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1. Introduction

In this paper we consider the problem of Cohen-Macaulay module type for
orders or for Cohen-Macaulay algebras A which occur as local rings of
reduced curve singularities. It is more or less known that with respect to the
classification of (maximal) Cohen-Macaulay modules (or lattices) all orders A
over a discrete valuation ring (9 split into three types:
- finite, when A has only a finite number of indecomposable Cohen-Macau-

lay modules:
- tame, when the indecomposable modules of any fixed rank form a finite
number of 1-parameter families, together with, maybe, a finite set of

"isolated" modules;
- wild, which can be defined in two ways: either as those algebras having

n-parameter families of indecomposable modules of a fixed rank for arbitrary
big n, or as those for which the classification of modules includes the

classification of representations of all algebras.

In the geometrical case, when (9 = K[[t]] with algebraically closed field K,
it was proved by the authors [DG] that any order of infinite type is either tame
or wild (and, as a consequence, that both definitions of wildness coincide). Of
course, one would like to have an effective criterion to check whether a given
order is of finite, tame or wild type. In the commutative case, criteria of
finiteness were given by Jacobinski [Ja] and Drozd-Roiter [DR]. Later on this
was generalized to local orders by Drozd-Kirichenko [DK].

In the geometrical case the finiteness turned out to be closely connected with
the behaviour under deformations. Namely, as Greuel and Knôrrer observed
[GK], the complete local ring of some point of a reduced algebraic curve (we
call such rings curve singularities) is of finite type if and only if it dominates
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some of the so-called simple plane curve singularities An, Dn, E6, E7, E8 (cf.
[AVG] for their definition and characteristic properties).
A conjecture arose that the singularities of tame type should coincide with

those dominating a (strictly) unimodal plane curve singularity (cf. [AVG] and
[Wa] for the definition). Moreover, for the "parabolic" singularities T44 and

T36 the tameness has just been proved in connection with integral representa-
tions of finite groups by Yakovlev [Ya], Dieterich [Di 1], [Di 2]. Moreover,
Schappert [Sc] showed that all plane curve singularities which are not

unimodal have 2-parameter families of ideals, so are wild in view of the cited
result of [DG]. Nevertheless, finally this conjecture turned out to be wrong (by
the way, it seems that the wildness of W12 was more or less known, although
no proof of it was ever published).

Indeed, it happens that the "serial" singularities J;,q play quite another role
than the "exceptional" unimodal ones. Namely, in this paper we prove the
following criterion of tameness.

THEOREM 1. Let A be a curve singularity of infinite Cohen-Macaulay type.
Then it is of tame type if and only if it dominates one of the singularities Tpq.
Recall that Tpq is the local ring at zero of the plane curve given by the equation
Xp + 03BBX2Y2 + yq (03BB ~ 0, 1). Actually, except for (p, q) = (3, 6) or (4, 4), the
parameter 03BB can be omitted as all its values (including 03BB = 1) lead to

isomorphic rings, whilst for (p, q) = (3, 6) or (4, 4) both and the restriction
03BB =1= 0, 1 are indispensable.
We really use some geometry, namely, deformations, to prove the tameness

of Tpq . It turns out to be much easier to show that some other series of

uni-modal (though non-plane) singularities Ppq (cf. [Wa]) are tame. Since each
Tpq (for (pq) ~ (44) or (36)) is a deformation of Ppq, we are able to use a result
of Knôrrer [Kn] to obtain the tameness of Tpq and hence the sufficiency of the
condition of Theorem 1.

To prove its necessity we introduce in Section 6 some other conditions in
terms of over-rings of A resembling those used in [DR] to formulate a

finiteness criterion. Rather standard, although sometimes cumbersome, matrix
calculations show that whenever these conditions are not satisfied, A is of wild
type. Finally, we check that these overring conditions imply that A dominates
one of the singularities Tpq. That accomplishes the proof. The overring
conditions are very useful for checking tameness of singularities which are not
in normal form. We formulate them in Theorem 3 in Section 6.
At the same time we deal also with a more finer subdivision of tame type

depending on the least possible number of irreducible 1-parameter families
needed to obtain all indecomposable modules of given rank, except a finite set
of them. A is said to be of finite growth, provided that this number is bounded
by a constant (independent of the rank) and of infinite growth otherwise. In
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this context the main role is played by the parabolic singularities.

THEOREM 2. Let A be a curve singularity of tame Cohen-Macaulay module
type. Then A is of finite growth f and only if it dominates one of the singularities
T44 or T3 6 .

REMARK. Let A be a singularity Tpq with (p, q) = (4, 4) or (p, q) = (3, 6) and
A’ = End m its unique minimal overring, m the maximal ideal of A. Then A
and A’ are known to be non-domestic. Recall that a singularity A of tame
CMT is called domestic if there exists a finite set F1,..., Fm of strict 1-

parameter families (i.e. without trivial subfamilies) such that for any rank
vector r almost all indecomposable Cohen-Macaulay A-modules of rank r can
be induced from {F1,...,Fm}, i.e. are isomorphic to Fi(L) for appropriate i

and L (cf. Section 1 for notations). On the other hand, one can see that any
proper overring of T36 is domestic and all proper overrings of T’44 were proved
to be domestic in [Di2]. So, we obtain the following.

COROLLARY. A singularity A of tame CMT is domestic if and only if it
properly dominates one of the singularities T36 or T44.

Of course, just as for finite type, these results are of somewhat "zoological"
nature as we see no a priori reason why these quite different classes of

singularities should coincide. It is a really exciting problem to find such a
reason and a proof of this fact, which does not go through the classification.
On the other hand, the proof of the tameness of Tpq is the only place where

geometry is really used. That is why we hope that our criteria remain valid in
the non-geometrical case too. But the lack of techniques compel us to restrict
to curve singularities. Moreover, for the sake of simplicity, we suppose through
the whole paper that char K ~ 2 (e.g. even the definition of Tpq has to be
changed in characteristic 2).
We should like to thank the Deutsche Forschungsgemeinschaft for support-

ing our collaboration.

1. Preliminaries

Throughout the whole paper we identify a curve singularity with its complete
local ring A, which we assume to be reduced. We suppose the ground field K
to be algebraically closed and of characteristic not equal to 2. Then a

K-algebra A is said to be a curve singularity if and only if it satisfies the

following conditions:

(cl) A is complete, local and noetherian;
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(c2) A/m = K where m denotes the unique maximal ideal of A;
(c3) dim A = 1 where dim denotes the Krull dimension;
(c4) A contains no nilpotent elements.

Let F be the ring of fractions of A (with respect to all non-zero divisors).
Then F = 03A0si=1 Fi is a direct product of fields where s is the number of

branches of the singularity. The normalization A of A in F is finitely generated
as A-module and decomposes into a direct product of discrete valuation rings:
À = 03A01is039Bi. Here Ai is the normalization of the projection of A onto Fi. As
K is algebraically closed, 039Bi ~ K[[ti]] where ti is a uniformizing element of the
i th branch.

Let CM(A) denote the category of (maximal) Cohen-Macaulay A-modules
(or A-lattices) which coincides in our case with the category of finitely
generated torsion-free A-modules. If M~CM(039B), the natural mapping
M - M = M (8) A F is an injection and we shall always identify M with its

image in M. Thus, if some singularity r is an overring of A (we also say that
r dominates A), which means A c r c À, then the Cohen-Macaulay r-module
M0393 c M is defined. One can easily check that M0393 ~ M~039B 0393/T where T is
the torsion part of M~039B0393. As M is a finitely generated F-module,
 ~ ~si=1 riFi for some integers ri. Call the vector r(M) = (r1,..., rs) the rank
vector of M and let CMr(A) denote the set of isomorphism classes of

Cohen-Macaulay A-modules having fixed rank vector r.
Recall some definitions concerning the Cohen-Macaulay module type (CMT)

of a curve singularity A and families of A-modules. Let B be any K-algebra.
Denote by CM(A, B) the category of B - A-bimodules 5’ satisfying the

following ("family-") conditions:

(FI) g- is finitely generated as bimodule;
(F2) 9’A is torsion-free;
(F3) BF is flat;
(F4) for any B-module L, which is finite dimensional over K, the A-module

F(L) = L~BF belongs to CM (A).

In this case call g- a family of (Cohen-Macaulay) A-modules with base B.
Of course, the condition (F4) has to be checked only for simple B-modules L.
For instance, if B is an affine algebra (i.e. of finite type over K and com-
mutative), then we only require F(x):=F(B/mx) E CM (A) for any closed

point x~ Spec B. If B is affine, dim B = n and if for any closed point x~ Spec B
the set {y~Spec B|F(y) ~ F(x)} is finite, call ff an n-parameter family of
A-modules. ff is called irreducible if Spec B is irreducible.
Call a family g- E CM(A, B) strict provided for all B-modules L and L’ of

finite K-dimension the following holds: F(L) ~ 5(L’) whenever L ~ L’ and
F(L) is indecomposable if L is.
A is said to be of:
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- finite CMT if there are only finitely many indecomposable Cohen-Macau-
lay A-modules (up to isomorphism);

- tame CMT if it is not of finite CMT but for any fixed rank vector r there

exists a finite set {F1,...,Fm} of 1-parameter families of A-modules such
that almost all (i.e. all but a finite number) indecomposable Me CMr (A) are
isomorphic to Fi(x) for suitable i and x;

- wild CMT if for any finitely generated K-algebra B (not necessary com-
mutative) there exists a strict family W e CM(A, B).
It is well-known (cf. [DR]) that if A is not of finite CMT, then it possesses

1-parameter families of indecomposable modules for arbitrarily big rank.
Indeed, such A possesses a strict family with base K[t].

It was proved in [DG] that any curve singularity A of infinite CMT is either
of tame or of wild CMT. Of course, in the last case A possesses n-parameter
families of indecomposable modules for arbitrary n (thus A cannot be both of
wild and of tame CMT). Moreover, it is well-known (cf. [GP]) that to prove
the wildness one has only to construct a strict family wih base Kx,y&#x3E; (free
algebra with two generators) or K [x, y] or even K[[x,y]].

Suppose A to be of tame CMT. Denote by f (A, r) the least number of
irreducible 1-parameter families necessary to obtain almost all indecomposable
Cohen-Macaulay A-modules of rank vector r. Call A of:
- finite growth if there exists a constant c (depending on A but not on r) such

that f (A, r)  c;
- infinite growth provided f (A, r) is unbounded when r increases.

It is also known (cf. [Dr 1], [DG]) that if A is tame, then the 1-parameter
families Fi used in the definition of tameness can always be chosen with base
B = K[t]. Moreover, we can take the Fi even strict with some rational bases

Bi, i.e. those of the form Bi = K [t, gi(t)-1] for suitable polynomials gi(t).

2. Subspace categories

To classify the Cohen-Macaulay modules it is convenient to use the so-called

subspace categories (cf. [Ri]). Let C be a vector space category, i.e. a

subcategory (usually not full) of the category Vect of finite dimensional vector

spaces over K. We shall always suppose that C is fully additive [Dr 1] which
means here that any two objects of C possess a direct sum in C and the

endomorphism algebra C(X, X) is local for any indecomposable object X. In

particular, for any finite dimensional K-vector space L and any X E obC we
may consider L Q X as an object of C, identifying it with (dim L)X.

Define the subspace category SubC. Its objects are the pairs (X, V) with
X~obC and V a subspace of X. A morphism (X, V) - ( Y, W) is, by definition,
a morphism 9 c- C (X, Y) such that qJ(V) c W. For our purpose we need also
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the case when C is a category of A-modules, i.e. all its objects are modules over
some K-algebra A and its morphisms are A-homomorphisms (again not
necessarily a full subcategory). Then we consider the full subcategory SubAC
consisting of all pairs (X, V) such that VA = X. Call it the generating subspace
category.

Let B be a K-algebra. Define a family of subspaces with base B as a pair
F = (X, W) where X E obC and W is a finitely generated B-submodule in
B Q X such that the B-module B Q X/W is flat over B (and hence projective
as it is finitely generated, cf. [AC]). Of course, then W itself is flat (and
projective). Note that if B is noetherian (e.g. affine), any submodule

W c B Q X is finitely generated. For any finite dimensional (over K) B-
module L the tensor product L (8) B W is a subspace in L ~B(B Q X) ~ L Q X.
Hence, the object F(L) = (L Q X, L QB W) of SubC is well-defined. If C is a
category of A-modules we can impose the condition WA = B Q X and speak
about families of generating subspaces. Now we are able to define the subspace
type (or generating subspace type) for vector space categories just as we have
done for the Cohen-Macaulay module type in Section 1.
The following simple observation turn out to be of great use for the

calculation of Cohen-Macaulay modules. Suppose r to be an overring of A
such that rm = m, m the maximal ideal of A. Put A = r/m and consider the
A-module category C = C’ whose objects are of the form N/Nm where
N E CM(0393) and morphisms are just the mapping N/Nm ~ N’/N’m induced by
r-homomorphisms N - N’. Define the functor ~: CM(A) ~ SubAC by putting
~(M) = (MF/Mm, M/M m) (note that M0393m = Mm).

PROPOSITION 2.1. The functor qJ is full, dense, reflects isomorphisms and

preserves indecomposability (i.e. ~(M) ~ qJ(M’) implies M ~ M’ and f M is
indecomposable, then so is g(M), too.)

The proof is an evident consequence of the definitions.

COROLLARY 2.2. For any r as above, the Cohen-Macaulay module type of
A coincides with the generating subspace type of CÀ.

For the proof cf. [DG], where it is given in a slightly different but quite
analogous situation.

Usually one takes r = Endm = {03B3~F|m03B3 ~ m}. At least, we shall use this
choice in the following considerations.
We need also the next result proved in [Ba].

PROPOSITION 2.3. Suppose A to be Gorenstein and 039B’ ~ Endm. Then A’ is

the unique minimal overring of A and any indecomposable Cohen-Macaulay
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A-module is either a A’-module or isomorphic to A. Hence, the Cohen-Macaulay
types of A and A’ coincide.

3. The singularities PPq

Let us apply the method of the last section to concrete calculations. Namely,
consider the singularity PP,q which is, by definition [Wa], the ring A =

K [[x, y, z]]/(xy, xP + yq + z’) with p, q  2 and (p, q) :0 (2, 2). Its normaliz-
ation A and its location inside A depend on the parity of p and q. Namely:
- if p and q are both odd, then A = K[[t]]2 and A is the subalgebra of À

generated by the elements (t2, 0), (0, t2), (t P, tq);
- if p is odd and q is even, then A = K[[t]]3 and A is the subalgebra generated

by (t, t, 0), (0, 0, t2), (tq/2, 0, tP);
- if both p and q are even, then A = K[[t]]4 and A is generated by (t, t, 0, 0),

(0, 0, t, t), (tp/2, 0, tq/2, 0).
As A is a complete intersection and hence a Gorenstein ring, we can use

Proposition 2.3 and replace A by its unique minimal overring A’. In all three
cases described above A’ is generated by four generators: the first two

generators of A and two components of the third one (e.g. (t2, 0), (0, t2), (tp, 0),
(0, tq) in the first case).
From now on A will denote the minimal overring of some singularity P p,q

and m its maximal ideal. As the calculations are quite similar in all three cases,
we shall only do them for the first one. To use Proposition 2.1, put r = Endm,
A = 0393/m. Then 0393 = 03931  K 03932 where 03931 = K[[t2, tp-2]] and r2 = K [[t2, qq- 2]].
If N is a r-module, then N = N 1 Ef) N 2 with Ni a 0393i-module. But Fi is a

singularity of type An, thus the Fi-modules are well-known. Namely, the
indecomposable ones are isomorphic to rik (k = 1,..., (p - 1)/2 for i = 1 and

k = 1,..., (q - 1)/2 for i = 2) where 0393ik = K [[t2, t2k-1]] is considered as an

overring of 0393i. Hence,

where Xik = 0393ik/0393ikm. Obviously, Xik is the 2-dimensional space with basis

{xik,yik} where xik = 1 + rikm and Yik = t2k-l + rikm. By the way, if mi
denotes the maximal ideal of ri, then rik mi = rik m whenever rik =1= ri, i.e.

k =1= (p - 1)/2 for i = 1 resp. k ~ (q - 1)/2 for i = 2. So, in these cases {xik, yik}
is the minimal system of generators of Xtk as an A-module. Of course, if

0393ik = 0393i, then just xik generates xik.
To determine the category C = CÀ we also have to find C(Xik, Xjl) ~

Homr,(Fik, 0393jl)/Hom0393(0393ik, 0393jlm). Certainly, Homr(rik, rjl) = 0 if i =1= j. Identi-
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fying ~ E Homr,(Fik ril) with the element qJ(l) E Fil, we can consider this space
as a subspace of Fi,, namely {03B3 E Fil |03B30393ik c 0393il}. But this is either 0393il if 1  k or
the ideal generated by (t2(l- k), t2l-1) if k  1. It follows that C(Xik, Xil) is a
2-dimensional vector space with basis {aikl, bikll where

(in particular, aikk is the identity map); bikl(Xik) = Yil and bikl(yik) = 0.
Let V be a subspace of X = ~i,k nik X ik with basis {v1,...,vn}. Take as a basis

of X the set {xikem, Yikem 1 m = 1,..., nik} (for all possible values of i, k). Here em
denotes the standard basis vectors of Km : em = (0,..., 1,..., 0)T, 1 at the m th

place. Put

Then V can be described by the set of matrices Çik = (03BEjikm) and llik = (~jikm),
both of size nik x m. Of course, if we change the basis of V, the set {03BEik, llikl is
transformed to {03BEik03B8, ~ik03B8} for some invertible n x n matrix 0. Moreover, the
subspace V is generating (i.e. VA = X) if and only if the rows of each of two
following matrices g, and g2 are linearly independent, where

Similarly, an endomorphism ç of X can be described by a set of matrices
{03B1ikl, Pikll - both of size ni, x nik for all possible values of i, k, 1 - formed by the
coefficients of the components of qJikl:nikXik -+ nil Xil with respect to the bases
{aikl, bikll of C(X ik’ Xil) chosen above.
Moreover, ç is an automorphism of X if and only if all diagonal components

qJikk i.e. all matrices aikk, are invertible. One can now easily calculate the set of
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matrices {03BE’ikl, ~’ikl} corresponding to the subspace of cp(V), namely:

Therefore, Sub C coincides with the category of "representations of

two pairs of chains (E l’ F 1) and (E 2, F2) with the relation - " in the sense of
the work [Bo]. Here we put: F1 = {Z1}, F2 = {Z2} (one point sets),
Ei = {xim  xi,m-1  ···  Xil  Yil  Yi2  ...  Yi,1 (m = (p - 1)/2 for i = 1

and (q - 1)/2 for i = 2) and the relation - is given by Z1 ~ Z2, xik ~ Yik for
all possible values of i and k. Hence, it follows from [Bo] that C is of tame
subspace type and as well of tame generating subspace type. Moreover, using
the list of indecomposable representations given in [Bo], one can see that it is
of infinite growth. So we obtain by Corollary 2.2.

PROPOSITION 3.1. All curve singularities Ppq are of tame CMT and of infinite
growth.

4. Using deformations

Recall a result of Knôrrer [Kn] on the behaviour of modules in a family of
curve singularities. As we need only affine families (even only with the affine
line as a base space), we prefer an algebraic formulation. Thus, a family of
(affine) curves over some base algebra B is a flat, finitely generated B-algebra
2 such that for any closed point x E Spec B the algebra 2(x) = y~BK(x)
(where K(x) is the residue field of the point x) is a reduced affine algebra of
Krull dimension 1. In particular, there is only a finite number of singular points
YESpec 2(x).

Consider the completion Ay of the local ring 2(x)y and denote by
par( y, r) the greatest number n such that there exists an n-parameter family of

Ay-modules of rank r. Put par(x, r) = LYESpec2(x) par(y, r). As almost all

YESpec2(x) are non-singular, this sum is well-defined.

PROPOSITION 4.1 (cf. [Kn]). The function par(x, r) is upper semi-continuous
on Spec B, i.e. for any fixed m the set {x E Spec B|par(x, r)  ml is closed in

Spec B.1

1 Knôrrer proves the theorem only for the case r1 = ... = rs, but the general case can be proved in
the same way.
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As a module of rank r = (r1,...,rs) can split into at most r1+···+rs
indecomposable ones, Ay is of tame CMT if and only if par(y, r)  r1 + ··· + rs
where s is the number of branches, which is, of course, bounded for all y. On
the other hand it follows from [DG] that, if Ay is of wild CMT, par( y, r) grows
quadratically with r, just as the number of parameters of families of non-
conjugate pairs of matrices. This gives us the following

COROLLARY 4.2. The set W(Y) = {x~Spec B|039By is of wild CMT for some
y~Spec y(x)} is the union of a countable number of closed subvarieties of
Spec B.

In particular, suppose the family Y over B has a section 6 such that all

singularities 039B03C3(x) except possibly Au(o) are isomorphic. Then Ay : = 039B03C3(x),x~0 is
called a deformation of Ao : = 039B03C3(0).

COROLLARY 4.3. If Ay is a deformation of Ao and Ao is of tame CMT, then
Ay is also of tame CMT.

Now we are able to prove the sufficiency of the condition stated in Theorem 1.

COROLLARY 4.4. The singularities Tl,ql and hence all their overrings, are of
tame CM T.

Proof. The tameness of T44 was proved in [Di 2] (cf. also [Ya]) and that of
T36 in [Bo] and [Di 1]. So we may suppose that (p, q) ~ (4,4) and

(p, q) ~ (3, 6). Then all values of the parameter 03BB in the equation of Tp,q give
isomorphic rings.

Consider the algebra 2 over the polynomial ring B = K [03BB] (i.e. over the
affine line): 2 = B [x, y]/(xy - Âz, x P + yq + z2). We identify the points of
Spec B with the corresponding values of 03BB. Evidently, the only singular point
of each Y (Â) is (0, 0). Moreover, if 039B(03BB) denotes the corresponding singularity,
then 039B(03BB) ~ Tp,q for all Â ~ 0 whilst A(0) ~ Pp,q. Therefore, Tp,q is a deforma-
tion of Pp,q and hence is tame by Corollary 4.3 and Proposition 3.1.

REMARK 4.5. It is a very exciting observation that if we would have tried to
calculate the Tp,q-modules using the method of Section 2, this would have been
much more complicated than the calculations for Pp,q made in Section 3.

Indeed, as Tp,q is Gorenstein, we can consider instead of Tp,q itself its unique
minimal overring A. But then, if we put r = End m, the ring r turns out to be
isomorphic to the unique minimal overring of Pp-2,q-2. So we have first to do
the whole procedure for the P’s and only afterwards we should be able to start
with the T’s.

Unfortunately, we cannot do the same for the "parabolic" cases (3.6) or (4.4)
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since then T,,q really depends on the parameter Â. Thus Corollary 4.2 only
implies that Tp,q(03BB) is tame for "almost all" values of 03BB. Note, however, that if
the conjectured extension of Knôrrer’s theorem in the sense that the function
par(x, r) is constant for families of plane curve singularities with constant
Milnor number, the tameness of Tp,q(03BB) for all 03BB would already follow from the
tameness of Ppq . 

5. The singularities P33 and P34

We also need to consider two special singularities 33 and P34. Namely:
- P33 is the subalgebra of K[[t]]2 generated by the elements (t, t2), (t’, 0) and

(0, t5);
- P34 is the subalgebra of K [[t]]3 generated by (t, t, t), (0, 0, t2) and (0, t3, 0).

They are no longer Gorenstein, hence not complete intersections. Of course,
P33 dominates T37 and P34 dominates T38, so they are of tame CMT by
Corollary 4.4. But we have yet to prove

PROPOSITION 5.1. P33 and P34 are both of infinite growth.

REMARK 5.2. One can easily see that P33 deforms to P33 and P34 deforms to
P34* If we had an analogue of Knôrrer’s theorem for the number of families
f (A, r), then Proposition 5.1 would become a corollary of Proposition 3.1. But
unfortunately, although we are quite sure that such analogue is true, we are
not able to prove it ad hoc (it can be deduced, of course, from Theorem 2).

Proof. As the calculations for both cases are very similar, we shall do
them only for A = 33, which is a little bit more complicated. Again we use
the procedure of Proposition 2.1 and Corollary 2.2. Put r = End m =

{03B3~F|03B3m ~ m}. Now r is the subring of A = K[[t]]2 generated by (t, 0),
(0, t2) and (0, t3). Then A = r/m is the 3-dimensional K-algebra with basis
{1,a1,a2} where a 1 = (0, t2) + m and a2 = (0, t3) + m. In particular, aiaj = 0
for any i, j. Consider the overring A of r generated by (t, 0) and (0, t). Then
A’ = A/Am is also 3-dimensional with basis {1’, b 1, b2} where b1 = (0, t) + Am
and b2 = (0, t2) + Am. (We write l’ here to distinguish the units of A and A’).
Now b2 = b i and b1 b2 = 0 in A’. Note also that {1’,b1} is a minimal set of

generators of A’ as A-module.

Consider the full subcategory D of C0393039B consisting of all direct sums of copies
of A and A’. It is enough to show that D is of infinite growth (with respect to
families of generating subspaces). Then C0393039B is of infinite growth and hence A
by Corollary 2.2. Of course, D(A, A) = A and D(A’, A’) = A’ as algebras. As
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Homr(r, 0394) ~ A, all morphisms of D(A, A’) are generated by multiplication of
elements of r by those of A. So there are three linear independent morphisms:

Morphisms of D(A’, A) are also generated by multiplication of elements of
A by those of r, but the last should be taken from the set {03B3 ~0393 y0 c AI which
coincides in this case with the maximal ideal of r. Hence, we have again three
linear independent morphisms:

Let V be a subspace of X = mA EB m’A’ with basis {v1,..., vn}. It can be

described by the set of matrices ak = (03B1kij) and fik = (fikij)V, k = 0, 1, 2 where
vj = 03A3i(03B1oij1 + 03B11ija1 + 03B12ija2)ei + 03A3i(03B20ij1’+03B21ijb1 + 03B22ijb2)ei. Moreover, the

subspace V is generating if and only if the rows of the matrix

are linear independent. Hence, changing the basis of V, we may suppose that

Moreover, consider only the case when

Using the morphism b 1 (more precisely, the multiplication by b 1 in A’), we
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can transform the whole set of matrices into the form:

for appropriate matrices 70, 03B31, 72-
One can check that the use of all other morphisms of D leads to the following

permissible transformations of the triple (yo, 03B31, 72):

for some invertible matrices 03C3, i and arbitrary ~1, 112.
Consider the case when

(i.e. a direct sum of 1 x 1 and 2 x 2 Jordan cells with eigenvalue 0). Then 71
and y2 can be transformed to:

The permissible transformations for Yij will be:
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Therefore, the quadruple {03B3ij} is indeed a "representation of two pairs of
chains (E l’ F 1) and (E2, F2) with the relation ~" in the sense of [Bo] where
El = {x2  xll, F1 = {z1}’ E2 = {z2}, F2 = {yz  y1} with xi - yi (i = 1, 2)
and z1 ~ z2. Again, it follows from the list of representations given in [Bo] that
D and hence A is of infinite growth.

6. The overring condition

To prove the necessity of the condition of Theorem 1, we shall introduce a

necessary and sufficient condition for a singularity A to be of tame type. These
conditions apply to some overrings of A close to its normalization A and are
quite useful for checking tameness.
We introduce some notations which will be used through the remainder of

the paper. Let r be an overring of A and r /rm = A1 x ... x Am with local
algebras Ai of dimensions dl,..., dm. Denote d(r) = [dl,..., dm], the multiplicity
vector of A with respect to r, and d(0393) = dl + ..- + dm, the (total) multiplicity.
We always arrange di such that d1  ···  d.. Certainly, d(r) is the minimal
number of generators of r considered as A-module and d(A) is the usual

multiplicity of the singularity A.
Suppose that A = 03A0si=1 Ai with Ai = K [[ti]] and that ei is the idempotent of

039B for which Ai = elA. Let t = (t 1, ... , tj and 0 E A such element that Àm = 0À.
Of course, we may (and we shall) suppose that 03B8~m. Put A’ = tÀ + A (the
weak normalization of A or its biggest local overring), A" = OtÀ + A and
039B’i = A’ + Kei. Call an indempotent ei admissible provided ei m c m + OtÀ.
Note that 0A = (td11,..., tdss)039B where d(039B) = [d1,..., ds].

Geometrically, A’ is local and is the transverse union of s smooth branches
(i.e. glued together at one point with independent tangent directions), 039B’i is

semilocal, obtained from A’ by separating the ith branch. A" is a kind of

biggest local overring of A such that A and A" have the same embedding
dimension and multiplicity vector with respect to A.
Now we are able to state our overring conditions.

THEOREM 3. Let A be a curve singularity of infinite CMT. The following
condition are necessary and sufficientfor A to be of tame CMT:

(01) d(À) 4 and d(039B)~{[4]. [1, 3], [3]},
(02) d(039B’)  3 and d(039B’i) ~ [1, 3] for any admissible indempotent ei,
(03) if d(039B) = 3, then d(039B")  2.

REMARK 6.1. As we shall see, the condition d(039B’i) ~ [1, 3] is satisfied for any
idempotent ei provided A is of tame CMT. The point is that one has to check
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it only for admissible idempotents. Of course, in this case it means that if

d(A’) - 3, then 0394im ~ tjài.

Recall first the criterion for A to be of finite CMT as given in [DR] (cf. also
[GK]):

PROPOSITION 6.2. A is of finite CMT if and only if d(039B)  3 and

d(0À + n)  2.

We shall use also the next simple fact proved in [Dr 2]:

PROPOSITION 6.3. d(A) is an upper bound for the number of generators of all
A-ideals. In particular, d(0393)  d(A) for any overring r.

From Theorem 3 we obtain:

COROLLARY 6.4. If A is an integral domain (i.e. has only one branch), then it
is either of finite or of wild CMT.

To prove both Theorems 1 and 3, we shall show that the tameness implies
conditions (01-03) and then check that any ring satisfying these conditions
dominates some 1;"q.

In view of Corollary 4.4, that will do.
First of all, we prove the following main lemma.

LEMMA 6.5. Suppose that r is an overring of A with either d(0393)  5 or
d(r) = [4] or d(A) = [1, 3]. Then A is of wild CMT.

Proof. Note that d(0393) does not change if we replace A by rm + A. Therefore,
we may later on suppose that rm = m. Denote A = r/m.

If d(0393)  5, an easy count of parameters shows that par(A, r) grows quadrati-
cally with r (cf. [Dr 1]), so A is of wild CMT. Let d(r)q = [4], i.e. A is a local
4-dimensional algebra. We shall construct a strict family F of generating
subspaces in C0393039B with base B = Kx, y). There are the following possibilities
for A :

(i) A = K [a], a4 = 0:
(ii) A = K[a,b], ab = 0, a2 = b2;
(iii) A = K[a, b], ab = b2 = 0, a3 = 0;
(iv) A = K[a1, a2, a3l, aiaj = 0 for any i, j.

F will always be of the form (nA, W) for some n and some W c n(B Q A).
In all cases W contains the standard basis vectors ei (i = 1,..., n), so we shall
write down only the matrix E whose columns are the extra generators of W as
B-module. Here is the list of E’s for all cases:
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The proof of strictness is quite similar in all cases and involves only some
routine but tedious calculations. So we shall include it only for the case (ii)
(middle as for complexity).

If L is an m-dimensional B-module, then L~B W is the subspace in

L Q nA ~ nmA generated by all possible ei (i = 1,..., mn) and the columns of
the matrix E(L) obtained from E by replacing x and y by the matrices X and
Y defining the multiplication by, x and y in L. Of course, all units have to be
replaced by unit matrices. So, in the case (ii) E(L) will be:

An isomorphism of F(L) onto 5(L’) is an automorphism ç of nmA such
that ~(L ~B W) = L’ (8) B W Consider ç as nm x nm matrix with coefficients in
A. As both L ~B W and L’ ~B W contain all ei, the columns of this matrix

belong to L’ (8) B W Moreover, as all elements of E (L) lie in rad A, the columns
of E (L) are linear independent with ei. Hence, 9 (L (8)B W) = L’ (8)B W means
that qJE(L) = E(L’)6 for some invertible matrix u (with coefficients in K). As
a3 = ba2 = 0, we may omit in ç all parts containing a2 as a multiple. Write ç
as n x n block matrix: ç = (03B1ij + 03B2ij a + yjb) where i, j = 1,..., n and aj, 03B2ij,
Yij are m x m matrices with entries from K. Write also u as k x k block matrix

(aij) where k is the number of columns in E and Jj are m x m matrices.
Consider, for the case (ii), the place (23) in the matrices qJE(L) = E(L’)6.

Then we have:
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whence 03C312 = 03B132 = 03B131 = 0. The place (13) gives then 03B133a2 - 03C311a2, i.e.

a33 = 03C311. From now on we need only equalities modulo a2. The place (12)
gives now:

Then the place (11) gives:

Now the place (21) gives:

At last the place (22) gives:

Therefore, 03B111 = 03B122 = 03B133 = 03C311 = (J22 = 6 is an invertible matrix and X’ =

(J X (J -1, Y’ = (J Y (J -1, i.e. L ~ L’ as B-modules. The same calculation applied to
an endomorphism 03C8 of F(L) shows that modulo radical

where e is an endomorphism of L. If 03C82 = 03C8, then e’ = 8. If L is indecompos-
able, we have either 8 = 0 or 8 = 1, when either 03C8 = 0 or § = 1, i.e. F(L) is
also indecomposable. Hence ff is strict.

Quite analogous calculations prove the case d(A) = [1, 3], i.e. A = A 1 x A2
with Al = K and A2 a 3-dimensional local algebra. There are two possibilities:

Here are strict families Y7 = (X, W) of generating subspaces over B = Kx, y&#x3E;
given by X and a matrix E whose columns generate W as B-submodule in
B~X:
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(the upper block corresponds to the A,-part and the lower one to the A2-part
of generators for W). We omit the check-up of strictness.

Certainly, Lemma 6.4 implies conditions (01) and (02) of Theorem 3 except
d(039B) ~ [3]. Note that A’ is local, so d(A’) = 4 implies d(A’) = [4]. But the
remaining case is, probably, the most cumbersome.

LEMMA 6.6. If d(A) = [3], then A is either of finite or of wild CMT.
Proof. In this case A is a subring of À = K [[t]] containing t3 but neither t

nor t 2.
If A contains r4 or t5, then d(mÀ + A) = 2 and A is of finite CMT (these

are the singularities of type E6 and E.). So we have only to prove that the ring
A + t6039B is of wild CMT. Thus, we may suppose that A = t6039B + Kl + Kt3.
Then {03B3~F|03B3m c m} = r = t3039B + K1. Consider the A-submodule U c 2A
generated by the elements
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We have to determine A = End U. As LI = U039B = 2À, A is the subring in
Mat2(Â) consisting of all matrices 03B2 such that 03B2ui ~ U (i = 1, 2, 3). It is easy to
check that U ~ t3U, so A =3 t3 Mat2(Â). If 03B2ui ~ U (i = 1, 2), then the columns
of 03B2 lie in U, i.e. 03B2 modulo t3 is of the shape:

for some 03BE1, 1Jj E K. But 03B2u3~U gives then:

Hence, fi is of the shape:

In particular, 03B2 ~ 03BEI(mod t), whence 0 is local and U is indecomposable.
Following the method of Section 2, consider the vector space category

C = C0393039B and even its full subcategory consisting of all direct sums nA 0 mH
for A = r/m and H = U/Um. Here A is a 3-dimensional algebra with basis
{1, al, a2} where a1 = t 4 + m, a2 = t 5 + m and H is a 6-dimensional A-module
with basis {hi|i=1,...,6} where h1=u1+Um, h2=U2+Um, h3=u3 + Um,
h4 = t4ul + Um, h5 = t5ul + Um = - t4u2 + Um, and h6 = t5u2 + Um.
Moreover, aiaj = 0 in A for any i, j and in H we have:

and

Of course, we may identify C(A, A) with A and C(A, H) with H. Besides,
C(H, H)=0394/I where I={03B2~0394|03B2(H) c Hml. Therefore, it consists of elements
bj, b2 such that

and dij (i = 1, 2, 3; j = 4, 5, 6) such that dij(hi) = hj, dij(hk) = 0 if k :0 j plus the
identity.
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Now we have to calculate C(H, A) = Homr(U, r)/Homr( U, m). A homor-
phism ~:U ~ 0393 is given by a pair (~1, ~2) of elements of F. Moreover,
~(h1) = ~2 and ~(h2) = (pl have to belong to 0393 whence they are of the shape
~=(03BE1 + 03BE2t3 + 03BE3t4 + ..., Il + ~2t3 + ~3t4 +···). The condition ~(h3)~0393
gives also Çl = ~1 = 0. Thus C(H, A) has a basis consisting of elements

cij(i = 1, 2, 3; j = 1, 2) such that cij(hi) = aj and cij(hk) = 0 if k ~ j.
Knowing all morphisms, we are able to construct a strict family of generat-

ing subspaces in X = 4A ae 2H over the base B = Kx, y&#x3E;. The B-submodule
W c B Q X defining this family is generated by the standard basis vector
e1,..., e4 of 4A, all hiej for i = 1, 2, 3, j = 1, 2 in 2H and the columns of the
following matrix

Here the upper part corresponds to the direct summand 4A whilst the lower
one corresponds to 2H.
Again we omit the checking of wildness as it is nothing more than routine

calculation, since we know all morphisms of C.
The last step in proving the necessity of conditions (01-03) is the easiest

one. In view of Proposition 6.1, it remains to prove:

LEMMA 6.7. If d(A’) = d(A") = 3, then A is of wild CMT.
Proof. First of all note that rad A’ = tA and A’ = t039B + Kl is local. A’m =

t03B8039B + m and dim(tA/t0A) = dim(A/0A) = d(A) = 3 (cf. Proposition 6.2).
Hence, dim(t03B8039B+m/t03B8039B)=1, i.e. 039B’m=03B8t039B+K03B8. Then 039B"=03B8t039B+K03B8+K1,
rad A" = OtÀ + K03B8 = A’m and A"m = 03B82t03BB + m. Again dim(03B8t039B/03B82t039B) = 3 im-
plies that A"m = 02tÀ + K0 + K03B82, whence (rad A")2 c A"m.
Of course, without changing d(A’) and d(A"), we can replace A by

A"m + A, thus we shall suppose that A"m = m. Now we are able to

apply Proposition 2.1 to r = A". Then A = r/m is a 3-dimensional local

algebra with (rad A)2 = 0, so it has a basis {1, al, a2} with ai aj = 0 for

any i, j. Put A’ = A’/A’m which is also local 3-dimensional. Moreover,
for any homomorphism ~:0393 ~ 039B’ we have ~(rad 0393) c A’ rad r = A’m,
so the induced mapping A -A’ maps a 1 and a2 to 0. On the other

hand, put I = {03C8~Hom0393(039B’,0393) |03C8(rad A’) c m0393}. Then I ~ OtA. Certainly,
Homr (A’, r) = A’m, thus dim Hom0393(039B’, 0393)/I  1. As rad A’ is 2-dimensional,
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we can choose its basis {1’,b1,b2} in such way that 03B2(b2) = 0 for any

03B2~ C (A’, A). Now a strict family of generating submodules in X = A’ 0 2A
with base B = K(x, y) can be defined by the B-submodule W c B Q X

generated by the standard basic vectors el, e2 from 2A, elements l’ and b 1 from
A’ and the columns of the matrix:

Here the checking of strictness is quite easy and, of course, we again omit it.

7. End of the proof

To accomplish the proof of Theorems 1 and 2 we have to show, for a

singularity A of infinite CMT, that:
- if A satisfies conditions (01-03) of Theorem 3, then it dominates some Tp,q;
- if, moreover, A dominates neither T4,4 nor T3,6, then it is of infinite growth.

Recall the parameterization of Tp,q. As for Pp,q, it depends on the parity of
p and q. Namely:
- if p and q are both odd, then Tp,q is isomorphic to the subalgebra of K[[t]]2

generated by the elements (t’, tp-2) and (tq-2, t 2);
- if p is odd and q is even, then Tp,q is isomorphic to the subalgebra of K[[t]]3

generated by (t, t, tp-2) and (0, tq/2-1,t2) if (p, q) ~ (3, 6), and by (t, t, t) and
(0, t2, Ât2) with 03BB~{0, 1} if (p, q) = (3, 6);

- if both p and q are even, Tp,q is isomorphic to the subalgebra of K[[t]]4
generated by (t, t, tp/2 -1, 0) and (tq/2-1, 0, t, t) if (p, q) =1= (4, 4), and by
(t, 0, t, t) and (0, t, t, 03BBt) with 03BB~ {0, 1} if (p, q) = (4, 4).

(In the cases of T3,6 and T4,4 different values of 03BB really lead to non-isomorphic
rings.)
We keep the notation of the preceding paragraph. From now on we suppose

that A is of infinite CMT and satisfies (01-03). Then 2  s  4 as s  d(A)
and the case s = 1 is excluded by (01) together with Propositions 6.1 and 6.2.

Consider first the case s = 4. Then d(A) = [1, 1, 1, 1], hence 0 = t. As

d(A’) = dim(tA + 039B/03B8t039B + m)  3 and dim(A’/0tA) = 5 in this case, m has to
contain at least two elements linear independent modulo t2A. Of course, if

there are four of them, then A = tA + K1 dominates all T4,4. Let there be three
such elements. Changing ti, if necessary, and the numbering of branches, we
may suppose these three elements to be (t 1, 0, 0, at4), (0, t2, 0, bt4), (0, 0, t3, t4)
for some a, b~03934. Note that we must have uniformizing elements at all
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positions as Am = t039B. If either a(0) ~ 0 or b(0) ~ 0, one can easily check
that A dominates some T4,4. If both a(O) = 0 and b(O) = 0, then A contains
elements (t 1, t2, 0, tm-14) and (0, 0, t3, t4) for some m  4 and hence

(0, tn-12, t3l t4) since A =3 tn-1 039B for sufficiently large n. Thus, it dominates

T2.,2n- Moreover, in the last case A" = A + t2A is the minimal overring P’24 of
the singularity P24. By Propositions 2.3 and 3.1, P’24 and hence A are of infinite
growth.

If m contains only two elements, linear independent modulo t2Â, we may
suppose them to be (t1, 0, at3, t3) and (0, t2, bt3, ct4) for some a, b~03933 and
c~03934 such that either a(0) ~ 0 or b(0) ~ 0. Moreover, we claim that also either
b(0) ~ 0 or c(0) ~ 0: otherwise d(039B’2) = [3, 1] in contradiction with (02). If
c(O) = 0, the second element can be taken as (0, t2, t3, 0) and permuting the
branches into the order 1, 4, 2, 3, we see that A dominates some Tp,q with
(p, q) ~ (4, 4). Note that in this case it is again a subring of P’24, and therefore
of infinite growth. The cases b(O) = 0 (hence a(0) ~ 0 and c(0) ~ 0 or

a(0)c(0) = b(0) are the same. Finally, if a(0)c(o) ~ b(0) and all of them are
non-zero, one can easily check that A dominates one of the singularities T4,4.

Let now s = 3. There are two possibilities for d(À), namely, [1, 1, 1] and
[1, 1, 2]. If d(A) = [1, 1, 1], then again 0 = t. By Propositions 6.1 and 6.2,
d(A’) = dim(039B’/t2039B + m) = 3 whence dim(t039B/t2039B + m) = 2, i.e. m contains

only one element of t A/t2 A. Of course, we may suppose that it is t. On the

other hand, as d(Â) = 3, (03) implies that d(039B")  2, whence m contains at
least two elements of t2 A linear independent modulo t2 A. If there are three of
them, then 039B ~ t2039B and dominates all T3,6. So we may suppose that there are
exactly two of them: t2 and (0, at2, bt23) for some a E r2, b~03933 and, say,
b(0) ~ 0. If also a(0) ~ 0 and a(0) ~ b(0), then A dominates one of the

singularities T3,6. Let a(O) = 0 (a(0) = b(O) can be obviously reduced to this
one). Then A contains an element (0, tm-l, t2) for some m  4 and hence
dominates T3,2m· Moreover, in this case its overring A + t3039B coincides with the
singularity P34 considered in Section 5. But P34 is of infinite growth by
Proposition 5.2, hence so is also A. 

t23)If d(039B) = [1, 1, 2], then 0 = (tl, t2, t23). Again (02) implies that dim(tA/
0tA + m) K 2 i.e. m contains at least two elements linear independent modulo
OtÀ. If there are three of them, then it is easy to see that A contains the

elements (t, t, tp-2) for some odd p  5 and (0, tm-1, t2) for some m  3, hence,
dominates Tp,qm. Moreover, again A is a subring of P2,3, and therefore of
infinite growth.

Suppose now that m contains exactly two elements linear independent
modulo OtÀ. They can be chosen as (at 1, 0, t23) and (bt 1, t2, ctp-13) for some
odd p  5 and c(0) ~ 0 (again we use the inclusion 039B ~ t"A). If b(0) ~ (0), then
A dominates Tp,q for some even q and again is of infinite growth as a subring
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of P23. Otherwise, one can check that d(039B’2) = [1, 3] in contradiction with
(02).

Consider finally the case s = 2. As the calculations are quite similar to those
for s = 3, we only sketch them here. Again there are two possibilities for d(A),
namely, [ 1, 2] and [2, 2]. Let first d(A) = [1, 2]. Then 0 = (t1, t2) and d(039B’) = 3
whence dim(t039B/03B8t039B + m) = 2, i.e. 0 is the only element lying in mB03B8t039B. On the
other hand, condition (03) implies that m contains at least two elements of
OtÀ, linear independent modulo 02tÀ. If there are three of them, then A =3 03B8t039B
and A dominates the ring A generated by (t1, t22) and (t21, t32). But A is of finite
CM T by Proposition 5.1 (indeed it is the simple plane curve singularity of type
E7) which is impossible. Thus A contains exactly two such elements, namely 03B8

and (at2, bt3) with a(0) ~ 0 or b(0) A. But b(0) ~ 0 again implies that A is of
finite CMT (of type E7). Therefore, b(O) = 0, a(0) ~ 0 and hence A dominates

T3,q for some q  7. Moreover, A has an overring A + 03B82039B which coincides
with the singularity 33. As the latter is of infinite growth by Proposition 5.1,
A is also of infinite growth.
Now let d039B = [2, 2]. Then 0 = (t21, t2). Condition (02) implies that m

contains two linear independent elements modulo etn. But dim(03B8039B/03B8t039B) = 2,
hence A contains both (t2, tp-2) and (tq-2, t2) for some odd p, q  5. Therefore,
A dominates Tl’. and is a subring of P33, this is of tame CMT and of infinite
growth.

References

[AC] Bourbaki, N.: Algébre commutative, Paris: Hermann 1964-1969. (Translation: Com-
mutative Algebra, Paris &#x26; Reading: Hermann and Addison-Wesley, 1972.) (1969).

[AVG] Arnol’d, V.I., Varchenko, A.N. and Gusein-Zade, S.M.: Singularities of differentiable
maps, Vol. 1, Birkhäuser, Boston-Basel-Stuttgart, 1985.

[Ba] Bass, H.: On the ubiquity of Gorenstein rings, Math. Z. 82 (1963) 8-28.
[Bo] Bondarenko, V.M.: Bands of semi-chain sets and their representations, Preprint, Kiev,

Inst. Mat. Akad. Nauk, (1988).
[Di 1] Dieterich, E.: Solution of a non-domestic tame classification problem from integral

representation theory of finite groups (A = RC3, V(3) = 4), Mem. Amer. Math. Soc.
450 (1991) 140.

[Di 2] Dieterich, E.: Lattice categories over curve singularities with large conductor (to ap-
pear), (=Gitterkategorien über Kurvensingularitäten mit großem Führer, Habili-

tationsschrift, Zürich, (1990)).
[Dr 1] Drozd, Y.A.: Tame and wild matrix problems, in: Representations and Quadratic

Forms, Kiev, 39-74, 1979. (Translation in: Amer. Math. Soc. Transl. 128 (1986) 31-
55.)

[Dr 2] Drozd, Y.A.: On semi-group of divisors of a commutative ring, Trudy Mat. Inst.
Steklova Akad. Nauk SSSR 148 (1978) 156-167.

[DG] Drozd, Y.A. and Greuel, G.-M.: Tame-Wild Dichotomy for Cohen-Macaulay Modules,
Math. Ann. 294 (1992) 387-394.

[DK] Drozd, Y.A. and Kirichenko, V.V.: Primary orders with a finite number of indecompos-
able representations, Izv. Akad. Nauk SSSR. Ser. Mat. 37 (1973) 715-736.



338

[DR] Drozd, Y.A. and Roiter, A.V.: Commutative rings with a finite number of indecompos-
able integral representations, Izv. Akad. Nauk SSSR, Ser. Mat. 31 (1967) 783-798.

[GK] Greuel, G.-M. and Knörrer, H.: Einfache Kurvensingularitäten und torsionsfreie Mod-
uln., Math. Ann. 270 (1985) 417-425.

[GP] Gel’fand, I.M. and Ponomarev, V.A.: Remarks on the classification of a pair of
commuting linear transformations in a finite-dimensional space. Funct. Anal. Appl. 3
(1969) 325-326. (Translated from: Funktsional. Anal. i. Prilozhen. 3(4) (1969) 81-82.

[Ja] Jacobinski, H.: Sur les ordres commutatifs avec un numbre fini de réseaux indécompos-
ables, Acta Math. 118, (1967) 1-31.

[Kn] Knörrer, H.: Torsionfreie Moduln bei Deformation von Kurvensingularitäten, In:

Singularities, Representation of Algebras and Vector Bundles, Lambrecht 1985 (Eds.:
Greuel, G.-M.; Trautmann, G.). Lecture Notes in Math., Vol. 1273, Springer, Berlin-
Heidelberg-New York (1987) pp. 150-155.

[Ri] Ringel, C.M.: Tame Algebras and Integral Quadratic Forms, Lecture Notes in Math.,
Vol. 1099. Springer, Berlin-Heidelberg-New York (1984).

[Sc] Schappert, A.: A characterization of strict unimodular plane curve singularities, in:

Singularities, Representation of Algebras, and Vector Bundles, Lambrecht 1985 (Eds.:
Greuel, G.-M.; Trautmann, G.). Lecture Notes in Math., Vol. 1273, Springer, Berlin-
Heidelberg-New York (1987) pp. 168-177.

[Wa] Wall, C.T.C.; Classification of unimodal isolated singularities of complete intersections,
In: Singularities, Arcata 1981 (Ed.: Orlik, P.). Proc. Sympos. Pure Math. 40(2) (1983)
625-640.

[Ya] Yakovlev, A.V.: Classification of 2-adique representations of the cyclic group of the
eight order, Zap. Nauch. Semin. LOMI, 28 (1972) 93-129.


