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1. Introduction

Let E = F(03C4) be a quadratic extension of a number field F, and 03B6 the

quadratic idele class character of F attached to E. In [H-L-R] there is an
argument which shows that an automorphic representation 7T of GL(n, EA)
with central character X - NEIF is the base change of an automorphic represen-
tation of GL(n, FA) with central character y or xl if 7r is H7J-distinguished
for a unitary group H~ with respect to an invertible Hermitian matrix ~.
Here 7T is said to be H 7J-distinguished if there is a function 0 in the space
of 7T such that f 0(h)X - 03BB~(h) dh =1= 0, where h E ZEA H’~(F)BH’~(FA), H’ 17 is

the group of unitary similitudes, and À7J is the similitude ratio. This property
of 7r being distinguished then might imply a possible pole of an L-function
attached to the representation 7T (cf. [H-L-R]).
An interesting question is whether the converse is true. For GL(2) it is

answered affirmatively in [H-L-R] and later in [Y] and [J-Y], while for GL(n)
it is conjectured to be true by Jacquet and Ye in [J-Y]. The approach in [Y]
and [J-Y] is to construct a relative trace formula. For GL(3) the fundamental
lemma of the relative trace formula is proved for unit elements of Hecke
algebras in [J-Y2]. In this paper we will prove that fundamental lemma for
general spherical functions on GL(3).
The author would like to take this opportunity to express gratitude to

Jacquet for his constant encouragement. Thanks are also due to Kutzko and
Manderscheid for their helpful suggestions.

2. The fundamental lemma

From now on we will denote by F a local non Archimedean field of odd
residual characteristic with the ring of integers RF, and by E = F(Vl) an
unramified quadratic extension of F with the ring of integers RE, where
T ~ RXF. Let 03B6 be the quadratic character of F attached to E, ’CUF (resp. ’ME)
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a prime element in RF (resp. RE), and qF the cardinality of RF/FRF. Select
an additive character of F of order zero and set o/E = 03C8 ° trE/F. Then o/E is
a character of E of order zero. For n E NF we define 03B8F(n) = 03C8(03A3ni,i+1).
Define 03B8E on NE likewise. Let X be an unramified character of Fx.
We will consider spherical functions 1 (resp. f’), i . e . , bi-KF-invariant (resp.

bi-KE-invariant) functions of compact support of GL(3, F) (resp. GL(3, E)).
Denote by H (resp. (ifE) the Hecke algebra consisting of the functions f
(resp. f’). Write f(03BB) = f(m) and f’(03BB) = f’(m’) and define 03A6f(03BB) =
NFf(mm) dn, 03A8f(03BB) = NFf(mn)03B8F(n) dn, 03A6’f’(03BB) = NEf’(m’n) dn, and ’l’t’
(03BB) = NEf’(m’n)03B8E(n)dn, where 03BB = (03BB1, 03BB2, 03BB3) ~ Z3, m = diag
(03BB1F, À2 À3) and m’ = diag(03BB1E, 03BB2E, À3) Then thé base change map
b : f’ ~ f from (ifE into (If can be characterized by the equations

Let HF be the unitary group with respect to the Hermitian matrix (1 1 1) .
Then the group of unitry similitudes with respect to (1 1 1) is ZEHF. For

f’ e 9tE we define a function 03A9 on the space of Hermitian matrices by
OCg(l 1 1)g) = f f’(hg) dh where h E HF, and fl(s) = 0 for Hermitian matr-
ices s not of the form tg(1 1 1)g. For a = diag(l, q, pq) with p, q E F’ we
define the relative Kloosterman integral J(f’;p,q)=03A9(tnzan)~
(z) BE(n) dn dxz, where n E NE and .z E ZF, and a Kloosterman integral
I(f;p,q) = f(txzay)03B8F(x)03B8F(y)~03B6(z)dxdydxz, where x, y E NF and

,z E ZF. We also define several singular integrals:
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Here N1E = In E NEltn(l 1 1)n = (1 1 1)}, N4F = tx E NFI
(P p 1) -1 tx( p p 1) E NF}, and N2E, N3E, NSF are defined similarly.

THEOREM 1 (The fundamental lemma). Assume f ~ H and f’ C= YE satisfy
f = b( f’). Then I(f;p,q)=03B6(q)J(f’;p,q), I1(f)=J1(f’), I2(f;p)=
l(p)12(f’;p), and I3(f;p) = 03B6(p)J3(f’;p) for p, q E FX.

We remark that the above fundamental lemma is purely a local argument.
For a version of the global relative trace formula for GL(3) we refer to
[J-Y2]. For a discussion of the singular integrals please see [Y]. The rest of
this article is devoted to the proof of Theorem 1.

3. Mautner’s identities

Mautner in [M] formulated several integral identities of functions on GL(2).
Although the proof of these GL(2) identities is rather elementary, let us list
them, together with others, in a systematic way for quick references.

Let f (resp. f’) be a spherical function on GL(2, F) (resp. GL(2, E)).
Writef(03BB1, À2) = f(diag(03BB1F, 03BB2F)),f’(03BB1, 03BB2) = f’(diag(03BB1E, 03BB2E)) and define
(Df, 03A6’f’, 03A8f and ’l’t’ in a way similar to the GL(3) case. Then

Assume f = b(f’). Then when 03BB1  À2 we have
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Finally by 03A8’f’(03BB1, 03BB2) = 03A6’f’(03BB1, À2) - q2F03A6’f’(03BB1 - 1, Â2 + 1) for 03BB1  03BB2, we
can get various relationships between ’¥t and ’l’t’, under the base change
map b: f’ - f.
The above identities played an important role, although sometimes im-

plicitly, in the author’s paper [Y]. In this section we will generalize these
identities to the case of GL(3) over quadratic extensions. The generalization
to GL(n) is the subject matter of a separate paper [Y2] of the author.
Now let us go back to the GL(3) case. We will generally not assume that

f = b( f’), unless otherwise mentioned. Since the orders of the characters 03C8
and o/E are zero, we know 03A8f(03BB1, À2, 03BB3) = 0 and 03A8’f’(03BB1, 03BB2, À3) = 0 unless
03BB1  À2 % 03BB3·

LEMMA 1. For À = (03BB1, 03BB2, As) with 03BB1  03BB2  A3 we have

Proof. Trivial.
Define

For a spherical function f on GL(2, F) we note that

if 03BB2  03BB3. Applying this equality to the integral with respect to X2 in

we get
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if 03BB2  03BB3.

LEMMA 2. For A = (À1, 03BB2, A3) with 03BB1 - 1  03BB2  As we have

Proof. We first calculate the integral 039B(03BB1, À2, 03BB3) once for 03BB1  03BB2  03BB3
and once for 03BB1 - 1 = 03BB2  A2 and express the results in terms of f(03BB), À E Z3.
Since 039B(03BB1, 03BB3, 03BB2) = 039B(03BB1, 03BB2, A3), we may then apply these computations
to the linear combination of A in the lemma. After cancellation we prove
the lemma.

LEMMA 3. For 03BB = (03BB1, A2 , k3) with 03BB1  03BB2  A3 we have

Proof. Applying (3) to the left side above and using Lemma 2 to simplify
the result, we prove the lemma.

COROLLARY. For À = (03BB1, 03BB2, 03BB3) with 03BB1  03BB2  03BB3 we have

Proof. By Lemmas 1 and 3.
We remark that we also have
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Since the base change map b can be characterized by Equations (1) and (2)
between 03A6f and 03A6’f’, we obtain a set of relationships between Ff and 03A6’f’ for
spherical functions f and f’ with f = b( f’). More precisely

THEOREM 2. Let f ~ H and f’ E eE be spherical functions with f = b(f’).
For À = (À1, À2, 03BB3) with 03BB1  03BB2  À3 we have

if 03BB ~ (0, 1, 1)(mod 2);

= 0 if À * (0, 0, 0), (1, 1, 0), (0, 1, 1)(mod 2).

Proof. Apply (1) and (2) to the right side of (4).

4. The identity between I1(f) and J1(f’)

We recall from Section 2 that I1(f) = NFZFf(zn)03B6~(z)03C8(n) dn d’z. Since
the characters l and y are unramified, I1(f) = 03A3z~Z 03B6~(zF)03A8f(z, z, z). In the
sequel we will always write z = (z, z, z). Note that 03B6(zF) = (-1)z. By Theo-
rem 2, ’¥t(z) = 0 when z is odd, if we assume f = b(f’). Consequently

On the other hand
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where

To determine a measure on HF/H1(F) we use the Iwasawa decomposition
HF = K1A1H1 where K, = KE ~ HF and AI = t(’ 1/a 1) a E Fx}. Since the
right measure on A1H1 is given by

for a ~ Fx, x ~ E and 03BC ~ F, we can set h = (a lia 1), dh = |a|-4Fdxa for any
h E K1BHF/H1(F). Hence

Since f’ is bi-invariant under KE , the function f’ in the integrand above
equals f’(z(1/a 1 a)n), and hence J1(f’) = 03A3z~Z 03A3k0 ~ (2zF)
X 03A8’f’(z + (k, 0, -k))qF-4k where k = - ord(a) . The condition k  0 is neces-
sarybecause otherwise ’¥t’(z + (k, 0, - k)) = 0.

LEMMA 4. For 03BB = (À1, 03BB2, As) with 03BB1  03BB2  As we have
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Proof. Applying (5) in Section 3 to the right side, we get a sum of 03A6’f’.
After cancellation the four terms above are the only terms left.
By Lemma 4

We point out that q2F03A6’f’, (,z + (-1, 1, 0)) = q2F03A6’f’ (,z + (0, -1, 1)) =

q4F03A6’f’(z + (-1, 0, 1)) because they are essentially Satake coefficients of f’
which are independent of the order of their entries. Therefore

Comparing (6) and (7) we prove that I1(f) = 7i(/’) for f = b( f’ ).

5. The identity between 12 (f ) and 12(f’)

By similar computation we can show that

We proceed to rewrite I2(f’) in terms of 4)f by applying Theorem 2
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to the above formula. For instance when P = 2, the only nonzero

term above is qF03A8f(z + (P - 1, P - 1, 2», and hence I2(f; p) =
qF03A3z~Z 03B6~(zF)03A8f(z + (1, 1, 2)). Since 03A8f(z + (1, 1, 2)) = 0 unless z is even,
we get I2(f; p) = qF03A3z~Z~(2zF)03A8f(2z + (1, 1, 2)). The expression of I2(f; p)
in terms of (Df for P = 2 then follows from Theorem 2. By the same argument,
we can prove the following results:

On the other hand
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if P0, P~0(mod2);

Comparing the above results, we conclude that 12(f; p) = 03B6(p)J2(f’; p)
for any p E F’ if we can prove the following lemma.

LEMMA 5. Assume the orders of 0/ and 03C8E = 03C8 ° tr to be zero. When P =

ord(p)  -3, P = 0(mod 3), we have
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Proof. Let o- be a character of F x. Then

It is known that the integral with respect to p on the right side equals
E(o-, 03C8) when the conductor of cr is -P/3, and vanishes otherwise. When
the conductor of 03C3 is -P/3, the integral with respect to x becomes

Therefore

if the conductor of 03C3 is -P/3, and vanishes otherwise.

By the same reason

if the conductor of o- is - P/3, and vanishes otherwise.
Since ~ (03C3°N, 03C8E) = ~(03C3, 03C8)~(03C303B6, 03C8), the lemma follows from the Four-

ier inversion formula.

We observe that this lemma and Lemmas 12 and 14 in Section 12 are
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all of the type of the identity between finite exponential sums proved by
Zagier in [Z].

6. The identity between I3(f) and 13(f’)

The proof of I3(f; p) = 03B6(p)J3(f’; p) is based on the similarity between I2(f’)
and I3(f), and between J2(f’) and J3(f’ ) . We will denote by 12(f;p; x, 03C8) the
integral I2(f; p) involving characters X and 03C8. Denote I3, J2 and J3 similarly.
Define (g) = fCg-1) and ’(g) = f,(tg-1). Write w = (1 1 1).

LEMMA 6. Forp E F", wehave13(f;p; X, 03C8) = I2(; 1/p; X-l, 03C8).
Proof. Since

and f is bi-invariant under KF, we have

Changing variables we get the lemma.

LEMMA7. Forp E FX, we have J3(f’; p; ~, 03C8E) = J2(f ’; 1/p; ~-1, 03C8E).
Proof. Similar to the proof of Lemma 6.
From 03A6(03BB1, À2, As) = 03A6f(-03BB3, -03BB2, -03BB1) and 03A6Lf’ (À1, À2, 03BB3) =

03A6’f’(-03BB3, -03BB2, -03BB1), we know that f = b(f ’) if and only if f = b( f’), by (1)
and (2) in Section 2. Consequently I2(; 1/p; ~-1, 03C8) =



133

l(p)12(!’; 1/p; ~-1, 03C8E) for p E FX, according to Section 5. By Lemmas 6 and
7 we get I3(f; p; ~, 03C8) = l(p)13(f’;p; x, 03C8E).

7. Réduction formulas for I(f) and J (f’)

Recall that the principal orbital integrals I(f) and J(f’) are matched in [J-
Y2] for unit elements f and f’ of Hecke algebras. Although it is not clear
whether we can use the techniques in [J-Y2] to match I(f) and J (f’) for
general functions f and f’, we may use the results in [J-Y2] to simplify our
calculation of I(f) and J ( f’ ) for spherical functions.

Let fà be a bi-KE-invariant function of compact support in ZEKE. By
Lemma 1, (À) = fà(z) if .t = z for some z E Z, and 03A8’f’0(03BB) = 0 otherwise.
By the corollary of Lemma 3

= 0 otherwise.

Because of the compactness of support of f’0, these equations can be solved
uniquely for 03A6’f’0 : 03A6’f’0(03BB) = f’0(z) if A=z for some z~Z, and 03A6’f’(03BB) = 0
otherwise.

Now denote the image of f’0 under the base change map b by f o = b(f’0).
Then by (1) and (2) in Section 2, 03A6f0(03BB) = f’0(z) if À = 2,z for some ,z E Z,
and 03A6f0(03BB) = 0 otherwise. By the corollary of Lemma 3 again,
’¥fo(À) = f’0(z) if À = 2z for some z E Z, and 03A8f0(03BB) = 0 otherwise. Hence we
get a set of equations from Lemma 1:

Consequently f0(03BB) = fô(z) if À = 2z for some z E Z, and f0(03BB) = 0 other-
wise, because f o is also compactly supported.
The argument in [J-Y2] actually implies that I(f0; p, q) = l(q)l(fÓ;p, q)

for the above functions fo and f’0. Thus when we match I(f ) and J(f’) for
spherical functions f and f’ with f = b(f’), we may select such functions fo
and fo so that fo = b( fô) and ’l’t-to(2z) = 0 for every z E Z. Since f = b( f’)
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and fo = b(f’0) imply that f - fo = b(f’ - f’0), we have 03A8f-f0(z) = 0 for any
z E Z and it is necessary to match I(f - fo) and J(f’ - fo) in order to match
I(f) and J(f’).
According to Theorem 2, Tf-fo(2z) = 0 if and only if 03A6’f’-f’0(z) - qF

x 03A6’f’-f’0(z + (-1, 0, 1)) = 0. Therefore we will assume without loss of gen-
erality that the spherical functions fe llf and f’ ~ HE satisfy f = b(f’),
03C8f(z) = 0, and 03A6’f’(z) = q4F03A6’f’(z + (-1, 0, 1)), for all z E Z, and devote the
rest of the paper to the identity between principal orbital integrals I(f) and
1 (f’) for such functions f and f’ .

8. The orbital integral 1( f )

First let us look at a theorem which gives the orbital integral I(f) in terms
of 03A8f. Since its proof is quite long, we will prove it in Section 11.

THEOREM 3. Suppose f E H satisfies ’l’t(z) = 0 for z E Z. Then
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= 0 otherwise.

We note that in Theorem 3 we do not assume f = b(f’), but from now on
we will assume f = b( f’ ) and use Theorem 2 to rewrite 1( f; p, q) in terms of
03A6f.

THEOREM 4. Suppose f é lit satisfies 03A8f(z) = 0 for every z E Z and f =
b( f’ ) for some f’ ~ HE. Then
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if P  -1, P ~ 1 (mod 2), Q  0, Q --- 0(mod 2);

if P  0, P ~ 0(mod 4), Q ~ 0(mod 2), P 2 + Q -- -2;
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if P  0, P ~ 2(mod 4), Q ~ 0(mod 2), P 2 + Q  -1;

if C  0, Q ~ 0(mod 2), P + Q 2  -2, P + Q 2 ~ 0(mod 2);



138

Note that Theorem 4 does not cover the case of P = 0(mod 2), Q --- 1(mod
2), because it can be deduced from other cases. Please see the remark before
Theorem 5 in Section 9.

Proof. We will only prove the first and the last non-zero cases. The rest
are all similar.

(i) Let P  0, Q  0, P = Q --- 0(mod 2). Since (-1, Q, P + Q + 1) ~ (1,
0, 1)(mod 2), we have ’¥f(Z + (-l, Q, P + Q + 1)) = 0 for any z E Z.Thus

Since (0, Q, P + Q) -- (0, 0, 0)(mod 2), we know 1-Pf(z + (0, Q, P + Q)) = 0
unless z is even. The same conclusion is true for the other five terms.
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Therefore the sum above is actually taken over even z E Z. Changing the
index from z to 2z - P - Q, we get the formula in the theorem for P  0,
Q  0, P = Q = 0(mod 2) from Theorem 2.

(ii) Let P  -1, Q  -1, and P = Q = 1 (mod 2). Since

(0, Q, P + Q) - (0, 1, 0)(mod 2), we know 03A8f(z + (0, Q, P + Q)) = 0 for
every z e Z. Similarly 03A8f(z + (-2, Q, P + Q + 2)) = 0 for every z E Z. Thus

Changing index from z to z - (Q + 1)/2 and applying Theorem 2, we get

From this expression we can easily see that the last non-zero part of
the theorem is valid when P &#x3E; 0, Q &#x3E; 0. When P = Q = -1, we note that
(-Q - 3, 0, P + 3) = (-2, 0, 2) and q4F03A6f(2z + (-Q - 3, 0, P + 3)) =
q2F03A6f(2z + (-Q - 1, -2, P + 3)) = q2F03A6f(2z + (-Q - 3, 2, P + 1)), because

they are essentially Satake coefficients which are independent of the order
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of their entries. Thus the theorem is valid for P = Q = -1. When P = -l,
Q &#x3E; 0 we point out that the two missing terms cancel each other:

-(1 + qF)q2F03A6f(2z + (-Q - 3, 2, P + 1)) + (1 + qF)q4F03A8f(2z + (-Q - 3, 0,
P + 3)) = 0, and hence the theorem holds in this case. Similarly from
-(1 + qF)q2F03A6f(2z + (-Q - 1, -2, P + 3)) + (1 + qF)q4F03A6f(2z + (-Q - 3,
0, P + 3)) = 0 when P &#x3E; 0, Q = -1, we get the theorem for P &#x3E; 0, Q = -1.

9. The orbital integral J (f’ )

Recall from Section 2 that J(f’; p, q) = f O(tnzan)x(z)OE(n) dn d’z, where
n e NE, z E ZF and a = diag(l, q, pq). Since S2(x) = 0 unless

det(x) E N(EX), the integral with respect to z is actually taken over those
z with z det(a) E N (E ’). By det a = pq2 we may change variables and get
l(f’;p, q) = X-1(pq2)  03A9(tnzzbn)~° N(2z)03B8E(n) dn dxz, where n E NE,
z E ZE and b = diag(1/(pq2), 1/(pq), 1/q). According to the definition of
the function 0 we can write the orbital integral in terms of f’ :

where v is a matrix such that tv(1 1 1)v = b.
The choice of v depends on p and q. When Q = ord(q) is even, we may

choose

where a, 03B11~Ex with 03B103B1=-q, 03B1103B11=q. Hence J(f’;p,q)=
X-1(pq)J[1](f’; p, q) if Q ~ 0(mod 2), where

Here the measure d« is normalized so that 03B103B1=-q da = 1.
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When P = ord(p) is even, we may set

where 03B2, 03B21~Ex with 03B203B2=-p and 03B2103B21=p. Thus J(f’;p,q)=
J[2](f’; p, q) if P ~ 0(mod 2), where

with 03B203B2=-P df3 = 1.
Finally when P = Q(mod 2) we use

where 03B3,03B31~Ex such that 03B303B3=-pq, 03B3103B31=pq. Consequently we have
J(f’; p, q) = X-1(q)J[3](f’; p, q) if P --- Q(mod 2), where

with 03B303B3=-pqd03B3=1.
Therefore we need to show that 03B6(q)~-1(pq)J[1](f’; p, q)=I(f; p, q)

when Q~0(mod 2); 03B6(q)J[2](f’; p, q)=I(f; p, q) when P=0(mod 2),
G=l(mod2); and 03B6(q)~-1(q)J[3](f’; p, q)=I(f; p, q) when P~Q~1

(mod 2). The second case, however, can be deduced from the first, by exactly
the same argument as we used in Section 6. Consequently what we need to
do is to calculate J[1](f’) and J[3](f’).
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The computations of J[1](f’) and J[3](f’) are quite similar but the integral
J[1](f’) is much more complicated than J[3](f’). By this reason we will write
a theorem on J[3](f’) below without proof and give the detailed computation
of J[1](f’) in Sections 10 and 12.

THEOREM 5. Suppose f’ ~ HE satisfies 03A6’f’(z) = q4F03A6’f’(z + (-1, 0, 1)) for
any z e Z. Assume P = Q = 1(mod 2). Then

Comparing Theorem 5 with the last non-zero part of Theorem 4 in

Section 8, we conclude that 03B6(p)~-1(q)J[3](f’;p,q)=I(f;p,q) when

P == Q == l(mod 2).

10. The orbital integral J[1](f’)

In this section we always assume Q = 0(mod 2). Using the Iwasawa decompo-
sition of HF we may specify a Haar measure on HF and write
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Let B = ord(b), X = ord(x) and A = ord(À). Then there are four cases:

We will denote by J[1](1)(f’),..., J[1](4)(f’) the integrals corresponding to
these cases. Thus J[1](f’) = J[1](1)(f’) + ··· + J[1](4)(f’).
THEOREM 6. Assume f’ ~ HE satisfies 03A6’f’(z) = q403A6’f’(z + (-1, 0, 1)) for
all ,z E Z. Then
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This theorem will be proved in Section 12.
We remark that the integral f a«=-q lie(a) da in Theorem 6 was discussed

in [Z], p. 24, and [Y], p. 92:

LEMMA 8. When Q  0, Q = 0(mod 2), we have

We then observe that the expressions of J[1](1) (f’), ... , J[1](4)(f’) are all
given in terms of infinite series of the forms 03A3k0 ’l’t’ (À + (k, 0, -k»qp4k
and 03A3l0 03A8’f’ (À + (l, -l, 0»qp21. By Lemma 4 in Section 4 we can rewrite the
first kind of infinite series as finite sums of 03A6’f’. The second kind of infinite
series is given by the following lemma.

LEMMA 9. For À = (À1, 03BB2, À3) with 03BB1  03BB2  03BB3 we have

Proof. By (5) in Section 3.
Now we can apply Lemmas 4 and 9 to each sum in Theorem 6 and rewrite

J[1](f’) in terms of 03A6’f’. Since there are so many cases, the computation is
rather lengthy, but it is very similar to the proof of Theorem 4 and hence
we will not give the detail here. If we collect the results, we see that
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03B6(q)~-1(pq)J[1](f’; p, q) has exactly the same expressions as the integral
I(f;p,q) in Theorem 4 under the condition Q ~ 0(mod 2). Therefore the
identity I( f; p, q) = 03B6(q)J(f’; p, q) is proved for Q = 0(mod 2) save the proof
of Theorems 3 and 6.

11. The proof of Theorem 3

Recall from Section 2 that

We denote P = ord(p), Q = ord(q) and Xi = ord(x;) for i = 1, 2, 3. Since
the function f is bi-invariant under KF, there are six cases:
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We will denote the integral corresponding to the case (i) by I(i)(f) for i =
1, ... , 6. Since the last case is the most complicated one, we will give the
computation of I(6)(f) in full detail and only list the final expressions of
I(1)(f),.., I(5)(f):.
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Now let us study the integral 1(6) (f). In this last case
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To compute the integral T = f 03C8(x1 + X2 - (X1q/X3) - X2p/(X1X2 - X3»
dx1 dx2 dx3 we consider two cases: (i) X2  0 and (ii) X2  0. We will denote
by I(6.1)(f) and I(6.2)(f) the corresponding expressions we get from these
cases. We need a trivial lemma which will be quoted repeatedly.

LEMMA 10. Assume the order of the eharaeter 1/1 to be ,zero. Then the

integral XFRXE 03C8(x - (b/x)) dx vanishes unless either R  -1, -1  X  B+1,
or B  -1, B ~ 0(mod 2), X = B/2, where B = ord(b).

11.1. The computation of I(6.1)(f). Setting xi = (x3/x2) + x with x E

L-X2FRxF we get T = f 03C8((x3/x2) + x + X2 - (qlx2) - (xqlx3) - (p/x))
dx2 dx3 dx where X2 E ’CU:’2R;, x3 e X3FRxF and x E L-X2FRxF. By Lemma 10
the integral with respect to x3 vanishes unless either ord(xq/x2)  -1,
X3 - X2 = -1, or ord(xq/x2)  -1, ord(xq/x2) ~ 0(mod 2), X3 - X2 =
1 2 ord(xq/x2). Denote by I(6.1.1)(f) and I(6.1.2)(f) the corresponding ex-
pressions.

11.1.1. The integral I(6.1.1)(f). In this case the conditions are X3 
-1, L-1, 2X3-LQ, 2L-X3P, X2=X3+1, and X=

L - X3 - 1, and the integral becomes T = - q-X3-1F f 03C8(x - ( p/x)) dx
f l/1(X2 - (qlx2)) dx2, where x E L-X3-1FRxF and X2 E X3+1FRxF. Applying
Lemma 10 to these two integrals with respect to x and X2 we get
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We will consider three cases: (i) X3  Q, (ii) X3 = Q and (iii) X3 &#x3E; Q, and
calculate I(6.1.2.1) (f), 1 (6.1.2.2) (f), and I(6.1.2.3) (f) .

11.1.2.1. The case of /(6.1.2.1) ( f). Since X3  Q and ord(x3 - q) = X3, we
may apply Lemma 10 to the integral with respect to X2 in I(6.1.2) ( f) and
conclude that f I/1(X2 + (X3 - q)IX2) dx2 vanishes unless X3  -1,
X3 --- 0(mod 2), X2 = X3/2. Assume X3  -1, X3 --- 0(mod 2) and X2 = X3/2.
We may also apply Lemma 10 to the integral with respect to x. Then
f 03C8(x-(xq/x3) - (p/x)) dx vanishes unless either P  -1, 2X3 - X2 - Q =
1, or P  -1, P ~ 0(mod 2), 2X3 - X2 - Q = P12. Therefore the integral
with respect to X2 and x van-

ishes unless either Q - 1(mod 3), 2(Q - 1)/3  Q, 2(Q - 1)/3  (Q/2) - 1,
X3=2(Q-1)/3-1, or P-1, P - 0(mod 2) , P + 2Q  -3,
P + 2Q --- 0(mod 3), X3 = (P + 2Q)/3. The formal case, however, is impos-
sible, because it would imply Q1, Q1, Q=1, 2(Q - 1)/3 (Q/2) - 1.
The latter case implies 03A8f(z + (X3, X3, P + 2Q - 2X3))=
03A8f(z + ((P + 2Q)/3, (P + 2Q)/3, (P + 2Q)/3» = 0 by our assumption in
Section 7. Consequently I(6.1.2.1)(f;p, q) = 0.

11.1.2.2. The case of I(6.1.2.2)(f). When X3 = Q we have
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for Q  -1, Q  P.
If P = Q, then ’l’t(z + (Q, Q, P)) = 0 by the assumption in Section 7.

Now we assume P &#x3E; Q. By Lemma 10 the integral f l/1(X2 - (q - x3)/x2) dx2
vanishes unless either ord(q - x3)-1, X2=-1, or ord(q - X3)  -1,
ord(q - x3) ~ 0(mod 2), X2 = 1 2 ord(q - X3)’
We first consider the case of ord(q - x3) -1, X2 = -1. Since X3 =

Q  -1, we have X3 E q + -1FRF, x(q - X3)IX3 E RF,p/x E RF, and

Next we consider the case of ord(q-x3)-1, ord(q-x3)~0(mod 2),
X2=1 2ord(q-x3). Since ord(x(q-x3)/x3)=X20, ord(p/x) =
P - Q + X2 &#x3E; X2 , applying Lemma 10 to the integral with respect to x, we
know that it vanishes unless X2 = -1, ord(q-x3)=-2, X3=Q-2, X=
Q + 1, Q  P. Thus

Therefore
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11.1.2.3 . The case of 1(6.1.2.3) (f). When X3 &#x3E; Q, we have

Since ord(xq/x3)  X, ord(x - (xqlx3)) = X3 - X2  0, the integral
f 03C8(x - (xqlx3) - (p/x)) dx vanishes unless either P + Q - X3  -1,
X3-X2=-1, or P+Q-X3-1, P+Q-X3=0(mod 2), X3-X2=
(P + Q - X3)/2, by Lemma 10.
When P+Q-X3-1, P+Q-X3~0(mod 2), X3-X2=

(P + Q - X3)/2, we note that ord(q - X3) = Q and the integral
f I/1(X2 - (q - x3)/x2) dX2 vanishes unless Q = 0(mod 2), X2 = Q/2. Thus

P + 2Q~ 0(mod 3), X3 = (P + 2Q)/3, and 03A8f(z + (X3, X3, P +
2Q - 2X3))= 03A8f(z + ((P + 2Q)/3, (P + 2Q)/3, (P + 2Q)l3)) = 0 by the as-
sumption in Section 7.
When P + Q - X3  -1, X3 - X2 = -1, the integral becomes

because f 03C8(x3/x2) dx3 = -qFx3 1. Since X2 = X3 + 1  Q/2  -2, the inte-
gral f 03C8(x2 - (q/x2)) dx2 vanishes unless Q =- 0(mod 2), X2 = Q/2. Thus we
get



155

11.2. The computation of 1(6.2) (f). Now we assume X20. Then

Xl + X2 &#x3E; L, L = ord(xlx2 - X3) = X3, and

Observe that the integral with respect to x1 vanishes unless ord(X3 - q)-1.
When ord(x3 - q)-1, the integral f l/1(X1 - (xlqlx3)) dxl dx3 equals
qFX3-1 f dx3. Therefore

Collecting the results in these subsections, we have
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Adding the results for I(1)(f),..., I(6)(f), we complete the proof of Theo-
rem 3.

12. The proof of Theorem 6

We will only consider the integral J[1](4) ( f’ )because the calculations of others
are similar and less complicated. By Section 10 the integral is

where 03C9(p, a, x,,k) = I/1E(a - 2apl( p + xx - 03BB03C4) + ( p + xx - 03BB03C4)/2x - x)
and k = B + X. We will consider three cases: (1) X &#x3E; 1 - k, (2) X  1 - k
and (3) X = l - k, and denote by J[1](4.i)(f’), i = 1, 2, 3, the corresponding
expressions.

12.1. The computation of J[1](4.1)(f’). Since X &#x3E; l - k, the condition

min(ord(p + xx), A) = 1 - k + X can be written as min(P, A) = l - k + X.
Hence the conditions in the expression of J[1](4.1)(f’) are k  0, 2k  l,
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LEMMA 11. When X&#x3E;l-k, the integral f03C9(p, 03B1, x, À) dx dÀ, where
min(P, A) = l - k + X and x E XERxE, vanishes unless either (i)
P+(Q/2)-5, -1l-k(2P+Q+2)/4; (ii) P+(Q/2)  -6,
P + (Ql2) --- 0(mod 3), l - k = (2P + Q)/6.

Proof. For x E xERxE we set x = x1(1 + y) with xi E XE(RxE/1) + MERE)
and y E MERE for some M &#x3E; 0. At the same time for À E l-k+XFRxF or À E
’CUlpk+xRF with min(P, A) = l - k + X we set 03BB = À1 + ~ with Ai E

l-k+XF(RxF/1 + X+k-l+MFRF) or Ai E l-k+XF(RF/X+k-l+MFRF) and ~ ~
2X+MFRF. We will show that it is possible to choose M so that the integral
with respect to y and ~ vanishes, except for the above cases.

If M  -[(2P + Q)/4)] + l - k, then

where TJ1 = 17 + X1X1(Y - y)/03C4~2X+MFRF. Similarly when M  (k - 1)/2,
we have

When l - k -1 [(2P + Q)/4] + 1 we can choose M &#x3E; 0 satisfying
-[(2P + Q)/4] + l - k  M  - P - (Q/2) + 2l - 2k so that (22) is a non-

trivial character of y and hence f 03C8E(- 2apl(p + xx - 03BB03C4))dy d~ = 0. If

1 - k  [(2P + Q)14] + 1, then (22) is indeed independent of y and ~1. On
the other hand when l - k  -2, we can choose M &#x3E; 0 with

(k - 1)/2 % M  k - l and hence f I/1E«P + xz - ÀVI)/2i - x) dy d~ = 0. If

1 - k  -1, then (23) is independent of y and 17.
When P + (Ql2) , -5 and l - k  -2, it is possible to choose M &#x3E; 0

such that (k - /)/2  M  k-l, M  -[(2P + Q)l4] + l - k. Thus (22) is

independent of y and ~, while (23) is a non-trivial character of y, and hence
w(p, a, x, À) is also a non-trivial character of y. Therefore when
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P + (Q/2)  -5, the integral in the lemma vanishes if l - k  -2. Likewise
the integral equals zero when P + (Q/2)  -5 and l - k  [(2P + Q)/4] + 1.
When P + (Q/2)  -6, we may use the same techniques to show that the

integral of 03C9(p, a, x, A) is zero. But it is possible that both (22) and (23) are
non-trivial characters of y. If this is the case, w(p, a, x, 03BB) remains a non-
trivial character of y when ord(403B1px1x1/(p + X1X1 - 03BB103C4)2) ~
ord(( p + xif 1 - 03BB103C4)/2x1), i.e., l - k ~ (2P + Q)/6. Therefore the integral
of 03C9(p, 03B1, x, 03BB) vanishes when P + (Q/2) % -6 unless 1 - k = (2P + Q)/6.

By this lemma we can write J[1](4.1)(f’) as

By the assumption at the end of Section 7 the sum with respect to k in
(25) vanishes. Thus (25) equals zero. To calculate (24) we consider four
cases:
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and denote the corresponding expressions by J[1](4.1.i)(f’), i = 1, ... , 4.
To calculate J[1](4.1.1)(f’), we note that w(p, a,x, À) = I/1E(a) when

0  l - k  (2P + Q + 2)/4. Consequently J[1](4.1.1)(f’) equals (8) in Theo-
rem 6.

In the second case we note that 03C9(p, a, x, 03BB) = 03C8E(-03B1[(p + 03BB03C4)/(p - À
03C4)] + [(p - 03BB03C4)/(2x)]). Integrating this expression we get (9) from

J[1](4.1.2)(f’).
For J[1](4.1.3) (f’) we have w(p, a, x, À) = I/1E(a1(1 - 2pyy)) where ai

a [( p + 03BB03C4)/(p - 03BB03C4)] and y = xl(p - AVr).
LEMMA 12. If Q ; -4, Q = 0(mod 2), P + (Q/2)  -1 and P +

(Q/2) ~ 1 (mod 2), then

Proof. Similar to the proof of Lemma 5.
By this lemma we get (10) from the third case.
Finally we see that j[l](4.1.4) (f’) equals zero because it can be written in

terms of 03A3k003A8’f’(z + (k + 2, 1, -k))-4kqF, which vanishes according to our
assumption in Section 7.

12.2. The computation of J[1](4.2)(f’). When X  l - k, we deduce from
min(ord(p + xx), A) = l - k + X that P ~ 0(mod 2), X = P/2, xx E

- p + (P/2)+l-kF RF, and l - k &#x3E; P/2.

LEMMA 13. When P ~ 0(mod 2), 1 - k &#x3E; P/2, the integral
f 03C9(p, a, x, À) dx dk, where x E P/2E Rx, xx E -p + (P/2)+l-kF RF and min
(ord( p + xx), A) = (P/2) + l - k, vanishes unless in any one of the following
cases :

Proof. Similar to the proof of Lemma 11.
According to this lemma we consider six cases and denote by

J[1](4.2.i)(f’), i = 1,..., 6, the corresponding expressions:
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We observe that 03C9(p, a, x, 03BB) = 1 in case (1), = o/E( -2ap/(p + xx-03BB03C4))
in case (2), and = o/E«P + xi - 03BB03C4)/2x - x) in cases (3) and (4). For case
(5) we have a lemma:

LEMMA 14. When P  0, P == 0(mod 2), (P/2) + Q  -3,

Proof. Similar to the proof of Lemma 5.
By the above observation and Lemma 14 we get the expressions

(11), ... , (15) in Theorem 6 from J[1](4.2.1)(f’), ... J[1](4.2.5)(f’), respec-
tively. Similar to (25), the expression J[1](4.2.6)(f’) vanishes because of our
assumption in Section 7.

12.3. The computation of J[1](4.3)(f’). From X = l - k and min(ord( p + xx),
) = 21 - 2k we observe that l - k  P/2. We will consider two cases: (1)
1 - k  P/2 and (2) 1 - k = P/2, and denote the corresponding expressions
by J[1](4.3.1)(f’) and J[1](4.3.2)(f’).

12.3.1. The integral J[1](4.3.1)(f’). Since 1- k  P/2, the integral with respect
to x and 03BB is taken over x E l-kERxE and À E 2l-2kFRF·

LEMMA 15. When l - k  P/2, the integral f w(p, a, x, À) dx dÀ, where
x E l-kERxE and 03BB E ’CU2j-2kRF, vanishes unless either

Proof. Similar to the proof of Lemma 11.
Lemma 15 suggests five cases:
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Denote by J[1](4.3.1.i)(f’) the corresponding expressions. By similar compu-
tation as in subsection 12.2 we get (16), (17) and (18) from the first three
cases and prove that J[1](4.3.1.4)(f’) = J[1](4.3.1.5)(f’) = 0.

12.3.2. The integral J[1](4.3.2) (f’) - Now let 1 - k = P/2. Then

when P ~ 0(mod 2).

LEMMA 16. Let P = 0(mod 2). Then f w(p, a, x, 03BB) da dx dÀ, where ad" =
-q, x E P/2ERxE and min(ord(p + xx), A) = P, vanishes unless either P  -2,
Q  -2; or P = Q  -4.

Proof. Similar to the proof of Lemma 11.
According to Lemma 16 we consider five cases: (1) P  0, Q  0; (2)

P  0, Q = -2 ; (3) P = -2, Q  0; (4) P = Q = -2; and (5) P = Q  -4.
In the first case, we have w(p, a, x, À) = 1, and hence we get (19) for the
theorem. In cases (2) and (3) we have úJ(p, a, x, À) =

o/E(a - 2ap/(p + xx - 03BB03C4)) and o/E«P + xz - 03BB03C4)/2x - x), respectively.
Consequently we get (20) and (21). The last two cases yield nothing under
our assumption in Section 7.

This completes the proof of Theorem 6.
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