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1. Introduction

Let M be a compact Riemann surface and g a holomorphic map of M onto
S’(1). We denote by 0394g the Laplacian for the branched metric induced by g.
Then we call the number of eigenfunctions with eigenvalues smaller than 2
index of g, the space of eigenfunctions with eigenvalue 2 null space of g and the
dimension of the null space nullity of g. Note that the index is same as the
Morse index with respect to the area functional of a complete minimal surface
of finite curvature whose (extended) Gauss map is g (see [F]) and the element
of the nullity space corresponds to a bounded Jacobi field of the minimal

surface. Since the pull back functions of coordinate functions on S’(1) c R3
(which are called linear functions) are eigenfunctions with eigenvalue 2, the
nullity is not less than 3. We call the eigenfunction of eigenvalue 2 other than
coordinate functions an extra eigenfunction. In [E-K1] and [M-R], an alge-
braic constructing method of extra eigenfunction is given as an application of
a characterization of extra eigenfunctions.

THEOREM. ([E-Kl] and [M-R]). Let g be a holomorphic map of a compact
Riemann surface M onto S2(1). Then the nullity of g  4 if and only if there exists
a complete, finitely branched, minimal surface with planar ends and finite total
curvature whose (extended) Gauss map is g.

As another point of view, we would like to consider why extra eigenfunctions
occur. Note that a holomorphic map of M onto S2(1) is a non-full branched
minimal immersion in S3(1). The index of g is equivalent to the index of the
Jacobi operator of the minimal surface in S’(1) and the null space is taken as
the space of the Jacobi fields. So an extra eigenfunction corresponds to a
non-Killing Jacobi field. We can determine all Jacobi fields of the non-full
minimal surface in S’(1) [E-K1] and [M-R]. Thus an extra eigenfunction is
closely related to minimal deformations of a non-full minimal surface. Gen-
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erally, we do not know the existence of a minimal deformation for a given
Jacobian field. Note that we have a local minimal deformation for a given
Jacobi field [L]. When there exists a minimal deformation such that full

minimal surfaces converge to a non-full minimal surface in S3(1), there exists
an extra eigenfunction. Precisely, we have the following. Let g be a holomor-
phic map of M onto S2(1). Let I/It be a smooth 1-parameter family of weakly
conformal full harmonic maps in Sk(1) (k &#x3E; 3) except t = 0 and 03C80 = g.
Then we consider an operator 0 + 2e(03C8t) for a fixed Riemannian metric
compatible with the conformal structure of M, where A is the Laplacian
for the metric and e(03C8t) is the energy function of 03C8t. Note that f satisfies
0394f + 2e(tp,)f = 0 if and only if f satisfies àpf + 2 f = 0. Since 039403C8t03C8t + 203C8t =
0. dim{f: Af + 2e(03C8t)f = 0}  k + 1. Since e(03C8t) is smooth on t, the spectrum
for 0 + 2e(03C8t) are continuous on t by [K-S] and hence the nullity of g  k + 1.

It is natural to consider a problem whether all extra eigenfunction comes
from as above. That is, if a holomorphic map of M onto S’(1) admits an extra
eigenfunction, then, is g a limit of a one parameter family of full minimal
surfaces in SN(1)(N ~ 3)? In the case of the genus of M = 0, we should consider
N ~ 4, because there does not exist a full minimal surface of genus 0 in S3(1).
In this paper, we give a positive answer, that if the genus of M = 0, then the
above observation is generically yes.

First of all, we give a relation between minimal surfaces in R3 and the twistor
theory. Fix a horizontal line pl in the 3-dimensional complex projective space
p3 of holomorphic sectional curvatures 1. Let g be a holomorphic map of a simply
connected domain D in C into P 1 without ramification locus. 1hen a minimal
surface with the Gauss map g induces an infinitesimal horizontal deformations of
g in p3 and the converse is also true. Note that this is a local correspondence.
As a global result, we get the following.

THEOREM A. Let g be a holomorphic map of M onto P1. Then g admits a
non-linear infinitesimal horizontal (holomorphic) deformation in p3 if and only if
there exist a complete, finitely branched minimal surface of planar ends and finite
total curvature whose (extended) Gauss map is g and it’s conjugate minimal

surface exists.

Using Theorem A and the results on the moduli space of harmonic maps of
S2 into S4(1) by Loo [Loo], we obtain a formula to calculate the nullity of a
holomorphic map of S2 onto S2(1). Let G(2, d + 1) be the Grassmannian of
planes in Cd+1. Let [P 039B Q] denote the plane spanned by two vectors

P = (ad, ..., a0) and Q = (bd, ...,b0). Then we get a point [a2a - 2, ..., 03B10] of
P2d-2 such that
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where P(z) = adzd + ··· + ao and Q(z) = bdz‘’ + --- + bo. Let Tj be the map of
G(2, d + 1) onto P2d-2 defined by

Then ’Pd is a branched covering map of G(2, d + 1) onto p2d-2 . Let f be a
holomorphic map of P 1 onto P 1 of degree d. Then f is given by a rational
function of the form Q(z)/P(z), where

and

such that ai, biEC. Note that max{degree of P, degree of Q} = d and
the resultant of P(z) and Q(z) is not zero. Let P, Q denote vectors

(ad, ad-1, ..., a1, a0), (bd, bd-1, ..., b1, b0) ~ Cd+1, respectively. Then we obtain
the following.

THEOREM B. Let P(z)/Q(z) be a holomorphic map of S2 onto S2(1) of degree
d defined by polynomials P(z) and Q(z). Then

Let M,, be the space of meromorphic functions of degree d on P’, which is
P( Cd+ 1 X Cd+1 - R) ~ P2d+2, where R is the irreducible resultant divisor.
A ~ G L(2, C) acts on Cd+1 x Cd+1:

Thus we obtain an action of PSL(2, C) on P(Cd+1 x Cd+1 - A), where 0394 =

{(P, Q): P 039B Q = 01. The orbit space is G(2, d + 1). So Md is the total space of
a PSL(2, C)-bundle on G(2, d + 1)-the image of Bl. Note that the action of
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for P(z)/Q(z) is given by

Theorem B states that holomorphic maps of S2 onto S2(1) of degree d with an
extra eigenfunction is the total space of a PSL(2, C)-principal bundle on 9l [the
ramification locus of 03A8d-the resultant]. Note that 91 is a hypersurface with
singularities (see, for example, [Nam]) in G(2, d + 1). Furthermore Theorem B
is a positive answer for a problem posed in [M-R] and [E-K2].

THEOREM C. Let g be a holomorphic map of S2 onto S2(1) of degree d. Then,
if g is an element of PSL(2, C)-principal bundle on the regular part of 9î, then g
has exactly two extra eigenfunctions and admits i/rt of S2 into S4(1) such that
1/10 = g and 03C8t (t ~ 0) gives a full branched minimal surface of genus 0 in S4(1).
Furthermore a holomor-phic map with extra eigenfunctions is a limit of these
holomorphic maps.

2. Infinitesimal horizontal deformation

Let p3 be the 3-dimensioàxàl complex projective space with constant holo-
morphic sectional curvature 1. Then p3 is the twistor space of S4(1). In
fact, we consider p3 = the reductive homogeneous space SO(5)/1 x U(2) and
S4(1) = SO(5)11 x SO(4). Let p be the projection of S(5)1 x U(2) on SO(5)/
1 x SO(4) defined by p(a(1 x U(2))= a(1 x SO(4)). Then p is a Riemannian
submersion, which is called the Penrose map. Let H and V denote the

projections of the tangent space .of p3 onto the subspaces of horizontal and
vertical vectors, respectively. For a point a(1 x U(2)) in P3, the tangent space
is identified with the space 03C4, which is given by

The metric and the complex structure J are given by
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and

Horizontal vectors are given by

vertical vectors are given by

O’Neill [O’N] defined two tensor fields J and A for a Riemannian submer-
sion. For the Penrose map p, since vertical fibres are totally geodesic, J = 0
holds. Let X and Y be vectors at q = p(a(1 x U(2)) and  and Y are
horizontal lifts at a(1 x U (2)), respectively. Then

where a = (q, el, e2, e3, e4), and R is the curvature tensor of S4(1). Let S2(1)
be a fixed totally geodesic surface in S4(1). Then we have a horizontal line Pl
in p3 such that p(P’) = S2(1). We have a horizontal line Pl in p3 such that
p(pl) = S2(1). Then we obtain three vector bundles 1/, X, J on pl such that
V is spanned by vertical vectors, N is spanned by horizontal, normal vectors,
:!7 is spanned by horizontal, tengential vectors. It is easy to see that these are
J-invariant. 1/c, .;VC, JC are complexified vector bundles of 1/, N, 9-.

Furthermore let V1,0 and V0,1 are line subbundles spanned by type (1, 0)-
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vectors and type (0, l)-vectors, respectively. Similarly we can define line

bundles %1,°, N0,1 J1,0 J0,1. Since the normal bundle of S2(1) in S4(1) is
a trivial bundle, there exist two orthonormal vector fields for the normal
bundle. Thus we obtain a vector field E2 of N0,1 with square length 2 globally
defined on P1, i.e.,

Let V and -W be the covariant differentiation and the curvature tensor of P3,
respectively. Using the formula for A [O’N], we obtain the following.

LEMMA 2.1 (see, for example, [El] and [E-S]).
Let E1 be a tangent vector field locally defined of J0,1 such that

Then V EtE2 is a vertical vector field of type (0, 1) and square length 2, which is
denoted by E3. Furthermore

hold. Let to be the connection form for V given by

and p21dzl2 be the metric for a complex coordinate z = x + iy of Pl. We set

Then

Proof. It is enough to prove the last statement.
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Let M be a compact Riemann surface and g a holomorphic map of M onto
S2(1). Then we may consider that g is a map of M onto P’ (into P’). Let
F(g*(N + V). For V E F(g*(N + 1/)), V is given by

where f is a function on M and 03BE ~ 0393 g*(V1,0)). We consider the condition
where V is an infinitesimal horizontal deformation of g. Let 0, be a variation
of g such that the variational vector field at t = 0 is V Then V is an

infinitesimal horizontal deformation of g if and only if, for any vertical field U,
we have

where X is a tangent vector field. Let z = x + iy be a complex coordinate of
M. Then

Since VvU is vertical, ~~*(~/~z), VvU = 0. We get

which implies that V is a horizontal deformation of g if and only if
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Thus we obtain the following.

LEM MA 2.2. V = f E2 + f E2 + 03BE + 03BE is an infinitesimal horizontal deformation

ç is a holomorphic section of g*(V 1,0),

Proof. Since the ramification locus of g are isolated points, it is enough to
prove (2.1) and (2.2) on the points except ramification locus. Using a complex
coordinate z, we put

and E1E2 = E3. Then there exists a function h such that 03BE = hE3 . By Lemma
2.1, we get

So we get

So the first equation, together with VE,E2 = E3, implies (2.2). The second

equation says that 03BE ( = hE 3) is holomorphic in g*(V1,0). Q.E.D.

Next we consider the condition that V is an infinitesimal holomorphic
deformation of g. V is holomorphic if and only if the (1, 0)-component V1,0 of
V satisfies
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Thus V is infinitesimal homomorphic if and only if 03BE is holomorphic in
g*(V1,0) and

This completes the following.

LEMMA 2.3. V = f E2 + f E2 + 03BE + 03BE is an infinitesimal holomorphic deforma-
tion if and only if

ç is a holomorphic section of V1,0, (2.3)

We prove that an infinitesimal horizontal deformation is also an infinitesimal

holomorphic deformation.

LEMMA 2.4. Let V be an infinitesimal horizontal deformation of g. Then V is
an infinitesimal holomorphic deformation.

Proof. Since 03BE is holomorphic, zero points of 03BE is isolated. So it is enough to
give a proof for points except ramification locus of g and zero points of 03BE. Let

V = f E2 + f E2 + 03BE + Z be an infinitesimal horizontal deformation. Then 03BE is
holomorphic in g*(V1,0) and

We get a covariant differentiation of both sides by ~/~z.

So we obtain
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First of all, we calculate the second part of the right hand side.

Next we calculate the third part.

On the other hand, since p3 has holomorphic sectional curvature 1, we obtain

Furthermore we calculate the first part.
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Thus we obtain

Since Va/a1.E2 is non-zero, we get a proof. Q.E.D.

Now we consider the condition for f such that V = f E2 + fE2 + 03BE +
03BE ~ 0393(g*(N + Y)) is an infinitesimal horizontal deformation. Note that V must
be an infinitesimal holomorphic deformation and hence satisfies (2.4). Thus 03BE
is determined by f as

for a point where ~~/~zE2, E3~ does not vanish. We denote it by 03BEf. Since
p2IdZl2 is the metric induced by g. Then

Set

and choose E3 defined by E1E2 = E3. Thus we obtain a local expression of

1/ bY

Thus the singularity of 03BEf holds only at zeros of s, that is, a point of the
ramification locus of g.
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LEMMA 2.5. f E2 + f E2 + 03BEf + 03BEf satisfies (2.2) if and only if

Proof. Since

and

by Lemma 2.1, we obtain

Çf for f which satisfies (2.7) is not generally holomorphic in V1,0. We obtain
another condition that Çf is holomorphic.

LEMMA 2.6. 03BEf is a holomorphic section of N1,0 if and only if

Proof.
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By Lemma 2.1, we obtain

Remark that (2.8) implies Hess f(a/bz, ôlôz) = 0. Note that V = f E2 + f E2
+ 03BEf + 03BEf is an infinitesimal holomorphic deformation if and only if f satisfies
(2.8). Furthermore, the condition that V becomes an infinitesimal horizontal
deformation requires (2.7) instead of (2.8). So we need to investigate a complex
valued function on M which satisfies

First of all, we study local solutions of (2.9). Let U be a simply connected
open set of R2( = C) and z a complex coordinate on U. Let xi 1 be a branched
minimal immersion of U into R3. Then x 1 is given by

where 03A6 = (ojoz)X 1 and cl E R3. Since U is simply connected, there exists a
conjugate branched minimal surface whose branched immersion is given by

Let g be the Gauss map of U into S2(1). Then we can define a function f by
~~1 + i~2, g~. Since

we obtain
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So

and

and hence

Thus f satisfies (2.9). Conversely let g be a non-constant holomorphic map of
U into S2(1) without branched points. Let f = fi + if2 be a function on U
satisfying (2.9). Then fi satisfies (2.7). Generally we have the following.

LEMMA 2.7 (see, for example, [E3]). Let h be a real-valued function on U which
satisfies (2.7) and grad h the gradient vector fields on U for the metric induced
by g. We identify grad h with g*(grad h) and may consider that grad h is a vector
field in R3. Then the map Xh of U into R3 by

x,, = hg + grad h

is a branched minimal immersion of U into R3 or a constant map. Xh is a constant
map if and only if h satisfies (2.8).

When Xf1 
is a constant, fi is a linear function and satisfies (2.8). Since f

satisfies (2.9), f2 also satisfies (2.9) and hence f2 is a linear function. Thus f is
a linear function. Assumed that Xf1 

is not a constant. Then Xf1 gives a
branched minimal surface. Since U is simply connected, we obtain a conjugate
minimal surface X2 defined on U. So ~~f1 + i~2, g~ satisfies (2.9). 1 =



197

i(f - ~~f1 + ix2, g~) is a real valued function satisfying (2.9), which implies
f = ~Xf1 + ’X2, g&#x3E; + a linear function. By a parallel translation of ~f1 and ~2,
we know f = ~Xf1 + ’X2, g~.

Next we study the global solutions of (2.9). For a global solution of (2.7), we
have the following.

THEOREM 2.3 ([E-Kl], [M-R]). Let g be a holomorphic map of M onto S2(1)
and h a solution of (2.7). Without loss of generality, we may consider that h is
not a linear function. Then Xh = hg + grad h gives a complete, finitely branched
minimal surface of planar ends and finite total curvature whose map is defined on
M - {finite points) and (extended) Gauss map is g ([E-Kl], [M-R]). If M has
the genus 0, then Xh has a conjugate minimal surface.

Generally, there is no conjugate minimal surface of the above minimal
surface for non-zero genus. But if there exists a solution of (2.9), we have two
real solutions of (2.7) which are the real part and imaginary part. These
solutions give two complete, finitely branched minimal surface of planar ends
whose extended Gauss map is g. One of them is a conjugate minimal surface
of the other by (2.8). Conversely we obtain the following.

PROPOSITION 2.2. Let f be a function satisfying (2.9) on M. Then f is
constructed by a complete, finitely branched minimal surface of planar ends and
its conjugate minimal surface.

Let f be a function satisfying (2.9). Now we investigate the behaviour of 03B6f
at a branch point q of g. Let z be a complex coordinate such that z(q) = 0.
Then there exists n such that ôg/ôz = z"n(z), where n(0) ~ 0. We set E1 =
n(z)/|n(z)| and E3 = VEtE2. Then 03BEf is given by

By Proposition 2.2, we have a complete, finitely branched minimal surface x 1
of planar ends and finite total curvature and its conjugate minimal surface X2
(whose extended Gauss maps are g) such that f = ~~1 + iX2’ g). Thus we have

For (~/~z)~1 = 03A6, we obtain
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Let

be the Laurent expansion of 03A6 at 0, where a-k, ... E C3. We denote by 1(z) zk03A6.
Then 1 is holomorphic and ~g, l~ = ~g, l~ = ~l, l~ = 0 holds. We have pl and
p, such that

Taking the differentiation of both sides by 8/8z, we note that

For a planar end, we have the following.

LEMMA 2.8 ([E-Kl] and [M-R]).

Since g(O), 1(0) and 1(0) is a basis of C3, we obtain

It is easy to show the following.
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LEMMA 2.9.

where, # means non-zero functions.

Since

we obtain

Similarly we obtain

Using these estimates, we have |03BEf|  a constant and hence 03BEf is holomorphic
at p.

LEMMA 2.10. Let f be a function satisfying (2.9) on M. Then

is an infinitesimal horizontal (holomorphic) deformation.

By Theorem 2.3 and Lemma 2.10, we obtain Theorem A.
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REMARK. We can see that our argument is closely related to the theory of
holomorphic null maps [Br]. In fact, we can give a relation between meromor-
phic sections of V1,0 and holomorphic null maps of M - (isolated points} into
C3. Precise result in a forthcoming paper.

3. Infinitesimal contact deformation 

In this section, we use Loo’ notations in [Loo].
Recall the diagram:

Let N and S denote the north and south poles of S4(1), respectively. Consider
the two lines L1 = p-1 (N) and L2 = p-1(S). Then we get L1 =
{[0, 0, z2, z3]| [z2, z3] ~ P1} and L2 = {[z0, z1, 0, 0] |[z0, z1] ~ P1}. Let X be a
blow up of p3 along LI and L2. Then X is given by X := {([z0, zi, z2, Z3]1
[y0, y1], [y2, y3]) | z0y1 = ZLYO, Z2Y3 = z3y2}. Let Y be the projective cotangent
bundle PT*(P1 1 x P’ ) on Pl x P 1. Let 03C8 : X ~ Y be defined by

Let (T 1 and (J 2 be P-I(L 1) and P-l(L2), respectively. Then we observe that
03C8(03C31) = {([y0, y1], [Y2’ Y3]’ [0, 1]): [Yo, y1] ~ P1 and [y2, y3] ~ P1} and

t/1((J 2) = {([y0, Yil, [y2, y3], [1, 0]): [y0, y1] ~ P1 and [y2, y3] ~ P1}. Let [q] be
a point of Y Then we have a tangent line l[q] of T(P 1 x P 1 ) such q annihilate
1[,,, and the plane K[q] such that X E T[q] Y satisfies n*(X) E l[q]. Hence we obtain
a plane field fon 1’: which is called a contact plane field. For a holomorphic
map F : 03A3 ~ P1 x P1, we have a canonical Gauss lift F to Y defined by

Note that *(~/~z) c- That is, F is a contact curve. We know the relation
between the horizontal plane field on p3 and the contact plane field on Y
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LEMMA 3.1 ([Loo]). 1/1 is contact map, i.e. 03C8* sends the horizontal plane field
Yt in X to the contact plane field K in Y.

Let 1 be a horizontal curve in p3 which does not intersect L1 and L2. Then
E is also a horizontal curve in X and hence 03C8(03A3) is a contact curve in Y

Conversely, if a contact curve does not intersect 03C8(03C31) and 03C8(03C3|), then there
exists a horizontal curve Î such that Î does not intersect L1 and L2, 03C8() is a
finite covering of the contact curve. Furthermore, if V is an infinitesimal

horizontal (holomorphic) deformation of E, then Y gives an infinitesimal
contact (holomorphic) deformation U of 03C8(03A3).

Let (s, t, w) be a complex coordinate of Y corresponding s = YIIYOI t = Y3lY2
and ds + w dt. Then we consider a line s ~ (s, s, -1) as 03C8(P1). Thus we may
identify a holomorphic map of P’ onto P’ in p3 with a holomorphic map of
P1 onto 03C8(P1) in Y Let g(z) be Q(z)/P (z), where P(z) and Q(z) are polynomials
such that max(deg P(z), deg Q(z» = deg g. Since U is an infinitesimal holo-
morphic deformation of g in Y, we have three meromorphic functions v’(z),
v2(z) and V3(Z) on P such that

v 1 and V2 may be considered as infinitesimal holomorphic deformations of a
holomorphic map g of P onto P 1. It is easy to find two one parameter families
of holomorphic maps h’ and h’ of P onto P such that

where we consider that h’ and hÎ are two one parameter families of meromor-
phic functions.

LEMMA 3.2. U is an infinitesimal contact deformation if and only if

Proof. Let 0, be a smooth deformation of g in Y such that the variation
vector field at t = 0 is U. Then, since U is an infinitesimal contact deformation,
we get
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which implies a proof.

We set

where ad, ... , bo are smooth functions for t.
By the definition of vl and v2l we get

where

Therefore

Set
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Then we have two curves 03B3(t) and (t) in P2d-2 defined by

where Tj is defined in the introduction. Let y and 00FF be two curves in C2d- 1

given by

Then we get 03B3(t) = [03B3(t)] and 03B3(t) = [y(t)].
LEMMA 3.3.

Proof. Using (3.1), we get the following:

On the other hand, since

we get

This completes a proof. Q.E.D.

Without loss of generality, we may assume that Q and ôqlôz has no common
divisor and degree of Q2(~g/~z) is 2d - 2.

Using w = -1 for 03C8(P1), we obtain
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LEMMA 3.4.

where a and pare polynomials. Furthermore zeros of oc are contained in zeros
of Q.

Proof. If zo is not zero point of Q(z), then Qt(zo) is non-zero and hence

P(zo)/Q (zo) is finite, which implies v3(zo) is finite, because w-coordinate of

03C8(P1) in Y is -1, and hence zo is not a point of zeros of 03B1(z). Q.E.D.

Since the left hand side of (3.2) is degree 2d - 2,

Since Q2(ôg/ôz) is a polynomial P’Q - PQ’ of degree 2d - 2 which does not
have common divisor with Q, we obtain 03B2/03B1 + 2(Q’ - Q’/Q) is constant by
Lemma 3.5. Using Lemma 3.4, we get 03B3*(0) = *(0). That is,

Now we consider a linear map Q of the space 0 of infinitesimal contact
deformations into ker ’II d* at [P 039B Q] defined by

where X 1 is the tangent vector of [P, A Qt] and X 2 is the tangent vector of

[Pt A Qt]. We already proved X1 - X2 E ker ’Pd..

LEMMA 3.5. Q is onto.

Proof. Let 03BE E ker ’Pd-. Then there is a curve Pt(z)/Qt(z) such that 03BE is the
tangent vector of [Pt A Qt] at t = 0. We define a section 1 of the bundle
g*(TPT*(P1 x P1))

Of course, since we use the coordinate (s, t, z) of PT*(pl 1 x P 1 ), for P/Q = oo,
we should prove that 11 is well-defined. And it is easy. Using ç E ker ’Il d*, we
obtain
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which implies that q is an infinitesimal contact deformation and 03A9(~) = 03BE.
Q.E.D.

Next we investigate the kernel (ker Q) of Q.
Let Pt/Qt be a one parameter family of holomorphic maps such that g =

POIQO. Then p · Pt/Qt is a map of P1 onto S’(1) in S4(1), which gives a minimal
deformation of p · g and hence horizontal deformation in p3 and contact
deformation in Y Its infinitesimal contact deformation is called an infinitesimal
contact deformation of type 1. Let It be a one parameter subgroup of
isometries of S4(1). Then It. p. g is a minimal deformation of p · g. Since It is a
one parameter subgroup of isometries of p3 which preserves Je, It·g is a

horizontal deformation of g and hence gives a contact deformation of g in Y
We call the infinitesimal contact deformation an infinitesimal contact deforma-
tion of type 2.

LEMMA 3.6. Infinitesimal contact deformations of type 1 and type 2 are in

ker 03A9. Conversely, let W be in Ker Q. Then W is the sum of infinitesimal contact
deformations of type 1 and type 2.

Proof. Let Pt/6t be a one parameter family of holomorphic maps of P’ onto
P such that Po/Qo = P/03A9. Then Pt/Qt gives an horizontal deformation of g in
P3, which fix P 1 as the image, and hence a contact deformation of g in Y. It is

given by the canonical Gauss lifts of maps

Its infinitesimal contact deformation is

which is contained in Ker Q. Conversely, for an infinitesimal contact deforma-
tion of this form v(ô/ôs) + v(ô/ôt), we have a one parameter family of

holomorphic maps P,lQt of P1 onto P’ such that
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Next let I, be a one parameter family of isometries of S4(1). Then I, is also a
one parameter family of isometries of p3 which preserves . Thus It · g is a

horizontal deformation of g and gives a contact deformation of g in Y It is easy
to see ([Loo]) that it is

where At, Bt in GL(2, C). Since At. P/Q, Bt · P/Q give a point [P 039B Q] in

G(2, d + 1), the infinitesimal contact deformation of this contact deformation
is in Ker Q. These deformations always give non-full branched surface in S 4(1).

Conversely, let V be in Ker Q. We set

Then we have one parameter families Pt/QI’ Pt/Qt whose variation vector fields
03BD1, 03BD2. Since V ~ Ker Q holds, we get

So there exists one parameter subgroup At of GL(2, C) such that

We define a one parameter family of holomorphic maps of P into P 1 x P by

The canonical Gauss lift gives a one parameter family of contact curves, whose
infinitesimal contact deformation is V by Lemma 3.2. So V is a sum of

infinitesimal contact deformation of type 1 and type 2. Q.E.D.

Let g(z) = P(z)/Q (z) be a holomorphic map of pl onto P1. Then, identifying
the space of infinitesimal horizontal deformations of g in p3 with é for g in Y,
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we get a linear map, which is also denoted by Q, of 03B5 into Ker I/Id* at [P 039B Q].
Let -9 be the quotient space by subspace of type 1. By Lemma 3.6, we can
define a linear map of -9 into Ker 03C8d*. It is clear that the kernal is induced by
one parameter isometries of S4(1) which fix S’(1). So dim D - 3 =

dimR Ker Vid- . Since -9 is identified with the null space of g by Theorem A, we
get a proof of Theorem B.

Generally, let 0 be a branched covering map of an m-dimensional complex
manifold M into an m-dimensional complex manifold N. Then the ramification
locus of 0 is a complex hypersurface 91 with singularities. For a regular point
p of 9î, there exists a positive integer d and coordinate neighborhoods
(z1, ..., zm:U1) at p and (wl, ..., wm: U2) at 0(p) such that

Using this fact (see, for example, [Nam]), we note that, for g E the regular part
of 9l, the dimension of the null space of g is 5. Furthermore, there exists two
smooth curves rl(s), ’2(S) in G(2, d + 1) such that ri(0) = r2(o) = g,
rI (s) =1= r2(s) for S ~ 0 and 03A8d(r1(s)) = ’II d(r 2(S)). So we get two one parameter
families of holomorphic maps P,(z)IQ,(z) and P,(z)lo,(z) of Pl onto Pl
such that

[Pt A Qt] ~ [Pl 1B t] and 03C8d [Pl 039B Qt] = 1/1 d [Pl A t] for t =1= 0. Then the

canonical Gauss lift of (Pt(z)/Qt(z), t(z)/t(z)) gives a contact deformation of
g in Y and hence horizontal deformation of g in p3. Since these maps are full
for t :0 0, we get Theorem C.

COROLLARY 3.1. In the space of holomorphic maps of S2 onto S2(1) of degree
d, where nullity is not less than 5, generically, the nullity is 5.

4. A problem

We give a problem on the index for a holomorphic map of S2 onto S2(1).

(4.1) PROBLEM. Let g be a holomorphic map of S2 ontô S2(1) of degree d. Then,
If the nullity of g = 3 + 2v, then
is the index = 2d - 1 - v?
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If [E2], we study equivariant minimal branched immersion of S2 into S2m(l)
with type (m1, ..., mm). In particular, for m = 2, we obtain some limits of

equivariant minimal branched immersion of S2 into S4(1) with type (m 11 m2) as
in [E-K2]. That is, the limit holomorphic map is given by

where a E C*.

In [Nay], if m = 1, then the index = 2(m2 + 1) - 2 and the nullity = 5 hold.
By [E-K2], this one parameter family of branched minimal surfaces preserves
the multiplicity of eigenvalue 2 and equivariant branched minimal immersions
have the multiplicity 5 for eigenvalue 2. By the continuity of spectrum,
equivariant branched minimal immersion of type (1, m2) has 2(m2 + 1) - 2
eigenfunctions of eigenvalues smaller than 2. Since m = 1 means that the

branched minimal immersion has no branched point (see, for example, [E2]),
we get the following.

The number of eigenfunctions of eigenvalues smaller than 2 for an equivariant
minimal immersion of S2 into S4(1) of area 4nd is equal to 2d - 2.

By Theorem B, we see that g(z) as in (4.2) has the nullity 5. So the index of
g = the number of eigenfunctions with eigenvalues smaller than 2 for

equivariant branched minimal immersion of S2 into S4(1) of type (m1, m2). If
the problem (4.1) is true, then we can obtain that the number of eigenfunctions
with eigenvalues smaller than 2 for equivariant minimal branched surfaces of
genus o with area 403C0d in S4(1) is 2d - 2. Thus we may consider that the

problem (4.1) is useful to calculate such number for minimal branched surfaces
of genus o in S2,(1).
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