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0. Introduction

A non-archimedean field of a characteristic different from two is denoted by F.
In this paper we consider the representation theory of groups Sp(n, F) and
GSp(n, F). The inner geometry of these groups motivates us to consider the
representations of these groups as modules over representations of general
linear groups. Such an idea goes back to D. K. Faddeev in the finite field case

([F]). D. Barbasch had also such point of view in [Ba]. Besides the module
structure, we also have a comodule structure.

Our motivation for such approach is to make symplectic case more close to
the well understood theory of groups GL(n), as it was developed by J. Bernstein
and A. V. Zelevinsky ([BnZl], [BnZ2], [Zl]), and to ideas developed in [Tl].
The basic idea was to realize some of the properties of the representation
theory of symplectic groups as a part of the structure theory of certain
modules. This point of view is helpful in searching of new square integrable
representations, and in examining reducibility of parabolically induced repre-
sentations (see [T4]). In this paper, we are developing this approach in the
symplectic case. Other classical groups can be treated in a similar way.
We describe now the content of the paper according to sections. Let us point

out first that the parameter n in Sp(n, F) or GSp(n, F) denotes the semi simple
rank of these groups. In the first section we collect some general facts about
representations of finite length of reductive groups over F. Besides the group
R(G) of virtual characters of G, we introduce a group é9(G) which is construc-
ted from the representations of finite length of G. Two algebras of representa-
tions of GL(n, F) are considered in the second section. The first algebra R was
introduced by J. Bernstein and A. V. Zelevinsky ([BnZ2]). It is realized as the
direct sum of R(GL(n, F))’s. The other algebra 8 is realized as the direct sum
of R(GL(n, F))’s. The multiplication in both cases is defined with the help of
the parabolic induction from the maximal parabolic subgroups. It is well
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known that R is a Hopf algebra. The comultiplication is defined using Jacquet
modules for maximal parabolic subgroups.
The direct sum of all R(Sp(n, F)) (resp. Bl(Sp(n, F))) is denoted by R[S]

(resp. R[S]). We introduce also corresponding groups for GSp(n, F)’s. They are
denoted by R[G] and Bl[G]. In the fourth section, the groups R[S] and e[S]
are considered as modules over R and k respectively. Analogously, we consider
R[G] and 8[G] as modules. We list there some important properties of these
modules. A structure of a comodule on R[S] and R[G] over R, is introduced
in the fifth section. The comultiplication is defined again using Jacquet modules
of maximal parabolic subgroups. We describe the Langlands classification for
groups Sp(n, F) and GSp(n, F) more explicitly in the sixth section.

N. Winarsky obtained in [Wi] a necessary and sufficient conditions for
reducibility of the unitary principal series representations of Sp(n, F). D. Keys
obtained exact number of irreducible pieces and he showed that these repre-
sentations are multiplicity free ([Ke]). In the seventh section, using the above
results we obtain corresponding results for GSp(n, F). A necessary and suffi-
cient conditions for reducibility of the unitary principal series and the length
of these representations is obtained here. Then we derive a necessary and

sufficient condition for the reducibility of the non-unitary principal series

representations of Sp(n, F) and GSp(n, F) using the Langlands classification
and above results.

Regular characters of a maximal split torus in a split reductive group, for
which corresponding non-unitary principal series representations have square
integrable subquotients were characterized by F. Rodier in [R1]. In the section
8 we give an explicit characterization of regular characters for groups Sp(n, F)
and GSp(n, F). All square integrable representations of GSp(n, F) which may
be obtained as subquotients of non-unitary principal series representations
induced by regular characters, are described explicitly in this section. There
is a considerable number of square integrable representations obtainable in
this way. Let us describe the parameters of that representations in the case
when the residual characteristic is odd. Such square integrable representations,
up to a twist by a character of GSp(n, F), are parameterized by all pairs
(k, 1§1 + ml/! 2) where k, 1, mare non-negative integers which satisfy 1, m :0 1,
k + 1 + m = n and 03C81, 03C82 are different characters of F’ of order two.

Restriction of the square integrable representations of the eighth section to
the group Sp(n, F), is studied in the ninth section. These representations split
without multiplicities and we give a parameterization of the irreducible pieces.
We get a considerable number of square integrable representations of Sp(n, F)
in this way. Let us mention that the only square integrable representation of
Sp(n, F) which corresponds to a regular character, is the Steinberg representa-
tion.

The Steinberg representation of Sp(n, F) is a subquotient of a non-unitary
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principal series representation 03C0 = IndSp(n,F)P~(0394 1/2P~). It is well known that n is a
multiplicity free representation of length 2". It has exactly one square integrable
subquotient, the Steinberg representation. The Steinberg representation and
the trivial representation are the only unitarizable subquotients of n. There
exist very different examples of non-unitary principal series representations of
Sp(n, F) which possess square integrable subquotients. For suitable choice of
F, there exists a non-unitary principal series representation ni 1 of Sp(2n, F)
which has exactly 2" irreducible square integrable subquotients. They are all of
multiplicity one. There exists a subquotient of n, whose multiplicity is 2". For
n = 1 we have proved in [SaT] that all irreducible subquotients are unitariz-
able In the last section, one such representation is analyzed in detail. Let us
denote this representation of Sp(4, F) by 03C02 (there is no additional assumptions
on the field F). The length of 03C02 is 36. It has exactly 25 different irreducible
subquotients. We find all multiplicities.
The last example is an illustration of application of some of the methods

which were considered in the previous sections. Further development along
these lines, and more advanced applications of these techniques and ideas, are
announced in [T4]. The present paper should be considered as an introduction
to this point of view of representations of p-adlc symplectic groups. We apply
this approach systematically to the representations of GSp(2, F) (and also

Sp(2, F)) in the joint paper [SaT] with P. J. Sally.
The first version of this paper was written when the author was visiting the

Mathematical Department of the University of Utah. The last revision of the
paper took place when the author was a guest of the Sonderforschungsbereich
170 in Gbttingen. We are thankful to both institutions for the hospitality and
excellent working conditions. The referee’s comments and corrections helped a
lot in bringing this paper to the present form. I. Mirkovié helped a lot in
improving the style of the paper.
The field of real numbers is denoted by R in the paper. The subring of

integers is denoted by Z, the non-negative integers are denoted by Z+, while
the strictly positive integers are denoted by N.
One technical remark at the end. We have already mentioned algebra 4 and

modules 9l[S] and R[G]. Let me note that in this paper we could work simply
with representations, instead of doing calculations in R, 8[S] or 8[G] (this is
equivalent). Regardless of this, we introduced this algebra and these modules
because they arose naturally in our considerations.

1. Groups of representations

In this section we shall recall some well known facts from the representation
theory of reductive p-adic groups.
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We fix a local non-archimedean field F. The group of rational points of a
reductive group defined over F is denoted by G. The category of all smooth
representations of G and G-intertwinings among them, is denoted by Alg(G).
The full subcategory of representations of finite length in Alg(G) is denoted by
Algf.l.(G). For each isomorphism class of representations in Algf.l.(G), we fix
a representative. The set of all such representatives is denoted by R+(G). Note
that R+(G) is a set. The full subcategory of Alg f.l. (G) whose objects consist of
R+(G), is denoted by R+(G) again.
We denote by In(G) the set of all equivalence classes of all smooth

indecomposable non-zero representations of finite length. The subset of all
irreducible classes is denoted by G. The subset of all unitarizable classes in G
is denoted by G. We shall consider

Let 03C01, rc2 E é9+(G). We denote by 03C02 + 03C02 a unique representation in -4+(G)
which is equivalent to 03C01 ~ 03C02. It is clear that the addition is associative and
commutative. The representation on 0-dimensional space is the zero of the
additive semigroup R+(G). It is obvious that In(G) generates R+(G) as a
semigroup with zero. In other words, each 03C0 ~ R+(G) may be written as

03C0 = ni + ··· + 03C0m with 03C01 ~ In(G). It is easy to see that rc 1, ... , 03C0m ~ In(G) are
determined uniquely, up to a permutation, by nEBl+(G) ([Bu], ch. 8, n° 2,
Theorem 1).
We denote by R(G) the free Abelian group over the basis In(G). According

to the above observation, we may identify R+(G) with a subset of é9(G) in a
natural way. Also, R+(G) is an additive subsemigroup of 9l(G).
The Grothendick group of the category Algf.l.(G) (or equivalently, of W’(G)

will be denoted by R(G). The canonical mapping will be denoted by

Recall that R(G) may be identified with the free Abelian group over the basis
G. We shall do so. Denote s.s.(R+(G)) by R+(G). There is a unique exten-
sion of s.s. to an additive homomorphism of R(G) into R(G). This extension
will be denoted again by s.s.. For xi, x2 E R(G) we shall write x1  x2 if

x2 - x1 ~ R+(G).
Let x be a character of G. Then 03C0 ~ ~03C0 induces automorphisms of R(G) and

R(G). They are positive, i.e. x(R +(G)) z R+(G) and x(* +(G)) G R+(G).
If n is a smooth representation of G, then 1t denotes the smooth contragredi-

ent of 03C0 and 7r denotes the complex conjugate of n. One extends - and - to
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é9(G) and R(G) additively. These are involutive automorphisms of 8(G) and
R(G) and they commute.

Let L(G) be the Bernstein center of G. It is the algebra of all invariant
distributions T on G such that the convolution T * f is compactly supported
for any locally constant compactly supported function f on G. For each

smooth representation (n, V) of G, L(G) acts naturally on K If 03C0 is irreducible,
then L(G) acts by scalars. The corresponding character of L(G) is denoted by
03B803C0. It is called the infinitesimal character of 03C0 (here we follow mainly notation
of [BnDKa]). The set of all infinitesimal characters of representations in G is
denoted by O(G). The set 0(G) is in a natural one-to-one-correspondence with
the set of all cuspidal pairs modulo conjugation (a cuspidal pair (M, p) consists
of a Levi factor M of a parabolic subgroup P = MN in G and of an irreducible
cuspidal representation p of M). We identify these two sets. For 0 E 0(G), Go
denotes the set of all 03C0 ~ G such that (J 1t = 0. The set 03B8 is finite. If 0 = (M, p),
then Go is just the set of all irreducible subquotients of IndGP(03C1), i.e. 03C0 ~ 03B8 if
and only if 03C0 ~  and 03C0  s.s.(IndGP(03C1)). Set

Note that R(G) = EeRo(G), 03B8 ~ 0398(G), is a gradation of the group R(G). This
gradation is compatible with the order on R(G), i.e. if 03C0i = 03A3 03C0i03B8 ~ R(G) =
EeRo(G), i = 1, 2, then 03C01  03C02 if and only if 03C01c  03C0203B8 for any 0e@(G).

Let 03B8 ~ 0398(G). Denote by R+03B8(G) the set of aIl 03C0 ~ R+(G) such that each
irreducible subquotient of 03C0 is in Go. The additive subgroup of f1,l(G) generated
by R+03B8(G) is denoted by R03B8(G). Set

Now Ino(G) is a basis of R03B8(G). Considering the action of the commutative
algebra L(G), one obtains in a standard way that we have the following
disjoint union

This was already proved without use of L(G) by W. Casselman ([Cs],
Theorem 7.3.1 and 7.3.2). Thus
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is a gradation on 8(G). Clearlv

For a smooth representation 03C0 of G and for an automorphism 03C3 of G, an
denotes the representation (6n)(g) = 03C0(03C3-1(g)). In this way one obtains auto-
morphisms 6: *(G) - 8(G) and u: R(G) ~ R(G).

Let P be a parabolic subgroup of G. Denote by N the unipotent radical of
P. Let P = MN be a Levi decomposition. The modular character of P is

denoted by AP. Using the normalized induction functor

we define in a natural way homomorphisms

Recall now the notion of a Jacquet module. For a smooth representation (n, V)
of G, we denote by rGP(03C0) the representation of M on N-coinvariants twisted by
(0394-1/2P) |M. We have the Frobenius reciprocity for 03C4 ~ R+(M) and 03C0 ~ R+(G):

In a natural way one obtains homomorphisms

Take the opposite parabolic subgroups P = MN of P. By Corollary 4.2.5 of
[Cs] we have

for 03C0 ~ R+(G). We can reformulate the Frobenius reciprocity:
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03C0 ~ R+(G), ’t E f1,l+ (M) ([Si2], Theorem 2.4.3).
The set of all irreducible essentially tempered representations of G (i.e.

representations of G which become tempered after twisting by a suitable

character of G) is denoted by T(G). The essentially square integrable (resp.
cuspidal) representations in G are denoted by D(G) (resp. C(G)). Let

T ’(G) = T(G) n G, DU(G) = D(G) n G and C "(G) = C(G) n G.
For r E T(G) there exists a unique positive valued character X of G such that

x -1 i E T"(G). Define v(i) = x and -ru = ~-103C4u. Thus i = v(i)i".

2. Algebras of représentations for GL (n)

Let

We denote

The maps s.s.: Bln --+ Rn naturally extend to s.s.: 1ae -+ R. Let

For 03C0i ~ R+ni, i = 1, 2, we denote by n , 1  03C02 (resp. 03C01  03C02) the unique
representation in R+n1+n2 which is isomorphic to the parabolically induced
representation from the standard parabolic subgroup P (resp. P) with respect
to the upper (resp. lower) triangular matrices, whose Levi factor is naturally
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isomorphic to GL(n 1, F) x GL(n2, F), by 03C0 1 0 n2 (see [BnZ]). The induction
that we consider is normalized in such a way that it carries unitarizable

representations to unitarizable ones. Conjugation by a suitable element of the
Weyl group gives the following equality in é9

We have also (n 1  03C02) x 03C03 = 03C01 x (n2 x 7r 3), where 03C03 ~ R+n3. We extend x
and x to Z-bilinear mappings on 8 x 91. In this way (R, +, x) becomes a
graded associative ring with identity. We extend n -  03C0 ~ 03C0 to 9l. These are

involutive automorphisms of the ring.
We shall define now a binary operation on R which will be denoted again

by x. Let 03C01, 03C02 ~ R. We may consider 03C01, n2EBl since GL(n, F)~ ~
~n(GL(n, F)). Therefore, we have defined ni 1 x 03C02 ~ R. Now 03C0 1  03C02 ~ R is

defined to be s.s.(03C01 x 03C02). In this way R becomes a graded associative
commutative ring with identity. In a natural way one defines automorphisms
n 1--+ n and n 1--+ n on R.

A character x of FX = GL(l, F) is identified with a character of GL(n, F)
using the determinant homomorphism. We consider the map x: 03C0 ~ ~03C0, 03C0 ~ R+n,
and extend it Z-linearly to R. In this way, x is an automorphism of R. One
defines x: R - R in a natural way.
We shall denote by ’g the transported matrix of g E GL(n, F). The matrix

transposed with respect to the second diagonal is denoted by ’g. The represen-
tations t03C0-1:g ~ 03C0(tg-1) and 03C403C0-1:g ~ 03C0(03C4g-1) are equivalent for nE 91:, i.e.

03C403C0-1 = t03C0-1 in R+. We extend 03C0 ~ t03C0-1 Z-linearly to R. One has directly

Thus, 03C0 ~t03C0-1 is an involutive antiautomorphism of R. Observe that

for an irreducible representation 03C0 ([Gf Ka]). Thus

for any nE R.

Let 03B1 = (n2, ... , nk) be an ordered partition of n and let 03C0 ~ R+n. We
denote by r03B1(n)(03C0) the Jacquet module introduced in 1.1 of [Zl]. It is a
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representation of GL(n 1, F) x... x GL(nk’ F). Working with standard para-
bolics with respect to the lower triangular matrices, instead of the upper
triangular ones, we introduce r03B1,(n)(03C0) in an analogous way. Now

We consider s.s.(r (k,n - k),(n) (03C0)) ~ Rk ~ Rn-k.
For nE GL(n, F)- set

With comultiplication m*, (R, +, x) is a Hopf algebra (the similar statement
holds for m*. We shall denote

The modulus of F will be denoted by 1 |F. We denote by 03BDn, or simply by v,
the positive valued character g ~ |det 91F of GL(n, F).
For each 03B4 ~ D there exists a unique « E R such that 03BD-03B103B4 is unitarizable. This

« will be denoted by e(à).
If X is a set, then we shall denote by M(X) the set of all finite multisets in

X. By definition, M(X) is the set of all possible n-tuples of elements of X, with
all possible n ~ Z+. The set M(X) is an additive semigroup for the operation
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We shall now describe the gradation obtained on Rand Bl from O(GL(n, F))
(see the first section).

For 03C0 ~ Irr we shall say that w = (03C11, ..., pn) E M(C) is the support of 03C0 if

in R. The support of 03C0 is denoted by suppn. Let 1 rr w = {03C0 ~ Irr; supp 03C0 = col.
We denote by R03C9 the subgroup of R generated by Irr03C9. Now

This is a gradation of the Hopf algebra R.
Put In03C9 ={03C0 ~ In; s.s.(n) ~R03C9}. The subgroup of 9l generated by In. is

denoted by Rw. We have

This is a gradation of the ring 9l.
We shall introduce a new gradation on R which may be useful in the study

of representations of p-adic symplectic groups. We shall write pi - p2 if
03C11 ~ P2 or 03C11 ~ P2 for 03C11, 03C12 ~ Irr. The set of equivalence classes in C for this
relation, is denoted by C_. The canonical projection is denoted by

Now we define

Note that

Again
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and this is another gradation of the Hopf algebra R.

3. Symplectic groups

In the rest of this paper we shall assume that char F =1= 2.
The vector space of all n x m matrices over F is denoted by M(n,m)(F). We

denote M(n,m)(F) by M,(F).
Let Jn denote the matrix

in Mn(F). The identity n x n matrix is denoted by In.
For S E M2n (F), according to [F], set

Clearly x,

then

By definition,

We may say also that Sp(n, F) is the set of all matrices S ~ M2n(F) which
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satisfy

the third way to describe Sp(n, F) is to say that Sp(n, F) is the set of all matrices
[A B C D], A, B, C, D E Mn(F) which satisfy tDA - tBC = In, tDB = tBD and
tAC = tCA. Then

Now

We may describe GSp(n, F) also as the set of all S E M2n(F) which satisfy

For S E GSp(n, F) there exists a unique 03C8(S) E F" such that "SS = 1/1 (S)I 2n. It
is easy to see that

Note that 03C8(g · [In0 0 03BBIn] = À for g E Sp(n, F). Clearly, 03C8 is multiplicative. Also,
Sp(n, F) is the derived subgroup of GSp(n, F).
Take Sp(O, F) to be the trivial group and take GSp(O, F) to be FX. We

consider Sp(0, F) and GSp(0, F) as 0 x 0 matrices formally.
The diagonal subgroup in Sp(n, F) (resp. GSp(n, F)) will be taken for a

maximal split torus. These maximal tori are denoted by Ao. We fix the Borel
subgroup in Sp(n, F) (resp. GSp(n, F)) which consists of all upper triangular
matrices in Sp(n, F) (resp. GSp(n, F)). These Borel subgroups are denoted
by P~.
We parametrize Ao in Sp(n, F) in the following way
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In GSp(n, F) we do it as follows:

The Weyl groups defined by the above maximal tori in Sp(n, F) and
GSp(n, F) are naturally isomorphic. These groups are denoted by W. The
simple roots determined by the Borel subgroups in Sp(n, F) are

and

In GSp(n, F) the simple roots are

and

The Weyl group W has 2"n! elements. The action of W by conjugation on
A0 ~ Sp(n, F) is generated by transformations

and

In the case of Ao 9 GSp(n, F) generating transformations are



136

and

The standard parabolic subgroups of Sp(n, F), and also of GSp(n, F), are
parametrized by subsets of {03B11, ..., 03B1n}. We shall use the following parameter-
ization. First we consider the case of Sp(n, F). Fix n E Z+. Take an ordered

partition a = (n1, ..., nk) of m, where 0  m  n. If m = 0, then the only
partition is denoted by (0). Set

Further, P03B1 = M03B1P~ is a parabolic subgroup of Sp(n, F). These parabolic
subgroups correspond to the subset

The unipotent radical of P03B1 is denoted by N (l.
One obtains standard parabolic subgroups (resp. Levi factors) in GSp(n, F)

from the standard parabolic subgroups Pa (resp. Levi factors M03B1) in Sp(n, F)
by multiplying them with the subgroup

These subgroups in GSp(n, F) are denoted again by Pel and Mel. Then
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where gi E GL(n,, F), h E GSp(n - m, F).
Suppose that we have two standard parabolic subgroups P’03B1 and P"03B1. Then

they are associate if and only if a’ and a" are partitions of the same number,
and if they are equal as unordered partitions.
The characters of F" will be identified with characters of GSp(n, F) in the

following way

4. Modules of representations

Let



138 

One introduces analogous notation R+n[G], Rn[G], ... for the groups

GSp(n, F).
Take 1t ~ R+n and 03C3 E R+m [S]. We take the maximal parabolic subgroup P(n)

in Sp(n + m, F). Using the identification

we identify GL(n, F) x Sp(m, F) with M(n). In this way we consider 03C0 (8) a as a

representation of M(n). Let

We extend  and  Z-bilinearly to

Now we have

PROPOSITION 4.1.

(i) With the action : R x R[S] ~ R[S], R[S] is a Z+-graded module over
(R, +, )

(ii) With the action : R  R[S] ~ R[S] is a Z+-graded module over
(R, +, ).

(iii) For n E Bl: and Q E R+m [S] we have

Proof. Only the associativity 1t 1  (n 2  03C3) (03C01 x 03C02) à J is not evident
in (i). This follows from the transitivity of the induction in stages ([BnZ2]).
The same situation is with (ii). One obtains (iii) using conjugation with
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Now we define Xl: R x R[S] ~ R[S] by

03C0 E 9l, u E R[S] (in the above formula we use the definition of n  03C3 E e[S]
which we introduced before). One has

PROPOSITION 4.2. The additive group R[S] is a Z+-graded module over R.
We have

for n E Rand a E R[S].
Proof. The relation n XI (J = 1t x a follows from part (ni) of the previous

proposition since P(n) and tP(n) are associate parabolics ([BnDKa]). D

We shall describe now the gradations of R[S] and k[S] by infinitesimal
characters.

The disjoint union of the sets of all cuspidal pairs modulo conjugation,
which correspond to Sp(n, F), n &#x3E; 0, may be identified with the set

Let Q) = (x, u) E M(C_) x C[S]. Take (03C11, ..., 03C1n) ~ M(C) such that

K( (p 1, ..., 03C1n)) = x. Let

The subset of all n E In[S] all of whose irreducible subquotients are in Irr03C9 [S]
is denoted by In03C9[S]. Let R03C9[S] be the subgroup of R[S] generated by Irr03C9[S]
and let R03C9[S] be the subgroup of 8[S] generated by In03C9[S]. For

Now

is a graded module over R = ~M(C~)R03C9 for both structures. We have an
analogous situation for R[S].
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We consider now the case of GSp(n, F).
Let 03C0 E W’ and 03C3 E 9l;:; [G]. Using the identification

we identify GL(n, F) x GSp(m, F) with M(n). Let

We extend again XI and XI Z-bilinearly to

We factor also  to a Z-bilinear map

Now we have an analogue of Propositions 4.1 and 4.2.

PROPOSITION 4.3.

(i) For the mapping  (resp. ): R x R[G] ~ R[G], the additive group
R[G] is a Z+-graded module over (R, +, ) (resp. (R, +, )).

(ii) Let n e 91: and 6 E R+m [G]. For a character x of F  we have

Suppose that n has a central character, say 03C903C0. Then

(iii) The additive group R[G] is a Z+-graded module over R. We have
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for 03C0 ~Irr and 03C3 ~ R[G].
(iv) If n E R+n and u E R+m [G], then for the restrictions to symplectic groups

we have the following equality in R[S] :

(v) We identify F’ with the center of GL(n, F) using the homomorphism
À H 03BBIn. Also, using the homomorphism À H Àl2n, we identify F x with the
center of GSp(n, F). Let 03C0i c- e’, n = l, ... , k, be representations which
have central characters 03C903C0i, i = l,..., k. Let 03C3 E R+m [G] be a represen-
tation having a central character Wa. If m &#x3E; 0, then the central character
of 03C01 x 03C02 X ... X nk  03C3 is

If m = 0, then the central character is

(vi) Let 6 E R+m [G] be a representation with a central character, say wa. Let
x be a character of F" . If m  l, then the central character of ~03C3 is
~203C903C3.

(vii) We have for nE 9l+, 6 E R+[G]

5. Comodules of representations

Take an ordered partition a = (n1, ..., nk) of m and take n  m. Identifying

with the matrix
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we identify GL(n 1, F) x... x GL(nk’ F) x Sp(n - m, F) with M,, 9 Sp(n, F).
Let a E W’ [S]. The Jacquet module for Na is denoted by

The Z-linear extension to Rn[S] is denoted by S03B1,(0) again.
Let fi = (n’1,..., n’k’) be an ordered partition of m’  n. We shall write 03B2  a

if tn’ a tn and if there exists a subsequence p(1)  p(2)  ...  p(k) of

{1, 2, ... , k’} such that

(for a = (0) we assume that k = 0). The relation  is transitive.

If 03B2  a and J E R(M03B1), then we set

Now, sp,a are transitive. This means that 03B11  03B12  a3 implies

Note that we may identify

where x = (n 1, ... , nk) is a partition of m  n. Thus, we hve a natural identifi-
cation
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We can lift also S03B2,03B1 to

These mappings are transitive again.
We define now a Z-linear mapping

For Q E Rn [S], the formula is

Note that jM* is additive and it is Z+-graded. From the transitivity of sa,p’s one
obtains that M* is coassociative. This means that the following diagram
commutes

The mapping 03BC* is graded with respect to M(C_)-gradation on R and
M(C~) x C[S] gradation on R[S]. In other words

where Q, 03A9’ E M(C~) x C [S], ce E M(C~).
We make now necessary modifications for the case of GSp(n, F). We

identify first Ma with GL(n 1, F) x ... x GL(nk, F) x GSp(n - m, F), when
a = (n1,..., nk) is a partition of m  n. The identification mapping is
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In the same way as above, we introduce S03B1,(0) and S03B2,03B1 for GSp(n, F). Again, s03B2,03B1’s
are transitive. The map

is defined so that acts on 6 E Rn [G]

This map is additive, Z+-graded and coassociative.

6. Langlands classification

Let t = ((d1, ... , 03B4n), i) E M(D) x T[S]. We shall write t simply as

(03B4 1, ... , 03B4n, i). Denote

If t = (03B41, ... , 03B4n, 03C4) ~ M(D+)  T[S], then we say that t is written in a

standard order if

Let t = (03B41, ... , 03B4n, i) E M(D +) x T[S]. Suppose that it is written in a standard
order. The representation

is uniquely determined by t. This is a consequence of irreducibility of tempered
induction for GL(n)-groups ([Jc] or [Zl]). This representation will be denoted
by 03BB(t). Similarly, the representation

is uniquely determined by t. It will be denoted by 03BB(t). Observe that the fourth
section implies



145

We also have

We shall now describe the Langlands classification in the case of Sp(n)-
groups.

Let t ~ M(D+)  T[S]. The representation 03BB(t) bas a unique irreducible
quotient which we denote by L(t). The mapping

is a one-to-one mapping of M(D +) x T[S] onto Irr[S].
One can describe L(t) in a few different ways. We recall now two such

descriptions.
The representation Â(t) has a unique irreducible subrepresentation. This

subrepresentation is isomorphic to L(t).
There exists an integral intertwining operator from 2(t) into Â(t) whose image

is L(t) (for the explicit formula one may consult [BlWh]).
The multiplicity of L(t) in 2(t) is one. Thus, the multiplicity of L(t) in 03BB(t) is

one. This implies that the intertwining space between 2(t) and J(t) is one-

dimensional. Therefore, if we have an intertwining between 2(t) and J(t) which
is injective or surjective, then 2(t) is irreducible.

Let t = (03B41, ... , 03B4n, 03C4) ~ M(D+)  T[S]. Suppose that it is written in a

standard order and suppose that ô, E GL(k,, F)-. Set

where i E Sp(m, F)~.
We consider a partial order on IRk defined by

Let t E M(D +) x T[S] and let Q be an irreducible subquotient of 03BB(t)
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different from L(t). Then 03C3 = L(t1) for some t1 ~ M(D+)  T[S], t1 ~ t.
Moreover, then it must hold

We could introduce the order on Rk in a different way. Let 03B21, ... , 03B2n be the
basis of R’ biorthogonal to the basis

where we consider the usual inner product on Rk. Simple computation gives

and

It is easy to check that for x, y E IRk

We shall write now the Langlands parameter of the contragradient represen-
tation. Let t = (03B41, ... , 03B4n, 03C4) ~ M(D +) x T[S]. Suppose that it is written in a
standard order. Then we have an injective intertwining operator

Applying Proposition 4.1, one obtains

Passing to contragradients, one obtains a surjective intertwining operator
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Since (ô 1’ ... , 03B4n, i) E M(D +) x T[S] and since it is written in a standard

order, we obtain

We shall recall now of a criterion for square integrability of representations,
according to [Cs]. Let 03C0 ~ Sp(n, F)~. Let Pa be any standard parabolic
subgroup being minimal with the property that

(all such P,,’s are associate parabolic subgroups). Write a = (n 1, ... , nk), where
a is a partition of m  n. Let Q be any irreducible subquotient of S03B1,(0)(03C0). Then
we write

All representations p 1, ... , pk and p must be cuspidal. Let

We are able to present now the criteria of [Cs]:
(i) Suppose that the following conditions hold

for any a and J as above. Then n is a square integrable representation.
(ii) If 03C0 is a square integrable representation, then all inequalities of (i) hold

for any a and J as above.
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Note that the conditions in (i) are equivalent to the following conditions

if oc :0 (0).
Now we describe the case of GSp(n, F)-groups.
We write t = ((03B41, ... , bn), i) E M(D+) x T[G] again simply as t =

(03B41, ... , bn, i). We say that t = (03B41, ... , bn, i) E M(D +) x T[G] is written in a
standard order if

If t = (03B41,..., 03B4n, i) is written in a standard order, then the representation

is uniquely determined by t. The representation 03B41 x - - - x bn  03C4 is denoted

by 03BB(t). The representation let) has a unique irreducible quotient. Denote it by
L(t). The mapping

is a one-to-one mapping of M(D+) x T[G] onto Irr[G]. The representation
L(t) may be characterized as the unique irreducible subrepresentation of 03BB(t).
The multiplicity of L(t) in 03BB(t) is one. There exists an integral intertwining
operator from 03BB(t) into J(t) whose image is L(t). The intertwining space
between 03BB(t) and Â(t) is one-dimensional. We have

We compute the Langlands parameters of the contragradient representations
in the same way as before. One gets

If x is a character of FB then we have
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and

REMARK 6.1. Note that XL«b 1, ..., 03B4n, -r» = L((03B4 1, ... , bn, r» if and only if
xi = i.

We consider now the following inner product on Rn l 

Let Pl, ... , fll be the basis dual to the basis

of the subspace

Then

For i E T[G], there exists a unique y E R such that the representation ||-03B3Ft
is unitarizable. Set
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Let a = (n 1, ... , nk) be a partition of m  n. Take ôi E D+ n GL(n,, F)~ and
r E T(GSp (n - m, F)). Suppose that t = (03B41, ... , Ô,, r) is in a standard order.
Set

Suppose that for t, ft E M(D+) x T[G], L(t1) is a subquotient of l(t) and
suppose that t ~ t 1. Then

and the strict inequality holds for at least one index 1  i  n. If e.(t) = (xi),
e*(t1) = (y J, then the above condition becomes

The strict inequality holds again for at least one case.
We are going to repeat the criterion for square integrability, in the case of

GSp(n, F).
Fix ’Tt E GSp(n, F)-. Take a standard parabolic subgroup Pa such that it is

minimal among standard parabolic subgroups which satisfy

Recall that all such P’03B1’s are associate. Assume that 03B1 = (n1, ... , nk) is a partition
of m  n. Take any irreducible subquotient 03C3 of s03B1,(0)(03C0). Write it as

6 = 03C11 ~ ... ~ 03C1k ~ 03C1. Set
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Suppose that we have for any a and J as above

If the central character of 03C0 is unitary, then n is a square integrable represen-
tation. For an irreducible representation with a unitary central character to be
square integrable the above conditions are also necessary. The above inequal-
ities are equivalent to the following inequalities

(we work in Rn with the standard inner product).
At the end of this section we relate Langlands classifications for GSp and Sp

groups.

LEMMA 6.2. Let t = (03B41, ... , bn, 03C4) E M(D +) x T[G]. Suppose that L(t) is a
representation of GSp( p, F) and suppose that 03C4 is a representation of GSp(q, F).
We decompose

into a direct sum of irreducible representations of Sp(q, F). Then 03C41, ..., ik are
tempered representations of Sp(q, F). Denote
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Suppose that 1" i =1= Ti for i ~ j. Then we have a direct sum decomposition

In particular, L(t)lSp(p, F) is a multiplicity one representation.
Proof. We may assume that t = (03B41,..., 03B4n, r) is written in a standard order.

Now L(t) is the unique irreducible subrepresentation of Â(t). We have a direct
sum

Let U be an irreducible subrepresentation of 03BB(t) |Sp(p, F). Then for each i we
consider the composition

The image of U is contained in L(ti). Thus U z L(t 1) + L(t2) + ... + L(tk). In
particular, since L(t) | Sp(p, F) is a sum of irreducible representations (see
[Sil]), we have

Note that L(ti) are not equivalent for différent i. Since U is irreducible, we see
that U = L(tio) for a unique 1  i0  k. Thus

for a unique X ~ {1, 2, ... , k}. Note that GSp(p, F) acts by conjugation on
L(ti)’s and {L(ti), 1 EX) is invariant for this action. Now ~i~XL(ti) is again
invariant. Thus ~i~XL(ti) is a GSp( p, F)-subrepresentation. Therefore if

X ~ {1, ... , k}, then ~i~XL(ti) has an irreducible GSp( p, F)-subrepresentation
V ~ L(t). Both representations are irreducible subrepresentations of Â(t). We
obtained a contradiction. Thus X = {1, 2,..., k) and this completes the proof.

0

LEMMA 6.3. Let t = (b1,..., 03B4n, 03C4) E M(D +) x T[G]. Suppose that L(t) is a
representation of GSp(p, F) and that 03C4 is a representation of GSp(q, F). We
always have a following decomposition
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in R[S], where each Li is irreducible, and, for different i’s, they are inequivalent.
Let

Then L(t,) are not equivalent for different i’s and we have

in R[S].
Proof. Let r |Sp(q, F) = ’t’1 + ... + 03C4’mk be a decomposition into a direct sum

of irreducible representations. Suppose that U is an irreducible subrepresenta-
tion of 03BB(t) | Sp(p, F). Let

As in the proof of the preceding lemma, we find that

Thus U ~ L(ti) for some 1  i  k.

Denote by n the action of GSp(p, F) on J(t). Note that GSp(p, F) acts
transitively on

Thus V = span{03C0(g)U; g E GSp(p, F)l is GSp(p, F)-invariant. It is of finite

length. Also, as an Sp(p, F)-representation, it is completely reducible. There
exists an irreducible GSp(p, F)-subrepresentation Vl of V. Thus V, = L(t).
Now U ~ L(ti) is isomorphic to a subquotient of Vl as a representation of
Sp(p, F). Since U was arbitrary (we could take any L(tl) for U, since

03BB(t) | Sp(p, F) = Â(tl) + - - - + Â(t’mk», we see that each L(ti)) appears as a sub-
representation of L(t) | Sp(p, F).
We have proved that in R[S] we have
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Now we have

([GbKn], Lemma 2.1.). Thus m = m’. This finishes the proof of the lemma.
D

7. Non-unitary principal séries representations

The trivial one-dimensional representation of a group G will be denoted by 1G*
If G is the trivial group, then we shall denote 1G simply by 1.

Let ~1...,~n ~ (F )^ (resp. (F )~). The representations xl x ... X Xn à 1
will be call the unitary principal series representations (resp. the non-unitary
principal series representations) of Sp(n, F).
By Theorem 1 of N. Winarsky’s paper [Wi], a unitary principal series

representation x 1 x ... x ~n  1 is reducible if and only if there exists a

character x;, 1  i  n, whose order is two (if such character exists, then it is
clear from SL(2)-case that x 1 x ... x xn  1 is reducible). One can obtain a
more precise information about the reducible unitary principal series represen-
tations from paper [Ke] of D. Keys.

First, a unitary principal series representation X 1 x ... x ~n à 1 is a multi-

plicity one representation, by Theorem Cn of [Ke]. The computation of

R-group in the proof of Theorem Cn of [Ke] gives that the length of

~1  ···  Xn  1 equals 2 to the number of different characters of order 2
among Xl, - - -, ~n.
We can easily determine the reducibility points for the non-unitary principal

series representations of Sp(n, F).

THEOREM 7.1. Let ~1,...,~n E (F )~. Consider the following three conditions:
(i) For any 1 i i  n, ~i is not of order 2.
(ii) For any 1 i i  n, ~i =1= VIl.

(iii) For any 1 i i  j  n, ~i ~ 03BD±1~±1j (all possible combinations of two
signs are allowed).

The non-unitary principal series representation x 1  ··· X Xn  1 of Sp(n, F) is
irreducible if and only if conditions (i), (ii) and (iii) hold.

Proof. Suppose that condition (i) or (ii) is not satisfied for some ~i. Then we
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know from the representation theory of SL(2,. F) that  1 is reducible.

Writing Xi XI 1 = 03C01 + 03C02 in R[S], where 7il, 03C02 E R[S], ni &#x3E; 0, 03C02 &#x3E; 0. By the
fourth section we have the following equalities in R[S]:

Thus, x 1 x ... x X.  1 is reducible.

Suppose that (iii) does not hold for some 1  i  j  n. Write x; = V£l Xj2
where e,, e, ~ {± 1}. Note that in this situation we know that in R we have
Xi X Xj2 = 03C01 + 03C02 where 03C01, 03C02 E R, 03C01 &#x3E; 0, 03C02 &#x3E; 0. We have the following
equalities in R[S] :

The final result shows that X 1 x ... x Xn  1 is reducible.

We have proved that conditions (i), (ii) and (iii) are necessary for irreduci-
bility.
Now we shall suppose that conditions (i), (ii) and (iii) hold. Note that

condition (iii) implies the following condition which will be denoted (iii)’: for
any 1  i ~ j  n, x± 1i ~ v± 1~± 1j. We want to prove irreducibility of

X 1 x ... x Xn XJ 1. For any 03B51, ... , 03B5n ~ {± 1} we have by the fourth section that

in R[S]. It is enough now to prove irreducibility of XE1 x ... x ~03B5mm  1 for some

ë/s as above. Note that ~03B511, ... , ~03B5nn again satisfy conditions (i), (ii) and (iii)’.
With a suitable choice of Ei’s, we can get that
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We shall assume this in the rest of the proof. For any permutation p of
{1, 2,..., nl we have equality

in R[S]. Therefore, it is enough to prove irreducibility of

~p(1) x ... x ~p(n)  1 for some p. With a suitable choice of p, we can assume
that

We introduce j E {0, 1, 2,..., n - 1, ni in the following way. If all e(~i) &#x3E; 0

(resp. all e(Xi) = 0), then we set j = n (resp. j = 0). Suppose that there exist Xk
and X, such that e(xk) &#x3E; 0 and e(X,) = 0. Then, one denotes by j the index which
satisfies e(Xj) &#x3E; 0 and e(Xj+ 1) = 0 (such an index must exist in this situation).
Set

(if j = n, then we take r = 1). Since we do not have characters of order 2 and
since T is a unitary principal series representations, the representation 03C4 is

irreducible. Clearly, r is a tempered representation. Set

Then t E M(D+) x T[S]. Also, t = (x 1’..., ~j, T) is written in a standard order.
In R[S] we have

Recall that 03BC1 x 03BC2 is irreducible if and only if 03BC1/03BC1-1 ~ 03BD± 1,
/11’ /12 E (F )~. If /11 x /12 is irreducible, then we have in R

Also, if pi 1  1 is irreducible, then we have
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in 8[S]. The condition (iii) implies that x xk is irreducible for all i, k.
Therefore we have the following sequence of equalities in R[S]:

by (i) and (ii). Furthermore, we have in 8[S]

Continuing the procedure with X2 and then with ~3,..., 1 Xi, we obtain that in
é3f[S] we have

By the sixth section 03BB(t) is irreducible. This finishes the proof of the theorem.
D

We study now the case of GSp(n, F).
Let ~1, ... , x", x E (F )^ (resp. (F )~). The represen tatinn x 1 x... x xn à x

is called the unitary principal series representation (resp. the non-unitary
principal series representation) of GSp(n, F).

Recall that

We shall consider now unitary principal series representations of

GSp(n, F).

LEMMA 7.2. Let ~1,...,~n, x E (F’)". Decompose

into a direct sum of irreducible representations of GSp(n, F). Then 03C3i ~ 03C803C3j for
an 03C8 E (F ’)- and any 1  i :0 j  n. In particular, x 1  ... X Xn X X is a

multiplicity one representation.
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Proof. Suppose that 03C3i = 03C803C3j for some Ç and i ~ 7. Then ai 1 Sp(n, F) =
(Jj | Sp(n, F) since 03C8 is trivial on Sp(n, F). This implies that xi 1 x... x Xn  1

is not a multiplicity one representation of Sp(n, F) which is a contradiction.

This is clearly a subgroup of (F )~. We shall study this group in more detail.

LEMMA 7.3. Let xl, ... , xn, X E (F )~. For an irreducible subquotient u of
x 1 x "- x xn  X we have

If XI 1 X X2 X ... X Xn XI 1 is a multiplicity one representation of Sp(n, F), then
the equality holds. I n particular, if x 1, ... , Xn’ X are all unitary characters, then
the equality holds.

Proof. Suppose that 03C803C3 = u. Then (J = 03C803C3 is a composition factor of

03C8(~ 1 x ... x Xn X) = xi 1 x ... x Xn  I/1x which is again a non-unitary prin-
cipal series representation. Since xi 1 x ... x ~n ~ and 03C8f(~1 x...  ~n  ~)
have a common composition factor, they have the same Jorden-Hôlder

sequences ([BnZ2], Theorem 2.9.). This implies that they are equal in R[G].
Thus

Suppose now that 03C8 E XSp(n,F)(~1 x "- X Xn  ~). Decompose

into a direct sum of irreducible representations. Suppose that

x 1 x ~2  ...  x"  1 is a multiplicity one representation. Consider

Now the multiplicity one condition on x 1 x ... x Xn  1 and the simple
argument from the proof of the preceding lemma, imply 03C3i =_ 03C803C3i, for all

1  i  m. Thus, 1/1 ~ XSp(n,F)(03C3i) for any 1  i  m. D
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LEMMA 7.4. If x 1, ... , Xn’ XE (F )~, then the group X Sp(n,F) (X 1  ··· X Xn  X)
is equal to the subgroup of (F )^ generated by all characters of order two in the
set {~1 ... , ~n}.

Proof. Since x(x 1 x ’ ’ ’ x Xn  1 F) = x 1 x ’ ’ ’ X Xn XI X, we have

XSp(n,F)(~ 1 X ... X Xn  X) = XSp(n,F)(~1 1 x ... x xn  1 F).

For any permutation p of {1, ... , nl and for 81 ~ {± 11 the following equalities
hold in R[G]:

and

By the above remarks, it is enough to prove the lemma in the following
situation: the sequence ~1, ... , ~n, x equals

where ~i ~ ~j and ~i ~ ~-1j for any i * j, 1  1, j  k.
Note that the Weyl group of GSp(n, F) (and of Sp(n, F)) is isomorphic

to the semi-direct product of the group of permutations of n elements and
f ± 1}n. The second factor is normal. If p is a permutation of {1, ... , n}, then
p acts as

If e = {03B5i)1in is a sequence in {± 1}, then s acts in the following way

Let X be the subgroup of (F )^ generated by all characters of order

two among ~1, ... , ~k. To prove the lemma we need to prove that X =

XSp(n,F)(~ 1 X ’ ’ ’ X Xn  X). Suppose that ~ ~ X. Then 9(X 1 x... x ln  X) =
x 1  ···  xn  ~~. By the Frobenius reciprocity the last representation
has ~1 ~ ··· ~ ~n ~ ~~ for a subquotient (in fact, for a quotient) of the
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Jacquet module for the standard minimal parabolic subgroup. Note

that ~1 ~ ··· ~ ~n ~ ~~ is in the same orbit of the Weyl group by the

above remark about the action of the Weyl group. This implies that we
have in R[G]

Note again that x ~ ··· (8) ~n Q 9X is a subquotient of the Jacquet module of
x 1 x ’ ’ ’ x x"  çx for the standard minimal parabolic, while x ~ ··· ~ ~n Q x
is a subquotient of the Jacquet module of x 1 x ... X Xn  ~ for the standard

minimal parabolic also. The equality of representations in R[G] implies that
x ~ ··· O X. ~ ~~ is in the Weyl group orbit of x ~ ··· (D xn Q x. Take an
element w of the Weyl group such that

Write w = 03B5p-1 where 03B5 = (03B5i)1in is a sequence in {±1}, and p is a

permutation of {1, 2, ... , n}. Thus

The condition that ~i =1= (pî and (pi ~ (p, for any i ~ j, and

imply that if ei ~ 1, then (X p(i))2 = 1. Therefore

This proves XSp(n,F)(~1  ···  ~n  ~) ~ X. The proof of the lemma is now
complete. D
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Suppose that A is an Abelian group . Let A’ be the subgroup of A which
consists of all elements of order two or one. Then A’ is a vector space over

Z/2Z. Elements a 1, ... , an E A’ will be called (Z/2Z)-linearly independent
if they are linearly independent in the above vector space. It is equivalent to
the fact that they generate the subgroup of A (in fact of A’) with 2" elements.
If Y is subset of A’, they we shall denote the cardinal number of a maximal
(Z/2Z)-lineary independent subset of Y by

dimZ/2Z Y.

THEOREM 7.5. Suppose that Xl,...,Xn, ~ ~ (F )^. Let d be the maximal

number of distinct characters of order 2 among ~1, ..., 1 Xn, and let ~ be the

maximal number of (Z/2Z)-linearly independent elements among characters
~1, ..., Xn which are of order two. Then the unitary principal series represen-
tation

of GSp(n, F) is a multiplicity one representation. Its length is 2’-’. In particular,
a representation XI 1 x... x xn  X is irreducible if and only if the maximal
subset of distinct elements of order two among x1, - .. , Xn is (Z/2Z)-linearly
independent.

Proof. Denote 6 = x 1 x ... x ~n  ~. Decompose J = 03C31 ~ ··· ~ 03C3m into a
direct sum of irreducible representations. We know that 6 is a multiplicity
one representation since 03C3 |Sp(n, F) is a such representation. We want to
compute m.
The length of 03C1 | Sp(n, F) is 2’. The length of ui | Sp(n, F) is the dimension of

the intertwining algebra of 03C3i 1 Sp(n, F) since 03C3i| Sp(n, F) is a multiplicity
one representation The dimension of the intertwining algebra is the cardinal
number of XSp(n,F)(03C3i) by Lemma 2.1 of [GeKn]. Lemma 7.3 says that

XSp(n,F)(03C3i) = XSp(n,F)(03C3). Lemma 7.4 shows that the cardinal number of

XSP(n,F)(03C3) is 2t.
We compare now the lengths of both sides of

This implies 2d = m - 2t. Therefore m = 2d-~. D

It is obvious that any two distinct characters of order two are (Z/2Z)-linearly
independent. Thus:

COROLLARY 7.6. The unitary principal series representations of GSp(2, F)
are irreducible.
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The unitary principal series representations of GSp(n, F) for n  3 are not
always irreducible. We present a simple example.

EXAMPLE 7.7. For any F there exist two distinct characters of order two,
say XI and X2. They are (Z/2Z)-linearly independent. Let ~3 = XIX2. The

length of x 1 x X2 X X3  1F x is two. It is interesting to note that when we induce

parabolically x 1 ~ X2 (D x3 (D 1F x to any Levi factor containing the standard
maximal torus, of any proper parabolic subgroup, then the induced representation
is irreducible.

This example is essentially the only example of reducibility for the unitary
principal series of GSp(3, F), when the residual characteristic of F is not two.

COROLLARY 7.8. Suppose that the residual characteristic of F is different
from two. Then F  has exactly three characters of order two. The lengths of the
unitary principal series representations of GSp(n, F) are either one or two. A
unitary principal series representation

is reducible if and only if the set {~1, X,,l contains three different characters
of F x of order two.

THEOREM 7.9. For ~1, ... , ~n, ~ ~ (F )~ consider the following three
conditions:

(i) card {~i;~2i = 1 F x and ~i ~ 1F } = dimZ/2Z{~i;~2i = 1,F
(ii) ~i ~ 03BD±1, 1  i  n.
(iii) ~i ~ 03BD± 1~±1j, 1  i  j  n.
The non-unitary principal series representation ~1 x ... x xn  X of GSp(n, F)

is irreducible if and only if the conditions (i), (ii) and (iii) hold.
Proof. The proof is very similar to the proof of Theorem 7.1. Therefore we

shall only outline it.
Theorem 7.5 implies that (i) is necessary for the irreducibility of

~1  ... x ~n  ~. The representation theory of GL(2, F) implies that the

conditions (ii) and (iii) are necessary for the irreducibility of

~1 x ... X Xn  ~.
Note that x 1 x ... x ~n  ~ = ~(~1 1 x ... x ~n  1F ) is irreducible if and

only if x 1 x ...  ~n  1F  is irreducible. Let p be a permutation of

{1,2,...,n} and (03B5i)1in a sequence in {±1}. Now x 1 x ...  ~n  ~ is

irreducible if and only if xp(1) x ... x Xp(n)  1F  is irreducible, and further-
more, if and only if ~03B511  ···  ~03B5nn  1F  is irreducible. Note that if

~ 1, ···, ~n, x satisfy (i), (ii) and (iii), then ~p( 1), ···, ~p(n), ~’ satisfy (i), (ii)
and (iii) and also XI, xnn, x’ satisfy (i), (ii) and (iii), for any x’ E (F )~. Thus,
we may suppose that e(~1)  e(~2)  ···  e(xn)  0 and ~ = 1F . Choose
0  j  n such that e(Xj) &#x3E; 0 and e(Xj+ 1) = 1 (more precisely, choose j in the
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same way as in the proof of Theorem 7.1). Let

By Theorem 7.5, r is irreducible (and tempered) since ~1, ... , Xn satisfy (i).
Thus

It is written in a standard order. Consider

We have in 9l[G]:

Thus À(t) = XI X ... X Xn  1F  is irreducible. ~

REMARKS 7.10.

(i) If n  2, then the condition (i) of the preceding theorem is always satisfied.
(ii) If the residual characteristic of F is different from two then the condition

(i) of the preceding theorem has a very simple form:

8. On square integrable représentations of GSp(n)

Let 9 be a character of a maximal split torus in a reductive group over a
p-adic field. It is called regular if only the identity element of the Weyl group
fixes it. Clearly, if one character in an orbit of the Weyl group is regular, then
all the others are regular. We are going now to consider regular characters for
groups Sp(n, F) and GSp(n, F). We shall always consider standard maximal
tori which consist of diagonal elements in these groups. They are denoted
by A,,. The Weyl groups are identified in a natural way. This group is denoted
by W
We have a few simple observations at the beginning. Let 9 be a character of

the standard maximal torus in GSp(n, F). Suppose that the restriction ~’ of 9
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to the standard maximal torus in Sp(n, F), is regular. Then it is obvious that
then 9 is regular as well. This holds because the restriction commutes with the
action of the Weyl group.

Let ç be a character of the standard maximal torus Ao in GSp(n, F). We may
write

where ~1, ···, ~n, ~ are characters of F’. Note that the restriction to the
standard maximal torus in Sp(n, F) is

Take a character 03C8 of GSp(n, F). Note that (03C8 | 1 Ao)wqJ = w((03C8 |A0)~).
This implies that XI 0 ’" Q X. Q X is regular if and only if XI 0 ’" Q xn Q 1F
is regular. We can also see this from the following proposition which charac-
terizes regular characters.

PROPOSITION 8.1.

(a) Consider the case of Sp(n, F). A character

is regular if and only if the following two conditions are satisfied
(i) ~i ~ ~±1j, 1  i  j  n.
(ii) ~2i ~ 1F , 1  i  n.

(b) Consider the case of GSp(n, F). A character

is regular if and only if the following three conditions are satisfied
(i) Xi =1= ~±1j, l  i  j  n.

(ii) xi :0 1F , 1  i  n.

(iii) card{~i; ~2i = IFx, ~i ~ 1F } = dimZ/2Z{~i; x2 = lfxl-
If the residual characteristic of F is different from two, then the condition

(iii) is equivalent to the following condition
(iii)’ card{~i; xl = 1F , Xi =1= 1F }  2.

Proof. (a) Denote by Sym(n) the group of permutations of {1,..., n}.
We may identify W = {± 11"  Sym(n). Now, «8 i)’ p-1) transforms

~1~···~~n~1 into

~03B51p(2) (8) ... ~ ~03B5np(n) ~ 1.
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Suppose that ((03B5 i),p-1) is not identity, i.e. 03B5i = -1 or p(1) ~ i for some i.

Suppose

If pei) =1= i then Xi = ~03B5ip(i) with i ~ p(i), and therefore condition (i) of (a) is not
satisfied. Suppose that p(i) = i for all i. Then, there exists i with 03B5i = -1.
Now ~i = xi 1. Thus, condition (ii) is not satisfied.
We have proved that (i) and (ii) are sufficient conditions for the regularity.

We shall see now that they are necessary.
Suppose y; = ~j = y for some 1  i  i  n. Then

is in the same orbit as

It is easy to see that one of the generators of W described in the third section,
acts trivially on the above element. Thus X, ~ ··· ~ X. ~ 1 is not regular.
Suppose Xi = Xî ’ 1 for some 1  i  j  n. Then x 1 ~ ··· O ~i ~ ··· ~

~j ~... ~ ~n ~ 1 is in the same orbit as

It is not regular by the previous case.
Let x2 - 1F-. Then x ~ ··· ~ ~i ~ ··· Q Zn Q 1 is in the same orbit as

One of the generators of W described in the third section acts trivially on the
above element. Thus, it is not a regular character.

This proves that (i) and (ii) are also necessary for the regularity.
(b) An element ((03B5 i), p-1) ~ W transforms

Assume that ((03B5i), p-1) ~ 1 acts trivially on %i ~ ··· ~ ~n (8) X. If there exists i
with p(i) ~ i, then Xi = xi(i). Thus, the condition (i) is not satisfied. If

p(i) = i for all 1  1  n, then there exists i with ei = -1. From ~j = ~03B5,jj,
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1  j  n, one obtains that 03B5j = -1 implies ~2j = 1F . If Xi = 1F  for some i,
then condition (ii) is not satisfied. Suppose that (i) and (ii) are satisfied. Then
p(i) = i for all 1  i  n, and there is i such that Bi = -1, ~2i = 1F  and

Xi =1= 1F . Furthermore

Therefore {~k, ~2k = 1F , Xk =1= 1F } is (Z/2Z)-linearly dependent. Thus the
condition (iii) is not satisfied.

We have proved that the conditions (i), (ii) and (iii) are sufficient for the
regularity of XI ~ ··· (8) Xn O X.
Suppose that we have a character XI 0 ’" Q xn Q X which does not satisfy

(i) or (ii). Then, in the same way as in (a), it is easy to see that it is not regular.
Suppose now that (iii) does not hold, but (i) and (ii) hold. Then there exists a
sequence 03B5i ~ {±1}, 1  i  n, such that ei can be -1 only when ~2i = lFx,
,ci = -1 for at least one 1  i  n, and

This gives that (03B5i)1i1 ~ 1 acts trivially on X ~ ··· O ~n (8) X. D

We shall now consider the case of GSp(n, F). The set of all roots is denoted
by Z. We introduce the characters

These are the characters of the standard maximal torus Ao in GSp(n, F). The
simple roots are

and

The positive roots are
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One gets the negative roots by taking inverses of the positive roots.
One associates to each a E E a coroot a " and a one-parameter subgroup t03B1

in the same way as F. Rodier did it in [R1]. A short computation gives

where x is at the ith plane, while x -’ is at the j th place,

where x’s are at the ith and jth place, and

where x is at the i th place.
Note that

Let ~ = ~1 ~ ··· ~~n be a regular character of Ao. We denote by
x ~ |x|F the topological modules of F and we denote by n:x ~ |x|F the

restriction to F" . Denote by S(~) the set of all 03B1 ~ 03A3 such that

Let

We are now going to compute s(g). We know from [R1]

It is clear that S(g) does not depend on x because always t03B1(x)~ Sp(n, F).
It is simple to see that s«p) is constant on the orbits of the action of the
Weyl group.
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Each character is associated to some character ~ = ~1 ~ ··· ~~n ~ ~ satisfy-
ing e(~i)  0, 1  i  n. We shall assume this. We shall call the sets

~ ~ (F )~, k ~ Z, k  0, segments in (F )~. Then z is called the beginning of the
segment [x, ~03BDk]. Decompose

into a minimal possible number of disjoint segments in (F )~. Recall that
the character is regular, so this is possible. Such decomposition is unique.
Denote

Obviously 03A3pi=1(ki + 1) = n, i.e. 03A3pi=1 ki = n - p. Furthermore, ç is associate
to

We shall assume that XI ~ ··· Q Xn 0 X is equal to the above character.
Note that

This gives a root in S(~) if and only if Xi and Xj are in the same segment and
if they are consecutive elements there. Note that a root (a1)-lat, 1  i  j  n,
cannot give an element in S(~). Thus, this type of roots gives 03A3pi=1 ki = n - p
roots in S(~).

Furthermore

Thus (ar)2(a:B d - 1 E S(~) if and only if ~i = v. Note that if this is the case, then
~i is the beginning of some segment 0394i since ~1 ~ ··· ~ ~n ~ ~ is regular.
Obviously, (a*i)-2(a*n+1)-1 ~ S(~) for all 1  i  n. Therefore, this type of
roots gives at most one root in S(~). It gives a root if and only if Xi = v for
some i.

We consider now
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Note that (a*i)-1(a*j)-1 a*n+ 1 ~ S(~). Let x; = 03C8v03BD03B3u+s, Xj = 03C8v03BD03B3v+t. Then

We consider the case when a*ia*j(a*n+1)-1 ~ S(~). This is equialent to

Clearly s, t E {0,1} and s ~ 1 or t ~ 1. Let us suppose that I/Iu =1= 03C8v. Then Xi
and Xj are in different segments. If s ~ 0 or t ~ 0, then 03B3u = 03B3v = 0. This is

impossible since x ~ ··· ~ ~n ~ ~ is regular. Thus, xi and Xj are beginnings
of different segments. Now we consider I/Iu = 03C8v. If Yu =1= 0 or 03B3v ~ 0 then
s = t = 0. Thus, Xi and Xj are beginnings of different segments (and the

regularity conditions tells Yu =1= 1/2). Suppose y. = y, = 0. The case of s = t = 0
is not possible since x ~ ··· Q Xn Q x is regular. Thus s = 0, t = 1, or t = 0,
s = 1. This implies that and ~j are in the same segment, one character is the
beginning of the segment, say Xi. Then xj = ~i-1. Therefore s = 0, t = 1 and

where

We have proved the following

PROPOSITION 8.2.

(i) Let ~ be a character of the standard maximal torus in GSp(n, F). Then (P
is associated to a character x ~ ··· Q Xn 0 X satisfying

We have

(ii) Let ~ = XI ~ ··· ~ xn ~ X be a regular character satisfying

Decompose
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into a minimal number of disjoint segments in (F )~. Denote by p the
number of pairs (i,j), i  j, such that the beginnings Pi of Ai and Pj of 0394j
satisfy

Denote by t the number of characters 1/1 of order two of F x such that

Let e be a 1 if v E {~ 1, ... , ~n} and 0 otherwise. Then

REMARK 8.3. Let qJ = x Q9 ... Q9 xn Q9 X be a regular character. Then by [R1]

is a multiplicity one representation of length 2s(~). The above representation
contains a unique irreducible subrepresentation and a unique irreducible

quotient.

We denote by .3F the space of all functions

such that the support

is (Z/2Z)-linearly independent (the support of f is finite since the characteristic
of F is not two). For f ~ F set

REMARK 8.4. Suppose that the residual characteristic is different from two.
Then there are exactly three characters of order two and .3F consists of all
functions f from them into Z+B{1} which have no more than two characters in
support.

Let 1/1 be an enumeration of {~ ~ F )^; X2 = 1F x, X =1= 1F }, by an initial
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segment of positive integers, say {1, 2,..., r}. For

set

(note that 03BDf(03C8(i))-1 03C8(i) ~ 03BDf(03C8(i))-203C8(i) ~ 0 03C8(i) shows up in the above

formula if and only if f(03C8(i)) &#x3E; 0, i.e. f(03C8(i))  2). For different l/1’s, the

characters g(k, f, ~)03C8 are associate. The above characters are regular. Denote

This is an element of 9l[G] (the notation is correct since a(k, f, X) does not

depend on 03C8).
From Proposition 8.2 we get

Therefore, a(k, f, X) has a unique irreducible essentially square integrable
subquotient which will be denoted b(k, f, X) ([R1], Proposition 5.) Denote by
X f the subgroup of characters generated by the support of f. Now if ~’ E ~XF,
then cp(k, f, X)e and cp(k, f, ~’)03C8 are associate. Thus

and

Therefore, we define
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THEOREM 8.5.

if and only Y k = k’, J = J’and XX f = ~’Xf’.
(ii) If ô is an essentially square integrable subquotient of some

such that XI ~ ··· Q Xn ~ X is a regular character, then there exists

(k, f, ~) ~ Z+  F x (F )~ such that

Proof. (i) Suppose that 03B4(k,f, X) = b(k’, f ’, X’). Then g(k,f, ~)03C8 and

qJ(k’, f’, ~’)03C8 must be in the same orbit of the Weyl group. This immediately
gives k = k’, f = f’ and furthermore X’c- ~Xf.

(ii) Let 03B4 be an essentially square integrable subquotient of

~1  ···  X.  ~ where (p = XI ~ ··· ~ ~n ~ X is regular. We may first assume
that e(~i)  0, 1  i  n, since each character is associated to a character of

such type. We decompose

as in (ii) of Proposition 8.2. Let us follow the notation introduced in (ii) of
Proposition 8.2. We have

Obviously, we can choose r &#x3E; 0 such that

Since x 1  ···  ~n  ~ contains an essentially square integrable subquotient,
we have s(~) = n, i.e.

Clearly, p = r = 0 and s = t + e. Thus, each segment either starts with v or with
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{03BB, vÂl where À is a character of order two. This shows that 9 is associated with
a character of the form qJ(k, f, ~)03C8. Thus b = b(k, f, X). ~

where X f denotes the subgroup generated by the support of f.
Proof. Let b(k, f, ~) be a subquotient of ~1  ··· X Xn  X. Then

by Lemma 7.4. We know

from Lemma 7.3. To prove the lemma it is enough to show that the opposite
inclusion holds.

Suppose that § E XSp(n,F)(~1  ··· x Xn  ~). Write

in R[G] as a sum of irreducible representations of GSp(n, F). Now

implies

Note that 03C803B4(k, f, ~) is an essentially square integrable representation. Thus

since x 1 x ...  ~n  ~ contains exactly one essentially square integrable
subquotient. Therefore 03C8 ~ XSp(n,F)(03B4(k, f, x)). D

REMARKS 8.7.
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(ii) We have that b(k, f, X) is an unramified representation if and only if either
f = 0 or the support of f consists of the unique unramified character of
order two of F".

(iii) For f ~ F,

NOTATION 8.8. If f ~ F, then we shall sometimes write formally f as

03A3 f(~)~

where the sum runs over the character of order two.

9. On square integrable représentations of Sp(n)

In this section we shall fix for each n a non-degenerate character 0,, of the
unipotent subgroup Nx of the standard minimal parabolic subgroup of Sp(n, F)
(and also of GSp(n, F)). Then

It is not important for our purposes to write On more explicitly, but one can
fix a non-trivial character of the additive group of F and then write 03B8n explicitly
in terms of that character.

Let (k, f, X) E Z+ x 97 x (F )~, where k + ord( f ) = n. Then the representa-
tion c5(k, ¡, X) has a Whittaker model by Propositions 4 and 5 of [Rl].
Therefore

is a multiplicity one representation (see for example Proposition 2.8 of [T3]).
Thus the length of ô(k, f, ~) |Sp(n, F) is

by Lemma 8.6 and Remarks 8.7, (iii).

REMARK 9.1. The Jacquet module of ô(k, f, x) for a minimal parabolic
subgroup has length at least 2card(supp f).
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Now we shall describe a parameterization of irreducible constituents of

Part (iv) of Proposition 4.3 implies

If k =1= k’ or f ~ f’ then 03B4(k, f, 1F )| Sp(n, F) and ô(k’, f’, 1F )| Sp(n, F) have no
composition factor in common (Remark 8.7 (i), Theorem 8.5 (i) and [T3],
Corollary 2.5).

For a E F" set

We define a new non degenerate character (On)a by

We use observations of Remark 2.9 of [T3] at this point. For each a E FX there
exists exactly one irreducible constituent Q of 03B4(k, f, 1F )|Sp(n, F) which has a
Whittaker model with respect to (0 n)a.

Set

If a has a Whittaker model with respect to (On)a and a’ ~ X 1 f, then J has a
Whittaker model with respect to (03B8n)aa’. In this way we obtain a parameteriz-
ation of irreducible constituents of 03B4(k, f, 1F )| Sp(n, F) by F x | X1 f as fol-

lows. For aX 1 f ~ F /X 1 f, there is a unique irreducible subrepresentation J
of c5(k, f, 1F )|Sp(n, F) which has a Whittaker model with respect to (03B8n)a. We
denote

Because of the canonical isomorphism
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the Pontryagin duality gives a canonical identification

Therefore, we have a parameterization of irreducible subrepresentations of

by X f . They are denoted by

Now ô(k, f, K) are irreducible square integrable representations of Sp(n, F).
A character 9 of the maximal standard torus in Sp(n, F) will be called weakly

regular if it is a restriction of a regular character of the maximal split torus in
Sp(n, F). Note that qJ = x 1 ~ ··· Q Xn Q 1 is weakly regular if and only if

conditions (i), (ii) and (iii) of (b), Proposition 8.1, are satisfied, for

~1 ~ ··· ~ ~n ~ 1F . This shows that if a weakly regular character ç is a

restriction of any other character qJ’, then ~’ is regular. Clearly, if ç is regular,
then it is weakly regular.
For an enumeration t/1 of {~ ~ (F )^; ~2 1F , ~ ~ 1F } by an initial

segment {1, 2, ..., i} of positive integers, and for (k, f ) ~ Z+  F , set

and

As before, 03C3(k, f)~ R[S] is well defined and

REMARK 9.2. Characters qJ (k, f)1/J are weakly regular. Note that g(k, f )03C8 is

regular if and only if f = 0 (Proposition 8.1., (a)).

THEOREM 9.3.

(i) Representations 03B4(k,f, K), kE7L+,fE:F, 03BA ~ f, are irreducible square
integrable representations of Sp(n, F) (n = k + ord(f)). We have
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if and only if k = k’, f = f’ and K = K’.
(ii) Representations b(k, f, K), n = k + ord(f), appear as subquotients of

non-unitary principal series representations of Sp(n, F). If b(k,f, K) ap-
pears as a subquotient of x 1 x ... x xn  1, then ~1 ~ ··· Q Xn (D 1 is

weakly regular and it is in the orbit of the action of the Weyl group
determined by ~(k, f)03C8.

(iii) If ô is an irreducible square integrable subquol ient of some non-unitary
principal series representation x 1 x ... x Xn X1 j where x ~ ··· (8) Xn ~ 1
is weakly regular, then there exist k~ Z+, fc-57 and 03BA ~ f,
k + ord(f) = n, such that

Proof. Only (iii) is not proved, but it follows from Theorem 8.5 and

Proposition 2.7., (iii) of [T3]. D

10. An Example

Recall that the Steinberg representation of Sp(n, F) is a subquotient of

W. Casselman proved that the above non-unitary principal series representa-
tion is multiplicity one, and that its length in 2n (see [B1Wh]). It has only one
square integrable subquotient. All subquotients different from lsp(n,F) and
StSp(n,F) are not unitarizable.
We shall give now an example of the non-unitary principal series represen-

tation of Sp(n, F), in which square integrable subquotients appear. This

representation is in many aspects opposite to the above one. Take a positive
integer n and a field F such that the index of the squares (F X)2 in F x is at least
2n (if n &#x3E; 3 then the residual characteristic must be two). Take different
(Z/2Z)-linearly independent characters 03C81,... ,03C8n of order two. Then the

representation

of Sp(2n, F) has exactly 2n irreducible square integrable subquotients. Their
multiplicities are one. The representation
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has multiplicity 2" in n. If n = 1, then we know from [SaT] that all irreducible
subquotients of 03C0 are unitarizable.
We are going to give a detailed analysis of the case n = 2. One can apply

the same ideas to the above representations when n &#x3E; 3.
Take any two different characters 03C81, 03C82 of order two. They exist for any

field F. Then the representation

of GSp(4, F) is multiplicity free and of length 16. Exactly one factor is square
integrable. We shall write the evident factors. First note that

1/1  03B4(0, 203C82, 03BD-1) and 03C82  à(0, 203C81, v -1) are irreducible. One gets it easily
from the fact

which implies that 1/1 1 XJ (03BD03C82 X 03C82 XJ V - 1) and v 1/1 2 X 1/1 2 XJ v - 1 are of the
same length.
We have the following sixteen factors which are divided into nine groups:

All of the above representations are different. Therefore, the above represen-
tations exhaust all irreducible subquotients of ni.
We are now going to describe the representation
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of Sp(4, F). First, 03B4(0, 203C8 1, + 203C82, v - ’)ISp(4, F) is a multiplicity one represen-
tation. It is of length four. Denote the irreducible constituents by
à(0, 203C81 + 203C82)i, i = 1, 2, 3, 4. Furthermore, XSp(3,F)(03C81 03B4(0, 203C82, 03BD-1)) has
four elements and 1/1 03C81  03B4(0, 2V21 03BD-1)|Sp(3,F) is a multiplicity one representa-
tion, since 03C81  03B4(0, 203C82, 03BD-1) has a Whittaker model by Propositions 4 and
6 of [R1]. Thus 03C81 x 03B4(0, 203C82, v -1 )ISp(3, F) is a multiplicity one representation
of length four. Denote its irreducible constituents by Tl, i = 1, 2, 3, 4.

Analogously, we introduce T2, i = 1, 2, 3, 4, for 03C82 x ô(0, 203C81, 03BD-1). Irreducible
constituents of 03B4(0, 203C8i, 03C3)|Sp(2, F) were denoted by 03B4(0, 203C8i, ± 1).
The representation 1/1 1 x 1/1 2 x 1 of Sp(2, F) has length four. It is a multiplic-

ity one representation. We denote irreducible factors by T?, i = 1, 2, 3. 4.
The irreducible factors of 03C8i x] 1 will be denoted by T03C8ij, j = 1, 2. Using the

sixth section, we get the following list of all irreducible subquotients of 03C0 with
multiplicities:

Thus the representation

is of length 36. It has 25 different irreducible subquotients. It has four

irreducible square integrable subquotients. They are of multiplicity one. The
above example is very different from the GL(n) (or SL(n)) case.
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