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Introduction

Let GR be a connected semisimple linear Lie group with Lie algebra gR. Write g
for the complexification of gR. Suppose M is an irreducible admissible

representation of GR, and 0 is its global distribution character on GR. Via the
exponential map, O lifts to an invariant eigendistribution 0 on a neighborhood
of the origin in gR. According to Barbasch and Vogan [B-V], 0 admits an
asymptotic expansion near the origin and the Fourier transform of its leading
term is a linear combination of invariant Liouville measures on "nilpotent"
coadjoint GR-orbits in ge, the linear dual to gR. The resulting nilpotent GR-
orbits with multiplicity will be referred to as the asymptotic cycle of M. On the
other hand, let KR be a maximal compact subgroup of GR and K its

complexification. The KR-finite part of M is naturally an algebraic ( U(g), K)-
module, where U(g) is the enveloping algebra of g. The characteristic cycle
V(M) of M is defined algebraically with respect to the natural filtration (by the
degree) of U(g), and is a finite sum of "nilpotent" K-orbits in (g/t)* where 1 is the
complexification of tR, the Lie algebra of KR. In [V2], D. Vogan conjectured
that the two invariants - asymptotic and characteristic cycles - are in fact the
same under the Sekiguchi correspondence [S] which sets up a natural bijection
between the relevant nilpotent GR-orbits and K-orbits. In this paper, we give a
geometric interpretation of the "multiplicities" appearing in the characteristic
cycle V(M), and when GR is itself a complex group, we deduce the conjecture
from results of Rossmann [R] and Joseph [J2].
Our starting point is to consider both invariants for the coherent family

{M(03BC)} of M; the parameter y ranges over weights of finite-dimensional

representations of GR. First of all, the multiplicity (of the invariant measure on
an arbitrary GR -orbit) appearing in the asymptotic cycle of M(J.l) is in fact a
harmonic homogeneous polynomial function in the infinitesimal character of
M(p) [B-V]. To describe our method and results on the characteristic cycles, let
-4Y be the localized irreducible D03BB-module for M on the flag variety X of g
according to Beilinson and Bernstein [B-B1]. The characteristic cycle h(M) of
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W is an algebraic cycle on T*X, the cotangent space of X, defined as the
support with multiplicity of gr M with respect to a good filtration on M. The
passage from the characteristic cycle of vit to that of M is made through the
moment map from T* X to g* ; an explicit formula relating them in certain cases
(e.g. À. is sufficiently dominant) is given by Borho and Brylinski [Bo-Br]. We
formulate an extension of their result in full generality (see 2.5.2). In the context
of a coherent family, we show that the multiplicity (of an arbitrary K-orbit)
appearing in f(M(Jl» is given by the dimension of the Euler characteristic of the
cohomology groups on a certain fiber of the moment map with coefficients in
gr M twisted by an invertible sheaf; moreover its leading part depends only on
Ch(M) (see 2.5 and 2.6). As a byproduct of this, the multiplicity is a polynomial
function in the infinitesimal character of M(03BC) with the "right" degree. It is

pointed out to us by D. Vogan that this multiplicity function has no terms of
degree lower than the "right" one; this follows from considerations on the Weyl
group representations (see 1.6). Thus the characteristic cycle of M can be
recovered completely from that of M via the moment map.
When GR is itself a complex group, various aspects of these invariants have

been studied extensively (see references in say [Bo-Br]). In the area of the
distribution characters of Harish-Chandra modules, Rossmann [R] has ob-
tained character formulae in terms of the homology classes of the flag variety X;
moreover the asymptotics of 0 is expressed in terms of the characteristic cycle of
the D03BB-module M when the infinitesimal character À is integral (notations being
those in the first paragraph). On the other hand, based on an observation of
J. Bernstein, Joseph [J2] interpreted the asymptotics formula of Rossmann’s as
the asymptotics of a certain dimension function qZ attached to some fixed-point
variety Z in X. These dimension functions are exactly the Euler characteristic
appearing in the setup of the moment map. Putting these results together, we
deduce the conjecture in this case. To a large extent, this is just an organization
of results of Rossmann’s in the context of Vogan’s conjecture. The chain of
argument presented here is in fact entirely general. In other words, a geometric
theory for distribution characters in the more general case similar to that of
Rossmann’s would imply the conjecture using the same argument.
As for the organization of the paper, Vogan’s conjecture is stated in 1.5.1 after

a brief statement on the behavior of the characteristic cycles of Harish-Chandra
modules under the coherent continuation (1.4.2). The counterpart for the 2)-
modules is treated in Section 2. In the last section, we collect results from [R]
and deduce the conjecture in the case of a complex group. In the Appendix, we
give a brief account on the setup of Rossmann’s integral formula, which is used
in Section 3. The original version of this paper only deals with the following
weak form of Vogan’s conjecture: replacing the multiplicity functions appearing
in V(M) by their leading parts in the identification of the two invariants (cf.
1.5.2). We would like to thank D. Vogan and K. Vilonen for helpful comments
and discussions. Vogan kindly explained to us the equivalence of his conjecture
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to the above weak version. The formulation in 2.5.2 was inspired by their
comments.

1. Asymptotic and characteristic cycles

1.1. As in the introduction, let GR be a connected linear semisimple group and
KR a maximal compact subgroup; deleting the subscript R amounts to taking
the complexification. Following Section 5 of [V3], write X* for the nilpotent
cone in g*, also set /fl = X* n ge and N*f = X* n (9/t)*. Note that GR and K
act on Xe and /2 respectively with finitely many orbits [K-R]. In the

following, "dim" always means complex dimension unless specified otherwise.

1.1.1. THEOREM (Sekiguchi). There is a natural bijection between GR-orbits in
N*R and K-orbits in N*f. Suppose that Or and 0 are a pair of corresponding GR-
orbit and K-orbit respectively, then dimR Or = 2 dim O.

For a proof and a more extended statement see [S] and [V3]. For convenience,
we use the notations Or and 0 for corresponding orbits as above whenever no
confusion should occur.

1.2. We now recall the notion of a coherent continuation. First of all, since there
is only one G-conjugacy class of Cartan subalgebras in g, it is convenient to talk
about an "abstract" Cartan subalgebra 4 in g and refer things there. Let us also
fix a positive system 03A6+(g, ). Recall that 03BB E b * is called dominant if 03BB, &#x3E; is not
a negative integer for any 03B1 ~ 03A6+ (g, ). Write A for the lattice of weights of all
finite-dimensional representations of GR. Also a Harish-Chandra module means
a ( U(g), K)-module of finite length. An element in the Grothendieck group of the
category of Harish-Chandra modules will be called a virtual character (or a
virtual representation).

1.2.1. COHERENT CONTINUATION. Suppose M is an irreducible Harish-
Chandra module with an infinitesimal character given by (the Weyl group orbit of)
a dominant weight 03BB ~ *. Then there exists a family of virtual characters
{M(03BC): 03BC E AI satisfying

(1) For any finite-dimensional representation F of GR with weights (counted
with multiplicity) à(F) c 1)*, then as virtual characters,

(2) M(03BC) has an infinitesimal character given by À + Jl E 1)* moreover it’s 0 or an
irreducible Harish-Chandra module whenever À + Jl is dominant, and the
latter is the case whenever À + J1 is nonsingular.

(3) M(O) = M.
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This is a special case of the coherent continuation given in [H-S] and [VI].
Given an M as above, we will exhibit such a family in 2.5.1.

1.3. According to Theorem 3.1 of [B-V], any invariant eigendistribution 0 on an
invariant neighborhood of 0 in gR admits an asymptotic expansion near 0 with
coefficients given by tempered distributions on gR. Moreover when 0 is the
"local" character of an irreducible Harish-Chandra module say M, then the
Fourier transform of the leading term in the expansion is a linear combination of
invariant measures on nilpotent GR-orbits in N*R i.e., L m(Or, M). p(Or) where
03B2(Or) is the Liouville measure on the coadjoint orbit Or. We define the

asymptotic cycle of M as the following finite sum

1.3.2. PROPOSITION 4.7 of [B-V]. Let M and {M(M)} be as in 1.2.1, and Or a
GR-orbit in Xe. If m(Or, M) ~ 0, then dimr 0, is the Gelfand-Kirillov dimension
of M and the function sending Â. + y to m(0,., M(p» is a harmonic homogeneous
pol ynomial function of degree 1 2(-dimROr + dim(g/I)).

To emphasize the role of the coherent continuation, we call the above

polynomial maSy(Or, M) as an element of S(4); it’s set to be zero if 03B2(Or) does not
contribute to the leading term.

1.4. Suppose that M is a Harish-Chandra module and {Mj} a K-stable good
filtration (for details see Section 2 of [V3]). The graded object gr M is then
naturally a finitely generated module over S(g) ~ C(g*). The support with
multiplicity on g* of gr M, denoted by Y(M), is the characteristic cycle of M; the
support alone is the characteristic variety and will be denoted by V(M). Due to
the actions of K and Z(g) (the center of U(g)), the support V(M) is a union of
closures of K-orbits in %1: We write

where m(O, M) are nonnegative integers and the sum ranges over irreducible
components of V(M). Note that the characteristic cycle is independent of the
choice of K-stable good filtrations and is additive in the associated

Grothendieck groups.

1.4.2. PROPOSITION. Let M and {M(03BC)} be as in 1.2.1, then
(1) The characteristic variety of every constituent of M(03BC) is contained in V(M).
(2) V(M) = V(M(li»for dominant ,u.
(3) Suppose 6 is an irreducible component of V(M), then the function sending

Â. + Jl to m(O, M(li» is a pol ynomial function of degree -1 dim(g/4) - dim 0.
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Due to (1), we can make sense of the multiplicity in (3) above for general J1:
simply summing up the multiplicities of (j over the constituents. A more
extended version of this proposition, which interprets the multiplicity geometri-
cally, will be proved in 2.3 and 2.5. The fact that the multiplicity m(O, M(J1» is
given by a polynomial function in 03BB + J1 is also a consequence of the arguments
in [V4] (cf. Lemmas 4.1 and 4.3); in fact the argument also implies that this
function is harmonic. As in 1.3.2, we denote this polynomial (as a function in
03BB + J1) by malg(O, M) as an element in S(b).
1.5. We now recall the conjecture given in [V2].

1.5.1. CONJECTURE (Vogan). Suppose M is an irreducible Harish-Chandra
module and {Or, 01 is a Sekiguchi pair (cf. 1.1.1), then masy(Or, M) = malg(O, M) as
polynomials in S() (equivalently m(Or, M) = m(O, M)).

Given a polynomial q in S(b), we denote by gr q the leading homogeneous part
of q. We consider the following weak form of 1.5.1.

1.5.2. CONJECTURE. Let M, Or, and 0 be as in 1.5.1, then

masy(Or, M) = gr malg(O, M).
As explained in the introduction, this weak version is in fact equivalent to

1.5.1 thanks to the homogeneity of malg(0, M) (cf. 1.6 below). Since most of our
considerations will be centered around gr malg(O, M), we keep this weak version
for a convenient reference.

1.6. This subsection deals with the homogeneity of the multiplicity malg(O, M);
all the materials presented here were communicated to us by D. Vogan.

1.6.1. PROPOSITION (Vogan). In the setting of 1.4.2, the polynomial
Malg(O, M) has no terms of lower degree than tdim(g/1) - dim 0.

In particular this shows that malg(O, M) is homogeneous and that 1.5.2 is

equivalent to 1.5.1. We sketch a proof of this result.
First of all it follows from the definition of the coherent continuation (given in

2.5.1) that the family originated from M is the same as the one originated from
M(03BC) whenever + J1 is regular dominant; therefore we may as well assume that
03BB is regular dominant. Let W. be the Weyl group generated by the 03BB-integral
roots (i.e., those with 03BB, &#x3E; ~ Z). Then W03BB acts on the lattice V of virtual
representations (for GR) having the same infinitesimal character as 03BB by the
coherent continuation. To describe the action, first note that V has a basis (over
Z) represented by the irreducible Harish-Chandra modules. For WE W and M
an irreducible Harish-Chandra module, we set wu M to be the virtual represen-
tation M(W-l . 03BB - 03BB) given in 1.2.1. Now fix a nilpotent G-orbit 0 in X* and
consider the sublattice Vo of virtual representations in V whose irreducible
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constituents have primitive ideals with associated variety contained in the
closure of 0. Then Vo is a W;.-invariant sublattice of V (see [V4]). Let Sm(4) be
the subspace of S(b) of homogeneous polynomials of degree m.

1.6.2. THEOREM (Joseph-Casian). Assume that 03BB is regular and dominant as
above.

( 1 ) If m  1 2(dim(g/) - dim 0), then HomW03BB (VO, Sm (h)) = 0.
(2) If m = t(dim(g/1) - dim 0), then Homw (VO, Sm()) is caused only by

certain irreducible representations 03C11,..., p, of WÂ, each occurring exactly
once in Sm(); moreover the representation of W generated by any one of the
pi is irreducible.

Assuming the theorem, we now prove 1.6.1. It’s well known that the

associated variety of the primitive ideal of M is the closure of a single G-orbit in
N* (this is due to Borho-Brylinski and Joseph, for a simple proof of this see
Corollary 4.7 in [V3]); call this orbit 0. If 0 is a K-orbit such that 0 is an
irreducible component of V(M), then 0 c 0 and dim 0 = 2 dim 0 (see Corol-
lary 5.20 in [V3]). Since the map sending M(p) to malg(O, M(03BC)) is W -
equivariant, Proposition 1.6.1 follows from 1.6.2(1).
As for the theorem, let Y’ be the lattice of virtual g-modules with irreducible

constituents in the category (9 with fixed infinitesimal character (say 03BB as above);
one defines the sublattice Và in V’ similarly as above. Then W03BB acts on V’ and on
V6 in the same fashion as it acts on V and Vo given above; moreover this
representation of W03BB is just the Goldie rank representation (see [Jl]). The
theorem then follows from Joseph’s result (see Theorems 5.4 and 5.5 of [Jl]).
The case of Harish-Chandra modules is reduced to the case of the category (9 by
Theorems 2.11 and 3.4 in [Ca].
To conclude this section, we remark that the representation of W in 1.6.2(2) is

the Springer representation attached to 0 (and a trivial representation of a
. component group); this is due to Hotta and Ginsburg (and many others see the
reference in [J2]). In particular, the representation of W03BB on malg(O, M) is the
same as the Goldie rank representation and generates the Springer represen-
tation attached to O.

2. Characteristic cycles of -9-modules

2.1. Let X be the flag variety of g. Each point in X represents a Borel subalgebra
say b in g which determines a positive root system in (g, b); we follow the
convention that the nilradical tt - of b is the span of eigenvectors with negative
roots. For each 03BB ~ *, a twisted sheaf of differential operators (t.d.o.) -9, is

constructed in [B-Bl]. Being a t.d.o., -9Â is naturally filtered by the order of
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differential operators (locally); we denote this filtration by {(D03BB)j}. With respect
to this filtration, for any A E b*,

where p is the projection from T*X onto X.
Let -4Y be a coherent (D03BB, K)-module on X : a coherent D03BB-module with an

algebraic action of K (in the sense of Chapter 1, Section 3 in [M]), such that the
action of -9Â is K-equivariant and compatible with the action of K (i.e., the action
of f as a subalgebra of g c r(X, D03BB) coincides with the differential of the K-
action). Recall that [Bo-Br] an increasing filtration {Mj }j~Z of M consisting of
coherent t9x-modules is called a good filtration if Mj = 0 for some small
j, ~jMj = M, (D03BB)iMj ~ Mi+j for all i, j, and the equality holds for all i when j is
sufficiently large. We call it K-stable if moreover -g is K-equivariant for all j. A
K-stable good filtration always exists on a coherent (D03BB, K)-module. The
support with multiplicity of gr M on T*X (via (2.1.1)) is the characteristic cycle
Ch(M) of M, the support alone will be called the characteristic variety and
denoted by Ch(.A). Note that the definition is independent of the choice of K-
stable good filtration and it is additive in the Grothendieck groups (see [B]).

2.2. For each p E A, let t9(p) be the induced G-equivariant invertible sheaf on X.
For a D03BB-module /ff, the twisted sheaf M(03BC):= O(03BC) (8).A is a D03BB+03BC-module.

2.2.1. LEMMA. If{Mj} is a K-stable good filtration on M, then so is {Mj(03BC)} on
M(03BC). With respect to these filtrations, as (9T* x-modules,

gr(M(03BC)) = gr M ~OT*X p* O(03BC);

in particular Ch(M) = Ch(M(03BC)).

This follows from the exactness of tensoring with (9(p), 2.1.1, and (for the last
part) that p* (9(Jl) is invertible on T* X.

2.3. We recall results from [J2]. For each coherent OX-module F, consider the
dimension function, for p e A,

qF(03BC):=03A3 (-1)i dim Hi(X, F(03BC)). (2.3.1)
i

Choosing a free resolution of IF by {O(03BC): Jl E AI (by Borel-Serre, see [H]), it
follows from the Weyl dimension formula that qF is a polynomial function;
hence an element in S(b). For a closed algebraic subset Z in X, write qz for qi*(OZ)
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where i is the embedding. Also let cz be the polynomial in S() determined by the
following function from A

where ul, is the first Chern class of (9(p).

2.3.2. PROPOSITION (Bernstein-Joseph, Corollary 6.7 in [J]). If Z is a closed
subvariety of X, then gr qz = cz as elements in S(1).

In particular, the degree of qz is dim Z. The following lemma says that gr qF
depends only on the support with multiplicity of F. The lemma is standard; we
include a proof for the lack of a direct reference.

2.3.3. LEMMA. Let F be as above and assume that its support is of dimension m.
Write {Zi} for the set of irreducible components of dimension m ofSupP(fF), and ni
the multiplicity of 3v along Zi. Then gr qe E ni gr qz¡ = E nicz¡.

Proof. Consider first the case that Z = Supp(F) is irreducible. For M
sufficiently dominant, F(03BC) is generated by its global sections (Serre’s theorem).
Since gr(F(03BC)) = gr F, we may assume that F is generated by its global
sections. Then F = 03A3 OZ(03BBi) in the Grothendieck group of coherent Ox-modules
(see the proof of Theorem 5.19 in [H]). The multiplicity is the number of the
summand. This gives the lemma in this case, for gr qOZ(03BBi) = gr qz.

In general, let Z be an irreducible component of dimension m of the support of
F; write i for the embedding of Z into X. Then the natural morphism
F ~ i*i* F has its cokernel supported in a closed set of dimension less than m;
the support of its kernel has dimension m and the number of its m-dimensional
irreducible components is strictly less than that of F. Since Supp(i*i*F) = Z is
irreducible and q is additive, the lemma follows from 2.3.2 by an induction on
the number of top-dimensional irreducible components. D

2.4. Suppose now that M is an irreducible Harish-Chandra module with an
infinitesimal character given by a dominant Â e 4*. Then there exists a unique
irreducible (D03BB, K)-module M on X with M = r(X, JI) [B-B1]. For each il c- A,
consider the virtual character

2.4.2. PROPOSITION. With assumptions as above, the family {M(03BC)} is a

coherent family of M in the sense of 1.2.1.

Condition (3) in 1.2.1 is trivial, (1) follows from the proof of the key lemma and
(2) follows from the main theorem of [B-B1].
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2.5. We now give a proof of Proposition 1.4.2. Following the setup in 2.4, write

039403BB for the localization functor. The argument in Section 1.8 of [Bo-Br] shows
that a good filtration on M induces one on the localized D03BB-module 039403BB M which,
03BB being dominant, has the irreducible module M as a quotient; thus the good
filtration passes onto M. It follows from Theorem 1.9(c) of [Bo-Br] that

V(M) = 03B3(Ch(M)). Moreover, for J1 dominant, M(p) = r(X, M(03BC)) and by the
same reasoning,

Recall that y is the moment map from T*X to g*; this gives 1.4.2(2).

2.5.2. PROPOSITION. Under the above setup, for arbitrary y E A and integer k,
(1) the characteristic variety of the Harish-Chandra module Hk(X, M(03BC))

satisfies:

(2) there is a good filtration on each Hk(X, M(03BC)) and with respect to these
filtrations, in the Grothendieck group of coherent (9,.-modules supported on
V(M), we have

Note that, y being proper, the higher direct images Rk03B3*(gr M(03BC)) are coherent
sheaves of (9,*-Modules. In (2) we identify finitely generated S(g)-modules with
coherent sheaves of Og*-modules. Proposition 2.5.2 is a slight extension of results
of Borbo-Brylinski [Bo-Br]; a proof of this will be given in 2.7. Assuming this we
proceed to the proof of 1.4.2. In view of the definition (2.4.1), immediately 1.4.2(1)
follows from 2.5.2(2). 
To prove 1.4.2(3), suppose that 0 is a K-orbit in %r such that 0 is an

irreducible component of V(M). As in the discussion after 1.4.2, the multiplicity
of 6 in M(03BC) (for arbitrary y E A) is given by

The first equality is the definition and the second equality follows from 2.5.2(2).
Now Ch(M(03BC)) is a union of conormal varieties T*Z X for certain K-orbits Z in

X. In light of (2.5.1), if Ô c 03B3(TZ*X) then y - ’(0) is dense in T*ZX. In particular,
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for v E O, the fiber Fy:= 03B3-1(v) ~ Ch(aY(p)) is equidimensional closed subset of

dimension 2 dim(g/b) - dim 0 in T*Z X ; write j for this embedding. Through the
projection p, the fiber Fv is isomorphic to a closed subset in X.

Since the moment map y is proper and K-equivariant, Rky* gr(M(03BC)) is locally
free of finite rank on 0 for each k by Grauert’s theorem (see Corollary 12.9 in
[H]). Moreover its fiber at v is given by

Hk(Fv,j* gr(M(03BC))) ~ Hk(X, p*j* gr(M(03BC))) ~ Hk(X, (p*j * gr M)(03BC)). (2.5.4)

The second isomorphism follows from 2.2.1 and the projection formula.

Therefore by (2.5.3) for all y, noting that p*j * gr vit is coherent and recalling the
definition of q in 2.3,

On account of the dimension of the fiber Fv, this gives 1.4.2(3).
More systematically, for each K-orbit Z in X, the image of TZ* X under y is the

closure of a K-orbit say 0 in N*f, we write F z for the typical fiber in T*Z X over O.

2.5.6. COROLLARY. Retaining the same assumption on M and M, and suppose
0 is an irreducible component of V(M). Write

then

For notations see 1.4.2. This follows from (2.5.5), 2.3.3 and 1.6.1. In particular,
the polynomial malg(O, M) depends only on the characteristic cycle of JI!. We
conclude this subsection with the following corollary.

2.5.7. COROLLARY (Borho-Brylinski). Let M be a coherent -9A-module on X,
with respect to a good filtration, we have

for li sufficiently dominant.

When p is sufficient dominant, the higher cohomology groups vanish in (2.5.4)
by Serre’s Theorem (see p. 121 in [H]). The corollary then follows from (2.5.3).

2.6. Let Z be a K-orbit in X and write i for the embedding of Z in X. Denote by
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-q’ the sheaf of differential endomorphisms of the OZ-module
i*(D03BB) = (9z (8)i-l(f)x i-1(D03BB) which are also (right) i-1(D03BB)-module endomorph-
isms ; Di03BB is a t.d.o on Z (for details see [B-B2]). Recall ([B-Bl], [Cl]) that a set of
standard data consists of (Z, 03C4, 03BB); where Z is a K-orbit in X, and i is an

invertible K-equivariant Di03BB-module on Z. The associated standard module is

Without defining precisely D03BB, X ~ Z, we note that it is a i-1(D03BB) - -q’ bimodule.
Also note that i is affine (this is due to [B-B1]; a proof can be found in Section 4
of [H-M-S-W]), i, can be defined without going into the derived category
formalism. For the mere emphasis on the orbit Z, we simply call these standard
objects based on Z.

2.6.2. PROPOSITION. Suppose fl and J2 are two standard modules based on
the same K-orbit Z (with perhaps different infinitesimal characters), then

Ch(J1) = Ch(J2).
Proof. Let J1j and f2j be K-stable good filtrations on £ and fi respectively.

It suffices to show that they have the same support with multiplicity on T* U for
an affine open cover {U} for X. Since -qÂ is a t.d.i, it is isomorphic to DX locally
(leaving (9x unchanged). Since Z n U is affines is isomorphic to (9z, u; in view of
(2.6.1), we may consider both standard modules as i+(OZ~U). The two filtrations
remain good under the restriction to U. By the remark at the end of 2.1, the
proposition follows. 0

When is dominant, the global section space I(Z, 03C4, À) = r(X, J(Z, i, 03BB)) is a
standard Harish-Chandra module. Therefore by Theorem 1.9(c) in [Bo-Br] (as
in (2.5.2)), we have

2.6.3. COROLLARY. For the nontrivial standard modules, V(I(Z, 03C4, 03BB)) depends
only on the orbit Z.

2.7. We now give a proof of Proposition 2.5.2. The proof is homological algebra
in nature and we will follow [C-E] closely. We begin with the general setup: let
aY be a coherent (-9Â, K)-module with a good filtration {Mj} where 03BB here is

arbitrary. In accordance with notations used in [C-E], we set Fp M = ..aeÍ - p. Fix
a finite open affine cover for X and write A for the Céch complex of M. By
Section 4 of Chapter XV in [C-E], there is a spectral sequence Ep,qr(A).
Note that H*(A) = H*(X, Jt) and a natural filtration on it is given by

2.7.2. LEMMA.

(1) Ep,q1(A) = Hp+q(Fp A/Fp+1A) ~ Hp+q(X, Fp M/Fp+1 M).
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(2) For each k, {FPHk(A)} is a good filtration on Hk(X, M).
Proof. For (1), note that Fp M is a quasi-coherent (9x-module, therefore the

Céch complex of Fp M/Fp+1 M is given by Fp A/Fp + 1 A. As for (2), write -4 for
the Céch complex for D03BB with respect to the chosen covering on X. Then the
filtered complex -4 acts on d and the action passes onto their spectral sequences
(see exercises 1, 2 on pp. 336-337 of [C-E]). Now FP U(g) maps to FpH0(B), the
filtration {FpHk(A)} is compatible with that of U(g). Now for p suffuciently
large Fp A = 0 by the assumption, thus FpHk(A) = 0; moreover the filtration
on A is regular and the spectral sequence converges to E~. It remains to show
that

is finitely generated as a gr U(g) = S(g)-module. Since E*~ is a subquotient
of Er (for the spectral sequence converges), it suffices to show that

(f)p+q::::k Ef,q = Hk(X, gr M) (by (1)) is finitely generated. By (2.1.1), this is also
given by H0(g*, Rk y* gr M) by the Leray spectral sequence. Since y is proper and
gr -4fi is coherent as OT*X-module, Rky* gr JU is a coherent (9,*-Module (by
Grauert’s Theorem). This gives the lemma. D
For the proof of Proposition 2.5.2, replacing JU above by M(03BC) and using the

filtration given in (2.7.1), we have

Now gr Hk(X, M(03BC)) is a subquotient of Hk(X, gr M(03BC)) (this is the Ei term), and
the latter-when considered as a sheaf on g*-is just Rk03B3*(gr M(03BC)). This gives
the first inclusion of 2.5.2(1); the second inclusion then follows from 2.2.1 and
(2.5.1).
Now the convergence of the spectral sequence above implies that

Therefore, in light of the above discussion on supports and 2.7.2, we have in the
category of coherent Og*-modules supported on V(M),

This completes the proof of Proposition 2.5.2(2). D

3. Complex groups case

3.1. Throughout this section GR will be a connected semisimple complex linear
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group. We follow the setup and collect results from [R]. We use the compact
real form of GR for the maximal compact subgroup KR. Write - for the

conjugation on the complex group GR with respect to the real form KR; this is
also the Cartan involution on GR. Recall that G is the complexification of GR.
We make the following identification:

where Xo is the flag variety of gR as a complex Lie algebra. Let e (respectively
J) be the union of conormal varieties of the K-orbits (respectively GR-orbits) in
X. Then the automorphism r (x, y) ~ (x, ) of g (as a real Lie algebra) exchanges
the GR-objects and the K-objects; for example i(T) = L, ... etc. This way all the
GR-objects inherit a complex structure from the corresponding K-objects. Note
that this is not the Matsuki correspondence. Recall that y is the moment map.

3.1.1. LEMMA. Let Z be a K-orbit in X, then the dense orbits in 03B3(T*ZX) and

03B3(i(T*ZX)) correspond to each other under the Sekiguchi correspondence in 1.1.1.
Proof. Identifying g* with g via the nondegenerate Killing form, we work in g.

Write %IR for the nilpotent cone in gR, then X %IR p XR. Choose a strictly
normal triple {h, e, f 1 in g (as in [S]) such that e = (v, - v) lies in the dense orbit
of 03B3(T*Z X). Then i(e) lies in the dense GR-orbit in 03B3(i(T*Z X )). Note that the C-
span of the first components of the above triple gives an $1(2, C) in gR (as
complex algebras) and whose complexification in g contains the above triple.
This reduces the lemma to the case when gR = sl(2, C). In that case, the orbits in
question are the dense orbits and the lemma follows from the dimension
consideration (cf. 1.1.1). D

3.2. For details see [RII] . For subsets si in T*X and B in X *, write A(B) for
the intersection A n y -1(B) where y is the moment map. Denote by H* (fl’) for
the Borel-Moore homology with coefficient in Z. The decomposition of %t into
K-orbits 0 leads to a filtration on H2n(fl’) according to the closure relations
among the orbits (here n = dim X):
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Together with Borel’s picture of the cohomology of the flag variety X, we have
the following maps

The second arrow is through the fibration L(O) ~ 0 for each K-orbit 0, and the
second isomorphism is given by the map Z ~ cZ in 2.3; e(b) is the space of
harmonic polynomials in S(1).

Let W be the Weyl group of (g, 1); it then acts on the homologies in (3.2.2).
According to Section 2 of [RII], there is a "proper" homotopy action of W on
T*X which gives rise to a faction on H*(L); moreover the action induces one
on gr H2n(L). The faction on H*(X) is induced from the following action of W
on X: for w E W and bx the Borel subalgebra of g representing a point x E X, set
ex to be the point in X represented by the Borel subalgebra w-1·b2013we
identify the abstract Cartan subalgebra (cf. 1.2) to a Cartan subalgebra in b. The
natural faction on S(b) induces one on H(). An important aspect of these
actions lies in

3.2.3. W-EQUIVARIANCE. The maps in (3.2.2) are W-equivariant.

This is in essence the Specialization Theorem of Hotta-Springer (see Lemma
3.1 and Corollary 3.2 in [RII]). For each r E H2n(L), we write Cr for the image
in the composite map of (3.2.2). Note that via i we can replace L by i7
everywhere.

3.3. Let M be an irreducible Harish-Chandra module as in 2.5 with JI( as its

localization. Recall notations in 1.3.2, 3.2, and the orbit correspondence in 1.1.1.

3.3.1. THEOREM. Let M, JI( be as above, 0, be a GR-orbit in Xe, and 0 in N*f
its Sekiguchi pair. Suppose O is an irreducible component of V(M), then as elements
in S(),

When 6 is not an irreducible component of V(M), then the multiplicity is 0.
The essence of the theorem lies in the case when -9z = -9x, and is due to

Rossmann (and results of Kashiwara and Tanisaki, see [RII]).
In terms of notations in 2.5.6, noting that the map C in (3.2.2) is Z-linear, we

see that

In light of 2.3.2 (i.e., gr q = c), this gives 1.5.2, therefore
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3.3.2. COROLLARY. The conjecture 1.5.1 holds in case GR is a connected

complex semisimple linear group.

3.4. Let us first fix a parameterization for K-orbits in X. Recall the setup in 3.1.
Fix a Cartan subalgebra bR in gR such that R = bR. For the following, we
identify the abstract Cartan subalgebra 4 to 4R x 4R in g. Let WR be the Weyl
group for (gR, 4R), then W = WR x WR and WR corresponds to the diagonal
subgroup of W in the identification of 3.1. Fix a Borel subalgebra bR in gR
containing bR such that its opposite Borel subalgebra is given by bR. Let z1 in X
be the point representing the Borel subalgebra bR x bR in g; and (by abuse of

notation) for y E W, Zy = y-1 · (bR x bR). Similarly write s, for i(zl) = bR x bR and
set sy = y-1 · s1. Then the K-orbits are given by the Zy = K · Zy with y ranging
over a set of representatives for the coset space W/WR (note: Z, is the open
orbit). We denote the standard (D03BB, K)-module based on Zy by Jy(03BB); and Iy(03BB)
for the corresponding Harish-Chandra module (cf. 2.6).

Retaining the notations as above, we proceed to the proof of 3.3.1. By the
remark following 1.6.1 on the coherent continuation, we may as well assume
that 03BB is regular dominant. Now the coherent family {M(03BC)} is parameterized by
03BB + A and both sides of 3.3.1 are polynomial functions, it suffices to show this for
all 03BB + li with 1À dominant. On the level of Grothendieck groups, we have (03BB is
assumed to be regular dominant) for any dominant 03BC,

Here for each y E W/WR, my ~ Z depends only on M. Note that the infinitesimal
character is given by the parameter + y; we denote this by x in the following.
Let wo be the longest element in WR and set w E W to be the involution given by
(id, wo); also set p = (pR, 03C1R) be the half sum of positive roots for g. The following
lemma relates the characteristic cycle and the distribution character of a
standard Harish-Chandra module.

3.4.2. LEMMA. For x = 03BB + Il with ,u dominant,

We refer to the Appendix for the definition of this integral (as a distribution).
For notations, the twisted moment map pw~ is defined with respect to the base

point s1 = bR x bR (together with the Cartan subalgebra b, cf. (A.1)), and in the
lower bound of the integral, w applies to the cycle Ch(Jy(03C1)) E H2n(L) according
to the proper homotopy action indicated before 3.2.3. Note that iw Ch(Jy(03C1)) is a
cycle in Y.
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Proof. First note that, according to the duality theorem of [H-M-S-W], the
standard modules ly(x) are principal series Harish-Chandra module for GR;
their character formulae are well-known (see Section 6 of [RII] or Section 3 of

[H-S]). In fact, (Jly(X) is given (and determined completely) by the following
analytic function on the regular part of bR:

On the other hand, the integral appearing in the lemma is a GR-invariant
eigendistribution determined by the cycle iwWh(,fy(p» (see Appendix). The
integral makes sense if x is replaced by any regular element in b*; in fact it
extends analytically on the entire b*, and is given, on the regular part of R, by

for some integers {nx: x ~ W} depending only on the cycle iw Ch(Jy(03C1)) (see (1) in
Section 5 of [RII]).

It then suffices to show that nx = 1 for all x when x = p. This is given by
Theorem 6.1 of [RII] (a brief explanation of this theorem is given after the
proof); note that our convention for the localization theory in 2.1 is opposite to
the one in Section 6 of [RII]. D

Due to its importance, we give a brief account on Theorem 6.1 of [RII]. For
convenience of tracing its dependence on the variable x, we denote the integral
appearing in the lemma by D(x). In light of the remark preceding (3.4.3), the
Weyl group W acts on {D(v) : v E W · 03C1} (by substituting v for x-1 · v with x ~ W).
The main result of [RI] gives a geometric interpretation of the integers {nx} in
(3.4.3) in terms of the geometry of the cycle iwCh(Jy(03C1)). Using this information,
the action of W on {D(v)} given above is transferred to an action on H2n(T)
explicitly (Theorem 5.1 of [RII]). On the other hand, Kashiwara and Tanisaki
have computed the characteristic cycles of (D03C1, K)-modules on X in terms of the
Weyl group representation [K-T]. Theorem 6.1 of [RII] compares these two
Weyl group representations explicitly.
We now continue the proof of 3.3.1. Since the characteristic variety of any

nonzero coherent (D03BB, K)-module is of pure dimension n = dim X, the map Wh is
Z-linear. Therefore in light of 2.4.1, (3.4.1), and 2.6.1, we have



281

Together with the above lemma, 03B8M(03BC) = 03A3my · 03B8Iy(~) is given by (up to the
constant (2ni)n)

Now suppose Or and 0 be a Sekiguchi pair such that (j is an irreducible
component of V(M). By Theorem 7.1 of [RII] (which computes the asymptotics
of these integrals as x tends to 0), recalling the notations in 3.2.3,

Transporting back to L via i, in light of 3.1.1 and the W-equivariance of C
(3.2.3), the above is just given by

This completes the proof of 3.3.1. D

Appendix

In this appendix, for the convenience of the reader, we collect the basic

ingredients of Rossman’s integral formula. For details see [RI]. We go back to
the setting in Section 1; so GR is a connected linear semisimple group. Write i for
the Cartan involution on GR corresponding to the maximal compact subgroup
KR. Let UR be the compact real form for the complex group G. Then the flag
variety X is a homogeneous space of UR.

Let h be the (abstract) Cartan subalgebra of g and fix a regular element 03BB in *
(cf. 1.2). To define a twisted moment map, choose a T-stable Cartan subalgebra
(bi)R in gR, and a Borel subalgebra b 1 (in g) containing the Cartan subalgebra 1)1
(the complexification of (1)R). Through the identification of 1) to 1, we consider
03BB to be a regular element in 1)1. Let 03A903BB be the coadjoint G-orbit of 03BB in g* (via the
invariant Killing form, 1)1 is considered as a subset in g*). We call the following
map the twisted moment map with respect to the base point b 1 (together with
4,):

for u E UR and v E (g/1)*, the fiber of T*X over the point representing the Borel
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subalgebra bl. This map is a UR-equivariant (but not G-equivariant) real-
analytic bijection. 
On 03A903BB there is a canonical two-form 03C303BB; which gives rise to the measure U. on

03A903BB (where = dim X); the canonical Liouville measure is then (1/(27[i)n n!) e,,.
For any 2n-cycle r in T*X with arbitrary support, consider the following
"formal’ operation: for f E C~0(gR),

Certainly this integral does not converge in general. However it is a simple
observation (page 133 in [RI]) that it converges for those cycles p03BB(0393) with
bounded real parts; the real part is the one with respect to the real form gR on g.
Moreover since Õ"1 is a closed form on 03A903BB, the integral in (A.2) (when converges)
depends only on the homology class of the 2n-cycle p03BB(0393) on Q (or r on T* X);
provided one defines a homology that respects the convergence of the integral
(e.g. with bounded real parts).
As in 3.1, denote by i7 c T*X the conormal varieties of GR-orbits (i.e., the

unions of the conormal bundles of GR-orbits in X). Since UR is compact, it
follows that the real part of p03BB(T) is uniformly bounded; hence the integral in
(A.2) converges and defines a distribution on gR for any 2n-cycle r in T, and the
distribution depends only on the homology class of r. Moreover this distribu-
tion is a GR-invariant eigendistribution on gG: this is because that for any g e GR,
the cycle g·p03BB(0393) is homotopic to p03BB(0393) (GR is connected, and the homotopy
respects the convergence of the integral), and for any GR-invariant polynomial p
on g*, we have p(03BE) = 03C1(03BB) if 03BE ~ 03A903BB.
For convenience, following [RI], we write the integral in (A.2) formally as the

following integral (up to a factor ( -1)n/(203C0i)nn!)

Here x03BB is the function x03BB(03BE) = 03BE(x) on 03A903BB and the exponential is taken in the
exterior algebra (the integral over a k-chain of an inhomogeneous differential
form is the integral of its component of degree k). Thus for any r in H2n(c9) (see
3.2), integrating with f E Cô (gR) in the sense of the operation (A.2), the integral
(A.3) defines a distribution on gR. This is the distribution appearing in Lemma
3.4.2.
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