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1. Introduction

1.1. For an abelian variety A over C and a cycle ex E CHd(A)Q we define a
subspace Za of CHd(A)Q by:

Results of Beauville imply that Za is finite dimensional (cf. 2.5 below). In case
A = J(C), the jacobian of a curve C, Ceresa has shown that the cycle

is not algebraically equivalent to zero for generic C of genus g  3, which implies
that for such a curve dimQZC  2.

In this note we investigate the subspace ZWm of CHm(J(C»o, with Wm the
image of the m-th symmetric power of C in J(C) (so Wl = C). To simplify matters
we will actually work modulo algebraic equivalence (rather than linear equival-
ence, note that translates of a cycle are algebraically equivalent).

1.2. Let Z03B1/ ~alg be the image of Z03B1 c CHd(A)o in CHd(A)Q/ ~a1g. A d-cycle oc is
Abel-Jacobi equivalent to zero, a ~ AJ 0, if a is homologically equivalent to zero
and its image in Jd(A), the d-th primitive Intermediate Jacobian of A, is zero.
Recall that any curve of genus g is a cover of P1 for some d  (g + 3)/2.

1.3. THEOREM. (1) For any abelian variety A and any a E CHd(A) we have:

(2) For any curve of genus g and 1  n  g - 1 we have:

* Partially supported by 40% Project Algebraic Geometry and CNR.
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(3) For a curve C which is a d: l-cover of pl we have:

(We prove 1.3.1 in 2.5, 1.3.2 in 2.7 and 1.3.3 in 3.6.)
1.4. Recall that Ceresa showed that the image of Wm - Wm in Jm(J(C» is non-
zero for generic C of genus g  3 and 1  m  g - 2. Therefore 1.3.1 and 1.3.2
for n = 2 are sharp. In case C is hyperelliptic, so C is a 2 : 1 cover of P1, the cycles
Wm and Wm are however algebraically equivalent. Therefore 1.3.3 is sharp for
hyperelliptic curves (d = 2) and generic trigonal curves (d = 3). In case C is not
hyperelliptic nor trigonal (like the generic curve of genus g  5), it would be
interesting to know if 1.3.3 is actually sharp.
Note that 1.3.1 implies that one cannot use the Intermediate Jacobian

anymore to derive new algebraic relations among the cycles in ZC/~a1g.
Recently M. Nori [N] constructed cycles on complete intersections in PN which
are Abel-Jacobi equivalent to zero but not algebraically equivalent to zero.
There is thus the possibility that similar cycles can be found on the Jacobian of a
curve of genus g  5. A cycle in Zc, for certain modular curves C, was

investigated by B. H. Gross and C. Schoen, [GS], esp. Section 5, see also 2.8.

1.5. The inequalities 1.3.1 and 1.3.2 are consequences of work of Beauville. The
main part of the paper deals with the proof of 1.3.3. Recall that on a smooth
surface S homological and algebraical equivalence for curves coincide. Thus if
we have map 03A6: S ~ J(C) and relation

we get

in J(C). We use this remark to obtain our result, the main difficulty is of course
to find suitable surfaces, curves in them and maps to J(C) and to determine
Neron-Severi groups (=Im(CH1(S) ~ H2(S, Q))) of the surfaces involved.

1.6. We are indebted to S. J. Edixhoven and C. Schoen for several helpful
discussions.

2. General results

2.1. The effect of n* and n* on the Chow groups has been investigated by
Beauville ([B1], [B2]), Dehninger and Murre [DM] and Künnemann [K] using
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the Fourier transform on abelian varieties introduced by Mukai. The main
general result is that the diagonal A c A x A can be written, in CH* (A x A)Q, as
a direct sum of orthogonal projectors corresponding to the Künneth compo-
nents. It is a conjecture of Murre [M] that such a decomposition should exist for
any smooth, projective algebraic variety. Below we summarize some of the
results and derive the finite dimensionality of Za as well as Theorem 1.3.1 and
1.3.2.

2.2. Let A be a g-dimensional abelian variety, we will view B:= A x A as an
abelian scheme over A using the projection on the first factor:

For each integer n, we have an sn E B(A) and a cycle 0393n ~ CHg(B):

and hn is, as the notation suggests, the graph of multiplication by n on A. The
cycle r n defines for each i a map on CHi(A) which is just n* :

Next we introduce a relative version of the Pontryagin product * on the Chow
groups of the A-scheme B (cf. [K], (1.2)). Let mB: B XA B - B be the multiplica-
tion map, then:

Since the relative dimension of 0393n over A is 0, the cycle r" * F. lies in CHg(B) and
one has ([K], (1.3.4)):

where we write a*" for the n-fold Pontryagin product of a cycle a with n &#x3E; 0 and

we put a*° := r o. In [K] 1.4.1 a generalization of a theorem of Bloch is proved,
which implies:

Using the ring structure on CHg(B)Q with product * one can thus define the
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following cycles 7r,, 0  i  2g in CH9(B),U:

with:

Let A = rie CHg(A x A)Q the class of the diagonal, then:

here 03B103B2, for cycles a, 03B2 ~ CH9(A x A)a, is their product as correspondences:
03B103B2:= p1 3*(p*1203B1 · p*2303B2) with the Pij: A3 -+ A2 the projection to the i, j factor (the
existence of the 03C0i is proven in [DM], Theorem 3.1, the explicit form of the 03C0i is

given in [K]). Moreover:

(one has t0393n03C0i = 03C0ti0393n = ni03C0i and t7li = 1t2g-i i ([K], 3.1.1), now take transposes).

2.3. REMARK. We sketch how these results can be obtained from 2. 1. Let

M c CHg(B)Q be the subspace spanned by the 0393n, n ~ Z. Then 2.2.1 implies that
dimQ M  2g + 1 (use Fi * (T 1 - r 0)*(2g+ 1) = 0 for all i E Z). Using the Künneth
formula, Poincaré duality, one finds that the cohomology class of rn in

is given by (note r n induces n*):

(where n2g-i in the i-th component means multiplication by n2g-i on Hi(A, Q)).
Therefore dimQM/~hom = 2g + 1 and dimQM = 2g + 1. Thus we have the
(surprising) result that homological and linear equivalence coincide in M. We
can now define ni e M by
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(1 in i-th spot) then 2.2.2 and 2.2.3 follow. To express 03C0i as combination of

Po, ... , 03932g, note that the (0-liner) ring homomorphism:

(with * product on CHg(B)Q) gives an isomorphism Q[X]/(X - 1)2g+1 ~ M.
Since rnr m = rnm (product as correspondences), 03C02g-i corresponds to a poly-
nomial f29 - with:

and ci e Q can be determined with a little more work.

2.4. Since A = rI: CHd(A) ~ CHD(A) is the identity, we get:

and each CH d(A)(i) is an eigenspace for the multiplication operators:

a result which was first obtained by Beauville [B2]. Moreover, he proves:

(and gives sharper bounds for some d in Proposition 3 of [B2], it has been

conjectured that CHd(A)(i) ~ 0 ~ 2d  i  d + g).

2.5. PROPOSITION. Let A be an abelian variety and et llECHd(A)Q. Then:

dimQZ03B1  g + 1 and dimQ(Z03B1/~AJ)  2.

Moreover, we have 7riZ,,, c Zafor all i.

Proof. We write a as a sum of weight vectors (03B1(i): = 03C02g-i 03B1):

Taking g distinct, non-zero, integers nj, the determinant of the matrix expressing
the ni*03B1 ~ Z03B1 in terms of the 03B1i is a Vandermonde determinant. Thus each

03B1(i) = 03C02g - i 03B1 ~ Z03B1 and Za is spanned by the 03B1(i).
Since n* acts as n2d on H2g-2d (A, Q) and as n2d+1 on Jd(A), the space Z03B1/ ~ AJ

is spanned by 03B1(2d) and OE(2d + 1). · 1--l
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2.6. In this section, we fix an abel-jacobi map C ~ J(C). Note that Wd = 1/d ! C*d
((Pontryagin product on J(C)). Let 8ECHI(J(C» be a symmetric theta divisor,
so 0 is a translate of Wg-1. Let 0398d~CHg-d(J(C)) be the d-fold intersection ouf 0.
2.7. PROPOSITION. For any d, 1  d  g - 1, we have 0398d ~ ZWg-d, more
precisely:

Moreover we have:

Proof. We first prove the case d = g - 1. Since the map

CH1(C)Q ~ H2g-2(J(C), a) factors over 03C02g - 2 CH1(J(C))Q) (cf. the proof of 2.5 or
even better, [B2], p. 650) we know that 03C02g - 2 C ~ 0. Then its Fourier transform

FCH(03C02g - 2C) E TG2 CHg - 1 (J(C))o (~ NS(J(C))Q)

(cf. [B2], Prop. 1) is non-zero. For a generic Jacobian NSQ is one dimensional
and thus

03C02CHg - 1(J(C))Q = Q0398

([Bl], Prop. 5 and [B2], Prop. 1). By specializing, we have for all curves that
FCH(7r2g-2C)EOS.
From [Bl], Proposition 5 we have

;o for a nonzero constant c:

and, by using F2H = (-l)gr -1 and comparing cohomology classes, we get:

Next we recall that 7r2g-1 CH I(A) = 0 for any abelian variety A ([B2], Prop.
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3), thus:

with Y a sum of cycles C(i1) * ... * C(ig-d) with all ij  2 and at least one &#x3E; 2.

Therefore, using

we get:

for j &#x3E; 2d.
By [B1], Corollary 2 of Proposition 5, 8d lies in the subspace spanned by

(0398g-1)*(g-d), so C*(g-d)(2) =c0398d for a non-zero coQ and taking cohomology
classes one finds c = 1.

Finally, using 2.4.1 and 2.7.1 we can write

and since2(2g-d) ~a1g 0 by [B2], Proposition 4a, we get dimQ(ZWg-d/~a1g)  d.
D

2.8. In the paper [GS] the following cycle (modulo ~a1g) is considered:

This cycle is related to Ceresa’s cycle in the following way:

2.9. PROPOSITION. We have:

In particular, Z is abel-jacobi equivalent to 3(C - C-).
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Proof. As we saw before (Proof of 2.7) we can write:

Since n* C(i) = niC(i) we have:

Therefore 03C02g-2(C - C-) = 303C02g-2(Z) = 0, so both cycles are homologically
equivalent to zero, and 303C02g-3(C - C-) = n2g - 3(Z) = 6C(3). Since the abel-
jacobi map factors over 03C02g-3CH1(J(C)) we have that Z ~AJ3(C - C-). D

3. Proof of 1.3.3

3.1. Let C be a generic d: 1 cover of Pl, and denote by gd the corresponding
linear series. For an integer n, 0  n  d we define a curve Gn in the n-fold
C(n) = Symn(C):

see [ACGH], p. 342 for the definition of the scheme-structure on Gn. We define a
. surface by:

3.2. PROPOSITION. Let C be a generic d : 1-covering of P1 of genus g  1.
Then Sn is a smooth, irreducible surface and

dimQNS(Sn)Q = 3.

Proof. Since C is generic, the curve G,, is irreducible (consider the monodromy
representation) and for a simple covering the smoothness of Gn follows from a
local computation. Therefore also Sn is smooth and irreducible.
Note that for a product of 2 curves Sn = Gn x C we have that

NS(Sn)Q = QC ~ QGn ~ Hom(J(C), J(Gn»a.

Using Hodge structures, the last part are just the Hodge-cycles in

H’(C, Q) Q H’(G,,, Q). Since J(C) and Pic0(C(n)) are isogeneous (their H1(Q)’s
are isomorphic Hodge structures), composing such an isogeny with the pull-
back Pic0(C(n)) ~ J(Gn), we have a non-trivial map J(C) ~ J(Gn). To show that
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dim,u Hom(J(C), J(Gn))Q  1 we use a degeneration argument. First we recall
that the Jacobian of C is simple and has in fact End(J(C)) = Z.

In case g = 2 this is clear since any genus 2 curve can be obtained by
deformation from a given d : 1 cover and C is generic. In case g = 3 one reasons
similarly, taking the necessary care for the hyperelliptic curves. In case

g(C) = g &#x3E; 3, assume first that there is an elliptic curve in J(C). Specializing C to
a reducible curve with two components C’ and C", both of genus  2, and
themselves generic d 1-covers we obtain a contradiction by induction. Assume
now that there is no elliptic curve in J(C), then we specialize C to E x C’, with E
an elliptic curve and C’ a generic d 1-covering of genus g - 1. By induction
again, J(C’ ) is simple, which contradicts the existence of abelian subvarieties in
J(C). We conclude that J(C) is simple. Thus EndQ(J(C)) is a division ring and
specializing again we find it must be Q.
We may assume that the gd exhibits C as a simple cover of P1, then Gn is a

cover of P1 (of degree (dn)) with only twofold ramification points. Letting two
branch points coincide, we obtain a curve C with a node, the normalization C’ of
C has genus g - 1 and is again exhibited as a generic d : 1 cover of P1. The curve
Gn acquires (d-2n-1) nodes (since twice that number of branch points coincide
pairwise) and the normalization of that curve, G", is G’n, the curve obtained from
the gd 1 on C’. The (generalized) Jacobians of C, G n are extensions of the abelian
varieties (of dim  1) J(C’), J(G’) by multiplicative groups.

Since the number of simple factors of J(G’n) which are isogeneous to J(C’ ) is
greater than or equal to the number of simple factors of J(Gn) which are
isogeneous to J(C), and J(C), J(C’ ) have Endu = 0 it follows:

Therefore it suffices to show that for a generic elliptic curve C = E and a generic
1 on E we have dimo Hom(E, J(En))Q  1 (with En = Gn(g1d) and C = E).
We argue again by induction, using degeneration. Note that for any C,

G1(g1d) ~ Gd-1(g1d) ~ C. Since a generic elliptic curve has Hom(E, E) = 7L the
statement is true for d  3 (and any 0  n  d ) and since E1 ~ E it is also true
for n = 1 (and any d  2).
We fix E, a generic elliptic curve, but let the gl acquire a base point y E E. Then

En(g1d), n  2, becomes a reducible curve En’ having two components
E’n = En(g1d-1) and El- 1 = En-1(g1d-1) which meet transversally in N = (d-2n-1)
points. Indeed, let the divisor of the gd -1 containing y be y + y 1 + ... + yd - 2,
then the points

are identified.
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Thus J(En) is an extension of J(E’n)  J(E’n-1) by the multiplicative group
(C*)N-1, in fact there is an exact sequence:

where 1B is the diagonal embedding. We will write n = (03C00, 03C01).
We will prove that

Hom(E, J(En))Q ~ Hom(E, J(E’n))Q,  ~ 03C00 03BF 

is injective. By induction we may assume that

thus also

and since

dimQ Hom(E, J(En))Q  dimu Hom(E, J(En»e

the assertion on the rank of the Neron-Severi group follows.

Assume that  ~ 0, but 7ro = 0. Then (E) c J : = 03C0-11(J(E’n-1)). Pulling
back this (C*)N-1-bundle J over J(E’n-1) to E along n $, we obtain a (C*)N-1-
bundle E over E. The map cP: E -+ J gives a section of É - E, thus E is a trivial
(C*)N-1-bundle. We show that this gives the desired contradiction.

For any distinct P, Q E En which are in E’n ~ E’n-1, the (C*)N-1-bundle J over
J(E’n-1) has a quotient C*-bundle JPQ whose extension class is

By induction, there is a ’unique’ map in Hom(J(E’n-1), E) which must thus be
induced by
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for some peE. Taking P = y, + ··· + yn-1 and Q = Y2 + ... + yn-1 + y., the
pull-back of P - Q to E = Pic°(E) is yl - Yn. Choosing the degeneration
suitably we may assume that y 1 - yn is not a torsion point on E and thus JPQ has
a nontrivial pull-back to E, contradicting the fact that E, the pull-back of J to E,
is trivial. 0

3.3. We define a curve 0" in the surface Sn = Gn x C:

and for n + 1  d, another curve Rn in S,,:

Finally we define the map:

where Dnl + k is some divisor of degree nl + k on C. Finally we denote by

with Dn some divisor of degree n, the Abel-Jacobi map on C(n). We simply write
C for u1*C.

3.4. PROPOSITION. Let C be a generic d 1 cover of pl of genus g  1. Then:

2. In NS(Sn) we have

3. The image of Gn in J(C) is a combination of

Proof. The first part follows from the previous proposition and from the fact
that in the proof of 3.4.1 we will see that Hn can be uniquely expressed as a
combination of C, G. and 0394n.
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The proof of 2 and 3 is by induction. In the case n = 1, so G1 ~ C, 3.4.2 is
trivial and for 3.4.1 we have Si = C x C and we must show H1 = d(C + G1) - A.
Note the following intersection numbers:

(use that the gd exhibits C as d: 1 cover of P1 with 2(g + d - 1) simple
ramification points), which imply the result.
Suppose that 3.4.1 and 3.4.2 are true for all k  n. Note that

un(Gn) = 03A6n-11,1(Hn-1) and that map 03A6n-11,1 restricted to Hn-1 is n : 1 so, using 3.4.1
for n - 1, we have in J(C):

where we write Gk for uk* Gk . Next we observe that

Using 3.4.1 in the cases n - 2, n - 3,..., 1 we get:

(note that (03A611,n-1)*H1 ~a1g(d1)(n - 1)*C + dG1 - (d0)n*C). Substitute the ex-

pression for (03A6n-11,1)*0394n - 1 from 3.4.5 into 3.4.3:
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Using the formula 3.4.2 for Gk, k = 1, 2,..., n - 1 and the relation

03A3lk = 0(- 1)k(dl-k) = (d-1l), (cf. 4.2.1) we get:

Substituting this in formula 3.4.6 and using the identity:

we obtain 3.4.2.

To obtain 3.4.1, note that by (1), there are a, b, c ~ Q such that:

Hn = aC + bGn + c0394n. (3.4.8)

To find them we compute the homology classes of the curves in 3.4.8 in

H2(J(C), Q) and the intersection numbers of Hn with C and G..
For the generic curve C, the homology class [B] of a curve B in J(C) is a

multiple of the class [C] of C and this multiple is 1 g 0398 · B. We apply this to
B = Gn. Using the map u : C(n) ~ J(C), we have u*(Gn)· 0398 = u*(Gn· 0) with 0 the
pull-back of 0 to C(n).
The homology class of Gn in H2(C(n), Q) is:

cf. formula (3.2) on p. 342 of [ACGH] (here x is the class of the divisor C(n-1) in

C(n)). From p. 343 of [ACGH] one has: u*(xn-i03B8i) = (gi)i![0398g]/g! and since
[09]1g! is the positive generator of H2g(J(C), Z), we find:
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Therefore:

Next we compute the homology class of 0394n. We use 3.4.4 for k = n, 1 = 1:
(03A6n1,1)*0394n = (03A6n-11,2)* Hn-1. By induction, similar to 3.4.5 and using 3.4.7 (with
n - 1 replaced by n) we have:

Taking the homology classes in J(C) we get:

Using 4.2.3:

we find:

and because of
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we finally obtain:

Applying (03A6n1,1)* to 3.4.8 and taking homology classes we get the following
equation for a, b, c:

On the other hand, we have the following intersections numbers in Sn:

and

Therefore, by intersecting 3.4.8 with C and Gn respectively, we find two more
equations for a, b, c:

and 3.4.1 now follows. 0

3.5. With these results it is easy to find many relations between the cycles n* C. It
is a little surprising that the ones we find are equivalent to 03C0i C ~ alg 0 for
i  2g - d and 03C02g-1 C ~ a1g 0.
3.6. PROPOSITION. Let C be a d : 1 covering of pl. Then:

For any set {n1,..., nd-1} of non-zero distinct integers the cycles
n1*C,..., nd-1*C also span ZC/~alg.
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Proof. First of all we show that for all n ~ Z we have:

with a cycle Fd depending on d but not on n:

This relation follows from the easily verified identity, for all n ~ Z and d  3:

(for d = 2 see below). Indeed, the I.h.s. is by 3.4.1:

while for the r.h.s. we use (03A6k-1,l)*0394k = (03A6k-1-1,l - 1)*Hk-1):

(cf. also the Proof of 3.4.2). From this 3.6.1 follows by using 3.4.7.
A more convenient set of relations is obtained from 3.6.1 as follows:
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where we substituted: n:= m + d. Relation 3.6.4 can be rewritten as:

In case d = 2 let Rn-1: (n - 1)*C ~alg 2C + 2n* C - (n + 1)*C be the relation
obtained by applying (03A611,n)* to 3.4.1. Then -Rn + Rn-1 is the relation

0393n*(03931 - 03930)*3C ~ alg 0.
Next we look at the expansion of the 03C0i’s in rl - 03930:

Therefore nié ~ alg 0 if 2g - 1 a d + 1 so n2g-iC ~alg 0 if i  d + 1. Since

03C02g = ro we also have n2gC = 0, and from [B2], Proposition 3 we know

C(1) = 0 thus:

and we conclude that dimQ(ZC/~alg)  d - 1. We can in fact obtain C(1) ~alg 0
from 3.6.1, because a somewhat tedious computation shows that, for some c ~ Q:

here 0393-10393n = 0393-n is the product as correspondences, the equality is in (a
quotient of) the ring CHg(A x A) with *-product. Since ro acts trivially on one
cycles and PnC ~ alg 0 the statement follows. In fact one shows that both sides are
equal to, for some cl E Q:

(Comparing this expression with the one for ud* Gd in 3.4.2 we see that

03C02g-1 C ~alg ud* Gd ~alg 0 since Gd ~ P1 maps to a point in J(C), note that some
care must be taken as we defined Gn only for n  d).
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Finally we observe that since n*C(i) = niC(i)’ the determinant of the matrix
expressing the ni*C in the C(i) is a Vandermonde determinant, which is nonzero.

D

3.7. PROPOSITION. (1) For a curve C with 1tiC ~ alg 0 for i  2g - 4 ( for
example any curve with a g13) we have, with C(i):= 1t2g-iC:

Furthermore:

(2) For a curve C with 03C0i C ~alg 0 for i  2g - 5 ( for example any curve with a
g’) we have:

Proof. We give the proof of the second statement, the first being similar but
easier. By assumption we have (C(i):= 1t2g-iC):

Therefore:

The result follows by straightforward linear algebra.
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3.8. Note that if one specializes a curve C with a g14 to a trigonal curve, then
actually C(4) = 1 12(2* C - 6C + 2C-) ~alg 0. However, we could not decide
whether for a generic 4 : 1 cover of P1 we have C(4) ~ a1g 0.

4. Appendix

4.1. We recall some facts on binomial coefficients. The binomial coefficients (n)
are defined (also for negative nEZ!) as (cf. [ACGH], VIII.3)

With this definition, they are the coefficients in the expansion of (1 + x)" :

Comparing the coefficients of Xk in (1 + x)n(1 + x)m = (1 + x)n + m one finds,
for all n, m E Z:

4.2. Lemma. We have:

Proof. Using (il) = ( -1)k and 4. l.1, the first line can be written as:
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The second line follows in the same way, using (-2k-1) = (- 1)k-1k:

For the last line we use

Therefore:

Now use that:

and
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