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0. Introduction

Let 03BE be a plane algebroid curve defined over the field C of the complex
numbers. To determine the equisingularity (or topological) type of the polar
curves of 03BE has been an open problem since the time of M. Noether. Some
wrong answers to it may be found in the classical literature. It was not until

1971 that Pham [6] gave examples showing that the equisingularity type of the
generic polars of 03BE cannot be determined from the equisingularity type of 03BE,
because it depends on the analytical type of 03BE and not only on its equisingular-
ity type. In this paper we give a complete determination of the equisingularitay
type of the generic (and most of the non generic) polar curves of 03BE under the
assumption that 03BE is generic in its equisingularity class (theorem 3.1). The main
tool to this end is the theory of infinitely near imposed singularities already
developed in [2] and applied there to the case of 03BE irreducible. Main steps in
order to get the result are as follows. First (section 1) we use the unloading
principle ([2], 4.2) in order to find an explicit inductive description (1.3) of the
cluster ~g(03BE) which will be claimed to describe in turn the singularities of polar
curves. Then after giving a precise statement (3.1) of the main claim in section
3, we proceed to prove it in sections 4 and 5. In section 4 we prove the claim
for certain infinitely near points we call initial points and which are in some
sense close to the origin: as the behaviour of a curve at such points is

determined by its Newton polygon, for this part of the proof we determine the
Newton polygon of the polar curves. For the second half of the claim, in
section 5, we use the transformation obtained by successively blowing-up all
points in a sequence of initial points. The main point here is that by
transforming the polar of a curve we obtain a polar of the transformed curve
(5.1). This allows to end the proof using induction together with some technical
results, already obtained in section 2, that relate polars relative to different
equations of the same curve.
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of the University of Valladolid and in particular Prof. A. Campillo for useful discussions and kind
hospitality during the first stages of this work.
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1. The cluster 6

We place ourselves under the conventions and general hypothesis of [2]. The
notions introduced there about curves and infinitely near points will be used
without further reference. We shall denote by eq(03BE) the multiplicity of an
ordinary or infinitely near point q on a curve 03BE, and by [ç. 03B6]q the intersection
multiplicity at q of the curves 03BE and 03B6. An infinitely near point q on a curve 03BE
will be said to be non singular on 03BE if and only if the point q itself and all points
infinitely near to q on 03BE are simple and free. Otherwise we will say that q is a
singular point of ç. Notice that on a reduced curve there are finitely many
singular points.

Let p be a smooth point of a complex algebraic surface S, Op the complete
local ring of S at p, and assume that 03BE is a reduced algebroid curve on S with
origin at p. Fix g ~Op defining a smooth curve 03B6 with origin at p. We know
from [2] section 8 that the g-polar curves of 03BE go through a cluster ~g(03BE) which
is defined by taking all singular points q on 03BE, each with virtual multiplicity
eq(03BE) - 1 and furthermore, on each branch y of 03BE, the first [y 03B6]p - 1 points
which are non singular for 03BE, each virtually counted once. In the sequel, from
these points, those which are singular points of 03BE will be called singular points
of 8g(ç) and the remaining ones will be called simple points of ~g(03BE).

Excepted for very simple cases, the cluster 0 g( ç) does not satisfy the

proximity relations and therefore there are no curves going through ~g(03BE) with
effective multiplicities equal to the virtual ones. We consider ([2] section 6) a
second cluster ~g(03BE) which has the same points as ~g(03BE) and virtual multiplicities
equal to the effective multiplicities of a generic curve through ~g(03BE). The cluster
~g(03BE) is obtained from 8g(ç) by finitely many applications of the unloading
principle [2] 4.2. Notice that 8g(ç) is the only cluster equivalent to ~g(03BE) which
satisfies the proximity relations. We will give in this section an inductive

description of ~g(03BE).
Let K be a cluster with the same points as ~g(03BE) and for each q~K denote

by vq the virtual multiplicty of q in K. Assume that there is a singular point p’
of 8g(ç) such that for all singular points q of ~g(03BE) equal or infinitely near to p’,
vq = eq(03BE)-1. Assume furthermore that vq  1 for all simple points q of ~g(03BE).
For each branch y of 03BE denote by s(y) the number of simple points of ~g(03BE)
which belong to y and are virtually counted once in K. We have:

1.1. LEMMA. If s(03B3)  ep,(y) for all branches y of ç, we get a cluster K’

equivalent to K by taking:
(a) The point p’ with virtual multiplicity ep’(03BE).
(b) For each branch y of ç, the first s(y) - ep’(03B3) simple points of ~g(03BE) on y

virtually counted once, and the remaining ones with virtual multiplicity zero.

(c) The remaining points in K with the same virtual multiplicities.
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Proof. We use induction on the number t of singular points of 8g(ç) which
are infinitely near to p’.

Let q a point on 03BE in the first neighbourhood of p’ and assume that q is not
a singular point of ~g(03BE). Then q is a simple and free point of ç, it lies on a

single branch y of 03BE and it is the only point on y proximate to p’. Since
s(y)  ep’(03B3)  1, we may assume (after using unloading on the simple points on
y if it is needed) that vq = 1 = eq(03BE).

If t &#x3E; 0, let q1,..., qr be the singular points of ~g(03BE) which are proximate to
p’. For each branch y of 03BE going through one of these points we have
s(03B3)  ep, (y) = 03A3i eqi(03B3), so that the induction hypothesis may be used success-
ively on the qi in order to get a cluster K" equivalent to K for which:

(a) Each qi has virtual multiplicity eqi(ç).
(b) On each branch y of 03BE going through one of the points qi, s(y) - ep,(y)

simple points of ~g(03BE) are virtually counted once and the remaining ones are
taken with virtual multiplicity zero.

(c) The remaining points in K are taken with the same virtual multiplicities.

Put K" = K if t = 0. In any case the point p’ has virtual multiplicity
ep’(03BE) - 1 in K" whence all points q proximate to p’ on 03BE have virtual

multiplicity eq(ç). Since ep’(03BE) = E. eq(ç), the unloading principle may be applied
to K" at p’ giving the cluster K’ as calimed. D

In the sequel we call initial points of 03BE the points on 03BE infinitely near to p (p
itself excluded) which belong to ( and also the satellite points which are not
preceded by a free point lying outside of 03B6. Obviously this notion depends on 03B6.
Assume that a system of local coordinates x, y at p is fixed, in such a way

that g = x and hence ( is the y-axis. Let y a branch of 03BE and assume that a
Puiseux series of y has the form:

where S(T) E C[[T]], m/n  1 and a =1= 0 if m/n  1. We say that m/n is the
initial exponent of y.

Notice that if m/n = 1, i.e., y is not tangent to 03B6, then there are no initial

points on y.
In the case m/n  1 let us recall the description of [2] section 9. We perform

the Euclidean algorithm for g.c.d. (m, n)
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Then the initial points on y are, in successive neighbourhoods of p = p1,1:

each Pi,j being ni-fold on y. From them, p1,2,...,p2,1 are free and lie on ( and
the remaining points are satellite: more precisely, for i &#x3E; 1, po,1, ... , pj,hi and also

Pi+ 1,1 if i  s, are proximate to Pi-1,hi-1. We say in the sequel that the points
Pi,j with even (resp. odd) i are even (resp. odd) initial points on y.

Notice that, once the coordinates are fixed, the points Pi,j and their

multiplicities ni depend only on n and m. Then, for any pair of positive integers
n, m with n &#x3E; m, it will be useful to denote by K(n, m) the cluster of the points
pi’j’ i = 1,..., s, j = 1,..., hi defined above, each p,,j with virtual multiplicity ni.

Let p’ be the point on y in the first neighbourhood of ps,hs, or in the first
neighbourhood of p if m/n = 1. Denote by E the (germ of the) exceptional
divisor on which p’ lies: p’ being free, E is smooth.

1.2. LEMMA. We have

where y’ is the strict transform of y with origin at p’, and the summation runs on
the initial points q = Pi,j of 03BE on y.

Proof. Follows from an easy computation using that [03B3· 03B6]p = n and that
[03B3’· E]P, equals the multiplicity of the last point on y before p’, i.e., ns if m/n  1

and n if m/n = 1. D

Denote by pl, ... , p, the points on 03BE which are free, do not belong to ( and
are not preceded by other free points lying outside of C. Let us write Ei for the
germ at pi of the exceptional divisor, gi for a local equation of Ei and Çi for the
strict transform of 03BE with origin at pi .

1.3. Theorem. (1) Assume that there is some branch of 03BE non tangent to C. Then
the cluster ~g(03BE) consists of
(a) The point p with virtual multiplicity ep(03BE) - 1.
(b) The initial points q of 03BE with virtual multiplicities eq(03BE).
(c) For i = 1,..., r, the points of ~gi(03BEi) with the same virtual multiplicities.

(2) If all branches of 03BE are tangen to C, let y be a branch of 03BE with maximal
initial exponent. In this case the cluster ~g(03BE) consists of
(a) The point p with virtual multiplicity ep(03BE).
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(b) The initial points q on y with virtual multiplicities eq(ç)for the odd points and
eq(03BE) - 1 for the even points, except for the last initial point on 03B3 which has
virtual multiplicity eq( ç) - 1 in all cases.

(c) The remaining initial points q of 03BE with virtual multiplicities eq(03BE).
(d) For i = 1,...,r, the points of ~gi(03BEi) with the same virtual multiplicities.

Proof. Since for any branch y of 03BE the cluster ~g(03BE) has [y 03B6]p - 1 simple
points on y, by 1.2, we may iteratively use 1.1 until we reach a cluster K1
equivalent to ~g(03BE) in which the initial points q have multiplicity eq(03BE). The
other singular points q of ~g(03BE) still have in K1 virtual multiplicity eq(03BE) - 1
and there remain in K 1 just [03B3’·E’]p’ - 1 simple points virtually counted once
on each branch y, if we use for y the notations of 1.2. Fix one of the points pi
and consider the branches y going through pi : for such branches we have

p’ = pi and E’ = E, so that the part of K1 consisting of pi and the points
infinitely near to it agrees, virtual multiplicities included, with ~gi(03BEi). Then,
starting from K1, we use the unloading principle on the same way that lead us
from ~9i(03BEi) to ~gi(03BEi) successively for i = 1, ...,r. This gives a cluster K2
equivalent to K1 just as described in (1)(a), (1)(b) and (1)(c) of the claim.
Now we check the priximity relations at the points of K2. It is clear that the

proximity relations are satisfied at the points q which are equal or infinitely
near to one of the pi. On the other hand, by induction, a such q has virtual
multiplicity either eq(03BE) or eq(03BE) - 1 in K2 so that the proximity relations at the
initial points are also satisfied.
Assume now that there is some branch of 03BE non tangent to (. Then there is

at least one of the pi, say pl, in the first neighbourhood of p. Denote by 11 the
curve composed of the branches of 03BE going through pl and by 11’ that composed
of the remaining ones. From the induction hypothesis applied to ~g1(03BE1) one
can easily see that the sum of virtual multiplicities in K2 (or in ~g1(03BE1)) of the
points on 11 proximate to p is

both summations being for q on 1 and proximate to p. On the other hand, all
points q proximate to p on il’ have virtual multiplicities in K2 not bigger than

eq(03BE) = eq(~’) so that the sum of these multiplicities cannot be greater than
ep(~’). Thus, since ep(~) + ep(~’) = ep(ç) the proximity relation at p is satisfied,
K2 satisfies the proximity relations and then the first half of the claim has been
proved.
Assume now that all branches of 03BE are tangent to (. Let us write y = 03B3 for a

branch of 03BE with maximal initial exponent m/n and use for the initial points on
y the same notations as before. We put p1,1 = p and ej,j = epi,j(ç). Notice that
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we have m/n  1 and

is any other initial exponent, we have h’1  h1 so that p1,j is the only point in
K2 proximate to p1,j-1, for j = 2,...,h1: then one may unload one unity of
multiplicity successively from each p1,j on p1,j-1 until reaching an equivalent
cluster K3 where the points p1,j have virtual multiplicities el,j for j  h1 and
el,hl 

- 1 for j = hi, the other virtual multiplicities being unchanged. It is clear
that K3 satisfies the proximity relations at the points preceding Pl ,hl.

If s = 1, then K3 is the cluster described in part 2 of the claim. On the other

hand pl,hl is the last initial point on y so that there is at least one of the points
pi in the first neighbourhood of Pl,h,. One can see that K3 satisfies the

proximity relation at Pl,hi just as done for K2 at p when there are branches not
tangent to (. As the other proximity relations are still satisfied by K3, if s = 1
the proof is complete.

If s &#x3E; 1, then any initial exponent m’/n’ has either h’1 &#x3E; h1 or h’1 = h1 and
h’2  h2 so that the points proximate to pl,hi in K2 are P2,11 ... p2,h2 and, if
s &#x3E; 2, p3,1. We apply unloading principle at pl,,, and obtain an equivalent
cluster K4 in which pl,hi has virtual multiplicity el,hi and its proximate points
Pi,j have virtual multiplicities ei,j - 1. After this the proximity relation at pl,hl
is satisfied and it is clear that the proximity relations are also satisfied at each
proximate point whose first neighbourhood contains a Pi,j whose virtual

multiplicity is ei,j - 1.
If s = 2, then K4 is the cluster described in the second half of the claim. In

this case only the proximity relation at p2,h2 needs to be verified: this may be
done as in the preceding cases using that there is one of the points pi in the
first neighbourhood of p2,h2.
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If s &#x3E; 2 the proof continues on the same way: again one unity of multiplicity
is unloaded from each odd initial point p3,j, j &#x3E; 1, on the preceding point, and

then, if s &#x3E; 3, one unity of multiplicity is unloaded from the even initial points

p4, J, and also from p5,1 if s &#x3E; 4, on p3,h3, and so on until the last initial point
on y is reached. Then the proof ends as in the preceding cases. ~

2. Different g-polars of 03BE

Once the cluster ~g(03BE) has been described, we give an auxiliary lemma about
g-polars of 03BE relative to different equations.

2.1. LEMMA. Assume that there is a g-polar of 03BE that goes through ~g(03BE) with
effective multiplicities equal to the virtual ones and has no singularities outside of
~g(03BE). Then:
(1) If there is some branch of 03BE not tangent to (, all g-polars of 03BE go throug ~g(03BE)

with effective multiplicities equal to the virtual ones and have no singularities
outside of 03B4g(03BE).

(2) If all branches of 03BE are tangent to ( let q 0 be the last point on C with virtual
multiplicity ep(03BE) in ~g(03BE). Then all g-polars of 03BE having multiplicity ep(03BE) at p
go through ~g(03BE) with effective multiplicities equal to the virtual ones and haveno singularities outside of ~g(03BE) infinitely near to any q ~~g(03BE), q =1= qo.
The proof of 2.1 runs as for unibranched curves j ([2] 11.2) and therefore

we omit it.

3. Behaviour of polar curves

Let, as before, x, y be local coordinates at p with x = g so that ( is the y-axis.
Let 03BE be an algebroid curve with origin at p and y a branch of ç. Put n = [y. (]p
and let

be a Puiseux series of y where M = {mk/n}k =1,...,r is the system of characteristic

exponents and

N being the set of positive integers. As it is well known ([9] for instance), -6
determines and is determined by n and the topological (or equisingularity) type
of y.
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Let us recall that the different Puiseux series of y are obtained from any one

of them by means of substitutions x1/n - 03B5x1/n, En = 1. We will denote by Fy the
equation of y

whose roots as polynomial in y are just the Puiseux series of y.
The contact between two branches y and y’ may be defined as

where S and S’ are Puiseux series of y and y’ respectively. Once the character-
istic exponents of the branches are known, C(y, y’) determines and is deter-
mined by the intersection number [y’/]p ([4]).
Assume we have chosen a curve ÇO with origin at p and branches y°, ... , 03B30l.

Put nj = [03B30j· 03B6], cj,t = C(y°, yi) and denote by vÍfj the system of characteristic
exponents of (a Puiseux series of) 03B30j.

In the sequel we shall consider all algebroid curves 03BE which are equisingular
to ÇO and whose branches have with 03B6 the same intersection multiplicities as
their corresponding branches of 03BE0.

Let Y be a linear space whose points have complex coordinates a = (aj,i),
j = 1,...,l, i~I(Mj). Consider the subset L of 2 defined by the relations

for i/njE Mj, j = 1,...,l, and

for 8nj = 1, ént = 1 and j ~ t, j, t = 1, ... , l.
The set L is a Zariski open set (in fact the complementary of a finite number

of hyperplanes) of a linear subspace of 2.
If a = (aj,i) E L, let Ça be the curve composed of the branches 03B3j, j = 1, ... , l

with Puiseux series
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It is clear that 03BEa is equisingular to 03BE0, each yj corresponding to y9, and also
that [Yj. (] = nj = [y9 G. Conversely, it is not hard to see that any curve 03BE in
such conditions is 03BE = 03BEa for some a E L.

Notice that, in particular, if we take 03BE0 with no branches tangent to 03B6, we
are dealing with all curves equisingular to j° whose branches are non tangent
to 03B6.

If 03BE = 03BEa the components aj,i of a will be called coefficients of 03BE. Furthermore
we mean for a curve 03BE with general coefficients any curve 03BE = 03BEa with a system
of coefficients a that does not belong to a certain algebraic hypersurface of L.
We put Fyj = Fi and take F03BE = F1...FI as equation of 03BE. Then we have:

3.1. THEOREM. If the curve 03BE has general coefficients the polar of 03BE, Pg(F03BE)
goes through ~g(03BE) with effective multiplicities equal to the virtual ones and has
no singularities outside of ~g(03BE).
The proof of 3.1 will be given in sections 4 and 5 below. Notice that 2.1

extends the claim of 3.1 to other g-polars. Next corollary gives the behaviour
of the generic polars of generic curves with prescribed topological type and
needs no proof.

3.2. COROLLARY. Lf’ j° is taken with no branch tangent to ( and the curve 03BE
has general coefficients, the generic polars of 03BE go through ~(03BE) with effective
multiplicities equal to the virtual ones and have no singularities outside of ~(03BE).

4. Proof of 3.1, part one: the initial points

First of all, let us recall some facts about Newton polygons. Let il be a curve,
write

the equation of 11 and denote by R’ the set of non negative real numbers. The
border line of the convex envelope of the set

consists of two half-lines parallel to (or lying on) the axis and a broken line
joining them which is called the Newton polygon of il. In the sequel we will
consider the Newton polygons and their sides oriented from top to bottom and
from left to right, so that we say they start at the vertex with maximal 03B2 and
minimal a and they end at that with minimal 03B2 and maximal a.

It is clear that the x-axis (resp. the y-axis) is a component of il if and only if
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the Newton polygon ends (resp. starts) out of the a (resp. 03B2) axis. In fact, we
will not consider curves having the y-axis as component, so that all our
Newton polygons will start at the 03B2-axis.
As it is well known ([7], appendix B, for instance), one of the branches of 11

has a Puiseux series with leading term

if and only if there is in the Newton polygon of 11 a side r with slope - n/m
and a is a root of the so called equation associated to r:

in which Po is the ordinate of the end of r.
Put n’ = n/g.c.d. (m, n) and notice that 6r is in fact a polynomial in C[zn’].

Then the group of n’-th roots of unity acts on the roots of 6r(z), two conjugate
roots giving rise to different Puiseux series of the same branch of il.
Assume that r goes from (03B11,/03B21) to (03B10, 03B20) let 03B31,...,03B3k be the branches

whose Puiseux series has leading term of degree m/n (branches corresponding
to r) and put nt, t = 1,..., k for the polydromy order of the Puiseux series of
yt, this is, nt is the intersection multiplicity of yt and the y-axis. Then it follows
from the constructive proof of the Puiseux theorem ([7], app. B again) that

We say that 03B21 - Po is the height of 0393 and that ’1r = y +··· + Yk is the

component of 11 associated to r. The last equality may be equivalently stated
by saying that the height of r equals the intersection multiplicity of ’1r and the
y-axis.
The sides with slope bigger than - 1 correspond to the branches tangent to

the x-axis. We are mainly interested in the other branches, so let us assume in
the sequel that m/n  1. Since all branches 03B3t corresponding to 0393 have initial

exponents mt/nt = m/n, all of them go through the same set of initial points. In
other words, the clusters K(mt, nt ) (section 1) have the same sets of points. Then
an easy computation shows that 11r goes through K(ao - 03B11, 03B21 - Po) with
effective multiplicities equal to the virtual ones and contains no other initial
point. Thus we state for future reference:

4.1. LEMMA. The initial points 11r is going through as well as the multiplicities
of 11r at p and the initial points, depend only on the height and the slope of F:
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they are the points and multiplicities in K(M, N), N being the height and - N/M
the slope of r.

Let as before y be one of the branches corresponding to 0393 and denote by p’
the (necessarily free) point on y in the first neighbourhood of Ps,hs. Put

n’ = n/g.c.d. (m, n) and m’ = m/g.c.d. (m, n) and use the notation 1 to denote the
image in (!)p’ of any f~Op. There are local coordinates x, y at p’ related to x, y
by the formulas

and such that x is an equation of the exceptional divisor E of the composite
blowing-up giving rise to p’. The proof of this fact can be found in [2], section
10 for a = 1 and the general case follows on the same way. It is worth to

remark that former equations have been used since a long time for the classical
constructive proof of Puiseux’s theorem ([7], App. B, for instance) even if their
geometrical significance seems not to have been noticed. The same kind of
transformations have been recently used by Oka ([5]). Denote by ~’ the strict
transform of il with origin at p’. We have:

4.2. LEMMA. The multiplicity of a as a root of 03B50393 equals the intersection
multiplicity of E and tl’ at p’. It follows in particular that p’ and the points
infinitely near to p’ on y are all free and simple on ~ if and only if a is a simple
root of the equation associated to F.

Proof. Follows from an easy computation using the coordinates x, J. D

Now we will prove part of 3.1. Put il = Pg(F03BE):
4.3. PROPOSITION. Under the hypothesis of 3.1, the polar il goes through p
and the initial points of 03BE with effective multiplicities equal to the virtual

multiplicities of such points in ~g(03BE).
Proof. Let us call A the Newton polygon of 03BE and write 03931,...,0393d for the

ordered succession of sides of A. Let A’ be the Newton polygon of ri. Since the
equation of il is just ~F03BE/~y, the first d - 1 sides of A’, say F’, 0393’d-1, are the
translated of 03931,...,0393d-1 by the vector (0, -1). This is also true for the d-th
(and in fact last) side if 0 ends out of the a-axis.
Assume first that 03BE has some branch not tangent to the y-axis. An easy

computation shows that ep(~) = ep(03BE) - 1. Furthermore, in this case, either rd
has slope bigger or equal than - 1 or A ends outside of the a-axis. Anyway, all
sides of A’ with slope less than - 1 are translated of sides of 0 so that the claim
for the initial points follows from 4.1.
Then we may assume tht all branches of 03BE are tangent to the y-axis and, thus,
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that all sides rt have slope less than -1 and A ends on the a-axis. Denote by
(e - M, N) and (e, 0) the vertices of rd (hence e = ep(ç)) and put - n’/m’
(= -N/M) for the slope of rd in irreducible form. By the hypothesis of general
coefficients for 03BE we may assume A03B1,03B2 ~ 0 for (03B1, 03B2) E rd. Then, if N &#x3E; n’, there
are more than two points with integer coordinates on the side rd and thus rd
gives rise to a side rd of A’ going from the end of 0393’d-1 to Q = (e - m’, n’ - 1). If
N = n’, then Q = (e - m’, n’ - 1) is just the end of F’d-1.
From now on we describe the sides of A’ between Q and the a-axis. It is clear

that these sides should lie above the line L that goes through Q and has slope
- n’/m’. We use the fact, which will be proved below as part of lemma 4.5 that
for all points (a, fi) above L with 0  03B2  n’ - 1, the monomial of degrees (a, 03B2)
in oFç/oy has nonzero coefficient. Write m’/n’ as a continued fraction

and put Ut/Vt for the reduced form of the corresponding reduced fractions,
t = 1,...,s:

Put - v/u (u, v &#x3E; 0) for the slope of the first side, say 0393"1, of A’ after Q. Since the
end of this side has non-negative ordinate and lies above L, we have v  n’ and
u/v &#x3E; m’/n’. On the other hand, from the rational numbers with these proper-
ties, u/v is that closest to m’/n’ because there are no points with integer
coordinates and positive ordinate below 0393"1 and above L. After this a well
known geometrical property of continued fractions (see [8] ch. 7) shows that
either u/v = us-1/vs-1 if s is even, or u/v = (us - us-1)/(vs - vs-1) if s is odd.
One may also use Pick’s theorem at this point, see [3].

Let us deal with the case s is even first. Since
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and vs-2  vs-1 because of standard properties of continued fractions, 0393’1 ends
at

If s &#x3E; 2, we iterate by taking 03A91 and us-2/vs-2 instead of 03A9 and m/n = us/vs,
we find the next side has slope -vs-3/us-3 and ends at S22 =

(e - Us-4’ vs-4 - 1), and so on, until reaching the last vertex Qs/2 = (e, 0).
For odd s, one easily checks that the first side F" 0 after Q ends at

After this we may deal as for even s, so that, summarizing, for any s, we find
after the vertex Q:

(0) A side 0393"o with slope - (vs - vs-1)/(us - us-1) and height vs - vs-1 only in
the case s is odd

And then, in all cases, t being successively equal to 1,..., [s/2],

(t) A side F" t with slope - v2t-1/u2t-1 and height V2t-l h2t.
Once the Newton polygon A’ has been determined, the claim follows by

computing for each side of A’ the multiplicities of the corresponding compo-
nent of the polar 1 at the initial points, using 4.1. p

In particular we have seen:

4.4. COROLLARY (of the proof). If 03BE has general coefficients and all branches

of ç are tangent to the y-axis, then the Newton polygon of Px(F03BE) has (ep(03BE), 0)
as last vertex.

Let, as before, 03B31,...,03B3l be the branches of 03BE put ni = [03B3i· (]p, write mi/ni
for the initial exponent of yi and assume mi/ni  1 for all i. We have e = Zi mi.

Fix a branch y of 03BE corresponding to the last side rd. Assume (after
reordering the branches if necessary) that y = 03B31 and let us drop the index 1 in
the sequel, so that we write ml = m, n 1 = n and a1,i = ai .

Write the equation of ri in the form

Define
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and notice that T contains all points with integer coordinates which are on the
Newton polygon A’ between Q and the a-axis. Take

for (a, fi) E T. If the coefficients aj,i are considered as free variables, we have

4.5. LEMMA. Thefunction b is injective. For (03B1, 03B2) ~ T, B,,,@, does non depend on
ai if i &#x3E; (n/n’)03B4(03B1, fl) whence BCl,P is a non-constant linear function of ai if
i = (n/n’)03B4(03B1, fi).
Proof That ô is injective is easy to see: from 03B4(03B1, fi) = 03B4(03B1’, 03B2’) we obtain

fi ~ fi’ mod. n’, thus fi = 03B2’ because of the definition of T, and then a = a’.
If F4 = 03A303B1,03B2A03B1,03B2x03B1y03B2 we have BCl,P = (fi + l)ACl,p + 1 and fi + 1 =1= 0 if (a, fi) E T,

so that we will deal with ACl,P + 1 instead of B03B1,03B2.
Let us put bj = aj,mj for simplicity and write the equation of 03BE in the form

Notice that m/n  mj/nj for j = 2,...,l because rd is the last side of 0394. It is clear
from the equation F03BE above that if Acx,p + 1 depends on ai, then

the inequality being strict if ai appears with degree bigger than one. Since the
last inequality may be written as

only the effective dependence of A03B1,03B2+1 on a,, i = (n/n’)03B4(03B1, fi) remains to be
proved.

Then, take i = (n/n’)03B4(03B1, 03B2). Notice first that n/n’ = g.c.d. (m, n) divides i and,
since (03B1, fi) E T,

so that i~I(M1), ai certainly exists and ai ~ am. We will show that F03BE contains
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a monomial

where c is a non zero complex number. For this it is enough to see that

contains a non trivial monomial of degrees a, fi. Former derivative easily turns
out to be equal to

where the summation runs on all ordered (n - fl - l)-uples of different n-th
roots of unity. All we need to see is

and this may be easily verified after a computation like that in [1], proof of
Prop. 1. n

4.6. REMARK. It follows from 4.5 that the set T may be ordered by the
values of ô, and then, each B03B1,03B2, (a, 03B2)~T, depends on a coefhcient ai (i = (n/
n’)03B4(03B1, 03B2)) that does not appear in former B03B1’,03B2’. Thus, if the coefficients of 03BE are
general, then the coefficients Brx,p, (03B1, 03B2) ~ T, and, in particular, those correspond-
ing to points on A’ beyond Q, are general too.
We have found no referene for te following elementary result which will be

needed later on:

4.7. LEMMA. Let

be a polynomial where the ai are different non-zero complex numbers and ôi &#x3E; 0,
i = 0,..., s. Write

Then, for generic values of the ai, y has no multiple roots.
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Proof. That the (ai) giving multiple roots for y describe a Zariski-closed set
is clear. Since an easy argument from elementary calculus shows that the roots
of e are always simple if the ai are real, the claim follows. 0

Proposition 4.3 and the next one together prove the part of 3.1 relative to
initial points.

4.8. PROPOSITION. Under the hypothesis of 3.1, ri has no singularities outside
of ~g(03BE) infinitely near either to p or to any initial point.

Proof. First of all we will deal with the point p in the first neighbourhood
of p and on the x-axis. If p does not belong to ~g(03BE), then either 03BE has a single
smooth branch going through p, or 03BE has no branches through p at all.

Equivalently, either A has a single side with slope bigger than -1 and this side
has height one, or all sides of A have slope non-bigger than -1. It follows from
the description of A’ given in the proof of 4.3, that in both cases A’ has no side
with slope bigger than -1 and, thus, q does not go through p. In particular
this proves that if p is outside of ~g(03BE), then p is not a singular point of il.
Now, let y be any branch of 1 missing p. Assume that y corresponds to a side

r’ of A’ and that the leading term of a Puiseux series of y is axm/n where,
necessarily, m/n  1. Put m’/n’ for m/n in irreducible form, denote by p’ the first
non initial infinitely near point on y and assume that p’ Et ~g(03BE).

If E is the exceptional divisor of the blowing-up giving rise to p’, we need to
see that E and the strict transform of y with origin at p’, meet transversally at
p’, or, equivalently by 4.2, that a is a simple root of Or,.

Then, using the same notations as in the proof of 4.3, assume first that r’ is
one of the sides r, between Q and the end of A’. In this case it is clear form
4.5 that e,, has no multiple roots, because it is an equation in z" with general
coefficients.

Now, assume that r’ is one of the sides ri before Q. Then there is in A a
side, say r, parallel to r’. Let (a, fi) be the end of r and assume first that P &#x3E; 0.

It is easy to see that the equations 6r and tCr, are related by

Put z = z"’, both equations ér and ér, being in fact elements of C[z]. Last
equality easily gives

Then, if a is a root of d, too, it follows from the last equality that a is a multiple
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root of tffr and p’ belongs to ~g(03BE) against the hypothesis. If a is not a root of
tffr, it follows from 4.7 and the former equality that, the coefficients of 03BE being
general, a is a simple root of tffr, as wanted.

Lastly, if fi = 0, we have

from which a similar reasoning gets the same result. D

5. Proof of 3.1, part two: induction

Fix p’ to be one of the non initial points on 03BE which are either in the first
neighbourhood of p or in the first neighbourhood of an initial point. The point
p’ is anyone of the points noted Pi in 1.3. Put 03BE’ for the strict transform of ç
with origin at p’ and E for (the germ of) the exceptional divisor p’ is belonging
to.

After reordering if necessary, assume that the branches of 03BE through p’ are
03B31,...,03B3l’. If we write, as before, bjxmj/nj for the leading term of the Puiseux
series of Y j’ j = 1, ... , l, because of the way on which we have chosen the
Puiseux series of the branches in section 3, all branches through p’ have
Puiseux series with the same leading term, say,

where we assume g.c.d. (m’, n’) = 1.
On the other hand, since the other branches do not go through p’, we have

either

or

for j=l’+1,...,l.
We use the local coordinates at p’, , , as introduced in section 4: if f

denotes the image in Op’ of any f = (!)p, we have
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and x is an equation of E.
Write

where F4 is assumed to have no factor x and, hence, is an equation of 03BE’. It is

easy to see that the equation of the side of A with slope - n’/m’ is just
n’ a + m’ 03B2 = 03B4, so that in particular we have m’  ô.
The key fact for the induction is:

5.1. LEMMA. The strict transform with origin at p’ of Px(F03BE) is P(03BE).
Proof. An easy computation is enough: from the definition of F ç above,

whence

so that

where, like Fç, oFç/oy has no factor x. D

Put, as before, F, = Fi and let us write Ij = I(Mj) - {mj} for j = 1, ... , l. If
jl’, take nj = nj/n’ = mj/m’ = g.c.d.(mj, nj) and denote by Gj and G’j the
groups of nj-th and 9çth roots of unity, respectively.

5.2. LEMMA. If j  l’ we have

where Uj is invertible in Op’ and bj &#x3E; 0. Furthermore

is a Puiseux series for Yj, nj = [E. j]p’ and Uj(0, 0) and (~Uj/~)(0,0) depend
only on the coefficient a.
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Proof. From

we obtain

Then the claim follows by taking

D

Next lemma follows from a similar but easier computation.

5.3. LEMMA. For j &#x3E; l’ we have

Fi = 03B4jUj

where Uj is invertible in Op’ and bj &#x3E; 0. Furthermore Uj(0, 0) and (~Uj/~)(0,0)
depend only on the coefficients a and bi.
We choose j,j=1,...,l’ as Puiseux series of the branches of ç/, the

conditions of section 3 being still satisfied by the Sj. Then the coefficients of 03BE’
are coefficients of 03BE so that, in particular, if 03BE has general coefficients, 03BE’ has
general coefficients too. Thus, in the sequel we will assume, using induction,
that 03BE’ satisfies the claim of 3.1, this is, that P(F03BE’) goes through ~(03BE’) with
effective multiplicities equal to the virtual ones and has no singularities outside
of ~(03BE’).

In view of the inductive description of ~g(03BE) given at 3.1, once the behaviour
of Pg(F03BE) at p and the initial points is given by 4.3 and 4.7, the last piece in
order to achieve the proof of 3.1 is:

5.4. PROPOSITION. The strict transform of Pg(F03BE) with origin at p’ goes
through ~(03BE’) with effective multiplicities equal to the virtual ones and has no
singularities outside of ~(03BE’).

Proof. From 5.1 we know the strict transform of Pg(F03BE) to be a polar of ç/,
namely P(F03BE). On the other hand, because of the induction hypothesis, P(F03BE’)
goes through ~(03BE’) with effective multiplicities equal to the virtual ones and
has no singularities outside of ~(03BE’).
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Then, if there is some branch of 03BE’ not tangent to E, the claim follows directly
from 2.1(a).
Assume now that all branches of 03BE’ are tangent to E. Because of the

induction hypothesis we have ep,(03BE’) = ep’(P(F03BE’)) = e’ (say). Put

so that from 5.2 and 5.3 we have

and thus,

Use the plane 03B103B2 to draw Newton polygons of equations in x, , a being the
degree in x and 03B2 the degree in .
The Newton polygon of F03BE, ends at (e’, 0) because all branches of j’

are tangent to E, and that of ~F03BE’/~ ends at the same point by 4.4. Then, it is
clear that the Newton polygon of ~F03BE’/~ lies below that of F03BE, the two

polygons meeting just at their common end.
We will see first that the terms of bidegree (e’, 0) may not be cancelled in (1)

which implies that oFç/oy has the same Newton polygon as ~F03BE’/~.
Assume that 1 is one of the branches of 03BE’ with maximal initial exponent,

so that it corresponds to the last side of the Newton polygon of 03BE’. If

(m1 - m1)/n1 is the initial exponent of Yl’ it follows from 4.5 that the term of
bidegree (e’, 0) in ~F03BE’/~ depends on a1,2m1-m1 whence this coefficient does not
appear either in the term of bidegree (e’, 0) of Fz (by an easy computation) or
in U(o, 0), (~U/~)(0,0) (by 5.2 and 5.3). Thus it is clear that, under the
hypothesis of general coefficients for 03BE, the monomials of bidegree (e’, 0) in (1)
cannot be cancelled.

It follows in particular that P(03BE) has multiplicity e’ at p’ so that 2.1(b) may
be applied to: take h to be the greater integer strictly less than n1/(m1 - ml)
and call qo the point on E in the (h - l)-th neighbourhood of p’, then the polar
P(03BE) goes through ~(03BE’) with effective multiplicities equal to the virtual ones
and has no singularities outside of ~(03BE’) infinitely near to any q ~ qo.
Thus only the non existence of singularities in the first neighbourhood of qo

needs to be verified. Since P(03BE) has the same Newton polygon as P(F03BE’) as
seen before, it is equivalent to see that the equation associated to the last side
has no multiple roots, and this in turn follows easily from 4.5 and the analysis
of the monomial of bidegree (e’, 0) we made above. n
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