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Let A be a semi-local ring and I the intersection of its maximal ideals. We
assume that A is complete and compact with respect to the I-adic topology, and
that A/I is annihilated by an odd rational prime p. The main example we have in
mind is a flat algebra of finite degree over Zp or over Zp [[X]].
The aim of this article is to give a convenient description for all pro-p

subgroups h c SL2(A). Here "convenient" means that the congruence con-
ditions defining r should have a simple standard form. Let us call a pro-p-
subgroup basic if it can be written as

for some closed subgroup M of the additive group of 2 x 2-matrices with entries
in A. (Caution: beginning with an M, this defines a pro-p group only under
certain additional conditions, cf. section 2.) Although there exist other sub-
groups, the basic ones are pervasive enough. Hereafter, when we speak of the
descending central or the derived series of a pro-finite group, we always mean
the closed subgroups that are topologically generated by the respective commu-
tators. Let r’ denote the (by our convention, closed) commutator subgroup of r.
The following result is typical.

COROLLARY (3.5) The descending central and derived series of r, beginning
with r’, consist of basic subgroups.

For the classification, then, let H, denote the unique smallest basic subgroup
containing r. It turns out that r’ = Ni, hence giving r is equivalent to giving H1
and a certain subgroup of the abelian factor group H1/H’1. For the full statement
see theorem 3.4.

More information about the method is given in the introduction to each
section. Here let us only mention that it might have been nice to use the
Campbell-Hausdorff formula (see Lazard [3] 3.2.2) to express everything in
terms of the Lie algebra right from the beginning. Unfortunately this formula is
applicable only for "small" congruence subgroups.
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Since p is odd and the order of the center of SL2(A) is a power of 2 our results
immediately extend to pro-p subgroups of GL2(A) or of PGL2(A). Moreover, it
should now be easy to extend the classification to arbitrary closed subgroups r.
Namely, consider the maximal normal pro-p subgroup 0393+ of r; it has finite
index. Our results give an explicit description for I-’ +, and it should be standard
to analyze the possible extensions. When r contains sufficiently many elements
of order prime to p the analysis is easier, because thèse elements induce
symmetries which can be used to decompose 0393+. (For a similar situation
compare Borevich and Vavilov [1], [5].) In [4] Papier considered the case of a
pro-p subgroup normalized by the matrix

under certain additional assumptions. There the extra symmetry was too weak
to provide substantial simplifications. Papier’s treatment of this case was the
main inspiration -. and the model - for the present article.
The results in this article cannot be extended directly to the case p = 2 or to

largèr linear groups, say GLn. For instance, corollary (3.5) becomes false for
p = 2; the quaternion group yields a counterexample. It would be interesting to
test the following hypothesis. Let A be as above, but for arbitrary p.

HYPOTHESIS H(n, p). There exists an integer m(n, p), depending only on n and
p, such that the descending -central series of any pro-p subgroup F c GLn(A),
beginning with the m(n, p)th step, consists of basic subgroups.

Our result affirms H(2, p) for all odd p, with the best possible bound
m(2, p) = 2.
The motivation for this article came from the study of 1-adic representations

of Galois groups. Here the closed subgroup r c GL2(A) arises as the image of
the Galois group in a representation of rank 2 over A. Such a representation is
typically associated to one or several classical holomorphic cusp forms on the
upper half plane. Foi certain purposes it is important to have a good hold on the
structure of r: for congruences of modular forms see, e.g., Papier [4]; for another
application see joint work with Harder [2].

1. Universal formulas, and conventions

We begin with a collection of useful formulas that have a meaning for any ring of
coefficients in which 2 is invertible. The (associative) algebra of 2 x 2-matrices is
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denoted by g12, it is a Lie algebra via

The subspace of all matrices of trace 0 is the simple Lie algebra s12. Letting Id
denote the identity matrix, the canonical projection is given by

The (algebraic) group of all matrices x~ gl2 with determinant 1 is denoted by
SL2.
The following formulas are basic and easy to check. Let x, y E g12.

The remaining two formulas hold for all x, y, u, v E S’2. Their straightforward,
though tedious, proof is left to the reader.

For the remainder of this article we fix a commutative ring with identity A
satisfying the following conditions. Let I denote the intersection of all maximal
ideals of A. We endow A with the I-adic topology, that is, the ideals In form a
fundamental system of open neighborhoods of zero. We assume that A is

compact with respect to this topology. This implies in particular that A is 1-
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adically separated and complete and is isomorphic to the inverse limit lim A/I".
Moreover A/I is finite and without nilpotent elements, and A a semi-local ring.
We assume that A/I is annihilated by an odd rational prime p.
Although we shall not use this, let us describe the possibilities for A a little

more concretely. As a complete semi-local ring A must be a finite direct sum of
complete local rings. It is easy to see that each direct summand is isomorphic to
a quotient of a power series ring in finitely many variables O[[X1,..., Xn]],
where (9 is the ring of integers in a finite unramified extension of Qp . The main
example we have in mind is a flat algebra of finite degree over Zp or Zp[[X]].
Nevertheless in this article we allow A to have nilpotent elements; in particular
any finite algebra that is annihilated by a power of p is an example.

Since we have assumed that p is odd, it is easy to extract square roots.

Namely, by the I-adic completeness of A the binomial series defines a well-
defined continuous map

Moreover, it is easy to check that this formula yields the unique solution of the
equation p2 = 1 + a with 03B2 ~ 1 mod I.
We shall use the following convention: when L, L’ c gl2,A and C c A are

closed additive subgroups, then Lu L’, [L, L’], tr(L), C" etc. denote the closed
additive subgroups generated by the described set.

Since A is compact, any closed subgroup of SL2(A) - with respect to the
obvious topology - is a pro-finite group. Any closed subgroup consisting of
elements that are congruent to the identity modulo I is a pro-p group. When we
speak of the descending central or the derived series of a pro-finite group, we
shall always mean the closed subgroups that are topologically generated by the
respective commutators.

2. The structure of subgroups of a certain type

In this section we study certain pro-p subgroups of SL2(A). By explicit
calculations of commutators we express the descending central series for these
subgroups in terms of Lie algebra data. In section 3 we shall prove a posteriori
that the special assumptions made here are in fact always satisfied.
Throughout the section we fix a closed additive subgroup L c S12,A and define

C := tr(L - L) c A. We assume the following axioms:
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These axioms imply:

PROPOSITION (2.2)

Proof. For the first assertion observe that 1.7 implies C · Id ~ L2, so the
assertion follows from 2.1.1. The second assertion is a consequence of 2.1.3 and
the definition of C, namely by

The axiom 2.1.2 says that L is a Lie subalgebra of sI2,A. We now define a
descending sequence of closed additive subgroups inductively by

These are also Lie subalgebras; in fact we have more:

PROPOSITION (2.3)

Proof. The first assertion follows from 2.1.1 since Ln c L" for all n. The second
follows from induction over n:

the case n = 1 being just the assertion of 2.1.2. The third assertion holds by
definition for n = 1. Proceeding by induction over n, consider elements x E L,
y E Ln, and Z E Lm. The Jacobi identity and the induction hypothesis show
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as desired. Finally apply formula 1.10 to elements of L. Using 2.3.3 the last
assertion follows in the case n = 2. For general n we again use induction:

Now we start transporting the given data to the group SL2(A). For all n  1
define

These sets constitute a descending sequence of closed subgroups:

PROPOSITION (2.4)

For all n  1:

The map H n -+ Ln, x....... 8(x) is a homeomorphism. (2.4.3)

Hn is a pro-p subgroup of SL2(A). (2.4.4)

H. is normalized by H1. (2.4.5)

Proof. The first assertion follows from 2.3.1 and the third; the second

assertion is a direct consequence of 2.3.2. For the third assertion consider the

continuous map

By the definition of C and by 2.2.1 we have tr(u2) E C c I, so the square root is
well-defined in the sense explained at the end of section 1. The relation 2.2.2

implies that the image of this map is contained in Hn . It is easy to check that this
is the desired inverse map.
For the fourth assertion consider x, YERn. Relation 1.8 immediately shows

that x -1 ERn. As for the product, we have by 1.3

which by 2.3 is contained in Ln. For the trace, 1.4 implies
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which by 2.2.2 is contained in C. This shows that Hn is a subgroup of SL2(A). To
prove the fourth assertion it remains to show that it is pro-p. For this we may
calculate modulo 7 which by 2.2.1 contains C. Thus without loss of generality we
may assume that I = C = {0}. Then H,, is a finite group of the same cardinality
as the finite Fp vector space Ln. This is a power of p, as desired.
For the last assertion we must prove that 0398(xyx-1)~Ln for all x ~ H1 and

y E Hn . We calculate

By 2.3 this lies in L., as desired. D

Next we want to describe the group structure of Hn/Hn + 1. Given x E Hn or Ln
we denote its residue class in Hn/Hn + 1, respectively in Ln/Ln + 1, by x. For n  2
it is easy to determine the group structure of HnlHn+ 1. It is convenient to

calculate commutators at the same time:

is a well-defined bicontinuous group isomorphism. In particular, Hn/Hn+1 is

abelian.
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Proof. For the first assertion consider elements x, y ~ Hn. The formula 1.3

implies

and by 2.3 this is contained in Ln + 1. This proves that the map Hn -+ Ln/Ln + 1,
x ~ 0(x) is a group homomorphism. Clearly its kernel is Hn + 1. By 2.4.3 it is
surjective, hence the map in 2.5.1 is a well-defined group isomorphism. Since
Hn/Hn + 1 is endowed with the quotient topology, the continuity of 0 implies
that of the map in question. The same argument, in combination with 2.4.3,
shows that the inverse is continuous, and the first assertion is proved.
For the second assertion we calculate as above

Thus

which by 2.3 is contained in Ln + 1, as desired. D

The group structure of H1/H2 can also, in a way similar to 2.5.1, be
characterized on Ll/L2. The difficulty is that the latter set must be endowed with
a group structure that may differ from the given additive group structure. To
avoid a misunderstanding it is essential to keep in mind that LI/L2 will continue
to denote the set of all cosets x + L2 for xeLi, with the original additive group
structure. Consider the map
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LI/ L2, again denoted by the symbol *. (LI/ L2, *) is an abelian pro-p-group with
identity ô.

is a well-defined bicontinuous group isomorphism onto (Ll/L2, *). In particular
HlIH2 is abelian.

Proof. In order to show the origin of the somewhat strange formula 2.6.0 we
begin with the Claim:

in L,/L2 for all x, y E H,. Indeed, 1.3 says

2 · 0398(xy) = [O(x), 8(y)] + tr(x) · O(y) + tr(y) · 0(x),

and the first term on the right hand side lies in L2. The explicit form of the
inverse map constructed in the proof of 2.4.3 shows that

and the same holds for y. Now the claim follows from the definition of *.

Next we prove that * induces a well-defined composition law on Ll/L2. By
symmetry it suffices to show that for all x, y ~ L1 and U E L2

By definition this difference is equal to

Here the second term lies in (1 + C) · L2, whence in L2 by 2.3. It remains to show
that the content of the big parentheses maps L, to L2. We may multiply this
coefficient by the (invertible!) element

which, as well as its inverse, maps L2 to itself by 2.3. Then the coefficient
becomes
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We must prove that this maps L, to L2. But 1.11 and 2.3 imply

which is clearly enough for our purpose.
Next we show that * makes Ll/L2 into an abelian group with identity 0. Using

a little trick we can avoid a complicated calculation. Recall that by 2.4.3 the map
Hi - Ll/L2 induced by 0 is surjective. Since Hl is a group, this together with
the above claim shows that (Ll/L2, *) satisfies all group axioms! By 2.6.0 it is
obviously abelian and the identity element is 0. Now the first assertion is proved
except for the pro-p part.
We already know that the map H1 ~ LI/L2 induced by 0 is a continuous

surjective homomorphism. Clearly its kernel is H2, so we obtain a well-defined
group isomorphism from H1/H2 to (LI/L2’ *). By the definition of the quotient
topology this map is continuous. By 2.4.3 the inverse is also continuous, and the
second assertion is proved. Finally 2.4.4 implies that H1/H2 is pro-p, hence so is
(Ll/L2, *), and we are done. D

Now consider a closed subgroup r ~ H1 with the property

(2.7.0) The additive group Ll/L2 is topologically generated by the image of
e(r).

The main result of this section is the determination of the descending central
series of r, defined by ri r and r"+ 1 = Er, 0393n] for every n  1.

THEOREM (2.7). For every n a 2 we have rn = Hn .
Proof. The crucial point is the commutator relation 2.5.2. We begin by

proving rn c Hn by induction on all n  1. For n = 1 this was our assumption.
If it holds for n - 1, the relation 2.5.2 implies [03931, 0393n-1] c [H1, Hn-1] c Hn.
But H,, is closed, hence rn c H", finishing the induction step.
For the reverse inclusion we first observe that by 2.4.1 the closedness of rn is

equivalent to

Thus it suffices to prove

for all m  n  2. By 2.5.1 this is equivalent to

for all m  n  2. Since r n contains 0393n + 1 it suffices to prove this in the extremal
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case n = m. In other words we have to show that

for all m  2. By 2.5.1 the right hand side is in any case a closed additive

subgroup of the left hand side. Thus we are done after we have proved the
Claim: For all m  1 the additive group Lm/Lm+1 is topologically generated by
the image of O(Fm).

To facilitate notation let Am be the closed subgroup of Lm/Lm + 1 that is

topologically generated by the image of O(rm). The claim will be proved by
induction on m. The case m = 1 is just assumption 2.7.0. Assume that the claim
has been proved for m - 1. The commutator relation 2.5.2 implies

By the bicontinuity of O the closure of the left hand side is just 8(r m). Thus the
group 0394m can be described in terms of the right hand side of 2.7.1. Now observe
that by 2.3.3 the commutator induces a well-defined continuous bilinear pairing

Using the right hand side of 2.7.1, 0394m can be described as the closed subgroup of
Lm/Lm+1 that is topologically generated by the image of 03941 x A. under this
pairing. On the other hand 2.7.0 and the inductive assumption say that

Ai = Ll/L2 and 0394m-1 = Lm-1/Lm. Moreover the definition of L. implies that
Lm/Lm + 1 is topologically generated by the image of the pairing. This shows that
A. = LmlLm + 1, as desired. D

REMARK. It is now easy to describe the derived series of r as well. Indeed, by
2.7 the commutator subgroup of r is H2. By 2.3 the axioms 2.1.1-3 hold again
when L is replaced by L2. The "new" Hl will be the "old" H2, and we can apply
2.7 again. By induction it follows that the derived series of r corresponds to the
derived series of L, i.e. to the descending sequence of Lie subalgebras defined by
L(1):= L and L(n+1):= [L(n), L(n)]. The precise formulation is left to the reader.

3. Classification of all pro-p subgroups

In the preceding section we started with certain Lie algebra data (see 2.1.1-3)
and then studied pro-p subgroups of SL2(A) that are in a kind of special position
with respect to this data (see 2.7.0). Now we go in the other direction: we extract
the Lie algebra data from a given pro-p subgroup of SL2(A). The main result is
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that these processes are mutually inverse; in particular the results of section 2
apply to all pro-p subgroups. This provides a classification and description of
arbitrary pro-p subgroups of SL2(A) in a way that is probably as linearized as
possible. As a by-product we obtain a description of the descending central
series (as well as the derived series) purely in terms of Lie algebra data.

Let r c SL2(A) be a pro-p subgroup. By compactness it is necessarily closed.
Let L c S12,A be the closed additive subgroup that is topologically generated by
O(r). As in section 2 we put C : = tr(L - L) c A.

PROPOSITION (3.1). This data satisfies the axioms 2.1.1-3.
Proof. In order to prove the assertion 2.1.1 we first calculate modulo I. After

conjugation by GL2(A) we may assume that all matrices in r are of the form

It follows that all matrices in L2 are congruent to 0 mod I. By induction it

follows that all matrices in L2n are congruent to 0 mod I". Hence ~n Ln = {0}, as
desired.

The assertion 2.1.2, [L, L] c L, follows from the formulas 1.1 and 1.2:

For the axiom 2.1.3 first observe that 1.9 implies tr(r)’L c L. By 1.4 we have

hence Ce L c L, as desired.
As in section 2 we now define L 1: = L and L2 := [L, L], and put

for n = 1, 2.

PROPOSITION (3.2). Hl is a subgroup of SL2(A), H2 is a normal subgroup of
H1, and H1/H2 is abelian.

Proof. Conjunction of 3.1, 2.4, and 2.6. D

The first main result of this section is:

THEOREM (3.3). r is contained in H1, and the commutator subgroup of r is H2.
Proof We begin with the inclusion r ~ H1. By the definition of H 1 we must

show that tr(y) - 2 E C for every y E r. By formula 1.6 we have

tr(y)2 = 4 + 2 tr(o(y)2) ~ 4 mod C.
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We already know that the right hand side possesses a unique square root that is
congruent to 2 mod 1, and this square root is given by the binomial series. In

particular it is congruent to 2 mod C. On the other hand y is - after conjugation
by GL2(A) - congruent to a matrix of the form

Thus tr(y) is congruent to 2 mod 1. By the above considerations it is a fortiori
congruent to 2 mod C, as desired.

Since r is compact, we now know that it is a closed subgroup of H1. In order
to be able to apply theorem 2.7 it remains to show that the hypothesis 2.7.0
holds, i.e. that the additive group L/[L, L] is topologically generated by the
image of 0398(0393). But this is clear from the definition of L. D

Since the groups H1, H2 depend only on L, theorem 3.3 implies that r is
determined completely by L and the subgroup r/H2 c HlIH2. This allows the
following classification:

THEOREM (3.4). There is a canonical one-to-one correspondence between all
pro-p subgroups r c SL2(A) and the following pairs (L, A): First, L should be a
closed additive subgroup of S12,1 satisfying

These three conditions imply that the formula

is a well-defined composition law on the set L/[L, L], making it into an abelian pro-
p group with identity 0 (see 2.6.1). Then A should be a closed subgroup of
(L/[L, L], *) such that

(3.4.4) The additive group L/[L, L] is topologically generated by the subset A.
Proof. It is now clear how the correspondence is defined. When r is given,

then L is defined as at the beginning of this section, and 3.4.1-3 follow from
proposition 3.1. Also, A is the closed subgroup of (L/(L, L], *) which corresponds
to r/H2 c H1/H2 under the isomorphism 2.6.2, and 3.4.4 holds by the definition
of L.

Conversely, when L and A are given, then r is defined as the unique closed
subgroup of H1 containing H2 and such that r/H2 c HlIH2 corresponds to A
under the isomorphism 2.6.2. By 2.4.4 Ri is a pro-p group, hence so is r.
To show that these rules are mutually inverse let us begin with a pro-p
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subgroup r c SL2(A). Let (L, A) be defined as above, and r’ be the pro-p
subgroup associated to this pair. Then H2 is contained in both r (by theorem
3.3) and r’ (by definition). Since both 0393/H2 and r’/H2 correspond to A under the
isomorphism 2.6.2, it follows that r = r’, as desired.

Finally let us start with a pair (L, A) satisfying 3.4.1-4, and let r be the
associated pro-p subgroup. Let L’ c S12,A be the closed additive subgroup that is
topologically generated by O(r). First we must show that L = L’. By definition
r contains H2, hence L’ contains O(H2) which by 2.4.3 is equal to [L, L]. By
definition 8(r) mod [L, L] is just A, so the assumption 3.4.4 implies L = L’. The
remaining assertion about A is now obvious. 0

REMARK. Using this correspondence, theorem 2.7 applies to every pro-p
subgroup r c SL2(A). It follows that the descending central series, beginning
with the commutator subgroup, is completely and explicitly determined by the
descending central series for the Lie subalgebra L. By the remark at the end of
section 2 the analogue holds for the derived series of h.
As in the introduction let us call a pro-p-subgroup of SL2(A) basic if it can be

written in the form

{x ~ SL2(A)|x-Id~M}

for some closed subgroup M of the additive group of 2 x 2-matrices with entries
in A. Clearly the Hn above are basic, and H1 can be characterized as the smallest
basic subgroup containing r.

COROLLARY (3.5). Let r be any pro-p subgroup of SL2(A). The descending
central and derived series of r, beginning with the commutator subgroup, consist of
basic subgroups.
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