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This article is devoted to the study of cohomological invariants which arise in
symplectic geometry in the theory of isotropic submanifolds of a symplectic
manifold, or couples of isotropic subbundles of a symplectic vector bundle. The
origin of this interest is the study of Lagrangian subbundles, in which the first
cohomological invariant appears: The Maslov class, which is a generator of the
first cohomology group H1(039B, R) of the Lagrangian Grassmannian A. Other
cohomology classes appear in higher dimensions (41 + 1), describing the

cohomology of A, and can be interpreted as secondary characteristic classes.
All these classes have the same geometric property: On a symplectic bundle,
endowed with two Lagrangian subbundles, they are obstructions to their

transvérsality. Their topological study is in [Fu]. In [Mo 1], [Mo 2], the first
author proved that the (usual) Maslov class of a Lagrangian submanifold of a
complex vector space is nothing but the class defined by the dual of the mean
curvature vector of the immersion. In [M-N 1] we could prove that all the
Maslov classes (of any degree 41 + 1) can be spanned by closed forms built with
the second fundamental form of the immersion. The generalisation to couples
of Lagrangian subbundles is obvious. In the present work, we extend these
results to the isotropic case. In the first part, we study the De Rham

cohomology of the isotropic Grassmannian J Gn(Cn+k) of isotropic n-dimen-
sional oriented real subspaces of Cn+k. We use geometric methods, in order to
be able to describe explicitely the cohomology classes in terms of closed
differential forms. (An algebraic point of view is summarised in a Note [Mo 3],
and a topological study is in [La]). This is much more delicate than in the
Lagrangian case, essentially because J Gn(Cn+k) is not a symmetric space.
Basically, the cohomology is spanned by classes of degree 41 + 1, like in the
Lagrangian case, but the minimal degree 410 + 1 satisfies k  2l0 + 1.
As an application, we define in the second part, cohomology forms and

classes on isotropic submanifolds of cn+k, by pulling back these forms through
the Gauss map of the immersion. These classes can be expressed in terms of
the curvature and the second fundamental form of the immersion.

In the third part, we extend the results obtained for isotropic submanifolds
to symplectic bundles endowed with two isotropic subbundles, (of the same
dimension). Using Chern-Weil theory, this can be interpreted as follows: To
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each isotropic subbundle corresponds a reduction to SO(n) x U(k) of the
U(n + k)-principal frame bundle associated to the symplectic bundle. This leads
us to construct secondary characteristic forms and classes, using adapted
connections. Unfortunately, for technical reasons, we need to assume the
existence of a third isotropic subbundle endowed with a flat connexion.
We examine, in the fourth part, interesting properties of these classes. As

classic characteristic classes, if one characteristic class of a couple (I, Io) is not
null, then it is not possible to deform I into 10 through isotropic subbundles.
Another property is a generalisation of the Lagrangian transversality property:
Let I’ be the coisotropic subbundle of E which is orthogonal (for an adapted
metric) to 10. If one of the characteristic classes of (I, Io) is non zero, then I and
I~o are not transverse everywhere; (more precisely I cannot be deformed

through isotropic subbundles into a subbundle I’ which is transverse to I~o
everywhere).

If the dimension of I is odd, the last isotropic class has a particular interest.
We show, in the fourth part, that it is also an obstruction to the deformation
of I in 10 through any (oriented) subbundle (of constant rank) of E.

Finally, we would like to conclude that this kind of framework can be
generalised in the very large context of reduction of the structural group of a
principal bundle. This point of view will be adopted by the second author in a
forthcoming paper.
We would like to thank C. Albert, F. Lalonde, D. Lehmann, I. Vaisman, for

interesting discussions.

1. The real cohomology of the isotropic Grassmannian

1.1. The isotropic Grassmannian J Gn(Cn+k)

Let Cn+k be the complex vector space of real dimension 2(n + k) endowed with
its canonical scalar product , &#x3E;, its complex structure J and its symplectic
structure (1, given by

a(X, Y) = (JX, Y), VX, Y ~ Cn+k.
A real vector subspace I of Cn+k is called isotropic if I c 1°, where "0"

denotes the orthogonal for the symplectic structure.
A real vector subspace C of Cn+k is called coisotropic if C° c C.
A real vector subspace L of Cn+k is called Lagrangian if L° = L.
In this article, we shall deal with the Grassmannian J Gn(Cn+k) of real

oriented n-dimensional isotropic vector subspaces I of C"+x. It is clear that

there is a natural identification between J Gn(Cn+k) and the homogeneous
space
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where SO(n), (resp. U(k)), denotes the orthogonal, (resp. unitary) group.

SO(n) x U(k) is the subgroup of U(n + k) given by the identification

Its tangent space at the origin,

(where u(n), (resp. so(n)), is the Lie algebra of U(n), (resp. SO(n))), can be
identified with the space m of squared matrices of the following type:

where B is a complex (n, k) matrix, and A is a real (n, n) symmetric matrix.
In the following, we shall use the following decomposition:

where m is the space of matrices of type (1).

1.2. Real cohomology of a compact Lie group

We recall here some basic facts on the cohomology of a connected compact
Lie group G. Let g be the Lie algebra of G, and I(G) be the algebra of invariant
polynomials on g. Let A BI(G) be the space of bi-invariant differential forms in
G. The Cartan map is the linear map

defined on the homogeneous elements of I(G) by

for every invariant polynomial f of degree 1.

The image of W is a vector subspace P(G) c A BI(G), called the Samelson
space of G. It is well known that the cohomology algebra of G, H*(G, R), is
isomorphic to the exterior algebra A BI(G), and also that
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1.3. Real cohomology of a homogeneous space

Let G be a compact connected Lie group, and H be a compact connected

subgroup of G. Let

be a transgression (C 03BF 03C4 = IdP(G)).
It is well known that the real cohomology of G/H, H*(G/H, R), is isomorphic

to the real cohomology of the algebra

endowed with the differential d given by

where 1) is the Lie algebra of H.
Let P(G, H) be the Samelson space of the pair (G, H). The elements of P(G, H)

are characterised as follows: let z E P(G). Then, z E P(G, H) if and only if there
exists t 1, ... , tm E P(G), ri,..., rm E I(H) of strictly positive degree, such that

Let

be the canonical projection, and

be the corresponding map in cohomology. We know that the image of 03C0* is an
exterior algebra over P(G, H). Moreover,
dim P(G, H)  rank(G) - rank(H). (2)

When (2) is an equality, we say that (G, H) is a Cartan pair.
If (G, H) is a Cartan pair, we have

where -W dénotes the ring of characteristic classes of the bundle G ~ GIH.
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1.4. Real cohomology of J Gn(Cn+k)

Using the identification between J Gn(Cn+k) and U(n + k)ISO(n) x U(k),
we have to compute the cohomology of G/H, with G = U(n + k), and
H = SO(n) x U(k). We apply the results of 1.2 and 1.3.

It is well known that:

(i) I(U(k)) is isomorphic to R[ê], the algebra of polynomials spanned by the
Chern generators (cl, ... , ck).

(ii) I(SO(n)) is isomorphic to R[p], the algebra of polynomials spanned by
the Pontrjaguin generators (pl, ..., P[n/2], en). These generators are related by
the only relations

(iii) From (i) and (ii), we deduce that

(iv) 1B P(U(n + k)) is isomorphic to the algebra

where the index denotes the degree of the generators.
Each (X2l-1) is identified with the bi-invariant differential form 03B82l-1 on

U(n + k), which is the image by the Cartan map of the Chern polynomials (cl ).
(v) We choose the transgression 03C4, defined by 03C4(X2i-1) = ci for all i.

Consequently, the real cohomology of U(n + k)ISO(n) x U(k) can be identi-
fied with the cohomology of the graded algebra (R[] Q R[p]) (8) A (x), en-
dowed with the differential d given by

To give an explicit description of the cohomology of J Gn(Cn+k), we need the
following

1.5. LEMMA. Let (cl) c I(U(n + k)), 1  1  n + k, be the Chern polynomials
of U(n + k).

Let (Ci) ce I(U(k)), 1  i  k, be the Chern polynomials of U(k).
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Let (pj) c I(SO(n)), 1  2j  n, be the Pontrjaguin polynomials of SO(n).
Then we have:

(i) For 1  21 + 1  k, C2l+1|so(n)~u(k) = 2l+1 + 03A3i+j=l(-1)j2i+1pj,
(ii) For k  21 + 1  n + k, C2l+1|so(n)~u(k) = 03A3i+j=l(-1)j2i+1pj,
(iii) If n is odd, cn+k|so(n)~u(k) = 0.
Proof of the lemma. Let X E u(n + k), such that:

We have

Then,

By identification we deduce immediately the Lemma.

1.6. PROPOSITION. The differential d defined on (R[] Q R[p]) ~ 039B (x)
satisfies:

where:

Proof of the proposition. It is a direct consequence of (3) and Lemma 1.5.
Now, we define the following sequence in (R[] ~ R[p]) Q9 1B (x):



73

where (1  41 + 1  2n + 2k - 1).
We obtain from (4):

Finally, if n is odd, X2n+2k-1 is a cocycle.
Moreover, we deduce from (3),

where Ci and Pi are the characteristic classes corresponding to the êi and pj.
(Remark that we can write

where the ~il are products of Pontrjaguin polynomials).
To show that (U(n + k), SO(n) x U(k)) is a Cartan pair, we must compare the

dimension of P(U(n + k), SO(n) x U(k)) with

We have the following board:

(Remark that the degrees of x4l+1 are different, and that x2n+2k-1 is a

generator when n and k are odd).
We can summarise the previous results in the following

1.7. THEOREM. (i) J Gn(Cn+k) is a homogeneous space isomorphic to

U(n + k)ISO(n) x U(k).
(ii) (U(n + k), SO(n) x U(k)) is a Cartan pair.
(iii) H*(J Gn(Cn+k)), R) is isomorphic to H* [(R[c] (D (R[p]) ~ 039B (x), R],
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where (R[c] Q R[p] (D A (X) is endowed with the differential d given by

(iv) H*«R[c] (D R[p]) Q A (x), R) is spanned, as a ring,
-In even dimension, by the following generators,

with the only relations,

-In odd dimension, by the following generators, (the index denotes the degree),

(v) Consider the principal bundle

H*[J Gn(Cn+k), R] is isomorphic (as a ring), to the tensor product

where d denotes the ring of characteristic classes of the previous principal
bundle.

(vi) 7r* [H* (U(n + k)IU(k) x SO(n), R)], identified with a subspace of A (x), is
spanned by the set

The even cohomology of J Gn(Cn+k) is easy to describe in terms of
differential forms: Geometrically, the Pi are the Pontrjaguin classes of the
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tautological bundle v over J Gn(Cn+k). Using the identification of J Gn(Cn+k)
with U(n + k)ISO(n) x U(k), we can express each generator by standard for-
mulas :

Let Q be the curvature tensor of the space U(n + k)ISO(n) x U(k). We know
that

where [ , ]so(n)~u(k) denotes the projection of the bracket on so(n) Et) u(k). Then
the Pontryaguin class Pi is the cohomology class of the closed form nj defined
by

(the Q) are the components of Q and 03B4j1,...,jki1,...,ik the Kronecker symbol).
For our purpose, the odd cohomology is more interesting. We will study it

carefully.
We recall the following Lemma [G-H-V]:

1.8. LEMMA. The bi-invariant forms 03B82l-1, 1  l  n + 1,, defined on U(n + k)
by

(~X1,...,X2l-1 ~ u(n + k)), span the real cohomology of U(u + k).

Using 1.6 and 1.7, we get the following

1.9. PROPOSITION. The bi-invariant forms on U(n + k)

define a system of generators of n*(H*(U(n + k)IU(k) x SO(n)), R).

1.10. An important remark

These forms, up to (J2n+2k-l’ if n is even, are not projectable. The following
theorem gives explicit closed forms on U(n + k)IU(k) x SO(n) whose cohomol-
ogy classes span H*(U(n + k)IU(k) x SO(n), R).
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1.11. THEOREM. Let ’P41+1 be the left invariant forms defined by induction on
Te(J Gn(Cn+k)) = m c u(n + k), by the formula

Then ’P41+I,for k  21 + 1  n + k, and lJ2n+2k-1 if n is odd, are closed on
J Gn(Cn+k).

Their cohomology classes span the odd cohomology of 9-G.(C" +k).

2. Isotropic submanifolds in cn+k

In Theorem (1.11), we gave explicit formulas for the cohomology classes of the
isotropic Grassmannian, and their associated closed forms. We shall now use
these forms to build characteristic forms and classes on isotropic submanifolds
of cn+k.

2.1. The general geometric frame

Let i: Mn  En +P be an isometric immersion of an n dimentional oriented
Riemannian manifold M" into En+p. Let V, (resp. ) be the Levi-Civita

connection of M, (resp. En+p). We can write:

for all X, Y in TM and 03BE in T 1 M. Let h be the second fundamental form,
which takes its values in the normal bundle T 1 M, A is the adjoint of h and ~~
is the normal connection in the normal bundle T1 M.
The Gauss-Codazzi-Ricci equations relate the curvature R of M and the

normal curvature Rl. to the second fundamental form h:

where Vh is defined by:

Let G be the Gauss map of i. G assigns to each point m E M the subspace of
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En+p parallel to Tm M . G takes its values in the Grassmannian Gn(En+p),
identified with:

Let us fix m. Up to isometry, we may suppose that G(m) = En. A classical result
asserts that dG can be identified with h in the following way:

Let X E Tm M, and define

by

Identifying T.(M) with En and Tm M with EP, we get a (R-linear) map hx which
belongs to the space End(E", EP). Using these identifications, we can write:

or in a simplified notation:

2.2. Geometry of isotropic submanifolds

Let us consider now that i: M"4 C"lk is an isotropic immersion. The Gauss
map G can be factorised through J Gn(Cn+k), and we get the following
diagram:

For X E TmM, dG(X) is tangent at En to J Gn(Cn+k), that is to say, dG(X)
belongs to m c u(n + k) (cf. (1.1)). We can write:
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where B is a complex (n, k) matrix, and A is a real (n, n) symmetric matrix. The
data of this matrix are equivalent to the data of the matrix

The correspondence : ~ N describes the map j above. In the sequel we shall
identify d(X), dG(X) and hx. In this context, for X1, X 2 E Tm M, the composi-
tion hx, O hx2 has a clear meaning, and corresponds to a matrices product in
u(n + k). Of course, such a product does not belong to m.

Since VJ = 0, h satisfies the following property:

for all X, Y, Z in T Mn.

2.3. Characteristic forms and classes of isotropic submanifolds of cn+k

The previous diagram induces the following ones:

and in cohomology,

By pulling back the even generators of the cohomology of J Gn(Cn+k), we
classically obtain the Pontrjaguin classes P, of TM" and the Chern classes C,
of v. Since T(cn+k)IM is trivial, these classes are related by the relation

We shall restrict our attention to the odd cohomology, to get secondary-
cohomology classes.
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2.4. Notations

(i) li41+ l denotes the (41 + 1 )-differential form defined on M by

(ii) nj denotes the jth Pontrjaguin form defined on M, by using the

Riemmannian metric. We state our main

2.5. Theorem and definition

Let i: Mn ~ cn+k be an isometric isotropic immersion of a Riemannian manifold
M" into Cn+k. Let C be a fixed coisotropic (n + 2k)-subpsace of Cn+k. Let 03B14l+1
be the (41 + 1)-forms defined by induction on M" by:

Then,
(i) For every 1 such that k  21 + 1  n + k, these forms are closed.
(ii) If there exists l, (k  21 + 1  n + k), such that the cohomology class

la4l + 11 is not null, then there does not exist any deformation of M" through
isotropic submanifolds ofcn+k onto a submanifold Ml which is transversal to the
fixed coisotropic (n + 2k)-subspace C.

The cohomology classes [03B14l+ 1], k  21 + 1  n + k, define a system of
generators of isotropic classes of M".

Proof. (i) We take the pull back of the differential forms defined on

J Gn(Cn+k) by the Gauss map of the immersion i. We obtain, from (9),

The end of the proof is clear.
(ii) Is a simple consequence of a result of F. Lalonde: In J Gn(Cn+k) the set

of isotropic n-dimensional subspaces of Cn+k which are transverse to a fixed
coisotropic subspace is contractile [La].

2.6. Remarks

(i) If k = 0, we obtain the classical Maslov classes and Maslov forms described
in [M-N 1].

(ii) For obvious reasons of dimension, the pull-back of 03B82n+2k-1 is always
null.
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2.7. Examples
EXAMPLE 1. Although the first form x, = y, (in the notations of 1.6), does
not span any cohomology class in J Gn(Cn+k) as soon as k  1, we can observe
the following phenomena, (which can be extended in the context of fiber
bundles without difficulties). Im J Gn(Cn+k), we have:

The form 01 corresponding to xi has the following explicit expression:

The pull-back on M" of the form 01 by the Gauss map is the form 03B11, defined

by

that is, using (13),

where H is the mean curvature vector field of Mn.

Using Codazzi equation, we see that 03B11 is not closed in general, and satisfies,
on Mn,

where S~ is the Ricci tensor of the normal subbundle v, defined by

(03BE03B1)03B1 = 1,....,k being an orthonormal frame of v.
We shall say that an isotropic submanifold is v-flat if S~ is null everywhere.

The simplest way to build a v-flat isotropic submanifold is to consider a

Lagrangian submanifold L of C",

and any isotropic immersion of C" into Cnll with flat normal connection, (for
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instance, the standard totally geodesic one),

Then j 03BF i gives a v-flat isotropic immersion of L into Cn+k.
It is clear that any v-flat isotropic submanifold is endowed with a real

cohomology class of degree one, [03B11]. It corresponds to the classical Maslov
class for Lagrangian submanifolds, [Mo 1].
The following example shows that, under v-flat deformations, this cohomol-

ogy class may vary:

EXAMPLE 2. Let y. be a circle in C, and y, be a curve describing an "height"
in C. The Maslov class mo of yo is non zero, and the Maslov class m 1 of 71 is
zero. Up to a constant, the Maslov class is spanned by the 1-form kds, where
k is the curvature of 03B3o (resp. y,) and ds the arc-length. Consider the standard
imbedding of C into C2. The curves yo and y, are (of course) is isotropic in C’,
and we can deform yo into y, through closed (isotropic) curves yt . At each step,
[ktds] defines a cohomology class which varies form mo to ml.
EXAMPLE 3. This example is a generalisation of the previous one. Consider
io the standard (Lagrangian) embedding of the torus T2 into C2. Its Maslov
class m 1 is non zero. Consider the product of two "eight" in C. This gives an
Lagrangian immersion of T2 into C2, with null Maslov class 1. Let

C3 ~ (C x R) x (C x R). These two tori can be considered as isotropic surfaces
in CI, with different Maslov classes. It is clear that we can deform each "eight"
in R3C x R to get a circle in C. This gives deformation it of io into il, which is
isotropic in C3 for each t. It is also clearly v-flat for each t. This shows that the
one dimensional cohomology class (given by the mean curvature vector fields
of it), varies continuously with t. Of course, this phenomena cannot occur for
the classes 03B14l+1, l  2k + 1, (2k = rank(v)).

EXAMPLE 4. This first interesting dimension is k = 1, n = 5. So, we must
consider a 5-dimensonal isotropic submanifold in C6.

With the notations of (1.6), the only generator of the odd cohomology in
H*(ffGs(C6), R) is

and the corresponding 5-form is given by 03A65. Consequently, the only isotropic
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characteristic form which appears in M5 is

This situation occurs in the following example: Consider the (complex) vector
space V of symmetric complex (3 x 3)-matrices. V can be identified with CI.
The map

induces a map

A simple computation shows that f is a Lagrangian embedding, (see [M-N 1]).
Now, the standard inclusion i:

gives rise to an isotropic embedding f o i:

A simple computation shows that the 5-form. as defined on SU(3)/SO(3) is

nothing but the restriction of the Maslov form of degree 5, defined on

U(3)/SO(3) and is a volume form on SU(3)/SO(3). So, a. = [as] is not null.

3. Isotropic subbundles of a symplectic bundle

3.1. Generalities

Let E - M be a symplectic vector-bundle of rank 2(n + k). This means that
each fiber is a real vector space of dimension 2(n + k), endowed with a
symplectic form u. Let «, » be a hermitian structure on E, adapted to the
symplectic form. We denote by , &#x3E; the associated Riemannian metric, and
by J the complex structure (J2 - - Id) defined by

(We know that two such hermitian structures are homotopic).
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We denote by P - M the U(n + k)-principal bundle of ortho-normal frames
on E.

Now, we assume that E admits an (oriented) isotropic subbundle I of rank
n. We remark first of all that this assumption implies restrictions on the
(primary) characteristic classes of E.

In fact, we can write

where v is the orthogonal complement of I Q JI (for , &#x3E; ). Consequently, the
Chern classes Ci of E, Ci of v and the Pontrjaguin classes of I are related by
the relation:

3.2. Remarks

(i) We deduce from this relation various conclusions on E. For instance, if Cn + k
is non zero, then, E does not admit any isotropic subbundle of odd rank.

(ii) We can build particular connections on E adapted to the isotropic
subbundle of E: Let col be a (Riemannian) connection on I. We complexify col
to get a connection 1 on I Q JI. We take any complex connection (Ù2 on v.
We set

(J) is a connection on E (for which I, JI and v are parallel). Let Q the curvature
of co. Then, the classes Ci, Pi, Ck can be expressed in terms of Q (see 1.7) and
we get an analogous formula for (21) in terms of Q.

3.3. From now, we shall assume that E admits two isotropic oriented sub-
bundles (I0, I) of rank n. We deal with the problem of deformation of 10 onto
I in E, and with the problem of transversality of I o and I with a common
coisotropic subbundle of E. It is clear that the difference of the Pontrjaguin
classes of Io and I are obstructions to a deformation of 10 onto 1. We also
remark that if I. and 7 are transversal to a common coisotropic subbundle C,
then they are isomorphic. (In fact they are isomorphic to Ker(03C3|C)*, where ulc
denotes the restriction of Q to C). So their Pontrjaguin classes are equal.

In the following, we shall go further, and construct explicitly secondary
characteristic forms and classes which are deeper obstructions. The reason is
that if two isotropic subbundles Io and I have a common transversal coisot-
ropic subbundle, then there exists an isotropic deformation which sends I onto
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Io. (See [La] for a proof). Unfortunately, we need to assume that Qo is flat,
which is not true in general. However, remark that if there exists a trivialisation
of E which sends every fibre of 7o on the standard isotropic subspace of Cn+k,
then the flatness of Qo is clear. If it is not the case, we can increase I~0, I and
E into lj, 1’ and E’ such that such a trivialisation exits. (See [La]). Then we
can endow 60 (with obvious notations) with a flat connection. These secondary
classes are symplectic in the sense that they are obstructions to:
-Deformations of I onto 7o through isotropic (oriented) subbundles.
-Defomations of I through isotropic (oriented) subbundles onto an isotropic

(oriented) subbundle 1 which is transversal to the coisotropic subbundle 1§
(where 1 is the orthogonality relative to any adapted metric).
To get these classes, we apply the Chern-Weil construction.

3.4 The theory of Chern-Weil

We shall recall here the basic facts on the theory of Chern-Weil.
Let G a Lie group, with Lie algebra g. Let I(G) be the algebra of invariant

polynomials on g. Let P ~ M be a G-principal bundle.
Let co be any connection on P, with curvature Q. If f E I(G) is a homogene-

ous polynomial of degree 1, we define

(i) the 2l - differential form 039403C9f defined on M by its lift on P:

(ii) the (2l -1 )-differential form Tro(f) defined on P by

With these notations, we have the following relations:

If 03C90, 03C9 are two connections on P ~ M, with curvature Qo’ Q, we define on M
the (21 - 1)-differential form 039403C903C9of such that
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This form satisfies the following relations:

We apply the previous theory in the following context: Let (10, 1) a couple
of isotropic oriented subbundles of rank n, of the symplectic bundle E. Let P
be the U(n + k)-principal bundle of orthonormal frames of E. Let Qo, (resp. Q),
be the principal subbundle of P, constituted by orthonormal rames (e1, ... , en,
en+1,...,en+k), such that (e1,...,en) is an oriented R-orthonormal frame of 10 ,
(resp. I). Qo, (resp. Q) is principal bundle with structural group SO(n) x U(k). We
say that we obtain Qo, (resp. Q), by reduction of U(n + k) to SO(n) x U(k). Let
wo, (resp. 03C9), be a connection on Qo, (resp. Q). We can extend canonically coo,
(resp. 03C9), to a connecion wo, (resp. m), on P. Finally, we get on P two different
connections cvo, cv.

3.5. Isotropic characteristic classes

We suppose E endowed with an adapted hermitian structure. In the sequel, the
polynomials (pi, are those defined in (6) Section 1.6.

THEOREM. Let (I, I0) be a couple of isotropic subbundles. If Qo admits a flat
connection C-0., then:

(i) The differentialform of degree 41 + 1, defined on M by

and 039403C903C9o(cn+k) if n is odd are closed.
(ii) Their comology classes does not depend on the adapted hermitian structure

nor on the connection w.

(iii) If 1 can be deformed into I0 through an isotropic deformation, then these
classes are null.

(iv) If 1 is transversal to the coisotropic subbundle I~0, then these classes are
null.

Proof. (i) We will compute d03C0*~2l+1(03C9). It suffices to compute its values on
Q. Then we have, using 00 = 0:
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since 03A9 takes its values in so(n) 0 u(k) (see 1.5). The same proof is also valid for

039403C903C9o(cn+k).
(ii) and (iii). We have seen above that two hermitian structures compatible

with the symplectic structure are homotopic. For the sequel, let QS be a
differentiable family of SO(n) x U(k) reductions of P ~ M, that is to say a

SO(n) x U(k) reduction  ~ M  I of P  I ~ M  I (where I = [0, 1]), such that
QS = |s=cte. We suppose that every QS is endowed with a connection ÕJS

varying differentiably with s. Every co can be extended in cos to P. The

collection of 03C9s define a connection 00FF on Q, and the collection of cos define a
connection y on P x 1 which is the extension of . Let Qo = Qo  I be endowed
with the connection o obtained from wo by the previous construction. Let io
and il be the canonical injections of M into M x I. We use fiber integration
([Le], [Va]) with the differential form 04, 1 (03B3):

Since (~4l+1(03B3) is closed (by (i)), we obtain:

(iv) This is a trivial consequence of Section 2.2.

3.6. Definition

The classes 03B14l+1(I, I0) = [~4l+1] and fX2n+ 2k-I(I, I0) = [039403C903C9o(Cn+k)] f n is odd
are called isotropic (secondary characteristic) classes of the couple (1, 10).

3.7. Isotropic characteristic classes of a couple of isotropic subbundles

The previous definition of isotropic characteristic classes can be extended to
any couple of isotropic subbundles of a symplectic bundle in the following way:

DEFINITION. Let 10 an isotropic subbundle of E ~ M such that Qo admits a
flat connection. Let 1 and l’ be two oriented isotropic subbundles of the symplectic
bundle E ~ M. The cohomology classes:

and

are called isotropic characteristic classes of the couple (I, I’).
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It is clear that these classes are obstructions to deformations of I onto l’,
through oriented isotropic subbundles of E, and that if one of these classes in
not null, then I is not transverse to I’~.

3.8. Remark

Let E ~ M be a trivial symplectic bundle, endowed with a trivial isotropic
subbundle 7o- Let I be another isotropic subbundle of E. Then I gives rise to
a "generalised Gauss map" G defined as follows: we put an hermitian metric
on E, compatible with the symplectic structure, and consider a frame

such that (e1,...,en) is a real frame of 10. For m E M, we set G(m) = il, where u
is any unitary matrix which sends 10 into I, (ù denotes the equivalence class of
u). We get a map G which takes its values into

Then, the isotropic characteristic classes of (1, 10) defined in Section 3.6 are the
pull back by G of the odd generators of J Gn(Cn+k).

3.9. An example

The simplest example of a symplectic bundle endowed with two isotropic
subbundles with non trivial isotropic characteristic classes is the following:

Let Cn+k = En+k (8) C = (En X Ek) (8) C; consider the trivial bundle

and let 10 = En x 0, be the first (fixed) isotropic subbundle.
Let 1 be the canonical real n-bundle on J Gn(Cn+k).
It is clear that the isotropic characteristic classes of (I, Io) coincide with the

odd generators of the cohomology of J Gn(n+k).

4. A particular property of the last isotropic class

In this paragraph, we shall deal with the isotropic class of maximum degree,
when n is odd. We consider a symplectic bundle E endowed with two oriented
isotropic subbundles I and 10 of odd rank n. As in Section 3, we assume that
the SO(n) x U(k) reduction corresponding to 10 admits a fiat connection wo.
Under this assumption, we have the following: 
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4.1. Theorem

The isotropic class of maximum degree 03B12n+2k-1 associated to the couple (I, I0)
is an obstruction to the deformation of I onto 10 through any deformation of
(oriented) subbundles of E, (the deformation does not need to be isotropic).

To prove this theorem, we need the following: 4.2. Lemma.

Let j : U(n + k) ~ SO(2(n + k)) be the standard inclusion. Let p f be the Pfaffian
in I(SO(2(n + k))) defined by:

Then the restriction to u(n + k) of pf is the Chern polynomial of degree 2n + 2k
in I(U(n + k)).

Proof of the Lemma. We can check this proposition on maximal tori of each
group [K-N]. j is then the map defined in the following way:

whose determinant is 03BB21,...,03BB2n+k· Since (-1)n+kcn+k(A) = (-1)n+kDet(iA) =
03BB1,..., 03BBn+k we obtain the lemma.
We can now prove the theorem. We consider 10 and 1 as real subbundles of

E. This means that we forget the hermitian structure, and we extend the
U(n + k)-principal bundle P ~ M to the SO(2(n + k))-principal bundle of all
oriented orthonormal 2(n + k)-frames of E. We extend the connections coo and
w to mi and co’ on this new principal bundle. With this notation, [03C9’03C9’0 ( p f )
define a cohomology class on M, invariant by any deformation. In particular,
we have with obvious notations:

4.3. Remark

If n is even, this construction is valid, but the class of 039403C9’03C9’0(pf)) is null.
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