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1. Introduction

Let A denote the unit disc {z: Izi  1} in the complex plane and let H(0)
denote the space of analytic functions in A with the topology of the uniform
convergence in compact subsets of A. Given a function f : C - C we
associate to it the operator F f defined by

This operator is known as the autonomous nonlinear superposition (or
composition) operator [1]. If A and B are linear subspaces of H(I1) and

Ff(u) E B whenever u E A we shall say that Ff acts from A to B. It is easy
to see that if F f acts from H (A) to H(0), then f must be an entire function
and conversely. In this case mere action implies the continuity and the
boundedness of the operator [2]. That mere action implies continuity has
already been proved for various spaces of real functions, for instance Lp spaces
[6] and Sobolev spaces [7]. Necessary and sufficient conditions have been
given in [2] in order that Ff acts from HP to Hq, 0  p, q  + oo, where HP
denotes the classical Hardy space in the unit disc. It is also true in this case
that mere action implies continuity [2]. If N denotes the Nevanlinna space
of functions in H (0) of bounded characteristic then the actions from

upq H" to N and from N to N have been studied in [3].
In this note we shall consider the problem of action and continuity

between the Bergman space Bp defined by

The space B 00 is the usual one of bounded analytic functions in A. The
topology in these spaces is given by the metric induced (when p &#x3E; 1) by
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If p  1 the topology induced by the metric II u I I p is used. We also consider
the action between Bp and the Hardy space Hq and vice versa. For

functions in Hp we use the standard notation

The symbol BN (which stands for Bergman-Nevanlinna) shall denote the
set of functions u in H(0) such that

Clearly HP ci Bp and Bp c BN for all p. Finally, we study the action
between Hardy functions and Bergman-Nevanlinna functions.
We would like to thank the referee for his helpful comments.

2. The action in B,

We shall need the following lemma.

Proof. This is an easy consequence of the subharmonicity of julp.

Next we are ready to prove the following result. In what follows the

symbol "[s]" denotes the integer part of s.

THEOREM 1. Let f : C - C be an entire function. Then h’f acts from Bp to
Bq, 0  p, q x oo if and only if f is a polynomial of degree less than or equal

Proof. If f is a polynomial of degree n  p then fOUEBq, VUEBp. In
q

fact, it is enough to see that if k  p ,k c N, then uk E Bq. This is true since
q
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Next, we assume that Ff acts from Bp to Bq, 0  p, q  oo. Let s &#x3E; 0 and

define (z) - 1 - - 1 2/P+E . Clearly uÉl belongs to Bp . Therefore

f 0 Ul) E Bq and by Lemma 1 one can write

Set wi = u. (1)(z). Assume first that p  1 and take e  1 - p. Then the range
set of u(l) is C B0. Given wi c- C B0 let z G A such that wi = U(l)(z) and

Thus, from (2.1) we get

Ifwi is such that !wJ &#x3E; el 12(p + E) then z1 = W)+t:/2( -’TC  Arg w1  n) satis-
fies Re z 1 &#x3E; e 1 4 cos( - n12(p + 8)) &#x3E; 0. In fact, since Arg wi a -n then
((p + e)/2) Arg Wi à - 7t/2W + 8). On the other hand

Hence, if lw,l &#x3E; el / 2 (p +,,) then Re zi &#x3E; e’/’ cos(7r/2(p + 8)) &#x3E; 0. Therefore,
one can find a positive constant c (depending on 8 and p) such that

If we use this inequality in (2.2) we obtain
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for all wi such that IWll &#x3E; el 12(p +"). Thus f is a polynomial of degree less
than or equal to p + Elq. By letting e --&#x3E; 0 we obtain the desired result when

p  1.
Now, we assume that p &#x3E;, 1. Let

If w 1 ESI we choose z 1 such that w 1 = zi/p+£ with 20137T/4  Arg z  n14.
Thus (lw)+£/2 + 11 - wi +E2 - 21)2/q &#x3E; c &#x3E; 0, for some constant c. Combin-
ing this inequality with (2.2) we obtain

Let

and

Given W2 E 52 we choose Z2 such that IZ21 &#x3E; 1 and w2 = z/p+¿: ein/p+¿: with
- n/4 x Arg z2  n14. From (2.4) we obtain

Since
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Hence, from (2.5) we obtain

By repeating the same argument n times, where n is such that

A = CBtJ?= Si, we obtain

where ci depends on f, E and q. This proves that f is an entire function of
order at most p + elq. Letting e tend to zero gives the desired result for
p &#x3E; 1.

3. Continuity of Ff

We shall prove in this section that if F f acts from Bp to Bq then it is

necessarily continuous. We also prove local Lipschitzness.
First of all let us prove the following lemma.

Proof. The proof is similar to the analogue lemma given in [2]. We give
it here somewhat simplified. The case n = 1 is obvious. Let us assume that

n &#x3E; 1. The functions uk and Un belong to B9. In fact, since iiq x p then for
every u E B p we have

On the other hand,
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Now we use Hôlder inequality

and obtain

where c is a constant. Again by a refined version of Hôlder inequality we get
that Uk-l-IUI E Bp/n- b = 0, 1,..., n - 1 and

This inequality implies that all summands on the right-hand side of (3.1 ) are
bounded (for all k). Hence uk -+ u" in Bq as required.
THEOREM 2. If Ff acts from BP to Bq then it is necessarily continuous, bounded
and locally Lipschitz.

Proof. Since-Ff acts from Bp3 to Bq then, by Theorem 1, f is a polynomial of

degree n  p . Set f (z) = an Z" + - - - + a,, Let Mjz) --+ u (z), as k --+ oo, in B... q
Then

Thus

by Lemma 2. The boundedness of Ff comes from the inequality
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which can be deduced from Il u, 1 Il B,  Il u Il ",, B for all u c- B p and all n  qLJ
In order to prove that F f is locally lipschitz we must see that if u,

v E B(o, R) c Bp then there exists a constant C = C(p, q, R, f) such that

IlFf (U) - FF(V)II B, 1 CIIU - VIIB,-
On the one hand,

On the other hand, in the same way that we deduced (3.1) and (3.2) we obtain

4. The action from Bp to the Bergman-Nevanlinna space

The Bergman-Nevanlinna space is defined by

It is easy to see that Bp c BN, Vp &#x3E; 0. The following result is an easy

consequence of Theorem 1.

COROLLARY 1. Let f be an entire function such that Ff acts from BN to

Bq, 0  q  oo. Then f is constant.
Proof. In particular Ff acts from Bp to Bq, for all p &#x3E; 0. Then from

Theorem 1 we conclude that f is a polynomial of degree at most q-q-
Taking p less than q one obtains the desired conclusion.

LEMMA 3. If u c- BN then
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This lemma is a consequence of the subharmonicity of log’lul.
THEOREM 3. Let f be an entire function. Then Ff acts from U,,B q to BN
(0  p  oo ) if and only if f has order at most p.

Proof. Assume that F f acts from UpqBq to BN. Let B &#x3E; 0. The functions

belong to Upq Bq Hence, fOUt; E BN and so, by Lemma 3

If p  1 we take e so that p + e  1. Then the range of uE is CBO. Thus,
given wl eCB0 we take z c- A such that

From (4.1) we get

Therefore, there is a positive constant C such that

Combining (4.2) and (4.3) we obtain

for a suitable positive constant Ci and all w 1 such that lwll &#x3E; el / 2 (p +,E) This
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shows that f is of order at most p + e. Letting e tend to zero permits us to
conclude that f is of order at most p.

Next, we assume that p &#x3E; 1. In this case we argue as in Theorem 1 and
obtain from (4.2) that

for all w outside a ball. Hence f is an entire function of order at most p.
Let us suppose now that f is an entire function of order less than or

equal to p and UE UpqBq. Take E &#x3E; 0 such that uEBp+E. There is a
constant C so that

To prove that fou E BN we write

since u E Bp+t:.

T H EO R E M 4. Let f be an entire function of order less than p or of order p
and finite type (0  p  oo). Then F f acts from Bp to BN.

Proof. We may assume that f is of order p and finite type u - ô &#x3E; 0.

Hence, there is a constant C such that

If u c- Bp then

as required.
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5. Transforming Hardy functions into Bergman functions and vice versa

We shall begin by stating the following classical results by Hardy and
Littlewood [5].

LEMMA 4. Let u be analytic in 0 and

Then there is a constant K = K (p, f3) such that

A proof of this result can be found in [4, p. 84].

LEMMA 5. If 0  p  q 1  oo, u c- Hl’, Â &#x3E;, p, and a = 1/p - 1/ql 1 then

The reader can find a proof of this result in [4, p. 87].
The next result shows that one cannot transform Bergman functions into

Hardy functions by means of nonlinear superposition. In case p = oo it is

trivial that Ff acts for any f
THEOREM 5. Let f be an entire function. Ifp # oo then F f acts from Bp to
Hq if and only if f is constant.

Proof. If Ff acts from Bp to Hq then, by Theorem 1, f is a polynomial.
Now we get the desired conclusion by noting that for a non-constant
polynomial f it is not true that fou E Hq, b’u E Bp. If this were true then the
zeros of all Bergman functions would have to satisfy the Blaschke condi-
tion, and this is false.

THEOREM 6. Let f be an entire function. Then F f acts from HP to Bq if and

only if f is a polynomial of degree at most 2p .

If p = oo then F f acts from HP to Bq for any f In the proof of this
theorem we shall rule out this case.

COROLLARY 2. The operator F f acts from HP to Bp if and only if f is a
polynomial of degree one or two.
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Proof of Theorem 6. The proof that f must be a polynomial of degree

less than or equal to 2p can be done as in Theorem 1. Let us assume

now that f is a polynomial of degree n 2p We shall prove that if
q

2pU G HP then un E Bq. Let us suppose, first of all, that n ’q.Thenq

Now, using Lemma 4 with fi = 0, ql = 2p we obtain

for some constant C. Combining this inequality with (5.1) one gets

Thus u" E Bq, as required.
Next we assume that n = 2p/q. In this case we use Lemma 5 with

q 1 = 2p, oc = 1/2p, and = 2p to conclude that

as required.

6. The action from IF to BN

If p = oo and f is any entire function then Ff acts from H°° to H°° and
consequently it acts from HOO to BN. When p  oo we have the following
result.
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THEOREM 7. Let f : C - C. Then Ff acts from UpqHq to BN if and only
if f is an entire function of order at most 2p.

Proof. Let us assume that F f acts from UpqHq to BN. Clearly f must
be an entire function. On the other hand, given e &#x3E; 0, the function

belongs to up  q Hq. Using these functions and Lemma 3 and arguing as in
Theorem 1 we deduce that f has order at most 2p. Conversely, let us

suppose that f has order at most 2p. Let U E u P  qHq and e &#x3E; 0 such that

u c- HP". Next we take a constant C such that

and use this inequality to get

since u2 E Bp+E in view of Corollary 2.
As a corollary we have

COROLLARY 3. If u c- N, u(z) * 0 in A, and log u(z) * 0 in A, then

e(log u)2 - ec-BN, Ve, 0  e  2.
Proof. For e = 0 the result breaks down as it is shown by the example

To prove the corollary we proceed as follows. Since u does not vanish in
A then log u is analytic there. Moreover log lui E hl, where hl is the space
of harmonic functions in A which satisfy the Riesz-Herglotz representation.
This can be seen from the following relations

and the fact that u E N. Then log u E Hp, b’p  1. Thus (log U)2-t: E U112qHq,
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Ve, 0  e  2. Since f(z) = ez is an entire function of order 1 then, by Theorem
7, e(log u)2-£ E BN, as required.

Finally, we have

THEOREM 8. Let f be an entire function of order less than 2p or of order 2p
and finite type. Then Ff acts from HP to BN.

Proof. We may assume that f is of order 2p and finite type u - l5 &#x3E; 0. There

is a constant C such that

If u E HP we get from the last inequality

since U2 e Bp in view of Corollary 2.

7. Some open questions

We finish this article by posing some questions. (1) If F f acts from B p to
BN then, in particular, it acts from U pq Bq to BN and, by Theorem 3, it

has order at most p. In case that f has order p is it true that f has finite
type? (2) One may ask the corresponding question for the action between
HP and BN.
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