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0. Introduction

A compact complex smooth surface X is called a K3 surface if the canonical
line bundle KX is trivial and dim H1(X, (9x) = 0. The period space of algebraic
K3 surfaces with a primitive polarization of degree 2d is of the form

Yt 2d = !?fi2d/r 2d where !?fi2d is a 19-dimensional bounded symmetric domain of
type IV and r 2d is an arithmetic subgroup acting properly discontinuously on
-q2d’ The Yt2d is an irreducible normal quasi-projective variety (Baily, Borel
[4]). It follows from the Torelli theorem for K3 surfaces (Piatetskii-Shapiro,
Shafarevich [18]) and the surjectivity of the period map (Kulikov [10]) that
4’2d is the coarse moduli space of K3 surfaces with a primitive polarization of
degree 2d. It is known that ’ ’C 2d is unirational for 1  d  9 or d = 11 (Mukai
[11]). The purpose of this paper is to prove the following:

THEOREM. Assume that d = p2 where p is a sufficiently large prime number,
then Yt2d is of general type.

In case of the moduli space 6g/Sp(2g, Z) of principally polarized abelian
varieties, g/Sp(2g, Z) is of general type for g  7 (Tai [23], Freitag [6],
Mumford [13]).
Our argument is based on the theory of toroidal compactifications of

arithmetic quotient of bounded symmetric domains (Ash, Mumford, Rapoport,
Tai [1]) and the extendability of pluri-canonical forms developed by Tai [23].
Let Ko2d be the open set in Yt2d on which the projection 03C0:D2d -+ Yt2d is

unramified. An automorphic form on Gd2d of weight k (with respect to r2d) gives
a k-th pluri-canonical holomorphic differential form on Ko2d. The generalized
Hirzebruch’s proportionality theorem, due to Mumford [12], implies that there
are sufficiently many automorphic forms of weight k » 0. On the other hand,
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if d is a square of integer, then T’2d is a (non-normal) subgroup of r2 (Lemma
3.2), and hence we get a finite map %2d -+ K2. Therefore we can compare the
data of %2d with those of -’,f2. Moreover, Scattone [20] studied the Satake-
Baily-Borel compactification of %2d (or equivalently, T2d-inequivalent rational
boundary components of D2d). These allow us to study the extension problem
of pluri-canonical holomorphic differential forms on %2d to a non singular
model of a toroidal compactification of K2d with only quotient singularities
(Theorems 6.18, 7.11, 8.4, 9.7).
To obtain explicit prime number p for which %2d is of general type needs to

solve several arithmetic problems, e.g. to count the number of integral points
in some cone (see §5). The author does not know the answer of this problem.
The plane of this paper is as follows: In Section 1, we recall some definitions

of lattices ( = symmetric bilinear forms) and the moduli space of polarized K3
surfaces. Next Section 2 is devoted to the description of !?)2d as Siegel domain
of the third kind, which is essentially given in [17]. In Section 3, we study the
group r2d . In this section and Section 9, we use the theory of lattices due to
Nikulin [16]. Section 4 is devoted to Tai’s criterion and the dimension formula
of cusp forms. In Sections 5, 6, we study the extension problem of pluri-
canonical holomorphic differential forms on %2d to the directions of 0- and
1-dimensional rational boundary components. To do this, we estimate the
dimension of the space of Fourier-Jacobi coefficients of automorphic forms. In
Section 6 (1-dimensional case), we essentially use the transformation formula
of theta functions. Sections 7 and 8 are devoted to the study of singularities of
a toroidal compactification of %2d. In particular, we see that, by using
Reid-Tai’s criterion, these singularities are canonical, and determine the branch
divisor. Lastly, in Section 9, we prove that there are sufficiently many cusp
forms extended holomorphically to a general point of the branch divisor, and
complete the proof of the main theorem.

In this paper, we shall use the following notation: H + = the upper half plane,
r = SL(2, Z), r(N) = the principal N-congruence subgroup of 0393 and

03931(N) = {[ab cd]~0393|a ~ 1, d ~ 1, b ~ 0 (mod N)}.

1. Moduli space of polarized K3 surfaces of degree 2d

(1.1) A lattice L is a free Z-module of finite rank endowed with an integral
symmetric bilinear form (, ). If L1 and L2 are lattices, then L1 (B L2 denotes
the orthogonal direct sum of L1 and L2. An isomorphism of lattices preserving
the bilinear form is called an isometry. For a lattice L, we denote by O(L) the

group of self-isometries of L.

A lattice L is even if x, x&#x3E; is even for each x~ L. A lattice L is non-degenerate
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if the determinant det(L) of the matrix of its bilinear form is non zero, and
unimodular if det(L) = + 1. If L is a non-degenerate lattice, the signature of L
is a pair (t+, t-) where t , denotes the multiplicity of the eigenvalue ± 1 for the
quadratic form on L Q R. A sublattice S of L is primitive if L/S is torsion free.

Let L be a non-degenerate even lattice. The bilinear form of L determines a
canonical embedding L~L* = Hom(L, Z). The factor group L*/L, which is
denoted by AL, is an abelian group of order Idet(L)I. We denote by i(L) the
number of minimal generator of AL. A non-degenerate even lattice L is called
2-elementary if AL ~ (Z/2Zy(L).
We extend the bilinear form on L to one on L*, taking value in Q, and define

We call bL (resp. qL) the discriminant bilinear form (resp. discriminant quadratic
form) of L. We denote by O(qL) the group of isomorphisms of AL preserving
the form qL. Let r: O(L) ~ O(qL) be a canonical homomorphism. We define
O(L) = Ker(i) which is a normal subgroup of O(L) of finite index.
We denote by U the hyperbolic lattice [0 1 ’] which is an even unimodular

lattice of signature (1, 1), and by E8 an even unimodular negative definite
lattice of rank 8 associated to the Dynkin diagram of type E8. Also we denote
by (nt) the lattice of rank 1 with the matrix (nt). For more details, we refer
the reader to [16].

(1.2) Let S be a K3 surface. The second cohomology group H2(S, Z) admits a
canonical structure of a lattice induced from the cup product ( , ). It is even,
unimodular and of signature (3, 19), and hence isometric to L = U~U~U~
E8 (D E8 (e.g. [21]). Let h be a primitive vector of L (i.e. L/Zh is torsion free)
with h, h) = 2d. Then the orthogonal complement of h in L is isometric to
L2d=U~U~E8~E8~-2d&#x3E;. Put 03A92d={[03C9]~P(L2d~C)|03C9,03C9&#x3E;=0
and (w, 03C9&#x3E; &#x3E; 01. Then S22d consists of two connected components, which are
mapped into each other by complex conjugation. We denote by D2d either one
component of Q2d’ which is a bounded symmetric domain of type IV and of
dimension 19. Let r2d be the group of isometries of L which fix h. It follows
from [16], Proposition 1.5.1 that r2d = Ô(L2d)* f 2d acts on 03A92d as auto-

morphisms. We denote by r2d the subgroup of r2d of index 2 which consists
of isometries preserving the connected components of 03A92d. Then r2d acts on
D2d properly discontinuously, and hence by Cartan’s theorem D2d/03932d has a
canonical structure of normal analytic space. By [4], D2d/03932d is a quasi-
projective variety.
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A polarized K3 surface of degree 2d is a pair (X,H) where X is an algebraic
K3 surface and H is a primitive (i.e. mC implies m = ± 1), numerically effective
divisor on X with H2 = 2d. A nowhere vanishing holomorphic 2-form ffix on
X gives a point [wx] of D2d modulo r2a, which is called the period of (X, H).
It follows from the global Torelli theorem [18] and the surjectivity of the
period map [10] that D2d/03932d is the coarse moduli space of polarized K3
surfaces of degree 2d.

2. Siegel domain of the third kind

(2.1) Let GR be a connected component of a linear algebraic group O(L2d~R),
defined over Q, with associated bounded symmetric domain -92d = GR/K,
where K is a maximal compact subgroup of GR. Let 2d be the analytic set
{[03C9]~P(L2d~C)|03C9,03C9&#x3E;=0}, which is called the compact dual of D2d. We
denote by D2d the topological closure of D2d in 2d. A boundary component F
of D2d is a maximal connected complex analytic subset in D2dBD2d. Group
theoretically, it can be seen that the stabilizer group N(F ) = {g E GR|g (F)~F}
is a maximal parabolic subgroup of G,, and conversely. A boundary compo-
nent F is rational if N (F) is defined over 0. For more details we refer the
reader to [1], [14], [17], [19]. In our case, we can determine the rational

boundary components of D2d as follows (e.g. [20]):

PROPOSITION 2.2. The set of all rational boundary components of D2d
corresponds to the set of all primitive totally isotopic sublattices of L2d. If E is a

primitive totally isotropic sublattice of L2d, then the corresponding rational

boundary component is defined by P(E ~ C) n D2d.

Since the signature of L2d = (2,19), the dimension of a rational boundary
component is either 0 or 1. We need more explicit description of a rational
boundary components to deal with a toroidal compactification of !!)2d/r2d.

In the following of this section, we assume d = p2 for a prime number p. To
describe 0-dimensional rational boundary components, we fix an orthogonal
direct decomposition

where Ui is a copy of U (i = 1, 2). Let {e, f 1 be a base of U1 with

e,e&#x3E; = f,f&#x3E; = 0 and e,f&#x3E; = 1, and u is a base of -2d&#x3E;. Put vo = e and
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PROPOSITION 2.3. ([20], Remark 4.2.3) The set of primitive isotropic rank 1
sublattices {Zvm|0  m  (p - 1)/21 corresponds to a complete set of r2a-
inequivalent 0-dimensional rational boundary components of Çfi 2d.

PROPOSITION 2.4. ([20]) (i) Let E be a primitive totally isotropic rank two
sublattice of L2d. Then there exists a base {e1,...,e21} of L2d such that

E = Ze1 Et) Ze2, E = Ze1 Et) ... Et) Ze19 and the corresponding matrix of L2d is

where E is the orthogonal complement of E in L2d, 03B1 is either 1 or p, fi is an

integer with 0  03B2  oc and K is any matrix representing the bilinear form on
E 1/E.

(ii) Let r be the number of 03932d-inequivalent 1-dimensional rational boundary
components of D2d. Then r  Md8, where M is a constant not depending on d.

Proof. The assertion (i) corresponds to [20], Lemma 5.2.1. The second

assertion follows from [20], Corollaries 5.4.8, (3), 5.6.10 and the result of

§5.3. 0

(2.5) Remark. Let (D2d/03932d)* be the Satake-Baily-Borel compactification of
D2d/03932d ([4]). Assume that p is odd. Then the configuration of the boundary
(D2d/03932d)*B(D2d/03932d) can be described ([20], Figure 5.5.7). There are two
types of 1-dimensional component F* of the boundary corresponding to F as
in Proposition 2.4:

where H+ is the upper half plane, F = SL(2, Z) and 03931(p) = [ab cd] ~03A6|a = 1,
d = 1, b ~ 0 (mod p)} There are (p + 1)/2 0-dimensional components v*
corresponding to vi as in Proposition 2.3. The component v* is a cusp of all
modular curves F* and v* (1  i  (p - 1)/2) is a cusp of F* isomorphic to
H+ /r1(p).

(2.6) Let F be a rational boundary component of D2d. We denote by N(F),
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W(F) or U(F) the stabilizer subgroup of F( c GR), the unipotent radical of N(F)
or the center of W(F) respectively. Define

Then there exists a holomorphic isomorphism

where m = 0 if dim F = 0, m = 17 if dim F = 1, and

where C(F) is a self-dual homogeneous cone in U(F) with respect to a positive
definite bilinear form « , » on U(F) defined over Q and

is a quasi-hermitian form depending real analytically on TE F ([1], Chap. 3, §4
or [17]). Here se f dual means that

([19], p. 31). The above representation is called the Siegel domain of the third
kind of !?fi 2d. In the following we shall give a description of the Siegel domain
of the third kind of !?fi 2d. This is essentially given in [17].

(2.7) In the case F is of dimension 0: Assume F corresponds to th- isotropic
sublattice v. (Proposition 2.3). Let {e1, e2l or {e3,..., 1 el8j be a base of U2 or
E8 (B E8 respectively. Put e19 = u + 2mpf, e20 = f and e21 = vm. We consider

{e1,..., e21} as a 0-base of L2d 0 Q. Then

Cl if m=0
where oc = 1 if m= 0 By definition,p if m &#x3E; 0.
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Write g = C D and further B = (B1, B2), C = t(C1, C2) and D = (dij)1i,j2
so that Bi, Ci are column vectors in R19. Then a direct calculation shows:

Let z = 03A321i=1 ziei E P(L 2d 0 C) be a homogeneous coordinate. Then

where qo is a symmetric bilinear form defined by the matrix (ei, ej&#x3E;)3i,j19
and Z0 = (z3,...,z19). If z~D2d, then Z20 =1= 0, and hence we may assume
z20 = 1. Then z~03A92d if and only if 2 Im(z1)· Im(z2) + qo(Im(z 0)) &#x3E; 0. Since
qo(Im(z o))  0, a connected component of 03A92d is then defined by the additional
condition Im(zl) &#x3E; 0 or Im(z1)  0. We may assume that !!)2d corresponds to
the component with Im(zl) &#x3E; 0. Put D2d(F) = U(F)c.!!) 2d (c EJj 2d). Then it is
easy to see that

Now we conclude:

PROPOSITION 2.8. Put C(F) = {(yi)~ R19|2y1y2 + q0(y3,..., Y19) &#x3E; 0,
Yl &#x3E; 01. Then D2d = {(zi)~D2d(F)|(Im(zi))~C(F)}.
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PROPOSITION 2.9. The action of g~N(F)Z on D2d(F) is as follows:

where ± A preserves the cone C(F).
Proof. Since g E r2d and e21 = vm is primitive in L2d, g(e21) - d22· e21 is also

primitive, and hence d22 = ±1. By the relation d11·d22 = 1, we have

d11 = ± 1. Now the assertion is obvious. D

(2.10) We introduce a subgroup of N(F) which is used in §5. First note that
N(F) acts on U(F) by conjugation and its kernel is U(F). We denote by Gi (F)
the image of the induced homomorphism p: N(F) ~ Aut(U(F)). Then GI(F)
preserves the cone C(F) and N(F) = Gl(F)· U(F) (semi-direct product). Under
the identification

A B
given by 

C DI Bj, N(F) acts on R" as

We denote by r2d (F) the image p(r2d). Since a = ± 1 for any ~~03932d, we may
consider r2d (F) as a subgroup of O(K (D Q) * {± 1}.

(2.12) In case F is of dimension 1: Let Ze1 EB Ze2 be a totally isotropic
sublattice of L2d corresponding to F. Let {e1,...,e21} be a base of L2d as in
Proposition 2.4. We denote by t = 03A321i=1 tiei~P(L2d~C) a homogeneous
coordinate. Then

where q o is a symmetric bilinear form induced from K and to = (t3’... , t19).
We may assume t21 = 1. Then tEQ2d if and only if 2 Im(t1)·Im(t0)+
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qo(lm(t o)) &#x3E; 0. We may assume that D2d is the connected component of 03A92d
with Im(t 1) &#x3E; 0. An elementary calculation shows:

where U, W, Z are 2 by 2 matrices, X is 17 by 17 matrix and tV, Y are 17 by
2 matrices;

Then it is easy to see that:

where H+ is the upper-half plane. Now we define a quasi-hermitian form on
C17 as follows: for 03C4~H+, w, w’ E C17,

Finally define C(F) = {y~R|y &#x3E; 01. Then we have:

PROPOSITION 2.13. Put z = t1, w = (t3’...’ t19) and -C = t2o. Then

D2d = f (z, w, 03C4)~D2d(F)|Im(z) - Re{h03C4(w, w)} E C(F)}.
PROPOSITION 2.14. The action of N(F)z = N(F) n r2d on D2d(F) is as

follows:
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where Z = [a Jer = SL(2, Z), v1 is the first row vector of V and (w 11 w2)Le dj
is the first row vector of W
Proof Since gEr2d’ tUHZ = H and det(U) &#x3E; 0, U, ZeF. Hence the asser-

tion follows from the relation 203B1t2 = -2t1t20 - qo(to) - 2p. D

(2.15) Let Fo be a 0-dimensional rational boundary component and F1 a
1-dimensional rational boundary component such that Fois a cusp of F1. Take
a Q-base {e1,...,e21} such that F, (resp. Fo) corresponds to the totally
isotropic subspace Qe1 E9 Qe2 (resp. Qe2) and

where K is a negative definite matrix of degree 17. Let t = 03A3tiei be a

homogeneous coordinate of P(L2d Q C). Then by the same way as in (2.7),
(2.12), we have:

where C(F 0) = {(yi)~ R19|2y1y20 + qO(Y3’..., Y19) &#x3E; 0, Yl &#x3E; 0);

where z = tl, w = (t3’...’ t19)’ ! = t20 and C(F 1 ) = {y~R|y &#x3E; 0}. Under the
identification (2.11), U(F1)=R~{(c,0,...,0)~R19} ~ U(F0)={B1|B1~R19}
and C(F1) c C(F0). For y = (yJE R19, put q(y) = 2YIY20 + qO(Y3’...’ Y19).
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Since the signature of q is (1, 18), if y E C(Fo)BC(Fo), then q(y) = 0, and hence
we have

These half lines R+·y are called boundary components of C(F 0). Note that the
lattice L2d induces a Q-structure on R19. If y is defined over Q, then the

corresponding boundary component R+·y is called rational. It is known that
for fixed 0-dimensional rational boundary component Fo of D2d, there is a
bijective correspondence between the set of 1-dimensional rational boundary
components F of Ç) 2d with F ~ Fo and the set of rational boundary compo-
nents of C(Fo) as

([1], Chap. III, §4, Theorem 3).

3. The group 03932d

(3.1) In this section we assume d = p2 and compare the groups r2d and r2.
First we fix a direct sum L2 = U1 E9 U 2 E9 E8 E9 E8 ~ -2&#x3E;, where U1, U2 are
copies of U. Let u’ be a base of  - 2). Then L2d is isometric to the sublattice
of L2 generated by u = pu’ and U1 E9 U2 E9 E8~ E.. In the following, we
consider L2d as a sublattice of L2 under the above isomorphism. The following
was suggested by K. G. O’Grady.

LEMMA 3.2. h2d is a subgroup of r2 of finite index. Furthermore if d = p2 for
an odd prime number p, then [I-’2 :03932d] = p20 + pl0.

Proof. First we shall prove that O(L2d) c O(L2). Consider the subgroup
M = L2/L2d in AL2d = L*2d/L2d which is totally isotropic with respect to qL2d .
The lattice L2 is reconstructed from M as

Let ~ e O(L2d). Then ~ naturally extends to an isomorphism qJ* of L!d. Let ~*
be the induced isomorphism of AL2d- Since AL2d is a cyclic group, ~* preserves
M, and hence ~*(L2) c L2. Thus ~ can be uniquely extended to an isometry
of L2. Hence r2d c r2.
Next consider the inclusion of lattices: pL2 c L2d c L2. Then the affine space
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L2/pL2 (~(Z/pZ)21) has a structure of non-degenerate finite quadratic form
over Z/pZ defined by

The group O(L2) naturally acts on L2/pL2 as isometries. Note that L2d/pL2 is
a non-degenerate hyperplane of L2/pL2. There are two types of nondegenerate
quadratic space of dimension 2m over Z/pZ according to its invariant ( -1)m0
in (Z/pZ)*/(Z/pZ)*2, where A is the discriminant (e.g. [5], p. 63). In our case,
we have the following two types:

where Pi is a hyperbolic space and u, v) is a 2-dimensional space generated
by {u, v} with (u, u) = 1, (u, v) = 0, (v, v) =0 (-03B8~(Z/pZ)*2). Since L2d/pL2 is
the direct sum of two copies of (U~E8)/p(U~E8), the discriminant of
L2d/pL2d is a square in (Z/pZ)*. Hence L2d/pL2d ~ V+.

Claim: The group O(L2) acts transitively on the set of all non-degenerate
hyperplanes in L2/pL2 isometric to V+.

We shall give the proof of the claim in the latter. Consider the action of O(L2)
on L2/pL2 which induces a homomorphism

The group O(L2d) (resp. O(L2d/pL2) x Z/2Z) is the stabilizer subgroup of the
hyperplane L2d/pL2 of O(L2) (resp. 0(L2/pL2)), where Z/2Z is generated by a
symmetry with respect to the hyperplane L2d/pL2. It follows from the claim
that O(L2/pL2) also acts transitively on the set of all nondegenerate hyper-
planes isometric to V+ and

It is well known that ([5], p. 63):
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Hence [O(L2): O(L2d)] = (p20 + p10)/2. On the other hand, [O(L2):03932] = 2
and[O(L2d) : r2d] = 4 ([20], Lemma 3.6.1, Example 3.6.2). Thus we have

[03932:03932d]=p20+p10.

Proof of Claim. Let V be a non-degenerate hyperplane in L2/pL2 isometric
to V+. Define

Then L is an even lattice with [L : pL2] = p20. Since

we have Idet(L)1 = 2p2. Moreover V is a totally isotropic subgroup in

ApL2 = ( pL2)*/pL2 with respect to qpL2 and qL ~ (qpL2| V)/V ([16], Proposi-
tion 1.4.1). Hence AL ~ Z/2p2Z. Let q2 (resp. qp) be the restriction of qL on
Z/2Z (resp. Z/p2Z): qL = q2~q03B8p ([16], Proposition 1.2.2). Then L2/L is a

totally isotropic subgroup of AL of order p and qL2 ~ (qL |(L2/L))/(L2/L) ~ q2.
Hence

is given by q2(m mod 2Z) = - m2/2. On the other hand, q’ is one of the

following:

where, using the Legendre symbol, 0 = (a/p) = ± 1 (see [16], §1.8). Let a be an
integer with ( - 2a/p) = 0. We now consider the following lattice

which has the discriminant form q2 p q:. Since rank(L) &#x3E; 2 + l(L), the genus
of L contains only one isomorphism class ([16], Theorem 1.14.2). Hence
L ~ L’. Fix a decomposition
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and take a base {x, yl, {u} of 
2a OJ , -2&#x3E;, respectively. Since L2 is obtained

from L by adding (1/p)y, y c- pL2. Hence

where x = x mod pL2, U = u mod pL2. Note that the first factor of the above
decomposition is the direct sum of 9 hyperbolic spaces because (-190394 = 1,
where A is the discriminant of U (9 E8 Q E8. Hence V ~ V+ if and only if

x, u&#x3E; is isometric to a hyperbolic lattice. Since the discriminant of x, ù) is
equal to - 4a, (x, u) is isometric to a hyperbolic space if and only if

(403B1/p) = (a/p) = 1. Hence we may assume that a = 1. Then

Note that qL ~ qL2d . Hence, again by [16], Theorem 1.14.2, L ~ L2d. The
sublattices L and L2d give two decompositions of L2 into

Obviously there is an isometry ~ E O(L2) which sends one decomposition to the
other. Then ~(L) c L2d, and hence V is equivalent to L2d /pL2 modulo O(L2).

n

(3.3) We use the same notation as in (2.7). Let F be a 0-dimensional rational
boundary component of D2d corresponding to Zvm. Note that vo or vm/p=
mu’ + e + m2f(m &#x3E; 0) defines a primitive isotropic sublattice of L2. Hence we
may consider F as a rational boundary component of D2. In Section 5, we need
to estimate the indices [r2(F): r2d(F)] and [U(F) n 03932: U(F) n r2d].

First note that {e1,...,e21} generates a sublattice in L2d of index a and
{e1,..., e18, elglp, e2o, e21/03B1} is a base of L2. Let M2d (resp. M2) be a primitive
sublattice of L2d (resp. L2) generated by {e1,...,e19} (resp. {e1,...,e18, e19/p}).
LEMMA 3.4. [03932(F):03932d(F)]  O(p18).
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Proof. First consider the case that F corresponds to vo. Then {e1,..., e21} is
a base of L2d . Hence, for any

A~O(M2d). Therefore h2a(F) is a subgroup of O(M2a)  {±1}. Since L2d =
U~M2d, any 03C8~ O(M2a) can be extended to an isometry qJ E Õ(L2d) with
~|M2d=1. Hence 03C8~03932d(F) if 03C8(C(F)) c C(F). By [20], Lemma 3.6.1,
[O(M2d): O(M2a)] = 2, and hence the index of 03932d(F) in O(M 2d)  {± 11 is at
most 8. Similarly, r2(F) is a subgroup of O(M2)  {±1} of index at most 8.
By the same argument as in the proof of Lemma 3.2, [O(M2):O(M2d)] =
O(p18). Thus we have [03932(F): 03932d(F)] = O(p18).
Next consider the case that F corresponds to vm (m &#x3E; 0). Let 03C8 E (M2d).

Then, by [16], Proposition 1.5.1, 03C8 can be extended to an isometry ~~(L2d)
with ~|M2d = 1. Hence (M2d) c p((L2d)) where p:N(F) ~ Aut(U(F)) is the
projection. On the other hand, [O(M2):O(M2d)] = O(p18) and r2(F) is a

subgroup of O(M2)  {± 1} of index at most 8. Hence the assertion follows.
n

LEMMA 3.5. Assume that F corresponds to Zv. = Ze. Then

Proof. First note that {e1,...,e21} is a base of L2d. Hence B1, C2 and d21
are integral. Conversely if B1~Z19, then C2 = - KB1 and d21 = -tB1KB1/2
are also integral. Hence we have

Since {e1,...,e18, (1/p)e19, e2o’ e21} is a base of L2, we can see that
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If ~~ U(F) n O(L2d), then ~(u) = u + ce21 = u + 2p2be21. Hence ~(u/2p2) ~
u/2p2 (mod L2d), i.e. ~~(L2d). Obviously U(F) preserves D2d. Therefore
U(F) n r 2d = U(F) n O(L2d) and we have the desired result. D

LEMMA 3.6. Assume that F corresponds to Zvm (m &#x3E; 0). Then

Proof If ~ E U(F) n r2d = U(F) n Õ(L2d)’ then Cl e Z18 by considering ~(ei)
(1  i  18) and using the primitiveness of e21 in L2d. Since ~~(L2d) and
e19/2p = u/2p + mf~L*2d, we have

Since e21 is primitive in L2d, ce2pZ. Recall that

where K = t and K’ is an unimodular matrix. By these equations,

B’1~(pZ)18 and b~Z, d21 EpZ. Conversely if ~~U(F) with B’1~(pZ)18, b~Z,
then it is easy to see that 9(e) E L2d. Hence qJ E O(L2d) because {e1, ... , e20’ el is
a base of L2d . Moreover an easy calculation shows that qJ(U/2p2) ~ u/2p2
(mod L2d), i.e. ~~ O(L2d)’ Hence we have the first assertion. For U(F) n r2, we
can see the assertion by using the fact that {e1,..., e18’ (1/p)e19’ e20’ (llp)e2ll
is a base of L2. D

4. Tai’s criterion and dimension formula

(4.1) Let q) 2d ~ C19 be a realization of q) 2d as a bounded domain. Let

u=(u1,...,u19) be a coordinate of C19 and put 03C9 = du1 1 039B··· A du19. A
holomorphic function f : D2d ~ C is called a r2d-automorphic form of weight k
if for any y E r2d, f(03B3u) = J(y, u)-k·f(u) where J(y, u) is the Jacobian of y. We
denote by Ak(03932d) the space of r 2d-automorphic forms of weight k. For

f~Ak(03932d), f·03C9~k is invariant under r2d, hence can be considered as a form
in H0(Ko2d, 03A9~k) where Ko2d is the open set of K2d such that the projection
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03C0:D2d ~ Çfi 2d/r 2d is unramified over Ko2d and Q is the sheaf of top-dimensional
holomorphic forms on Ko2d.

(4.2) Recall the construction of a toroidal compactification of Çfi2d/r 2d ([1], §5).
Let F be a rational boundary component of Çfi2d. Let U(F), C(F) and D(F) be
the same as in §2. Then Çfi2d is realized in D(F) ~ F x Cm x U(F)C as Siegel
domain of the third kind. Put T(F) U(F)clU(F),. Let be an admissible
polyhedral decomposition of C(F) ~ U(F) such that all cones 03C303B1 are regular
([14], Theorem 7.20). The collection {03C303B1} defines a torus embedding
T(F) c T(F){03C303B1}. Finally define (D2d/U(F)Z){03C303B1} = the interior of the closure of
Çfi2JU(F)z in (D(F )/U(F)z) X T(F) T(F){03C303B1}, which is smooth by our assumption
on {03C303B1}. Then by the main theorem in [1] (also see [14], Theorem 7.20), there
exists a compact analytic space %2d = D2d/03932d with only quotient singularities
and a morphism

such that %2d is a Zariski open set in Îf2d and every point of Î4’2d is in the image
of 03C0F or n. We denote by Î*"2d the open set of :f2d such that 03C0 and 03C0F are

unramified for any F.

In the following we recall the Tai’s criterion of extendable pluri-canonical
differential forms to Ko2d. Let F be a rational boundary component of D2d. Let
(z, w, r) be a coordinate of U(F)C x Cm x F (see §2). Put U(F)Z = U(F)~ F2d.
For f~Ak(03932d), f is U(F)z-invariant, and hence we have a Fourier-Jacobi
expansion

where e(x) = exp(203C0~-1x), « , » is a positive definite bilinear form on U(F)
define over Q and U(F)iis the dual U(F)Z with respect to « , ». By Koecher’s
theorem ([3], [17]), 03BE03C1 ~ 0 only for 03C1~C(F)~ U(F)i. In §5 and §6, we shall
need the following criterion due to Tai.

THEOREM 4.3. ([1], Chap. IV, §1). Suppose f E Ak(r 2d)’ then f. 03C9~k defines
a k-fold canonical differential form on Ko2d if f satisfies the following condition:
for any rational boundary component F, çp =1= 0 implies «03C1, x»  k for all

non-zero x~ C(F) n U(F)z.

Let f E Ak(r2d). We call f a cusp form if the Fourier-Jacobi coefficient

ço(-r, w) = 0 for any rational boundary components. We denote by Sk(r2d) the
vector space of cusp forms of weight k.
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PROPOSITION 4.4. dim Sk(r 2d) = (2·1918/18!)·vol(D2d/03932d)·k19 + O(k18)
where vol(D2d/03932d) is the volume with respect to a metric on EZ2d.

Proof. Let F’2d be a normal neat subgroup of r2d. By the Proportionality
theorem [12],

where Q is the sheaf of holomorphic 19-forms on the compact dual 2d. Recall
that 2d is a smooth quadric in P20. Hence

By the Tai’s argument in the proof of [23], Proposition 2.1, we have

Since vol(D2d/0393’2d)/[03932d:0393’2d] = vol(D2d/03932d), we now have proved the asser-
tion. D

COROLLARY 4.5. Assume d = p2. Then

Proof. This follows from the facts that r2d c r2 (Lemma 3.2) and

vol(D2d/03932d) = Ir2: ]r2d] - Vol(2/03932). a

5. Coefficients of Fourier-Jacobi series 1

(5.1) Let F be a rational boundary component of q)2d. For f E Ak(r2d), consider
the Fourier-Jacobi series f = S, çp(r, w)e(« p, z») with respect to F, where (z,
w, r)e U(F)C x Cm x F (see §4). Put
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for some non-zero XE C(F) n U(F)Z},

for any rational boundary components F of D2d}.
The purpose of this section and the next is to estimate the dimension of

Ak(r2d) (Theorem 6.18). In this section, we shall study the coefficients of

Fourier-Jacobi series with respect to 0-dimensional rational boundary com-
ponents.

(5.2) First we give a relation of 0- and 1-dimensional cases. We use the same
notation as in (2.15). Then the group U(F1)Z = U(F1) n r2d (~Z) acts on -q2d
as follows (see Proposition 2.14):

where

Let f E Ak(03932d). Then we have a Fourier-Jacobi expansion of f:

where 03BE is a base of U(F1)Z with ç E C(F 1). Also the group U(F o)z acts on ÇJ2d
as translations (see Proposition 2.9). Hence we have a Fourier-Jacobi expan-
sion of f:

Here recall that C(F1) c C(Fo) and 03BE~C(F0)~ U(F o)z (see (2.15)). It follows
from (5.3), (5.4) and the uniqueness of Fourier-Jacobi coefficients that
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Assume Omet, w) ~ 0 for some m. Then it follows from (5.5) that cp = 0 for any
pEC(Fo)nU(Fo): with «03C1,03BE»=m. Conversely, each half line in

C(F 0)B C(F 0) defined over Q corresponds to C(F’1) for a rational 1-dimensional
boundary component F’1 «2.15». Thus we have:

LEMMA 5.6. Let f E Ak(r2d) and assume that f~A’k(03932d)F1 for any 1-dimen-
sional rational boundary components F1 of Çfi2d. Then F E Ak(h2d) f f satis-
fies the following: for any 0-dimensional rational boundary components F 0
o,f’ -92 d cp = 0 for any pEC(Fo)nU(Fo): with 03C1,x&#x3E;&#x3E;k for some

x E C(F 0) n U(F o)z.

(5.7) In the following we use the same notation as in (2.7), (3.3). Let F be a
0-dimensional rational boundary component Of Çfi2d. Put U(F)Z,03B4 = U(F) n r2a
(ô = 1 or d) and

for some x E C(F) n U(F)Z,03B4}.
Recall that r2a(F) acts on C(F) n U(F)z,Õ «2.10». This action induces the
action of r2a(F) on H(ô, F, k) satisfying the condition «cp*(p), x&#x3E;&#x3E; =
«p, ~(x)&#x3E;&#x3E; for qJ E f 2Õ(F), p E U(F)* and all x~ U(F). Since r2(F) --D r2d(F),
f 2Õ(F) also acts on H(1, F, k). For f~Ak(03932d), 03932d-automorphicity of f and the
uniqueness of Fourier-Jacobi coefficients imply that cp = ± c~*(03C1) for any

~~03932d(F) where c. is a Fourier-Jacobi coefficient of f with respect to F.
Hence to estimate the dimension Ak(r2d)F, it suffices to count the order of the
set H(d, F, k) modulo r2d (F ).

LEMMA 5.8. H(03B4, F, k) modulo f 2Õ(F) is a finite set.
Proof. Let {03C3v} be a 0393203B4(F)-admissible polyhedral decomposition of C(F)

([1], Chap. III, §5). By [14], Theorem 7.20, we may assume that each o-y is

regular, that is, (Jv = 03A3ri=1 R0·evi where {evi} is a part of a base of U(F)Z,03B4 and
R0 = {y~R|y0}. The admissibility of {03C3v} implies that the number of
classes of cones modulo T2a(F) is finite. Therefore it suffices to see that, for each
top dimensional polyhedral cone (Jv, the set

is finite. We may assume that « , &#x3E;&#x3E; is integral on U(F)Z,03B4 if necessary
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replacing « , » by some multiple of « , )) because the order |Hv,03B4| does
not depend on , )). For 03C1~Hv,03B4, write 03C1=03A319i=1 ai·ei, ai~Q, ai0.
Then k &#x3E; «p,x» = 03A3aiei,x&#x3E;&#x3E; for some x~C(F)~(F)Z,03B4. The self-duality
of C(F) implies that ei,x&#x3E;&#x3E; is a positive integer. Therefore |Hv,03B4| 
[U(F)*Z,03B4:U(F)Z,03B4]·k19. ~

We denote by h(b, F, k) the order of the set H(b, F, k) modulo 0393203B4(F). Recall
that the set {vm|0m(p-1)/2} is a complete set of r2d-inequivalent
0-dimensional rational boundary components of !!)2d.

LEMMA 5.9. Assume that F corresponds to Vo- Then

where c is a constant not depending on p and k.
Proof. Let {03C3v} be a r2(F )-admissible polyhedral decomposition of C(F).

We may assume that each Uv is regular. Let 6v be a top dimensional polyhedral
cone and let {ei} be a base of U(F)Z,1 with Uv = E19i=1 R0·ei. Put

Then Hv,d c H’v,d. By Lemma 3.5 and the proof of Lemma 5.8, we have

Therefore

where c’ is the number of 03932(F)-inequivalent cones (Jv. Since c’ and

[U(F)*Z,1: U(F),,,] are not dependent on p, we have the desired result.
LEMMA 5.10. Assume that F corresponds to Vm (m &#x3E; 0). Then

Proof. By Lemma 3.6, we have bijections

given by B1 ~ pB1, B!-+ pB! respectively which induce a 03932d(F)-equivariant



272

bijection H(1, F, k) ~ H(d, F, k). Therefore h(d, F, k) = #{H(1, F, k) modulo
03932d(F)}, and hence

THEOREM 5.11. EF h(d, F, k)  Cil. p 19 . k 19, where the summation in the left
hand side means that F moves on a set of all 03932d-inequivalent 0-dimensional
rational boundary components of D2d and c" is a constant not depending on p
and k.

Proof. We denote by Fo (resp. F., 1  m  ( p - 1)/2) the rational boundary
component corresponding to Ze (resp. Zvm). Then it follows from Lemmas 5.9,
5.10 that

Note that h(l, Fm, k) % c’k19 where c’ is a constant not depending on p. Now
the assertion follows from Lemma 3.4. D

6. Coefficients of Fourier-Jacobi séries II

In this section we consider the case of 1-dimensional boundary component. We
assume d = p2 for some prime number p.

LEMMA 6.1. We use the same notation as in Proposition 2.4. Let F be a

1-dimensional rational boundary component. Let f~Ak(03932d) and let f =

03A3m0 03B8m(03C4, w)e(mz/a) be the Fourier-Jacobi series of f. Then
(i) 03B8m(03C4, w + an) = 03B8m(03C4, w) for n~Z17,
(ii) 03B8m(03C4, w + in) = 03B8m(03C4, w)e[m/03B1{tnKw + (03C4/2)tnKn}] for n~Z17,
(iii) 03B8m(03B303C4, 03B3w) = 03B8m(03C4, w)(cr + d)19ke[-m/03B1(U - 03B2c)] for

where ys = (ar + b)/(ci + d), yw = w/(cr + d) and U = (c/2)(c03C4 + d ) -1
(twKw).

Proof. Consider the following transformations in N(F) (see (2.12)):
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where

and n~Z17 is a column vector;

where

Note that K is an even lattice (i.e. tnKn E 2Z), and hence 03B31, y2 E r2d . Since
J(71) = J(03B32) = 1, the relations (i) and (ii) follows from the F2d-automorphicity
of f and the uniqueness of coefficients of Fourier-Jacobi series.

Next, in case a = 1, consider

and U = tZ-l. Then by Proposition 2.14,

and J(03B33) = (ci + d)-19. Hence the relation (iii) holds.
Finally, in case a = p, consider
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Then it is easy to see that Y3 E N(F)7L (see (2.12)). By Proposition 2.14

Hence the assertion (iii) follows. n

(6.2) In case a = 1, we need to introduce the following: we use the same
notation as in Proposition 2.4. Denote by N2d the sublattice of L2d generated
by {e3, ... , e19}. Then its discriminant quadratic form qN2d is equal to qL2d, and
hence qN2d ~ (Z/2dZ, -1/2dmod 2Z). Note that the subgroup of Z/2dZ of
order p is totally isotropic with respect to qN2d. Hence it follows from [16],
Proposition 1.4.1 that there exists an even lattice N2 with rank(N2) =
rank(N 2d), N2 :D N2d and qN2 ~ (Z/2Z, - 1/2 mod 2Z). Let {1,...,17} be a
base of N2. Put (1,...,17)=(e3,...,e19)Q where Q~M(17, Q). Then
!det(6)! = l/p, Q-1 is integral and K = (i, êj » = tQ«ei’ ej&#x3E;)Q = ’QKQ. We
note here that pQ is integral because pN2 c N 2d.

(6.3) Let k be a positive integer and 1 a positive integer with pli, 1 &#x3E; 2. Let

0(s, w) be a holomorphic function on H+  C17 which satisfies the relation
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Then (03B8|1 y) y’ = 0 77’ for y, y’ = SL(2, Q) (see Lemma 6.7). Let s be a cusp of

0393(l) and take 03B3~SL(2, Q) with y(oo) = s. Then by the above relation and (6.4),

Oly is invariant under the action of y - 1 r(l). y - 1 nh 
n e Z , where 0393(l)s is

the stabilizer subgroup of s and h is a positive rational number. We say 03B8(03C4, w)
holomorphic at s if Oly is holomorphic as a function of u = e(03C4/h) at u = 0.

Let Hm,03B1(l) be a vector space of holomorphic functions 0(,r, w) satisfying the
following conditions:

is holomorphic at each cusp of 0393(l).

(6.5) Remark. The condition (03B83) will be used in the proof of Lemma 6.15.
We remark here that under the assumption p|l, 0(nhn2)(L, w) satisfies the relation
(6.4). Recall that pQ and ’QKQ are integral matrices. Then by using the relation
(e 2), we have

Since

pQ is integral and y E r( 1), it follows from (03B81) that
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Now the assertion follows from a direct calculation by using the fact ’QKQ are
even integral. Moreover we can see that the group y = (QZ17~03C4QZ17)/
(Z17 ~ 03C4Z17) acts on Hm,l(l) as (Qnl, Qn2)(03B8(03C4, w)) = 03B8(n1,n2)(03C4, w) and the in-
variant subspace under this action corresponds to the space of functions
satisfying the similar relations as (ol) - (03), which contains Fourier-Jacobi
coefficients of r2-automorphic forms.

LEMMA 6.6. Assume p 11. Let f~Ak(03932d) and f = 03A303B8m(03C4, w)e(m/03B1·z) its

Fourier-Jacobi series. Then On (T, w)~Hm,03B1(l).
Proof. Since 03B1[l, Lemma 6.1 implies that Om(r:, w) satisfies the conditions

(01), (02). For (03), first, we shall see that 03B8m(03C4, w) is holomorphic at oo. Let
el,..., e21 be a base of L2d as in Proposition 2.4. Denote by Fo the boundary
component corresponding to Ze2. Then by the same way as in (5.2) we have

where the summation on the right hand side means that p runs on the set
{p E U(F0)*Z ~ C(F 0) 1 « p, ç» = ml (see (5.5)). Note that e(03C4/03B1) is a coordinate

around oo . Since p and (1, 0, 0)~C(F0), 03C1, (1, 0, 0)&#x3E;&#x3E;  0 and hence OmeT, w)
is holomorphic at oo.

In case a = p, we need to estimate 0.(T, w) at cusps s of 03931(p). For
f E Ak(r2d) and ç E r2d Q Q, put

Then f|~ is a qJ - 1 r 2d qJ-automorphic form of weight k. Let

03B3=[a b c d] E SL(2, Q) with oo - s. Consider the following transformation in

N(F) n T2d (D 0 (see the proof of Lemma 6.1):

where
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and

An elementary calculation shows U(F) ~~-103932d~ = U(F)Z. Thus we have the
Fourier-Jacobi expansion f 19 = E 03B8m(03C4, w)e(mz/p). On the other hand, we
have

Hence 03B8m(03B303C4, 03B3w)(c03C4 + d)-19ke[(m/p)U] = 03B8m(03C4, w)e(m03B2c/p). By the same proof
as in the case a = 1, 03B8m(03C4, w) is holomorphic at oo, and hence 03B8m(03C4, w) is so at s.

Lastly we shall see the property (0 3) for a = 1. Consider

where

Put f y = f(yx)J(y, x)’ = f(yx). Then f y is a y -1 r2d y-automorphic form of
weight k. Note that U(F)ny-lr2dY = U(F)z because U(F) is the center of
W(F), and hence 03B8(n1,n2)(03C4, w) is nothing but the Fourier-Jacobi coefficient of
f y. Now the assertion follows from the same way as above. D

LEMMA 6.7. Let 1 be a positive integer with p 11. Then the group 03931(03B1)/0393(l) acts

on Hm,03B1(l) as follows: for 03B3 = [a b c d] ~03931(03B1),
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Proof Let y = a b c d], 7’= . b’ d’]~03931(03B1). Then we can easily see

that

and

Moreover in case a = p, c + c’ = ca’ + dc’ (mod p) since y, 03B3’~03931(p). The
property (03B81), (03B8 2) of 03B8|03B3 follows from those of 03B8(03C4, w).

In case a = 1, by using the fact 1/2·t(Qni)KQni, t(Qn1)KQn2~Z, we can see
that

By these equations, we can directly see that

Hence the property (03B83) also holds. D

(6.8) In the following, we shall compute the dimension of Hm,(l(l) by using the
transformation formula of theta functions. First we recall the theory of theta
functions (e.g. [8], Chap. 2). For a fixed r, we denote by R03C4m,03B1 (r E H +, a = 1 or
p) the space of holomorphic functions 03B8(w) on C17 satisfying the conditions
(03B81). Put
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Then L, is a quasi-hermitian form and At is an alternating form on C’7  C17.
Put L = 03B1Z17 ~ 03C4Z17 which is a lattice in C17 in the usual sense. Then

A03C4(03BE, 03BE’)~Z for any 03BE, 03BE’ ~ L. Put ei = t(O, ... , 0, 1, 0,..., 0) ~ Z17 and take a
base {03C4ei, 03B1ej|1  i, j  17} of L. Then the matrix of At with respect to this
base is

Let Bt denote the R-bilinear form on C17  C17 defined by the matrix

Then A,(w, w’) = B03C4(w, w’) - Bt(w’, w), B’t is Z-valued on L x L and

B03C4(03BE, 03BE) = -mtn1Kn2 for any 03BE = 03B1n1 + 03C4n2~L. We remark here that Rm,a
coincides with the vector space of theta functions relative to L with

as an automorphy factor ([8], Chap. II, Theorem 3). By a theorem of

elementary divisor, there exist matrices P, R in GL(17, Z) satisfying

where 03B5i is a positive integer with 03B5i|03B5i+1 (i = 1,..., 16). Note that

el ...e1? = Idet(K)l = 2p2/03B12. Now we take a base {03C4 Rei, 03B1tPej} of L. Then the
corresponding matrix of A03C4 is

Take {m-103B5-1i03B1tPei}ii17 as a base of C17 and denote by z the coordinate
with respect to this base. Then z = -(m/03B1)tRKw. Put Q = -(m03C4/03B1)tRKR =
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(-(1/2~-1)·L03C4(03C4Rei, 03C4Rej)i,j. Then Q is contained in the Siegel upper

half-plane 17 of degree 17 because K is negative definite. For q~(m03B5)-1Z17/
Z17, put

Since R~GL(17, Z), we have

We denote by 0q(r, w) the right hand side of the above equation. Then by the
theory of theta functions ([18, Chap. 2, p. 75), we have

PROPOSITION 6.9. For fixed 03C4~H+, the set {0398q(03C4,w)|q~(m03B5)-1Z17/Z17} is
a base of R03C4m,03B1.

Define

For 03B3=[a b c d] eSL(2, R), put

where A = aI17, B = b/03B1·tRP-1, C = 03B1cPtT-1 and D = dI17. Then

because PKR = -03B5= -t03B5 = tRKtP. Put
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PROPOSITION 6.10. For y = 
[a b c d]~SL(2, Q) with ~,

where p(y) is a constant unitary matrix.
Proof. Put z# = me ·t(C03A9 +mD03B5)-1z and 03A9#=(A03A9+mB03B5) x (CQ + mD03B5)-1m03B5.

Then 03A9# = -(m/03B1)03B303C4·tRKR, z# = z/(c03C4 + d), (C(m03B5)tD)0 = (-03B1cdmPKtP)0~0
and (A(m03B5)tB)0 = (-(abm/03B1)tRKR)0 ~ 0 (mod 2), where for a matrix T, (T)o
denotes the vector with i-th diagonal coefficient of T as its i-th coefficient. Now

by the transformation formula for 8(Q, z) ([8], Ch. 2, Theorem 6), we have

where () is a constant unitary matrix. Put p(y) = (). An easy calculation
shows that tz(C03A9 + mD03B5)-1 Cz = -(mc/03B1)(c03C4 + d)-1·twKw = - (2m/a) U and
det((m03B5)-1(C03A9 + 1nD8)) = (c03C4 + d)17. Thus we have the desired result. ~

(6.11) Remark. In case 03B1 = 1,  E fi for any y E SL(2, Z), and in case a = p, E I-’

for any - a pb with a, b, c, d~Z and ad - bc = 1. Also it follows from
Proposition 6.10 that (c03C4 + d)17/2·03C1(03B3) satisfies the cocycle condition. Since
(c03C4 + d ) satisfies the cocycle condition, p Q p is so, i.e. p Q p is a unitary
representation.

LEMMA 6.12. For any cusps s of 0393(l), there exists a y E SL(2, Q) with E f and
y(s) = oo .

Proof. In case a = 1, the assertion is obvious. In case a = p, by Definition of

, it suffices to see the assertion for cusps of r - a b b - 0 mod .
Recall that {0, ~} is a complete set of 03930(p)-inequivalent cusps (cf. [22], p. 26).

Then y 0 -p 0] sends 0 to 00 . By the Remark 6.11, yer. D
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Let 0(r, w) E Hm,03B1(l). Then by Proposition 6.9,

where fq(03C4) is a holomorphic function of r and F(03C4)={fq(03C4)}q~(m03B5)-1Z17/Z17 (For
the holomorphicity of fq(03C4), see the proof of Lemma 6.15). It follows from the
condition (f) 2) and Proposition 6.10 that

Also, by Definition of 0q(-r, w) and the relation tqtRKRq = - tqtRP-103B5q, we
can easily see that 0q(-r + l, w) = 0q(-r, w) if (4mp2/03B1)|l. Hence we have

Put

for y E SL(2, Q) with  E r. Then (F|03B3)1 (J = F 03B303C3 for y, 03C3~ SL(2, Q) with ,
~ (Remark 6.11). Let s be a cusp of 0393(l) and take y E SL(2, Q) with
03B3(~) = s and yer (Lemma 6.12). Denote by F(l)s the stabilizer subgroup of

s. Then 03B3-10393(l)s03B3 = {[1 0 nh 1]| n~Z}, where is a positive rational number. By
(6.13), FI y is invariant under the action of 03B3-10393(l)S03B3, and hence there exists a
vector valued function G(u) = {gq(u)} in 0  lui  ô with F|y = G(e(i/h)). We
call F(i) meromorphic at s if gq(u) is meromorphic at u = 0 for all q~(m03B5)-1Z17/
Z17 and define the order of pole of F at s by the maximum of those of {gq(u)}.
Also put

Then we can similarly define the order of zero of ë(!, w) at cusps. By
Proposition 6.10, el |03B3 = e for y E SL(2, Q) with  E . Therefore, by Lemma
6.12, the behaviors of 0(!, w) at any cusps are the same as that of 0(!, w) at 00.

LEMMA 6.15. F(03C4) is meromorphic at any cusps of F(l) and its order of pole is
at most cml/a, where c is a constant depending only on the matrix K = tQKQ if
a = 1, K if 03B1 = p, in particular, does not depend on p, m and k.
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Proof. First we shall prove the meromorphicity of F(T) at any cusps. Put
N = |m-103B5-1Z17/Z17|. Since for fixed LoEH+, {0398q(03C40, w)} is a base of Rm,a,
there exist N elements x1,..., XN in e17 satisfying

We take r, w 1, ... , wN in some neighborhoods of ro, x 1, ... , xN and consider N
linear equations

We can uniquely solve this equation in the unknown fq(03C4). Thus fq(i) is

holomorphic on H + . Moreover by definition of Oq and the property (0 3), as a
function of u = e(03C4/03B1), Oq and 0 are holomorphic on {u|1 jul  03B4}. Therefore
F(03C4) is meromorphic at cusps.
Next we shall estimate the order of poles of F(i) at cusps. We shall see the

assertion for a = 1. For a = p, the proof is similar and simpler. Since Q -1 and
tQKQ are integral, for n1, n2 ~Z17,

and hence

By the property (0 3), it suffices to see that for fixed q, there is a n2 such that

0398q+R-1Qn2(03C4, w) vanishes at ~ of order at most cml. Since e(r/l) is a co-

ordinate around 00, the order of zero of Oq+R-lQn2 at oo is at most ml/
2·{-t(Rq + Qn2)K(Rq + Qn2)}. Take L~GL(17, Z) such that -tLKL is Min-
kovski-reduced ([6], Chap. 1, §2 or [8], p. 191). Then there exists a constant c’

depending only on the degree of the matrix K such that any entries of ’LkL
are bounded by c’ - .Bdet(K)B = 2c’ ([6], Satz 2.5). Now by replacing n2, we may
assume that the absolute values of any entries of (L-1Q-1Rq + L-1n2)are less
than 1. Then
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LEMMA 6.16. Assume that k is even. For any m with 0  m  k,

where cl, c2 and C3 are constants not depending on k, m, p.
Proof. Put 1 = 4mp2/03B1 and consider the following action of 0393(l) on

H+ X C2p2m17/(X2: for y E r(1),

It defines a vector bundle on H+/0393(l). Let s be a cusp of r(l ) and take
y E SL(2, Q) with ~ and y( oo ) = s. Then

Hence, by (6.14), the above vector bundle can be extended to a vector bundle
W of rank 2p2m17/03B12 on the Satake compactification C of H+/0393(l). Let
{si|1  i  r} be the set of boundary points of C. It is known that

r = [r: r(I)]/21 ([22], p. 23). Put

which corresponds to 0393(l)-automorphic forms on H+ of weight 19k/2
meromorphic at each cusp with the order of pole  v, where v = cml/a (see
Lemma 6.15). Then by identifying 0(r, w) and the corresponding F(i),

Since Lk Q O(- 03A3i vsi) is ample, by a vanishing theorem,



285

By Remark 6.11, W~W~L~F where L is a line bundle defined by the
cocycle (cr + d)-17 and F is a flat vector bundle defined by p Q9 p. Then
ch(W ~ W) = (rk(W))2 + 2rk(W)c1(W) and ch(L Q F) = ch(L). ch(F) =
(rk(F))(1 + c1(L)), where ch(V) (resp. rk(V))is the Chern character of a vector
bundle V (resp. the rank of V). Hence cl(W) = rk(W). cl(L)/2. By Riemann-
Roch theorem,

because L~2=(KC~OC(03A3ri=1si))~(-17). By [22], Proposition 1.40,
g(C) - 1 = [0393: 0393(l)]/24 - [0393: r(I)]/41 since r(l ) has no elliptic points. Thus
we have

Put G = {± 1}03931(03B1)/{ ± 1}0393(l). The finite group G acts on the pair (C, W (8) Lk)
as automorphisms which is induced from the action mentioned in Lemma 6.7.
Then

Since [0393:03931(03B1)] = O(03B12) and rank(W 0 Lk) = 2p2m17/03B12, the assertion fol-

lows from the following:

LEMMA 6.17.

where c is a constant independent on p, m, k.
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Proof. Let y E G and let C03B3 = {x1,...,xs} be the set of fixed point of y.
Assume that y acts on the tangent space of xi as e(8). Then by the holomorphic
Lefschetz fixed point formula [2], Theorem 4.6,

Note that Ich(W (D Lk|xi)(03B3)|  rank(W QLk).
Now assume a = 1. Recall that [r : F(l)]/2l, [F : r(I)]/4 or [I-’ : r(I)]/6 is the

number of F(l)-inequivalent cusps, elliptic points of order 2 or elliptic points
of order 3 respectively ([22], p. 22). Since G = F/f ± 1}0393(l) acts on these sets
transitively, lgxl = l, 2 or 3 where x is a cusp, elliptic point of order 2 or elliptic
point of order 3 respectively and Gx is the stabilizer subgroup of x. We first
consider the contribution of cusps. Denote by {03B31,..., yj a maximal subset of
{03B3~G|03B3 is of order 1 and fixes a cusp} satisfying Cli n CY j = 0 for i =1= j. Let

{xi,1,..., xi,si} denote the set of fixed cusps of yi on C. Then 03A3ti=1 si = [F : r(l)]/
21. Assume that Yi acts on the tangent space of Xi,j as e(li,j/l) where li,j is a

positive integer with (l, li,j) = 1 and li,j  1. Then the contribution of cusps to

03A303B3~1 trace y*IHO(C, W Q Lk) is bounded by

Note that 1/|1 - e(-03B8)|  c’IO for 0  0  1/2 where c’ is a constant indepen-
dent on p, m, k. Hence

Therefore (*) is bounded by

Cil. rank( W (D Lk)l~l· L si = Cil. rank( W ~ Lk)[0393: 0393(l)]p~m/2
i

where c" is a constant independent on p, k, m. Similarly we can see that the
contribution of elliptic points is bounded by
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by using the fact that the term 1/(1 - e(-03B8)) is independent on p, m. Thus we
have proved the assertion for a = 1. The above proof also implies the assertion
for a = p. Thus we have proved Lemma 6.17 and Lemma 6.16. D

THEOREM 6.18. If d = p2 for some prime p, and p, k are sufficiently large, then
dim H0(K02d, 03A9~k)  c·p20·k19, where c is a positive constant.

Proof. By Proposition 2.4, (ii), Corollary 4.5, Lemma 5.6, Theorem 5.11 and
Lemma 6.16, for sufficiently large k,

where cl, C2 are positive constants not depending on p and k. It now follows
from Lemma 3.2 and Theorem 4.3 that

for sufficiently large p. ~

7. Extension over the singular points in Jt2d

Let ’f 2d be a toroidal compactification of :K2d with only quotient singularities
and let ’y2d ~ K2d be a non-singular model of ff2d. In this section and the next,
we shall see that every element in H0(Kreg2d, 03A9~k) extends to %2d’ where f2d’g
is the smooth locus of -Îr2d. Our argument is based on the following:

THEOREM 7.1 (Reid -Tai’s criterion, [7], [23]). Let V be a vector space of
dimension N, G c GL(V) a finite group. For all g E G of order m, let the

eigenvalues of g be Ça1,..., çaN, where 03BE is a primitive m-th root of 1 and

0  ai  m. Let VO c V be the open set where G acts freely and let 03C9 be a
G-invariant m-th root of 1 and 0  ai  m. Let V’ c V be the open set where G
acts freely and let cv be a G-invariant m-th canonical form on V which can be
considered as a form on VIG. Then 03C9 extends holomorphically to a resolution
of V/G of V/G if 03A3 ai  m for all g E G.

PROPOSITION 7.2 ([23]). We keep the same notation as in 7.1. Then 03C9

extends to /G iff 03C9 extends to a non-singular model of V/(g) for all g E G.
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(7.3) Let (X, H) be a polarized K3 surface of degree 2d and [03C9X] ~D2d
the period of (X, H). Recall that the tangent space of D2d at [03C9X] is can-

onically isomorphic to V = Hom(H2,0(X), H1,1prim(X)) where H2(X, C) =
H2,0(X) 0 H1,1(X) C Ho 2(X) is the Hodge decomposition and H1,1prim(X) = H
in H1,1(X). Let G c r2d be the stabilizer group of [cox]. Then G is a finite
group. Let 03B4~H1,1prim(X)~H2(X, Z) with 03B42 = -2. Then

is a reflection which is contained in G because 03B4, wx) = 0. Denote by W(X, H)
the normal subgroup of G generated by {s03B4|03B42 = -2 and 03B4~H1,1prim(X) ~
H2(X, Z)I. It follows from the Torelli theorem for K3 surfaces [18] that G is
the semi-direct product A(X, H)· W(X, H), where A(X, H) is the image of the
group of automorphisms of the pair (X, H). For y E G, put y(w x) = 03B1(03B3)03C9X,
then a(y) is a root of unity. We remark that if 03B3 = g·w for g E A(X, H),
we W(X, H), then a(y) = a(g) because W(X, H) acts on H’,’(X) as identity. Let
SX denote the Picard Lattie of X, i.e. Sx = H2(X, Z) n H1,1(X), and let Tx be
the orthogonal complement of SX in H2(X, Z) which is called the transcendental
lattice of X. We remark that W(X, H) acts on Tx as identity.

In the following, we denote by m the order of y and by r the order of the
root of unity a(y). Note that y 1 Tx (x) Q is a direct sum of irreducible represen-
tations of the cyclic group Z/rZ defined over Q with maximal degree ~(r),
where 9 is the Euler function ([15], Theorem 3.1). In particular ~(r)  20

because rank TX  21. Let the action of y E G on V be given by

where 03B6 is a primitive m-th root of unity and 0  ai  m. Put

The main result of this section is as follows:

PROPOSITION 7.4. (i) Under the same notation as above,

except y acts on V as a reflection. In case that y acts on V as a reflection, a
general point [03C9X] in the fixed point set of y is one of the following:
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(03B1) [cox] is the period of a polarized K3 surface (X, H) with rank Tx = 20
such that X contains exactly one smooth rational curve R orthogonal to [H] and
y is a reflection in W(X, H) induced from the class [R], i.e. y = s[R].

(fi) [cox] is the period of a polarized K3 surface (X, H) with an automorphism
u of order 2 such that rank Tx = 20, 03C3*|SX = 1, 03C3*|TX = -1 and y = 03C3*.

(ii) Assume that yn acts on V as a reflection (m = 2n). Let 03B3&#x3E; = 03B3&#x3E;/03B3n&#x3E;,
V = V/(yn) and let [03C9X] be the image of [wx] in D2d/03B3n&#x3E;. Then the natural
map V -+ V/(y) has no ramification divisors and {03B3,[03C9X]}  1.

For an integer k, we denote by [k]m the integer satisfying 0  [k]m  m and
[k]m ~ k (mod m). Also denote by V an irreducible representation of the cyclic
group of order r which is defined over 0 and is of maximal degree ~(r).

LEMMA 7.5. If ~(r)  6, then {y, [03C9X]}  1.
Proof. The restriction yl Tx 0 0 is a direct sum of irreducible representations

of a cyclic group of order r with maximal degree ~(r) ([15], Theorem 3.1, c).
Let Vr be a component of 03B3|TX~Q and put U = Hom(H2,0(X),
Vr 0 C n Hl;j (X» c V. Let k1, ... , kt (t = ~(r)) be all integers with 0  ki  r,

(ki, r) = 1 (1  i  t). Note that for fixed i, [ki + kj]r ~ [ki + kl], (j 0 1).
Assume that 03B1(03B3) = ,nk2 and a(y) = 03B6nk1 where m = nr. By considering the
action of y on U, we have a rough estimate

By a calculation, we check [(t - 1)(t - 2)]/2r  1 for all r with ~(r)  20

except ~(r)  4 or r = 14, 18, 24, 30. But for r = 14, 18, 24, 30, we can directly
see 03A3tj=3 [k1 + kj]r/r  1.

LEMMA 7.6. If r = 1 or 2, then {03B3, [03C9X]}  1 except y acts on V as a reflection.
Proof. In case m = 2, obviously {03B3, [03C9X]}  1 except y acts on V as a

reflection. In case m &#x3E; 2, there is a component Vn of ylsx Q9 ll) with n &#x3E; 2. By
considering the contribution of Vn, we have the assertion. D

(7.7) Remark. In Lemma 7.6, consider the case that y acts on V as a reflection.
(i) Assume r = 2. Then the number of irreducible components V1 of

(y, H2(X, Q))is 2 and other components are V2. Since the period of a polarized
K3 surface (X, H) with rank TX  19 is contained in a subvariety of 2fi2d of
codimension 2, a general point of the fixed point set of y is the period of a
polarized K3 surface (X, H) with rank Tx = 20. Since yi Tx ~ Q is a direct sum
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of V2, 03B3|TX = -1 and 03B3|SX = 1. Hence y preserves effective divisors on X.

Therefore, by Torelli theorem for K3 surface [18], y is induced from an

automorphism a or order 2 : a* = y.
(ii) In case r = 1, the number of components V2 of (y, H2(X, Q)) is 1 and

other components are Vl. As above, a general point of the fixed point set of y
is the period of a polarized K3 surface (X, H) with rank Tx = 20. Consider the
following primitive sublattices in H2(X, Z):

Since ylTx = 1 and y([H]) = [H], N is a negative definite sublattice in Sx of
rank 1. Obviously N = S. Note that S and N are even 2-elementary lattices.
In fact, by [16], Proposition 1.6.1, AS ~ AN- It now easily follows from the
definition of S and N that AN ~ Z/2Z. Hence N ~ -2&#x3E;. Let 1J be a base of
N. Then by Riemann-Roch theorem, 1J or -1J is represented by an effective
divisor R. Since rank(SX) = 2, H is numerically effective and H·R = 0, R is
irreducible, and hence a smooth rational curve. Obviously y = s[RI .

LEMMA 7.8. Assume that there is a component V ,, (n &#x3E; 2) of ylSx (8) Q with
n &#x3E; r or nr. Then the contribution of Vn to {03B3, [03C9X]} is more than t(t - 1)/2n
where t = 9(n).

Proof. Let k1,...,kt be all integers with 0  ki  n and (ki, n) = 1. Put
m = nl = rk and assume 03B1(03B3) = 03B6kc, 0  c  r, (c, r) = 1. Then the action of y
on Hom(H2,0(X), Vn Q C) is given by

Note that [lki + kc]m ~ 0, [lki + kC]m =1= [lkj + kc]. (i ~ j) and [lki + kc]m =
[lkj + kc]. (mod l ). Hence the contribution of lg is more than lt(t - 1)/
2m = t(t - 1)/2n. D

(7.9) Proof of Proposition 7.4, (i): By Lemmas 7.5, 7.6, we may assume r = 3, 4,
5, 6, 8, 10 or 12. We shall prove the assertion for r = 12 and omit the proof for
other cases. In Lemma 7.8, t(t - 1)/2n  1 except n = 8, 10, 18, 30. Hence we
may assume that components of (y, L2d ~ Q)) are (lg (n = 1, 2, 3, 4, 6, 8, 10,
12, 18, 30). A direct calculation shows that the contribution of V, or

V2 (resp. V3, V4, V6 or V12) is more than 1/12 (resp. 5/6). Denote by r n the
number of components of Vn appeared in (y, L2d 0 Q). Then Ln qJ(n)rn =

rank(L2d) = 21. We now have:
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(7.10) Proof of Proposition 7.4, (ii): By Proposition 7.4 (i), for any y’ E 03B3&#x3E;B03B3n&#x3E;,
the set of fixed points of y’ has codimension  2. Hence the map V ~ V/(y)
has no ramification divisors. Next consider the action of y on L2d Q Q. If the
representation (y", L2d ~ Q) = V2 E9 Vl ~ ··· E9 Vl (see Remark 7.7, (ii)), then
n is odd and (y, L2d ~ Q) = V2 E9 Vn1 ~ ··· E9 V"t (ni is a divisor of n). If

(y", L2d (8) Q) = V1 E9 V2 ~ ··· E9 V2 (see Remark 7.7, (i)), then (y, L2d ~ Q)=
Vl E9 Vn1 ~ ··· ~vnt (ni is even and 2n/ni is odd) or V2 E9 Vn1 ~ ··· E9 Vnt (n is

even and 2n/n; is odd). In any case, the contribution of Vn1 ~ ··· ~vnt to
{03B3,[03C9X]} is the same as that of Vn1 ~ ··· ~ Vnt to {03B3, [03C9X]}. Since

dim Vn1 ~ ··· ~ Vnt = 20, the same proof as that of Proposition 7.4, (i) holds.
D

Now by Theorem 7.1, Propositions 7.2 and 7.4, we have:

THEOREM 7.11. Let Kreg2d be a smooth locus of %2d = D2d/03932d. Let 03C9 be a

pluri-canonical differentialform on Kreg2d. Then cv extends holomorphicall y to a
non-singular model of .YÍ2d.

8. Extension over the singularities on the boundary

We use the same notation as in (4.2). Let y0~K2dBK2d. Then for some F,
Yo = 03C0F(03C40, w0, Zo + 03C3~) where io E F, wo E Cm zo E U(F)c and zo = its image in
T(F), zo + 03C3~ is the ideal point in the torus embedding T(F)03C3 (associated to
6) obtained by starting at zo and moving the imaginary part to infinity in the
direction of (1, and 6 is a face of one of the (1 a’s. If yo is a singular point, then
for some 03B3~N(F)Z with 03B3 ~ id mod U(F)Z such that 03B3(03C40, wo, zo + 03C3~) =
(io, wo, zo + u"0). The main result of this section is as follows:

PROPOSITION 8.1. Under the above notation,

except y acts on F x cm x T(F)03C3 as a reflection. Moreover there are no branch
divisors of n F contained in K2dBK2d.

(8.2) In case F is of dimension 1: We use the same notation as in Proposition
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2.14. In this case, C(F) = {y|y &#x3E; 0} and the polyhedral cône decomposition is
unique: {03C303B1} = {{0}, 03C3 = {y|y0}}. It defines a torus embedding
C* ~ T(F)03C3 ~ C. Put u = e(z/03B1). Then (03C4, w, u) is a coordinate of

H+  C17 x T(F)03C3. By Proposition 2.14, the action of y on the tangent space
of H +  C17 x T(F)(1 at (T 0’ WO, 0) is

where T = 1/03B1·(ct0 + d)-1{cq0)w0/2 + c03B2 + v 1 w. + w 1 To + w2}.
If 03B3|H+ = 1, then c = 0, d = + 1. We may assume that d = 1 if necessary by

replacing y by - y. Denote by m the order of X and assume m &#x3E; 2. We consider

X as a representation of a cyclic group of order m defined over Q. Let Vn be
an irreducible component of X with n &#x3E; 2. Let k, k’ be integers with (k, n) =
(k’, n) = 1, k + k’ = n and 0  k, k’  n. Then we have

If m = 1, the condition y(! 0’ wo, 0) = (ro, wo, 0) implies Y = 0, V = 0 and hence
03B3~U(F)Z. If m = 2, then 03B32~U(F)Z and VX = - E X Y= - Y and

2W~ - VY (mod U(F),). It follows from this fact and the equation

Thus the action of y at the tangent space is

Therefore {03B3, (r 0, wo, 0)}  1 except y acts as a reflection. Moreover in case
m = 2, there are no reflections which fix the locus {u = 0}. Since {u = 0}
corresponds to a divisor in K2dBK2d, in this case, there are no branch divisors
of np contained in K2dBK2d.



293

If 03B3|H+ ~ 1. then we may assume that LO is equal to J -1 or e(1/3),
if necessary by replacing y by its conjugate. Recall that if io = .J -1 (resp.

e(1/3)), then [a c b d] = ± [0 1 -1 0](resp. ±[-1 1 -1 0] or ±[0 -1 1 -1])
and cro+d= ± ~-1 (resp. ±e(1/3) or +e(1/6)). By considering X as a

representation of a cyclic group, the action of y on the tangent space of C17 is
similar as that of y with a(y) = 3, 4 or 6 in §7. Since degree X = 17, the same

argument holds in this case and hence {03B3, (03C40, Wo, 0)}  1.

(8.3) In case F is of dimension 0: Recall that D(F) = U(F)C and the action of y
on D(F) is as follows (see Proposition 2.9):

Since 03B3(z0+03C3~) = z0+03C3~, z0~Az0+B1+c mod U(F)z, where c~L(03C3) ~ C
and L(03C3) is the linear span of a. Since y" ~ 1 (mod U(F)Z) for some n, An = 1.
Note that A(03C3) c a-. By taking a further decomposition of C(F), we may assume
that Ala = 1. In fact, if dim(a) = 1, then Alu = 1 because A and a are defined
over Q and A(03C3) c a. It follows from [9] that there is a unique closed orbit O03C3
and a subtorus T’03C3 in T(F)(1 with T(F)03C3/T’03C3 ~ O03C3:

O03C3 is defined by P£P = 0, 03C3  0 on 6, p &#x3E; 0 on Int(a).
T’ is defined by Spec(C[X03C1])03C1~L(03C3)~U(F)*Z.

Since we assume Alu = identity, A acts on TQ trivially, and A fixes e03C3 = the

identity of O03C3. Let tzo denote the translation by z0. Then tzo 0 A = Y 0 tzo on O03C3
because y - tzo(z) - tz. - A(z) ~ c mod U(F)Z for any z E U(F)C. Therefore, in the
0,-directions, thé eigenvalues of y on the tangent space of T(F)03C3 at zo + 03C3~
coincides with those of A on the tangent space of O03C3 at e(1. The latter

eigenvalues coincide those of A |U(F)C/L(03C3)C. By the similar way as in (8.2),
we have

except A acts on Oa as a reflection. Moreover if for some 1-dimensional

polyhedral cone a, the orbit O03C3 is the fixed points set of y, then A = 1 and hence
03B3~ U(F)z. Therefore there are no branch divisors in K2dBK2d. Thus we have
now proved Proposition 8.1.
Now by the same proof as that of Theorem 7.11, we have:

THEOREM 8.4. Let cv be a holomorphic pluri-canonical differential form on
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.%2e!. Then, for any d = p2 ( p : prime), cv extends to a holomorphic pluri-canonical
differential form on a non-singular model of .%2d.

9. Ramifications

In this section, we shall complete the proof of the main theorem. We assume
that d = p2 ( p : odd prime). First we shall study the branch divisor of the
projection n: f1fi2d -+ D2d/03932d, and see that, for p » 0, there are sufficiently many
cusp forms f E Sk(r2d) such that f. 03C9~k extends to a general point of the branch
locus of n. Recall that this branch locus corresponds to the fixed point set of
the following involutions in r2d (Proposition 7.4): the first one is a reflection
sô (ô E L2d with 03B4, 03B4&#x3E; = - 2), and the second one is an involution induced from
an automorphism u of a K3 surface X with rank Tx = 20 such that a*ISx = 1
and a*ITx = -1.

LEMMA 9.1. Assume that p is an odd prime number.
(i) Let b be a vector in L2d with 03B4, 03B4&#x3E; = - 2. Then the orthogonal complement

of ô in L2d is isometric to either

(ii) Two vectors in L2d with length - 2 are equivalent modulo O(L2d) if and
only if their orthogonal complements in L2d are isometric.

Proof Let S denote the primitive sublattice of L2d generated by l5. Let K be
the orthogonal complement of S in L2d . The primitive embedding of S into L2d
is determined by the following sets:

(Hs, H, y, K, 03B3K) where HS ~ AS ~ Z/2Z and H ~ AL2d ~ Z/2p2Z are

subgroups, 03B3:qs(HS~qL2d|H is an isomorphism of forms, and 03B3K:qK~q:=
-(qs ~ (-qL2d)|039303B3)/039303B3 is an isomorphism of forms where ry is the "graph" of
03B3 in AS ~ AL2d.
Two such sets, (Hs, H, y, K, 03B3K) and (H’S, H’, y’, K’, 03B3’K’), determine

isomorphic primitive embedding if and only if Hs = Hs and there exists

03BE E O(qL2d) and an isometry 03C8 from K to K’ for which y’ = ç o y and 03BE 03BF 03B3K =

YÍ(’ ° 03C8, where 03BE is the isomorphism of discriminant forms q and q’ induced from
03BE ([16], Proposition 1.15.1).
Note that HS ~ {0} or Z/2Z. In case HS ~ {0}, qK ~ (-qS) ~ qL2d. In case

HS ~ Z/2Z, it is easy to see that qK ~ q[2 p p 0]. Since K is an even indefinite lattice
with rank(K) &#x3E; l(K) + 2, it follows from [16], Theorem 1.14.2 that the genus
of K contains only one isomorphism class and the homomorphism
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O(K) -+ O(qK) is surjective. Hence K ~ U (f) E8 (f) E8 (f) (2) (f) ( - 2p2) if

HS ~ {0} and K ~ U (9 E8 Ei1 E8 9 2 P- if Hs -r Z/2Z, and the assertion (ii)
follows. ~

LEMMA 9.2. Assume that p is an odd prime number. Let (X, H) be a K3 surface
with rank Tx = 20. Assume that (X, H) has an automorphism u of order 2 such
that 03C3*|SX = 1 and u*ITx = -1. Then

(i) (X, H) is one of the following: (a) SX ~ U, TX ~ U (D U (f) E8 (f) E8 and
[H] = p2e + f, where {e,f} is a base of Sx with e, e&#x3E; = f, f&#x3E; = 0, (e,f) = 1;
(b) SX ~ 2&#x3E;~-2&#x3E;, TX~U~E8~E8~2&#x3E;~-2&#x3E; and [H]=(p2+1)/2·x
-(p2-1)/2.y, where {x, yl is a base of Sx with (x,x)=2, (y, y&#x3E; = -2,
(x, y) = 0.

(ii) Let (X, H), (X’, H’) be two polarized K3 surfaces as above. Assume that
SX ~ SX’. Then there exists an isometry

with qJ(Sx) = SX, and cp([H]) = [H’].
Proof. First note that Sx and Tx are 2-elementary lattices with l(SX) =

l(TX)  rank(Sx) = 2 (see Remark (7.7), (ii». Such Sx is classified as follows
([16], Theorem 3.6.2): SX ~ 2&#x3E; ~ -2&#x3E;, U(2) or U, where U(2) is the lattice

defined by the matrix 0 2 Then TX~U~2&#x3E;~-2&#x3E;~E8~E8,

U ~ U(2) ~ E8 ~ Eg or U ~ U ~ E8 ~ E8 respectively. Note that [H] is a

primitive vector in SX with length 2p2. Since the length of each vector in U(2)
is divided by 4, the case SX ~ U(2) does not occur. Also it is easy to see that
any primitive vector in U (resp. in (2) ~ -2&#x3E;) with length 2p2 is of the form
p2e + f for a base {e, f} (resp. ( p2 + 1)/2 - x _ ( p2 - 1)/2·y for a base {x, yl).
Thus we have proved the assertion (i).

Next, taking any isometries

we consider SX, SX, as primitive sublattices in U E9 U E9 U ~ Es E9 E.. Then
their orthogonal complement Tx, Tx, are mutually isometric and, by [16],
Theorem 1.14.2, the map O(TX) ~ 0(qTx) is surjective. Let 03C8: Sx -+ Sx, be an
isometry with 03C8([H]) = [H’]. Then it follows from [16], Corollary 1.5.2 that
03C8 can be extended to an isometry of U E9 U Et) U E9 E8 E9 Es. Hence the
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assertion (ii) follows.

(9.3) Let (5 be a vector in L2d with 03B4, 03B4&#x3E; = -2. Put

We denote by ae the union of all hyperplane sections Hô n Gd2d with c5 being
of length - 2. Then ae is invariant under the action of r2d and N/03932d is a
divisor of !!fi2d/r2d. Recall that [O(L2d) : r2d] = 4. Hence Lemma 9.1 implies
that %/r2d consists of at most 8 irreducible components. We remark here that
each component is covered by a 18-dimensional bounded symmetric domain
H03B4~D2d of type IV. Next consider the divisor of !!fi2d/r 2d consisting the
periods of polarized K3 surface as in Lemma 9.2. Let -4Y denote the union of
all hyperplanes

where T are primitive sublattices in L = U ~ U ~ U ~ E8 ~ E8 which are
contained in L2d and isometric to U E9 U E9 E8 ~ Es or U E9 E8 E9 E8 ~ 2&#x3E; E9
( - 2). Then M is invariant under the action of r2d. Here note that if T
denotes the orthogonal complement of T in L, then the involution 1 on T E9 T
defined by IIT= -1 and |T = 1 extends to an involution on L because T is
2-elementary. Hence M is the union of ramification sets of all involutions

appeared in Remark 7.7, (i). By Lemma 9.2, the number of irreducible

components of M/03932d is at most 8. We denote by 03941,...,0394r (resp.
0394r+1,...,0394r+s) the components of JV /r 2d (resp. M/03932d), r, s  8. Now we
conclude:

COROLLARY 9.4. Assume that d = p2 , for an odd prime number p. Then the
branch divisor of the projection -92d ~ D2d/03932d is

Let Di denote the hyperplane section H,,, n D2d corresponding to 0394i, 1  i  r,

and -9j the hyperplane section P(Tj~C)~D2d corresponding to Aj,
r + 1  j  r + s, where ôi is a vector in L2d with 03B4i,03B4&#x3E; = -2 and T
is a primitive sublattice in L2d isometric to U EB U~E8~E8 or

U ~ E8 ~ E8 e 2&#x3E; ~ -2&#x3E;. Put

and
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Then Fi (resp. Fj) is an arithmetic subgroup of SO(2, 18), acting properly
discontinuously on -qi (resp. -qj). Let Ki be the orthogonal complement of ôi
in L2d . Then Fi is a subgroup of (Ki) of index 2 and Fi is a subgroup of Ô(Tj)
of index 2.

In case Ki ~ U 0 E8 ~ E8 0 2&#x3E; ~ -2p2&#x3E;, by the same way as in §3, Ki
is a sublattice of K’i ~ U (B E8 ~ E8 (D (2) ~-2&#x3E; of index p.

In case Ki ~ U 0 E8 0 E (D 2 p there is a lattice K’ isometric to

U 0 U 0 Eg 0 Eg which contains Ki as a sublattice of index p. In fact, let

x be a base of [2p p0] with [x, x&#x3E;=2, x,y&#x3E; = p, y,y&#x3E; = 0. Then

{x,(1/p)y} générâtes a lattice isometric to [21 10] ~ U.

(9.5) Remark. By the same proof as that of Lemma 3.2, Fi (1  i  r) is a

subgroup of the group 0393’i = {~~O(K’i)|~(Di)=Di}. Moreover [0393’i:0393i] 
0(p") because the number of hyperplanes of the quadratic space of dimension
2 is equal to 0(p") (see the proof of Lemma 3.2). Also note that

rj (r + 1  j  r + s) is independent on p.

For a positive integer v and i = 1,..., r + s, define

Note that f·03C9~k extends holomorphically to a general point of A, if

f E Sk (r2d)( - k-qi).

LEMMA 9.6.

where c is a positive constant.

Proof. Let (z0:···: Z20) be a homogeneous coordinate of P(L2d (D e) such
that Di = -q2d ~ {z0 = 0}. Consider the following exact sequence:
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where Sk(0393i) is the vector space of cusp forms on -9j with respect to Fi and a,,
is a homomorphism defined by

Then

On the other hand, it follows from Corollary 4.5 and Lemma 3.2 that

where c’ is a positive constant. By the same proof as that of Proposition 4.4,
we have

where ci is a constant independent on p and k (1  i  r + s). Since 0393’i
(1  i  r), 0393j (r + 1  j  r + s) are independent on p (Remark 9.5),
vol(Di/0393’i) and vol(Dj/0393j) are so. Again by Remark 9.5,

Hence the assertion follows. ~

THEOREM 9.7. Let K2d be a non-singular model of f2d. Assume that d = p2
where p is a sufficiently large prime number. Then

where c is a positive constant. In particular, f2d is of general type.
Proof. In the proof of Theorem 6.18, replacing dim Sk(03932d) by

dim ~r+si=1 Sk(03932d)(-kDi), we have
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Hence the assertion follows from Theorem 8.4. D
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