COMPOSITIO MATHEMATICA

DANIEL MALL On the topology of holomorphic foliations on Hopf manifolds

Compositio Mathematica, tome 89, nº 3 (1993), p. 243-250 <http://www.numdam.org/item?id=CM_1993_89_3_243_0>

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

On the topology of holomorphic foliations on Hopf manifolds

DANIEL MALL

Department of Mathematics, ETH-Zentrum, CH-8092 Zürich, Switzerland

Received 6 January 1992; accepted in final form 19 October 1992

1. Introduction

The topological behavior under perturbation of complex linear flows on \mathbb{C}^n near generic singular points was investigated by J. Guggenheimer (cf. [Gu]). Such flows induce holomorphic foliations on certain Hopf manifolds of dimension *n* which we shall call diagonal (see below). In this note we investigate the topological behavior of these foliations under perturbation.

The standard complex coordinates in \mathbb{C}^n are denoted by $z = (z_1, \ldots, z_n)$. We identify \mathbb{C}^n canonically with the tangent space at each of its points. If $A \in GL(n, \mathbb{C})$, X_A will denote the linear vector field defined on \mathbb{C}^n by $X_A(z) = Az$, and Φ_A will denote the complex flow $\Phi_A : \mathbb{C}^n \times \mathbb{C} \to \mathbb{C}^n$ obtained by integrating X_A ,

 $\Phi_A(z, t) = e^{tA}z.$

DEFINITION. A matrix $A \in GL(n, \mathbb{C})$ lies in the strong Poincaré domain if and only if all eigenvalues of A are different, do not contain the origin in their convex hull and no two eigenvalues lie on the same line through the origin.

A matrix Λ in the strong Poincaré domain may without loss of generality be assumed to be diagonal with diagonal entries $(\lambda_1, \ldots, \lambda_n)$. By abuse of notation we shall identify Λ with the vector $(\lambda_1, \ldots, \lambda_n)$. If $\Lambda \in \mathbb{C}^n$ lies in the strong Poincaré domain, then there is a neighbourhood U of Λ in \mathbb{C}^n such that all $\Lambda' \in U$ lie in the strong Poincaré domain.

There is a complex analog of Hartman's theorem proved by Guggenheimer (cf. [Gu]): If Φ_{Λ} is the flow of the vector field $X_{\Lambda}(z)$ on \mathbb{C}^n with Λ a diagonal matrix in the strong Poincaré domain, there there is a neighbourhood U of Λ in \mathbb{C}^n such that for all $\Lambda' \in U$ a homeomorphism of \mathbb{C}^n exists mapping Φ_{Λ} orbits to the $\Phi_{\Lambda'}$ orbits.

The subgroup $\langle f \rangle$ of automorphisms of \mathbb{C}^n generated by a contraction $f: (z_1, \ldots, z_n) \to (\mu_1 z_1, \ldots, \mu_n z_n)$ with $0 < |\mu_1| \leq \cdots \leq |\mu_n| < 1$ operates freely and

properly discontinuously on $\mathbb{C}^n - \{0\}$. The quotient $X = \mathbb{C}^n - \{0\}/_{\langle f \rangle}$ is a compact, complex manifold of dimension *n* called a (diagonal) Hopf manifold (cf. [Hae], [Ko] \$10, [Ma] and [We]).

The structure of the foliations $\overline{\mathscr{F}}$ induced by the orbits of a flow Φ_{Λ} on $\mathbb{C}^n - \{0\}$, Λ in the strong Poincaré domain, has been described by Arnold (cf. [Ar]): the coordinate axes are leaves and the rest of the leaves are \mathbb{C} -planes which wind around the axes. Because these foliations are invariant under the action of the contraction f we obtain a foliation \mathscr{F} on the Hopf manifold X.

The purpose of this note is to prove the following theorem.

THEOREM. Let X be a diagonal Hopf manifold, Λ a diagonal matrix Λ in the strong Poincaré domain and \mathscr{F} the foliation on X induced by the linear vector field $X_{\Lambda}(z) = \Lambda z$ on the universal covering $\mathbb{C}^n - \{0\}$ of X. Then there is a neighbourhood $U \subset \mathbb{C}^n$ of Λ , such that any foliation \mathscr{F}' on X induced by a vector field $X_{\Lambda'}(z) = \Lambda' z$, $\Lambda' \in U$, is topologically inequivalent to \mathscr{F} , i.e., there is no homeomorphism h: $X \to X$ mapping the leaves of \mathscr{F} to the leaves of \mathscr{F}' .

Notation:

$$\begin{split} \mathbb{R}_{0}^{+} &:= \{x \in \mathbb{R} \mid x \geq 0\}, \\ W^{n} &:= \mathbb{C}^{n} - \{0\}, \\ pr: W^{n} \to X, \text{ the canonical projection,} \\ \text{if } \mathscr{F} \text{ is a foliation on } X, \, \bar{\mathscr{F}} \text{ denotes the lifted foliation } pr^{*}(\mathscr{F}) \text{ on } W^{n}, \\ E_{i} &:= pr(\{z \in \mathbb{C}^{n} \mid z_{j} = 0, j \neq i\}). \\ \text{Notation for the two dimensional case:} \\ S_{r}^{3} &:= \{(z_{1}, z_{2}) \in \mathbb{C}^{2} \mid |z_{1}|^{2} + |z_{2}|^{2} = r^{2}\}, \\ P &:= \{(z_{1}, z_{2}) \in \mathbb{C}^{2} \mid |z_{1}| \leq 1 \text{ and } |z_{2}| \leq 1\}, \\ \partial P : \text{the boundary of } P, \\ B &:= \{(z_{1}, z_{2}) \in \mathbb{C}^{2} \mid |z_{1}| = 1 \text{ and } |z_{2}| = 1\} \subset \partial P, B \text{ is homeomorphic to } S^{1} \times S^{1}, \\ A_{j} &:= \{(z_{1}, z_{2}) \in \mathbb{C}^{2} \mid |z_{j} = 0\}, j = 1, 2, \text{ the coordinate axes,} \\ C_{j} &:= S_{\sqrt{2}}^{3} \cap A_{j}, j = 1, 2, \text{ the intersection circles,} \\ Z_{1} &:= \{(s, e^{it}) \in \mathbb{C}^{2} \mid s, t \in \mathbb{R}\}, \\ Z_{2} &:= \{(e^{it}, s) \in \mathbb{C}^{2} \mid s, t \in \mathbb{R}\}, \\ B \cap Z_{j} \text{ has two components we fix one and denote it by } G_{j}, j = 1, 2. \end{split}$$

2. Proof of the theorem

We shall prove the theorem in the two dimensional case first (Proposition 5) and then reduce the general case to this situation.

LEMMA 1. Let X_{Λ} be a linear complex vector field on \mathbb{C}^2 with $\Lambda = (\lambda_1, \lambda_2)$ in the strong Poincaré domain and let $\overline{\mathscr{F}}$ be the foliation induced by X_{Λ} on W^2 .

Then each leaf of $\overline{\mathscr{F}}$ which is not a coordinate axis has a unique point on B.

Proof. Take any leaf L which is not a coordinate axis and a point $p := (z_1(p), z_2(p)) \in L \cap \partial P$. Without loss of generality we may assume $|z_1(p)| = 1$, $|z_2(p)| \leq 1$. The flow through the point p can be described by

$$z_1(T) = e^{\lambda_1 T} z_1(p), \quad z_2(T) = e^{\lambda_2 T} z_2(p), \text{ with } T \in \mathbb{C}.$$

Of course $|z_1(T)| = 1$ if and only if $T \in (i/\lambda_1)\mathbb{R}$. Since $\lambda_1 \notin \lambda_2 \mathbb{R}$, there is a unique value $t_0 \in \mathbb{R}$ such that $|e^{(\lambda_2/\lambda_1)it_0}| = |z_2(p)|^{-1}$.

Let X_{Λ} be a linear complex vector field on \mathbb{C}^2 with $\Lambda = (\lambda_1, \lambda_2)$ in the strong Poincaré domain and let $\overline{\mathscr{F}}$ be the foliation induced by X_{Λ} on W^2 . The contraction $f:(z_1, z_2) \mapsto (\mu_1 z_1, \mu_2 z_2)$ maps B on $B_{\mu} := f(B) \subset \partial(f(P))$ and again each leaf of $\overline{\mathscr{F}}$ with the exception of the axes intersects B_{μ} in a unique point. There is a bijection flow: $B \to B_{\mu}$ defined in the following way: If $p \in B$ then here is a unique leaf L of $\overline{\mathscr{F}}$ such that $p \in L \cap B$. The application flow maps p to the unique point $\tilde{p} \in L \cap B_{\mu}$. The gluing of the leaves of $\overline{\mathscr{F}}$ when we map W^2 onto the Hopf surface X by the canonical projection pr is described by the map: $M: B \xrightarrow{flow} B_{\mu} \xrightarrow{f^{-1}} B$. A short computation shows that M corresponds to a rotation of the torus B: Note that the vector fields (λ_1, λ_2) and $c(\lambda_1, \lambda_2)$ with $c \in \mathbb{C}^*$ induce the same foliation on W^2 . Hence we can restrict ourselves to the case $(1, \lambda)$.

Let

$$\lambda = x + iy, \quad T = t_1 + it_2; \quad \mu_1 = \rho_1 e^{i\psi_1}, \quad \mu_2 = \rho_2 e^{i\psi_2}.$$

We take a point $p := (z_1(p), z_2(p)) \in B$, i.e., $|z_1(p)| = |z_2(p)| = 1$.

We compute $M: B \xrightarrow{flow} B_{\mu} \xrightarrow{f^{-1}} B$: choose a value T such that $|z_1(T)| = |\mu_1|$, $|z_2(T)| = |\mu_2|$.

Then $|z_1(T)| = |e^T| = e^{t_1} = |\mu_1| = \rho_1$ implies that $t_1 = \log \rho_1$, and $|z_2(T)| = |e^{\lambda T}| = e^{xt_1 - yt_2} = |\mu_2| = \rho_2$ implies that $xt_1 - yt_2 = \log \rho_2$. Hence

$$t_{2} = \frac{xt_{1} - \log \rho_{2}}{y} = \frac{x \log \rho_{1} - \log \rho_{2}}{y}$$

It follows that

$$(\mu_1^{-1} e^T z_1(p), \mu_2^{-1} e^{\lambda T} z_1(p)) \in B, \text{ i.e., } |\mu_1^{-1} e^T| = 1 = |\mu_2^{-1} e^{\lambda T}|.$$

Therefore the map M corresponds to a rotation about

$$(\alpha, \beta) := (\arg(\mu_1^{-1} e^T), \arg(\mu_2^{-1} e^{\lambda T})).$$

We represent the values of the arg function in $(-\pi, \pi]$. If $a \in \mathbb{R}$, then $a \mod 2\pi$ is represented in the same interval. We obtain

$$(\alpha, \beta) = (t_2 - \psi_1, xt_2 + yt_1 - \psi_2) \mod 2\pi$$
$$= \left(\frac{x \log \rho_1 - \log \rho_2}{y} - \psi_1, \frac{(x^2 + y^2) \log \rho_1 - x \log \rho_2}{y} - \psi_2\right) \mod 2\pi.$$
(1)

REMARK 2. It is well known that if ϕ_1 , ϕ_2 are topological maps of $S^1 \times S^1$ and the induced maps ϕ_1^* , ϕ_2^* on the "mapping class group" $H_1(S^1 \times S^1, \mathbb{Z})$ are equal, then ϕ_1 , ϕ_2 are homotopic (cf. [Ro] p. 26).

LEMMA 3. Let $\psi: S_{\sqrt{2}}^3 \to S_{\sqrt{2}}^3$ be a topological map which maps the set $\{C_1, C_2\}$ of intersection circles and the torus B on themselves, respectively. Then ψ^* operates as one of the following matrices on $H_1(G_1 \times G_2, \mathbb{Z})$:

$$\begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}, \begin{pmatrix} \pm 1 & 0 \\ 0 & \mp 1 \end{pmatrix}, \begin{pmatrix} 0 & \pm 1 \\ \pm 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & \pm 1 \\ \mp 1 & 0 \end{pmatrix}.$$

Proof. The sphere $S_{\sqrt{2}}^3$ is the union of two solid tori

$$D_1 := \{(z_1, z_2) \in S^3_{\sqrt{2}} | |z_1| \leq 1, |z_2| \ge 1\}, \quad D_2 := \{(z_1, z_2) \in \sqrt[3]{2} | |z_1| \ge 1, |z_2| \le 1\}$$

with $D_1 \cap D_2 = B$. The intersection circles C_j are the souls of D_j , j = 1, 2. The map $f:(z_1, z_2) \mapsto (z_2, z_1)$ on \mathbb{C}^2 fixes $S_{\sqrt{2}}^3$ and B, but exchanges the intersection circles. We deduce that $f^* = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$. We will show that if $\psi(C_i) = C_i$ then

either
$$\psi^* = \begin{pmatrix} \pm 1 & 0 \\ 0 & \pm 1 \end{pmatrix}$$
 or $\psi^* = \begin{pmatrix} \pm 1 & 0 \\ 0 & \mp 1 \end{pmatrix}$

From this fact the claim will follow immediately because if $\psi(C_1) = C_2$ we replace ψ by $f \circ \psi$ and apply the above result. Hence assume that $\psi(C_j) = C_j$, j = 1, 2, and that $\psi^*([G_1]) = n_1[G_1] + n_2[G_2], n_1, n_2 \in \mathbb{Z}$. We look at the two natural embeddings $e_j: B \to S_{\sqrt{2}}^3 - C_j, j = 1, 2$, and the diagrams

$$\begin{array}{cccc} B & \stackrel{e_j}{\longrightarrow} & S_{\sqrt{2}}^3 - C_j \\ \psi \\ \psi \\ B & \stackrel{e_j}{\longrightarrow} & S_{\sqrt{2}}^3 - C_j \end{array}$$

and

$$\begin{array}{cccc} H_1(B, \mathbb{Z}) & \stackrel{e_j^*}{\longrightarrow} & H_1(S_{\sqrt{2}}^3 - C_j, \mathbb{Z}) \\ & & & & & \\ \psi^* & & & & \\ H_1(B, \mathbb{Z}) & \stackrel{e_j^*}{\longrightarrow} & H_1(S_{\sqrt{2}}^3 - C_j, \mathbb{Z}). \end{array}$$

The circles C_1 and G_1 induce the same generator $\alpha_1 \in H_1(S_{\sqrt{2}}^3 - C_2, \mathbb{Z})$ and we must have $\psi^*(\alpha_1) = \pm \alpha_1$. Hence $\psi^* \circ e_2^*([G_1]) = \pm \alpha_1 = e_2^* \circ \psi^*([G_1]) = e_2^*$ $(n_1[G_1] + n_2[G_2]) = n_1\alpha_1$.

If we take the embedding e_1 and the intersection circle C_2 instead of e_2 , C_1 we conclude that $n_2 = 0$. The result $\psi^*(\alpha_2) = \pm \alpha_2$ is obtained by a repetition of the previous argument.

PROPOSITION 4. Let X be the diagonal Hopf surface induced by the contraction $f:(z_1, z_2) \mapsto (\mu_1 z_1, \mu_2 z_2)$ with $\mu_1 = \rho_1 e^{i\psi_1}, \mu_2 = \rho_2 e^{i\psi_2}$, and let \mathscr{F} be the foliation on X induced by the vector field $X_{\Lambda}(z) = \Lambda z$ with $\Lambda = (1, \lambda), \lambda = x + iy \in \mathbb{C} - \mathbb{R}$ on W^2 . Then the set

$$R_{\mathscr{F}} := \{ |\alpha|, |\beta| \} = \left\{ \left| \frac{x \log \rho_1 - \log \rho_2}{y} - \psi_1 \mod 2\pi \right|, \\ \left| \frac{(x^2 + y^2) \log \rho_1 - x \log \rho_2}{y} - \psi_2 \mod 2\pi \right| \right\}$$

is a topological invariant of \mathcal{F} on X.

Proof. Let \mathscr{F} , \mathscr{F}' be two foliations on X, induced by X_{Λ} , $X_{\Lambda'}$ with Λ , Λ' in the strong Poincaré domain, and let $h: X \to X$ be a homeomorphism such that $h^*(\mathscr{F}) = \mathscr{F}'$. Remember that $\overline{\mathscr{F}} = \mathrm{pr}^*(\mathscr{F})$ and $\overline{\mathscr{F}}' = \mathrm{pr}^*(\mathscr{F}')$. The map h induces a topological map $\tilde{h}: W^2 \to W^2$ on the universal covering of X such that $\tilde{h}^*(\overline{\mathscr{F}}) = \overline{\mathscr{F}}'$. These foliations induce rotation maps M, M' on B. Put $B' := \tilde{h}(B)$. Now we deform \tilde{h} continuously along the flow until B' lies on B and again call by an abuse of notation the resulting map \tilde{h} . The following diagram is commutative:

$$\begin{array}{cccc} B & \stackrel{h}{\longrightarrow} & B \\ M & & & \downarrow M \\ B & \stackrel{\bar{h}}{\longrightarrow} & B \end{array}$$

which means that M and M' are topologically conjugate.

According to a result of Herman (cf. [He] XIII. Prop. 1.4, remark 1.5), the rotation number (α, β) of a rotation on $S^1 \times S^1$ is unchanged by conjugation with a topological map which is homotopic to the identity on $S^1 \times S^1$. This implies that the change of the rotation number (α, β) by conjugation with a topological map of *B* depends only on its homotopy class. Lemma 3 applies to our map \tilde{h} . Hence, if the rotation number of *M* equals (α, β) then the rotation number of *M'* must be one of the following

$$(\pm \alpha, \pm \beta), (\mp \alpha, \pm \beta), (\pm \beta, \pm \alpha), (\mp \beta, \pm \alpha).$$

PROPOSITION 5. Let X be a diagonal Hopf surface and \mathscr{F} a foliation on X induced by the linear complex vector field $X_{\Lambda}(x) = \Lambda z$, with $\Lambda = (\lambda_1, \lambda_2)$ in the strong Poincaré domain. Then there is a neighbourhood $U \subset \mathbb{C}^2$ of (λ_1, λ_2) , such that for any foliation \mathscr{F}' induced by a vector field $X_{\Lambda'}$ with $(\lambda'_1, \lambda'_2) \in U$, there is no homeomorphism h: $X \to X$ with $h^*(\mathscr{F}') = \mathscr{F}$.

Proof. Without loss of generality we may assume that $\Lambda = (1, \lambda)$. Hence our claim follows from Proposition 4 and the following fact: By (1) we have a differentiable map

rot:
$$\mathbb{C} - \mathbb{R} \to \mathbb{R}/2\pi\mathbb{Z} \times \mathbb{R}/2\pi\mathbb{Z}$$

 $\lambda = x + iy \mapsto (\alpha, \beta)$

which is locally a diffeomorphism:

$$\det\left(\frac{\partial(\alpha, \beta)}{\partial(x, y)}\right) = \frac{(y^2 + x^2)\log^2 \rho_1 - 2x\log \rho_1 \log \rho_2 + \log^2 \rho_2}{y^3} = 0$$

has for a given real $y \neq 0$ only non real x as solutions.

REMARK 6. The neighbourhood U around Λ in Proposition 5 can be chosen such that for all \mathscr{F}' induced by $\Lambda' \in U$ there are only finitely many \mathscr{F}'' induced by a $\Lambda'' \in U$ which are topologically equivalent to \mathscr{F}' .

 \square

Proof of the theorem: (a) The complex planes $P_{ij} := \{z \in \mathbb{C}^n | z_l = 0, l \neq i, j\}$ are mapped by pr on Hopf surfaces X_{ij} in X. The foliation $\mathscr{F}_{ij} := \mathscr{F} | X_{ij}$ is induced by $X(z) = X_{\Lambda} | P_{ij} \cong (\lambda_i z_i, \lambda_j z_j)$ on $\mathbb{C}^2 - \{0\}$.

(b) If we have two foliations \mathscr{F} and \mathscr{F}' on X and a homeomorphism $h: X \to X$ with $h^*(\mathscr{F}') = \mathscr{F}$, then we claim that for *i*, *j* there are *k*, *l* such that $h(X_{ij}) = X_{kl}$ and $h^*(\mathscr{F}'_{kl}) = \mathscr{F}_{ij}$.

The leaves E_i are compact for all *i*. Therefore *h* maps the set of the E_i 's on itself. The set of leaves of $\mathscr{F}'_{i,i}$ consists of E_i , E_i and the \mathbb{C} -planes which wind

around E_i , E_j and have exactly these two compact leaves in its closure. If h maps E_i , E_j on E_k , E_l , respectively, then a leaf which has E_i and E_j in its closure is mapped on a leaf which has E_k and E_l in its closure. Hence the claim follows.

(c) We denote the set of embedded Hopf surfaces $X_{ij} \subset X$ by HS. It follows from (b) that each homeomorphism $h: X \to X$ with $h^*(\mathscr{F}') = \mathscr{F}$ induces a permutation Perm(h) of HS.

(d) Assume there there is no neighbourhood of Λ in \mathbb{C}^n with the properties claimed in the theorem. Then there exists a sequence $\{\Lambda^r\}$ which converges to Λ in \mathbb{C}^n , for which each $\Lambda^r \neq \Lambda$, and a sequence of homeomorphisms $h^r: X \to X$ with $(h^r)^*(\mathscr{F}^r) = \mathscr{F}$, where \mathscr{F}^r denotes the foliation induced by X_{Λ^r} . The set HS is finite and $\{h^r\}$ is infinite. Choosing an appropriate subsequence of $\{h^r\}$ we may assume therefore without loss of generality that $Perm(h^r)$ is independent of r. This implies that $\{h^r\}$ induces for each pair i, j a sequence of homeomorphisms $\{h^r_{ijkl}\}$ with $h^r_{ijkl}: X_{ij} \to X_{kl}$ and $(h^r_{ijkl})^*(\mathscr{F}^r_{kl}) = \mathscr{F}_{ij}$. Proposition 4 implies that $\mathcal{R}_{\mathscr{F}_{ij}} = \mathcal{R}_{\mathscr{F}_{kl}}$ for all i, j. On the other side, the sequence $\{(\lambda^r_k, \lambda^r_l)\}$ converges to $\{(\lambda_k, \lambda_e)\}$. Therefore by Proposition 5 and Remark 6 we may assume without loss of generality that $(\lambda^r_k, \lambda^r_l)$ is independent of r for all k, l. Hence Λ^r is constant. Since $\{\Lambda^r\}$ converges to Λ we obtain $\Lambda^r = \Lambda$ for all r, a contradiction.

3. An observation on the structure of B

Given a transversally holomorphic foliation \mathcal{F} on a manifold X and a submanifold S. If the leaves of \mathcal{F} intersect S transversally in all points of S, then \mathcal{F} induces on S a complex structure (cf. [GHS]).

In our discussion of the two dimensional case we have introduced a differentiable torus B in W^2 which is intersected transversally in all points by the leaves of the foliation $\overline{\mathscr{F}}$ induced by the vector field $X_{\Lambda}(z)$, Λ in the strong Poincaré domain. The image pr(B) is again a torus now in the Hopf surface X^2 and transversally intersected in all points by the leaves of the corresponding foliation \mathscr{F} . We inquire into the relation between the foliation \mathscr{F} and the complex structure of pr(B).

PROPOSITION 6. Let \mathscr{F} be the foliation on X^2 induced by the vector field $X_{\Lambda}(z) = \Lambda z$ where $\Lambda = (1, \lambda), \ \lambda = x + iy \in \mathbb{C} - \mathbb{R}$ on W^2 . Then the complex structure induced on pr(B) is conformally equivalent to $\mathbb{C}^*/_{\langle e^{2\pi i\lambda} \rangle}$.

Proof. Apart from the coordinate axes every leaf has some intersection points with the punctured plane $Pl = \{(z_1, z_2) \in \mathbb{C}^2 | z_1 = 1, z_2 \in \mathbb{C}^*\}$. Take a leaf L and a point $p = (1, z_2(0)) \in L \cap Pl$. The flow through this point is given by $z_1(T) = e^T z_1(0) = e^T, z_2(T) = e^{\lambda T} z_2(0)$. We obtain the other intersection points of L with Pl, $(1, z_2(T))$, by the equation $1 = e^T 1$, and hence

 $(1, e^{\lambda 2 \pi i k} z_2(0)) = (1, (e^{2 \pi i \lambda})^k z_2(0)).$

We map these isolated points in Pl onto the unique intersection point of L with B and obtain eventually a holomorphic covering map:

Acknowledgement

The author thanks Prof. A. Haefliger for helpful discussions.

References

- [Ar] V.I. Arnol'd, Remarks on singularities of finite codimension in complex dynamical systems, Functional Analysis and its Applications 3(1) (1969) 1–6.
- [Gu] J. Guggenheimer, Hartman's theorem for complex flows in the Poincaré domain, Compositio Mathematica 24 (1972) 75-82.
- [Hae] A. Haefliger, Deformations of transversely holomorphic flows on spheres and deformations of Hopf manifolds, *Compositio Mathematica* 55 (1985) 241–251.
- [He] M. Herman, Thesis (1976), Paris.
- [Ko] K. Kodaira, On the structure of compact complex analytic surfaces, I, II, Am. J. Math. 86 (1964) 751-798; 88 (1966) 682-721.
- [Ma] D. Mall, The cohomology of line bundles on Hopf manifolds, Osaka J. Math. 28 (1991) 999-1015.
- [Ro] D. Rolfsen, Knots and Links, Mathematics Lecture Series 7, Publish or Perish, Wilmington 1976.
- [GHS] J. Girbau, A. Haefliger, D. Sundaraman, On deformations of transversely holomorphic foliations, J. für die reine angew. Math. 345 (1983) 122-147.
- [We] J. Wehler, Versal deformation of Hopf surfaces, J. für die reine angew. Math. 328 (1981) 22-32.