F, comes from the inequality
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1Er @)l 8, < Cllayl lulg, + -+ + lay| lulls, + laol), ueB,

which can be deduced from ||u"| 5, < [lul,, for all ue B, and all n < [B]
q

In order to prove that F, is locally lipschitz we must see that if u,
veB(0, R) = B, then there exists a constant C = C(p, g, R, f) such that
IFy() — Fr()ll 5, < Cllu — v|lg,-

On the one hand,

IF,@) — F(0)ll s, < C(lu" = v"l|p, + -+ + [lu—vlp,).

On the other hand, in the same way that we deduced (3.1) and (3.2) we obtain

n—1

||u" — U"”Bq < C1||u - v"B,, Z ”un—l—l - Ul“Bp/n—l
1=0

n—1
< Cyllu—vls, ( > ||u|l§,fl"llvllfs,,> <C@p, 9, R, f)lu —vls,,
=0

for all n < [B]
q

4. The action from B, to the Bergman-Nevanlinna space

The Bergman-Nevanlinna space is defined by

BN = {ueH(A) ullgy = 1 jf log*u(z)] dxdy < oo}.

T

It is easy to see that B, = BN, Vp > 0. The following result is an easy
consequence of Theorem 1.

COROLLARY 1. Let f be an entire function such that F, acts from BN to
B,, 0 < q < co. Then f'is constant.
Proof. In particular F, acts from B, to B,, for all p> 0. Then from

Theorem 1 we conclude that f is a polynomial of degree at most [s]
Taking p less than g one obtains the desired conclusion.
LEMMA 3. If ue BN then

"u”BN ZEA

log™|u(z)] < )
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This lemma is a consequence of the subharmonicity of log* |u|.

THEOREM 3. Let f be an entire function. Then F; acts from Up<q B, to BN
(0 < p < 00) if and only if f has order at most p.

Proof. Assume that F acts from ( ), <, B, to BN. Let ¢ > 0. The functions

1 1 2/p+e
Wl =uc(z) = {1 —Z_E}

belong to  ),<4B,. Hence, f°u,e BN and so, by Lemma 3

f(w )l < Sl (4.1)

If p <1 we take ¢ so that p + ¢ < 1. Then the range of u, is C\0. Thus,
given w, € C\O we take z € A such that

From (4.1) we get

C
log|f(wy)l < a =7
_ C _ Clwg ™' + 32 @2)
(1 I —%)2 W+l — e =g
Wll;+a/2 _'_%

If |w,| > e'/2®* then z; = w§**(—n < Arg w < n) satisfies
n
Re z, > e'/* cos (—5 P+ 8)) > 0.

Therefore, there is a positive constant C such that
WE*e2 + 5| — [wh*e/2 — 3| > C, [w,| > e!/2P7e, 4.3)
Combining (4.2) and (4.3) we obtain

log|f(wy)l < Cwg*e? + 3%

for a suitable positive constant C, and all w, such that |w,| > ¢'/?"*?. This
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shows that f is of order at most p + &. Letting ¢ tend to zero permits us to
conclude that f is of order at most p.

Next, we assume that p = 1. In this case we argue as in Theorem 1 and
obtain from (4.2) that

log|f(w)l = O(Iwl"™?)

for all w outside a ball. Hence f is an entire function of order at most p.

Let us suppose now that f is an entire function of order less than or
equal to p and uel,<,B,. Take ¢ >0 such that ueB,,,. There is a
constant C so that

log*M(r, f) <rP™® 4+ C, Vr=0.

To prove that foue BN we write

1 2n
ff log™|f(u(z))| dxdy = J rdr J log*|f(u(r €*))| d6
A 0 0
1 2n 1 2n .
sj rer‘ log* M(Ju(r )|, f) dOSJ rdrf |u(r e®)|P*¢d0+nC
0 (4] 0 (]

——-J] [u(z)|P** dxdy + nC < o0,
A

since ue B, .

THEOREM 4. Let f be an entire function of order less than p or of order p
and finite type (0 < p < o). Then F  acts from B, to BN.

Proof. We may assume that f is of order p and finite type ¢ — 6 > 0.
Hence, there is a constant C such that

log*M(r, f)<or?+C, r=0.

IfueB, then

1 2n
jf log*|f(u(z))| dxdy = J rdr J‘ log™|f (u(r ))|d6
A 0 0

1 2n
< j rdr f log* M(lu(r €|, f)do
0 0
<o J‘f |u(z)f? dxdy + nC < o0,
A

as required.



32 G. A. Camera and J. Giménez
5. Transforming Hardy functions into Bergman functions and vice versa

We shall begin by stating the following classical results by Hardy and
Littlewood [5].

LEMMA 4. Let u be analytic in A and

M (r, u) < O<p<oo, =20

C
a—rF
Then there is a constant K = K(p, ) such that

KC

Mq,(r, u) < (1 — r)p+l/pv1/q‘>

P <¢q; < .

A proof of this result can be found in [4, p. 84].

LEMMAS If O<p<gq, <oo,ueHP, A2 p,and a = 1/p — 1/q, then

JI 1 —=r*" M, (r, /)*dr < oo.

The reader can find a proof of this result in [4, p. 87].

The next result shows that one cannot transform Bergman functions into
Hardy functions by means of nonlinear superposition. In case p = o it is
trivial that F; acts for any f.

THEOREM 5. Let f be an entire function. If p # oo then F acts from B, to
H? if and only if f is constant.

Proof. If F, acts from B, to H? then, by Theorem 1, f is a polynomial.
Now we get the desired conclusion by noting that for a non-constant
polynomial f it is not true that f°ue H% Vue B, If this were true then the
zeros of all Bergman functions would have to satisfy the Blaschke condi-
tion, and this is false.

THEOREM 6. Let f be an entire function. Then F acts from H” to B, if and

2
only if f is a polynomial of degree at most [_p:'
q

If p= oo then F, acts from H” to B, for any f In the proof of this
theorem we shall rule out this case.

COROLLARY 2. The operator F, acts from H” to B, if and only if fis a
polynomial of degree one or two.
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Proof of Theorem 6. The proof that f must be a polynomial of degree

- 2
less than or equal to [_p:l can be done as in Theorem 1. Let us assume
q
. . 2 )
now that f is a polynomial of degree n < [—p:l We shall prove that if
q

2
ue H” then u"e B,. Let us suppose, first of all, that n < “P Then
q

1 2n
Jf [u"(z)|? dxdy = f rdr J |u(r eia)lnq de
A 0 0
1 1 2n ) nq/2p
<2z J rdr (— f |u(r e'%)|%? d0>
0 2n Jo

1
=2r f rM, (r, u)™ dr. (5.1)

0
Now, using Lemma 4 with § = 0, g, = 2p we obtain

C C
— A/p-172p (1 _ 2P’
1-nr 1-=r

M2p(r, u) <

for some constant C. Combining this inequality with (5.1) one gets

t rdr
J‘JA Iun(z)|‘1 dx dy < 2nC fo m < 0.

Thus u"€ B,, as required.

Next we assume that n = 2p/q. In this case we use Lemma 5 with
q, =2p, « = 1/2p, and 1 = 2p to conclude that

1
j M, (r, u?*? dr < o
0

as required.

6. The action from HP to BN

If p= o0 and f is any entire function then F, acts from H* to H* and
consequently it acts from H® to BN. When p < co we have the following
result.
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THEOREM 7. Let f : C — C. Then F, acts from | ) ,<,H? to BN if and only
if f is an entire function of order at most 2p.

Proof. Let us assume that F, acts from U p<qH?to BN. Clearly f must
be an entire function. On the other hand, given ¢ > 0, the function

1 1 1/pt+e
u,(2) = {1 —z E}

belongs to ( J,<, H%. Using these functions and Lemma 3 and arguing as in
Theorem 1 we deduce that f has order at most 2p. Conversely, let us
suppose that f has order at most 2p. Let ue U p<qH? and & > 0 such that
ue HP**, Next we take a constant C such that

log*M(r, f) < r?®*® 4+ C, Vr>=0,

and use this inequality to get

ff log*|f(u(2))] dxdy < fj lu(z)|***? dxdy + nC < oo,
A A

since u?€ B, ,, in view of Corollary 2.
As a corollary we have

COROLLARY 3. If ueN, u(z) #0 in A, and logu(z) #0 in A, then
egloew2-¢c BN Ve 0 < g < 2.
Proof. For ¢ = 0 the result breaks down as it is shown by the example

u(z) = exp {i ij}

To prove the corollary we proceed as follows. Since u does not vanish in
A then logu is analytic there. Moreover log |u|e h', where h' is the space
of harmonic functions in A which satisfy the Riesz-Herglotz representation.
This can be seen from the following relations

2n

2n 2n
f [log |u(r €*)|| d6 = J log* |u(r e)| dO + ‘[ log ™ |u(r €')| dO

0] 0 0

2n
=2 J log *|u(r €)| d0 — 2r log |u(0)],

0

and the fact that ue N. Then log ue H?, Vp < 1. Thus (log u)* * € )1/2<,H%
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Ve, 0 < ¢ < 2. Since f(z) = € is an entire function of order 1 then, by Theorem
7, e°e¥* e BN, as required.
Finally, we have

THEOREM 8. Let f be an entire function of order less than 2p or of order 2p
and finite type. Then F; acts from H” to BN.

Proof. We may assume that f is of order 2p and finite type ¢ — 6 > 0. There
is a constant C such that

log M(r, f) <or*? +C, r>=0.

If ue H? we get from the last inequality

jj log*|f(u(2) dxdy <o Jf |u(z)|?? dxdy + nC < o,
A A

since u”€ B, in view of Corollary 2.

7. Some open questions

We finish this article by posing some questions. (1) If F, acts from B, to
BN then, in particular, it acts from | J,<, B, to BN and, by Theorem 3, it
has order at most p. In case that f has order p is it true that f has finite
type? (2) One may ask the corresponding question for the action between
H? and BN.
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