
COMPOSITIO MATHEMATICA

OLIVIER DEBARRE

RACHID FAHLAOUI
Abelian varieties in W r

d (C) and points of bounded
degree on algebraic curves
Compositio Mathematica, tome 88, no 3 (1993), p. 235-249
<http://www.numdam.org/item?id=CM_1993__88_3_235_0>

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1993__88_3_235_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


235

Abelian varieties in Wrd(C) and points of bounded degree
on algebraic curves

OLIVIER DEBARRE1 and RACHID FAHLAOUI2,3
1 CNRS, URA D0752, Géométrie Algébrique et Arithmétique, Université Paris-Sud, 91405
ORSA Y Cedex, France, and University of Iowa, Iowa City, IA 52242, USA.
2 Université Paris-Sud, 91405 ORSA Y Cedex, France.

Received 27 November 1991; accepted in revised form 3 August 1992

Compositio Mathematica 88: 235-249, 1993.
e 1993 Kluwer Academic Publishers. Printed in the Netherlands.

1. Introduction

The purpose of this work is to answer some questions raised by Abramovich and
Harris in [AH] and [Al]. In particular, we give in 5.17 counterexamples to their
main conjecture: for each da 4, we construct a curve C defined over a number
field K, that has infinitely many points p such that [K(p) : K]  d, but that
nevertheless admits no maps of degree d or less onto Pl or an elliptic curve. It
was proved in [AH] that there are no such curves for d = 2 or 3, and no such
curves of genus # 7 for d = 4. We give two different constructions: in the first
one, the genus of C is d(d - 1)/2 + 1, and C does have a morphism of degree
(d + 1) onto an elliptic curve. In the second one, d is even &#x3E; 8, the genus of C is
d2/4 + 1, and C has no morphisms onto a non-rational curve. For d = nm, with
n &#x3E; 2 and m &#x3E; 4, there are examples with C of arbitrarily large genus.
As explained in [AH] and [A1], this problem is closely related to the study of

abelian varieties in the loci Wd(C) in the Jacobian of a curve C. We start off in
this direction, by examining in section 3 the validity of the following statement
from loc. cit. (suitably modified to avoid trivial counterexamples):

STATEMENT A(d, h, g). Let C be a complex projective curve of genus g, and
assume that for some d  g, the locus Wd(C) contains a maximal abelian variety A
of dimension h. Then C is the image of a curve C’ that admits a map of degree at
most d/h onto a curve of genus h.

This statement is easy to check for h = 1, and, when g &#x3E; d(d - 1)/2 + 1, holds
for d  7 or d prime ([Al], theorem 11). On the other hand, the Prym
construction gives counterexamples to A(2h, h, 2h + 1) for any h &#x3E; 4 (cf. remark
3.7). Note that the statement implies that Wd(C) cannot contain an abelian
variety of dimension &#x3E; d/2 for d  g. We prove this in proposition 3.3, in a
slightly more general form. Using ideas from [AH], we also prove statement

3 Both authors were partially supported by the EEC Science Project "Geometry of Algebraic
Varieties".
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A(2h, h, g) for g &#x3E; 3h (corollary 3.6) and statement A(d, h, g) for h &#x3E; d/4 and

g &#x3E; 6d (proposition 3.8). Cases where h is small with respect to d remain very
much open.

In the next sections, which are independent from section 3, we study the

following statement from [AH]:

STATEMENT S(d, h, g). Suppose C’ ~ C is a surjective map of complex
projective smooth curves with C of genus g. If C’ admits a map of degree d or less
onto a curve of degree h or less, so does C.

Abramovich proved in [Al] statements S(2, h, g) for g &#x3E; 2h and S(3, h, g) for
g &#x3E; 3h + 1, and, with Harris ([AH]), statements S(2, 1, g), S(3, 1, g) and, for
g ~ 7, statement S(4,1, g). They also gave a counterexample to S(3, 2, 5) in loc.
cit. As explained in (5.16), this implies that, for any si &#x3E; 2, statement S(3n, 2, g)
does not hold for infinitely many values of g.
We give in (5.5) counterexamples to S(d, 1, d(d - 1)/2 + 1) for any d &#x3E; 4, and

to S(d, 2, d2/4 + 1) for d even &#x3E; 8. This disproves in particular S(4, 1, 7), the
missing case in [AH]. It follows again that for any n &#x3E; 2, d &#x3E; 4, statements

S(nd, 1, g) and S(2nd, 2, g) do not hold for infinitely many values of g.
A word of warning about [Al] and [AH]: those articles contain incomplete

proofs which were later amended in [A2]. However, there are still some gaps,
and lemma 6, the second part of lemma 8 and corollary 1 in [AH], as well as the
corresponding statements in [Al], should be considered unproved at the

moment. Theorem 2 of [AH], although its proof relied on those statements, has
been since proved in a different way by Abramovich (with the extra hypothesis
added in [A2]). We will quote it here, although our results do not depend on it.
We would like to thank the referee for his careful reading of the manuscript

and for his suggestions.

2. Notation

Unless otherwise specified, the ground field is the field of complex numbers.
Let C be a smooth (connected projective algebraic) curve. For any integer d,
we write Pic‘’(C) for the scheme parametrizing isomorphism classes of line
bundles of degree d on C, and J(C), the Jacobian of C, for Pic°(C). For any point
z in Pic’(C), we write Lz for a line bundle of degree d on C associated to z. For
any non-negative integers d and r, we set Wd(C) = {z~Picd(C)|h0(C, Lz)&#x3E;r},
endowed with its usual scheme structure, and Wd(C) = Wd (C).

3. Abelian varieties in Wd (C)

Let C be a smooth complex curve. We show that any abelian variety contained
in Wd (C) has dimension  d/2 - r, and study when equality holds.
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LEMMA 3.1. Let C be a smooth curve of genus g and let 0 be a theta divisor of
J(C). Assume that O contains a subvariety Z stable by translation by an abelian
subvariety A of J(C). Then:

dim (Z) + dim(A)  g - 1.

Proof. We may assume Z to be irreducible. Moreover, replacing Z by
Z - Wr(C) + W,(C), where (r + 1) is the multiplicity on O of a generic point of
Z, we may assume that Z meets the set 0reg of smooth points of 0. Let
G:(D,,,g-+PT*J(C) be the Gauss map. For any point x of Z n @reg, the
hyperplane Tx0 of TxJ(C) contains x + TOA, hence G(Z ~ @reg) c PTÓ(J(C)/A).
The conclusion follows from the fact that on a Jacobian, the map G has finite
fibers ([ACGH], p. 246). D

REMARK 3.2. Lemma 3.1 does not hold in a general abelian variety of
dimension &#x3E; 4: there are abelian varieties of any given dimension such that their
theta divisor contains an abelian subvariety as a divisor.

PROPOSITION 3.3. Let C be a smooth curve of genus g such that Wd(C)
contains a subvariety Z stable by translation by an abelian subvariety A of J(C).
Then, if d  g - 1 + r, one has:

dim(Z) + dim(A)  d - 2r.

Proof. Apply lemma 3.1 to the subvariety Z - Wr(C) + Wg -1- d+r(C) of
Wg-1(C) (isomorphic to 0). One gets:

The next proposition shows exactly when there is equality in proposition 3.3,
under a stronger assumption on d. We begin with a lemma.

LEMMA 3.4. Let C be a smooth curve of genus g such that Wd(C) contains a
subvariety Z stable by translation by a non-zero abelian subvariety A of J(C).
Assume that:

dim(Z) + dim(A) = d.

Then, if d + dim(Z)  g - 1, there exist a curve B of genus h = dim(A)
and a morphism p: C -+ B of degree 2 such that A = p*J(B) and

Z = p* Pic"(B) + Wd-2h(C).
Proof. We follow ideas from [AH]. Let Z2 be the image of Z under the

addition map Wd(C) x Wd(C) --+ W2d(C). As in lemma 1 of [AH], the maximal
integer r such that Z2 is contained in W2d(C) satisfies r &#x3E; h and
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2 dim(Z) - r  dim(Z2). Since 2d  g - 1 + h, proposition 3.3 applies to Z2
and gives dim(Z2) + h  2d - 2r. It follows that r = h.

Proposition 3.3 implies that Z is not contained in W1d(C), hence, for z generic,
we may write D,, for the unique element of the linear system |Lz|. For z and z’
generic in Z, and u generic in A, the divisor Dz+u + Dz’ -u is in 1 Lz Q Lz, 1. Since
dim(A) = dimll_, O Lz,l, we get a generic divisor of |Lz Q9 Lz,1 in this way. Let Pz
be the greatest common divisor of the Dz+u’s as u varies in A. The fixed part of
ILz Q Lz,1 is then Pz + Pz,. Write Ez = Dz - Pz and e = deg(Ez). The map that
sends u to Ez + u induces an embedding of A into We(C) with image Az. Let

Oz,z,: C - ph be the morphism associated with 1 Ez + Ez’|. The rational map from
A onto lEz + Ez’| that takes u to Ez+u + Ez’-u factorizes through the quotient of
A by the involution i(u) = z’ - z - u.
Assume first that the resulting rational map a: A/l---1IEz + Ez,1 has degree 1.

Since A/i is not rational for h &#x3E; 1, we have h = 1 and a general point of C
appears in a single Ez+u, &#x3E; It follows that ozz, factors through a morphism
p: C ~ A of degree e.
Assume now that a has degree &#x3E; 1. For u generic in A, there exists v in A such

that Ez+u + Ez’ - u = Ez+v + Ez’ - u and z + v is different from z + u and from
z’ - u. Therefore, fixing z, z’ and u, for w generic in A, there exists v(w) in A such
that Ez+u + Ez’+w-u = Ez + v(w) + Ez’ + w - v(w). It follows that Ez + u decomposes
as E’+. + E"z+u, with 0  E’z+u  Ez+v(w) and 0  E"+u  Ez,+w-v(w). Let A’
be the closure of {Ez+v(w) - E’z + u|w ~ A}, let A" be the closure of

{Ez’ + w - v(w) - E"z+u|w ~ A}, and let h’ (resp. h") be the dimension of A’ (resp. A").
For any D’ = Ez + v(w) - E’z + u in A’ and D" = Ez’+w’ - v(w’) - E"z + u in A", we have:

D + D" = Ez’+w-u - Ez’+w-v(w) + Ez’+w’-v(w’) = Ez’+w’+v(w)-v(w’)-u,
hence Az, is the image of A’ x A" by the addition map. This implies h = h’ + h",
since Az, is not contained in W é (C). Furthermore, we have

h0(Ez + Ez’ - D’ - D") &#x3E; 0 for any D" in A", hence h’(Ez + Ez’ - D’) &#x3E;

h" - h - h’. It follows that the elements of A’ form an h’-dimensional family of
divisors, whose images by ~z,z’ each span at most an (h’ - 1)-plane. By lemma 4
of [AH], either ~z,z’ is not birational, or the elements of A’ have degree ~ h’,
hence A’ = C(h’), and similarly A" = C(h"). in that case, A = Wh(C) hence h  g
since A is an abelian variety. This contradicts the hypothesis.

Therefore ~z,z’ is not birational for generic z and z’. Let B be the normaliza-
tion of its image. If B is rational, since the linear series that defines Oz,z, is

complete, the image of oz,z, is a rational normal curve in P". Any Ez + u + Ez’ - u,
hence also any Ez + u + Ez’, is then h times an element of W’2elh(C). This yields an
embedding of A into W2e/h(C). The pull-back Â in C(2e/h) of the image of this
embedding has dimension  h + 1, the image of Ãh in C(2e) has dimension

h(h + 1) and dominates Az + Ez’, which is in Wh2e(C), but not in Wh+12e(C) for z
and z’ generic. Hence h  (h + 1)h - h = h2 and h = 1. This contradicts

h = h’ + h" &#x3E; 1.
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It follows that whatever the degree of a, the morphisms ~z,z’ factor through a
fixed morphism p: C ~ B of degree n &#x3E; 1, where B is a non-rational curve. As in
lemma 3 of [AH], the Ez + u’s are pullbacks of divisors on B, hence A embeds into

p*We/n(B). It follows that Z ~ Wd - e(C) + p* We/n(B). Since Z is (d - h)-
dimensional, we get d - h  d - e + e/n. We know that A embeds into We(C),
hence h  e/2 by proposition 3.3. It follows that n = 2 and h = e/2, that the
above inclusion is an equality and that A = p*Wh(B). In particular, the genus of
B is h and the lemma is proved. D

PROPOSITION 3.5. Let C be a smooth curve of genus 9 such that Wd(C)
contains a subvariety Z stable by translation by a non-zero abelian subvariety A of
J(C). Assume that:

Then, if d + dim(Z)  g - 1, there exist a curve B of genus h = dim(A) and
a morphism p: C ~ B of degree 2 such that A = p*J(B) and

Proof. The subvariety Z’ = Z - Wr(C) of Wd-r(C) is stable by translation by
A and satisfies dim(Z’) + dim(A) = d - r. Since (d - r) + dim(Z’)  g - 1, one
can apply lemma 3.4 to Z’. Therefore, there exist a curve B of genus h and a
morphism p: C ~ B of degree 2 such that Z’ = p* Pich(B) + Wd -r - 2h (C)· It

follows that the linear system associated to any point of Z contains an effective
divisor of the form p*D + E, where E does not contain any fiber of p and
deg(D)  h. Let 2s be the number of ramification points of p. One has:

It follows from [Mu] that h0(p*D + E) = hO(D) &#x3E; r, since Z is contained in

Wrd(C). But Z is stable by translation by A = p*J(B), hence deg(D)  h + r. It
follows that Z c p* Pich + r(B) + Wd - 2r - 2h (C)· Since both sets have the same
dimension, they are equal. 0

The following immediate consequence of proposition 3.5 proves a stronger
form of the statement A(2h, h, g) mentioned in the introduction, for g &#x3E; 3h.

COROLLARY 3.6. Let C be a smooth curve of genus g such that Wd(C) contains
an abelian variety A. Assume that d  g - 1 + r. Then dim(A)  d/2 - r. When
d  2/3(g - 1 + r), equality holds if and only if d is even and there exist a curve B
of genus (d/2 - r) and a morphism p: C ~ B of degree 2 such that A = p* Picd/2(B).
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REMARK 3.7. The Prym construction gives counterexamples to

A(2h, h, 2h + 1) for h  4, hence a fortiori to the second part of the proposition
when d = g -1 is even and r = 0: let D be a genus-(h + 1) curve and let x: C ~ D
be an étale covering of degree 2. The genus of C is 9 = 2h + 1 and Wg-1(C)
contains a copy of the Prym variety A of n, an abelian variety of dimension h.
We claim that for D general and h  4, there does not exist a diagram:

with q onto, p of degree 2 and B of genus h, hence contradicting A(2h, h, 2h + 1).
Assume such a diagram exists. Then q(p*J(B)) is an abelian subvariety of J(C) of
dimension  h. But J(C) is isogeneous to A x J(D). For D general, both A and
J(D) are simple and, when h  4, the abelian variety A is not isogeneous to a
Jacobian. It follows that q(p*J(B)) must be a point, which is clearly impossible.
One can also show that the construction in section 5 of [AH] gives counter-
examples to A(4, 2, 5).

The following proposition proves the statement A(d, h, g) for h &#x3E; dl4 and
g &#x3E; 6d.

PROPOSITION 3.8. Let C be a smooth curve of genus g. Let d be an integer and
suppose that Wd(C) contains an abelian variety A, assumed to be maximal, of
dimension h &#x3E; d/4. Then, if g &#x3E; 6d, there exist a curve B of genus h, a morphism
p:C ~ B of degree n = 2 or 3 and a point D of Wd - hn(C), such that

A = D + p* Pic"(B).
REMARK 3.9. The proposition also holds for g &#x3E; d(d - 1)/2 + 1 (use theorem
2 of [AH]). This bound is better for small values of d.

Proof of Proposition 3.8. Since the case h = 1, d  3 was treated in [AH], we
will assume h &#x3E; 1. Subtracting if necessary from A the sum of sufficiently many
points of C, we may assume that A is not contained in W1d (C). Subtracting then
the common fixed parts of the linear systems corresponding to the points of A,
we may also assume that A is not contained in any x + Wd-1(C). These
operations only make d smaller, so that the inequalities h &#x3E; d/4 and g &#x3E; 6d are

still valid.

First, we make the extra assumption that A is not contained in the big
diagonal of Wd(C), so that we can apply the results of [Al] and [AH].
For any positive integer n, let An be the image of A under the addition map

Wd (C) x ... x Wd(C) ~ Wnd(C). Let r(n) be the maximal integer such that An is
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contained in Wr(n)nd(C). Assume that the morphism C ~ pr(2) associated to a
generic element of A2 is birational. Then the same holds for the morphisms
associated to a generic element of An for any n  2. Lemma 5 of [AH] gives
r(2)  h + 1. We need the following result from [ACGH]:

LEMMA 3.10. Let r and d be two integers with d  g + 1 and let L be a base-

point-free gr d on C such that the morphism C ~ pr associated to L is birational.
Then the dimension of W§(C) at the point corresponding to L is less than or equal
to hO(L 2) - 3r. If d  g and L 2 =1= Kc, this dimension is also less than or equal to
d - 3r.

Since 2d  g + 1, the lemma yields h  r(4) + 1 - 3r(2), hence r(4)  4h + 2.
The first part of lemma 8 from [AH] gives r(6)  r(4) + min(r(4), 2d). Using
proposition 3.3, we get r(6)  8h + 2. Since 6d  g, we can apply the second part
of lemma 3.10 to a generic point in A6, to get h  6d - 3r(6), hence

h  (6d - 6)/25  d/4, which contradicts the hypothesis.
Therefore, the morphism associated to a generic element of A2 is not

birational. Since h &#x3E; 1, lemma 14 of [A1] implies that there exist a curve B and a
morphism p: C ~ B of degree n  2 such that n divides d and A c p*Wd/n(B).
Since h &#x3E; d/4  d/2n, corollary 3.6 implies d/n  g(B). Therefore, p* Picd/n(B) is
contained into Wd(C). Since A is maximal in Wd(C), it is equal to p* piCdl"(B) and
h = g(B)  d/n. Since A is not contained in W1d(C), one has h = d/n. This finishes
the proof of the proposition in that case.

If all points of A have multiplicities, one can remove them. The first part of the
proof then shows that A = mp* Picd/2m(B), for some integer m  2. But A then
embeds into Wd/m(C), and that contradicts proposition 3.3 since h &#x3E; d/4. Thus,
this case does not occur and the proposition is proved. D

4. Two constructions

(4.1) Let E be a complex elliptic curve and let E(2) be its second symmetric
product. Let p:E  E ~ E be the first projection, let q: E x E -+ E(2) be the
quotient map and let s: E (2) - E be the sum map.
We fix a point o on E, making E into a commutative group with unit o. To

avoid confusion between addition of divisors and addition of points of E, we will
write (x) for the divisor defined by a point x of E. There exists a unique locally
free rank 2 sheaf 6 on E that is a non-trivial extension:

0 ~ O ~ E ~ O((o)) ~ 0.

The sheaf 6 defines a P 1-bundle P8 -+ E and an invertible sheaf W(1) on PS.
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There exists a commutative diagram:

where u is an isomorphism. Furthermore, u*O(1) is isomorphic to (9(H), where H
is the unique element of the linear system lq*p*(o)l. For any point x of E, we
write Hx for the only element of the linear system |q*p*(x)|, we write Fx for the
fiber s - ’(x) and Cx for the curve {(y) + (y + x) 1 y c- El in E (2). Finally, let E[2]’
be the set of non-zero points of order two of E. The following facts are classical
or elementary:

(i) the Picard group of E (2) is isomorphic to Z[H] Et) s* Pic(E).
(ii) the curve Hx is linearly equivalent to H + Fx - Fo .

(iii) the linear system |4H - F - Fx| is empty when 2x ~ 0, and is a pencil if and
only if x = 0.

(iv) when x E E[2]’, the curve Cx is the only element of 12H - Fx|; when
x e E[2]’, the linear system 12H - Fx| is empty.

PROPOSITION 4.2. Let x be a point on E. For n &#x3E; 3, the linear system
|nH - Fxl is base-point-free and has projective dimension (n - 2)(n + 1)/2. It is
very ample for n &#x3E; 4. The linear system 13H - Fx| is a pencil with three distinct
simple base points, hence contains a smooth irreducible curve.

Proof. For any point e of E[2]’, the linear system |3H - Fxl has degree 1 on
the elliptic curve CE (cf. fact (iv) above). It follows that it has at least one base
point on this curve. Using fact (iv) again, it is easy to see, by restricting to the
curve Hp, that the linear system |3H - Fxl has no base point on Hp if x + p does
not belong to E[2]’. Hence the base points of the linear system |3H - Fxl are
(e - x) + (e’ - x), for any e and e’ distinct in E[2]’. They are simple since
(3H - Fx)2 = 3.
The rest of the proposition follows easily from Reider’s main theorem ([RI]).

Il

It follows from proposition 4.2 that for d  2 and for any point x of E, the
linear system 1(d + 1)H - Fx| contains a smooth irreducible curve C, whose
genus is d(d - 1)/2 + 1.

Since d &#x3E; 1, the curve Hx is not contained in C and sending a point x of E to
the class of the divisor Hx. C defines a morphism t/1 from E into C(d). This
morphism has the property that it is not induced by a morphism from C to E. In
fact, let x be any point of E and let ai = x + Xi’ i = 1, ... , d be the d points of the
support of the divisor 03C8(x). Then 03C8(x) and 03C8(x1) have a point in common, to wit
al. Since x and xi are distinct in general, 03C8 cannot be induced by a morphism.
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Let 0 be the morphism E ~ Wa(C) induced by 03C8. Since C is ample on E(2), the
restriction map Pic’(E(2» ~ Pic°(C) is injective, hence so is ~. Note that s

induces a morphism from C onto E of degree (d + 1) and that the induced
morphism from E into Wd+1(C) is a translate of ~.
We will use this construction in section 5 to illustrate and complement some

points of [AH].

(4.3) For the second construction, we considér a smooth genus-2 curve B, its
Jacobian (J(B), 0) and a smooth curve C in le0j (e  2). We will always assume
0 to be symmetric. Sending a point a of J(B) to the divisor (0 + a). C defines a
morphism ip from J(B) into C(2e), which again is not induced by a morphism
from C to B. Indeed, if 03C8(a) = x, + ··· + x2e, then xl - a, hence also a - xl, are
in 0. It follows that the divisors 03C8(a) and 03C8(a + 2xi) have a point in common,
although a and a + 2xi are distinct in general. We will denote by ~ the

morphism J(B) - W2e(C) induced by 03C8. The induced map Pic°(J(B)) ~ Pic°(C)
being injective, so is ~.

5. Discussion of some results from [AH]

(5.1) The first item we want to discuss is theorem 2 in [AH]. Let C be a smooth
curve such that Wd(C) contains an abelian variety A. As before, let A2 be the
subset of W2d(C) which consists of the sums of any two elements of A. This
theorem says that if the morphism associated to a general point of A2 is

birational onto its image, then g(C)  d(d - 1)/2 + 1. If A is an elliptic curve, one
has to assume further that the inclusion of A in Wd(C) does not come from a
morphism (as mentioned in [A2]). We show that this bound is sharp when A is
an elliptic curve. With the notation of (4.1), for any smooth curve C in |dH|, the
scheme Wd(C) contains a copy of the elliptic curve E, and elements of E2 induce
the linear systems |H + Hx| on C.

PROPOSITION 5.2. Let d a 3. A generic curve C in IdHI has genus

d(d - 1)/2 + 1, and the morphism K induced by 12HI on C is birational.

REMARKS 5.3. (a) With the notation of the proof of proposition 3.8, one has
r(k) = k(k + 1)/2 - 1 for k  d.

(2) The proposition also holds for a generic curve in 1(d + 1)H - Fx|, for
d  3. This gives another example for which the bound in theorem 2 [AH] is

sharp.

Proof of proposition 5.2. It is enough to find a divisor D in IdHI and a
component D’ of D such that D is generically reduced on D’, the restriction of K
to D’ is birational onto its image and K(D - D’) does not contain K(D’). Note that

03BA(Hx) (resp. 03BA(C03B5)) is a line for any point x of E (resp. any point e of E[2]’). On the
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other hand, for x not in E[2]’, the restriction of x to Fx is birational onto a
smooth conic. Pick a point e in E[2]’ and set:

The curve x(D’) is the only smooth conic of x(D) and the restriction Of K to D’ is
birational onto its image. This finishes the proof of the proposition. D

What happens when the abelian variety A contained in Wd (C) is not an elliptic
curve? It is likely that the bound on the genus of C from [AH], theorem 2, is not
sharp in that case and that there should be a better bound involving the
dimension of A. Here is an example where A is a surface, and for which we think
that the genus of C is maximal.

PROPOSITION 5.4. Let d = 2e a 6. A generic curve C in le0j has genus
d2/4 + 1, and the morphism K induced by 1201 on C is birational.

Proof. It is enough to find one element D of le0j that is not invariant under
the involution of A that takes x to - x. Take any 3 non-zero points x, y and z on
A such that x + y + z = 0 and set D = (e - 3)0 + Ox + 8y + 8z. D

(5.5) We will now give counterexamples to some of the statements S(d, 1, g) and
S(d, 2, g) from [AH] mentioned in the introduction.
Keeping the notation of (4.1), let C be a smooth curve in 1(d + 1)H - Fx| and

let C’ be its inverse image in E x E. Then the degree of either projections from C’
onto E is d. We want to show that for d  4, the curve C has no morphisms of
degree d or less onto rational or elliptic curves, contradicting S(d, 1, g(C)). We
first deal with pencils on C, using the following result from [R2] (corollary 1.40,
proposition 2.10 and remark 2.11.1; our D is his E1):

THEOREM 5.6. (I. Reider). Let L be a nef line bundle on a smooth projective
surface S and let C be a smooth curve in ILI. Assume that C has a base-point-free
pencil of degree d  L2/4. Then, there exists a divisor D on S such that:

(i) h°(S, D)  2.
(ii) C · D  2d.

(iii) (C-D) D  d.

We prove:

PROPOSITION 5.7. Let d  4 and let x be a point on E. Then, a general curve in
1(d + 1)H - Fxl has no pencils of degree d or less.

REMARK 5.8. The same conclusion holds for smooth curves in

1(d + m)H - s*Dl, where D is a divisor of degree m on E, and d  4 and
0  m  d/2.
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Proof of proposition 5.7. Let C be a smooth curve in 1(d + 1)H - F.,l and assume
it has a base-point-free pencil M of degree d’  d.
We first assume d  5, from which it follows that C2 = d2 - 1 &#x3E; 4d  4d’.

Theorem 5.6 then implies that there exists a divisor D on E(2) such that:

Write aH - bF for the numerical equivalence class of D. We get from (5.10):

hence (a - b)d  2d + b.

Note also that since IDI is non-empty, one has:

Case 1 : b  0. Then 0  (a - b)d2d hence a - b = 1. Since a  0, the only
possibility is D - F, which contradicts (5.9).

Case 2 : b  0. Then (a - b)d  2d + bd/2 hence (a - 2b) + b/2  2. We have:
either a = 2b. Then (C - D). D = b(d - 1) and (5.11) implies b = 1, which

contradicts (5.9),
or a = 2b + 1, in which case (C - D) - D = b(d - 3) + d - 1 and (5.11), plus

our assumption that d  5, imply b = 0, which contradicts (5.9).
Note that C does not need to be general in the above argument.
We now turn to the case d = 4. The above method gives d’ = 4. As in [R2]

section 2, there exist a rank 2 vector bundle T and a zero cycle Z of degree 4 on
E(2), that fit into the following exact sequences (where 5z is the ideal sheaf of Z):
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Since Z has degree 4, proposition 4.2 gives h0(E(2), JZ(C))9-4= 5. and the
horizontal exact sequence gives h0(E(2), T)  5 + 1 - h1(E(2), OE(2)) = 5. Since
h0(E(2), 039B2T)=h0(E(2), C) = 9, there exist two independent sections s and t of T
such that s A t = 0. Let D be the largest effective (or zero) divisor along which s
vanishes. The induced map (!JE(2)(D) - T vanishes on a finite (or empty)
subscheme Z’ of E (2), and, as in (2.12) in [GL], one gets an exact sequence:

It follows that:

is exact, where the rightmost map is given by u - s A u. Both s and t are in its
kernel, hence h0(E(2), D)  2. On the other hand, by tensoring the vertical
sequence in (5.12) by OE(2)(-D), we see that h0(C, C - M - D)  1.

Finally, since the second Chern class of T is 4 by (5.12), exact sequence (5.13)
and formula (0.3) in [GL] give D.(C - D)  4. A case by case analysis shows
that there are only two cases compatible with the 3 inequalities hO(E(2), D)  2,
h°(C, C - M - D)  1 and D.(C - D)  4, which are D - 2H and D ~ 3H - F.

In the first case, C - D ~ 3H - Fy is, by proposition 4.2, a pencil on E (2) with
3 distinct base points ay, by and cy. The linear systems SH - F xl is very ample on
E(2) (proposition 4.2). Therefore, the set of curves C that contain these three
points has codimension  2. It follows that a general C does not contain the
whole set {ay, by, cyl for any y. In that case, 1 C - DI restricts to a pencil on C
whose moving part has degree &#x3E; 4. Since h°(C, C - M - D)  1, this movihg
part must be M, which is a contradiction.

In the second case, C - D - H + Hy has no base point and induces a 4 : 1
morphism xy onto P2, which maps C birationally (proposition 5.2) onto a curve
of degree 8. The pencil M must therefore be given by C - D - G, where G is a
fiber of 03BAy contained in C. Let e be an element of E[2]’. The restriction of Ky to Ce
is 2 : 1 onto a line. The image of C03B5 under the map ~: E (2) - Pg associated with
|5H - FJ is a cubic contained in a plane. The projection from this plane induces
the embedding E (2) ~ P5 associated with the very ample linear system
12H + H03B5-x|. Therefore, the projective span of any four points of ~(E(2)), such
that two are on ~(C03B5), has dimension 3. In particular, the projective span of the
image under q5 of any fiber of any xy over any point of Ky (C03B5), has dimension 3.
Hence, in the 3-dimensional space of all fibers of the K y s, those whose image
under 0 does not span a P3 has dimension  1. It follows that a general curve C
in |5H - F xl does not contain any fiber of any Ky, hence cannot have a pencil of
degree 4.

This finishes the proof of the proposition. D
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We now turn to morphisms onto elliptic curves.

PROPOSITION 5.14. Let d  4 and let x be a point on E. Then, a general curve
in 1(d + 1)H - Fx) does not have a morphism of degree d or less onto an elliptic
curve.

Proof. Let C be a general curve in 1(d + 1)H - Fxl. It follows from [Ml],
corollary 5.2, which can be applied thanks to proposition 4.2, that the

endomorphism ring of J(C)/E is isomorphic to Z. It follows that J(C)/E does not
contain any elliptic curve, hence that any morphism from C onto an elliptic
curve must factor through the degree-(d + 1) restriction of p to C. This proves
the proposition. D

We now consider the construction in (4.3) and set A = J(B). Note that there
exists a map B x B - J(B) that is finite of degree two on the inverse image C’ of
C. The degree of either projection from C’ onto B is 2e. It turns out that for e  4
and sufficiently general B, the curve C itself has no morphisms of degree 2e or
less onto a curve of genus 2 or less, thereby contradicting S(2e, 2, g(C)). More
precisely, we have:

PROPOSITION 5.15. Let (A, E» be a principally polarized abelian surface whose
Néron-Severi group has rank 1 and let C be a general curve in le81. Then, if e  4,
the curve C has no pencils of degree 2e or less and no morphisms onto non-rational
curves.

Proof. We first rule out the existence of pencils of degree  2e. Assume C has
a base-point-free pencil M of degree d’  2e. Suppose first that e &#x3E; 4. We have

C2 = 2e’ &#x3E; 8e  4d’ hence, by theorem 5.6, there exists a divisor D on A such
that:

If a8 is the numerical equivalence class of D, we get the contradiction
a  2 and a  2. Suppose now e = 4. The same argument rules out the exis-
tence of pencils of degree  8, so we have d’ = 8. We follow the proof of prop-
osition 5.7, keeping its notation. We have h0(A, Z(C))  16 - d’ = 8 and
ho(A, T) a 8 + 1 - h1(A, OA) = 7. Since h°(A, A2 T) = h°(A, 40) = 16, there
exist two independent sections s and t of T such that s A t = 0. Again, there
exists a divisor D in A such that h°(A, D)  2 and h°(C, C - M - D)  1, from
which follows that D - 0 + 8a for a point a in A. Let N be a (degree 8) element
of |(C - D)|C - MI and let x: A - P3 be the map associated with the linear

system 10 + 0398-a|. Then x(N) is contained in a line l, and, since x(A) is a quartic,
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N is the cycle 03BA*(l). The cohomology sequence of the exact sequence:

gives dimIJN(48)1 = 8. The set of possible D’s is 2-dimensional; for each D, the
set of possible N’s is 4-dimensional. This gives a bad set of C’s of dimension
8 + 2 + 4 = 14. Since diml40l = 15, we may assume that C does not contain
any of these divisors N, hence has no pencils of degree 8.
Now, assume that for a general curve C in le81, there is a surjective morphism

p: C ~ C’ onto a non-rational curve. As above, corollary 5.2 from [Ml] shows
that J(C)/A is simple, hence the map p*: J(C’) ~ J(C) has to factor through 0.
Since p* has finite kernel, J(C’) is isogeneous to A, hence the curve C’ cannot
change as C varies in le81. Letting C degenerate to a union of e copies of B, we
see that C’ = B and that p has degree  e. But this gives a pencil of degree  2e
on C, which we just saw does not exist. Therefore, a general curve C has no
morphisms onto a non-rational curve. This finishes the proof of proposition
5.15. n

(5.16) We have now constructed counterexamples to S(d, 1, d(d - 1)/2 + 1) for
any d  4, and to S(2e, 2, e2 + 1) for any e  4. Once one gets a hold of one
counterexample C to S(d, h, g), it is easy to construct, for any given n &#x3E; 1,
counterexamples to S(nd, h, g’) for infinitely many values of g’. Take a cyclic
cover 03C0: C# ~ C of degree n &#x3E; 1 ramified at 2r points. Assume there is a curve
B of genus h or less and a morphism C ~ B of degree  nd. Pick an
embedding of B# of degree 2h into P3. One checks easily that for r &#x3E; 2hnd, the
composition C# ~ P3 factorizes through n, hence C itself has a morphism of
degree  d onto B#, which does not hold.

Therefore, by taking r large enough, we get, for n  2 and d  4, families of
counterexamples to S(nd, 1, g) and S(2nd, 2, g), both for infinitely many different
g’s

(5.17) We now turn our attention to the main conjecture in [AH] mentioned in
the introduction.

CONJECTURE (Abramovich-Harris). If C is a curve defined over a number
field K, then C admits a map of degree d or less onto Pl or an elliptic curve if and
only if there exists a finite extension L of K such that C has infinitely many points
defined over extensions of degree d or less of L.

The "only if" direction follows from the fact that for any abelian variety A
defined over K, there exists a finite extension of K over which A has positive
rank. Assume conversely that C has no maps of degree d or less onto Pl or an
elliptic curve. We may also assume that C has a point defined over K. Then C
has infinitely many points defined over extensions of degree d or less of L if and
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only if the symmetric product C(d) has infinitely many points defined over L. But
C(d) is isomorphic to Wd(C) hence, by Faltings’ results [F], the conjecture will
hold for C if and only if Wd (C) contains no abelian varieties.
We start from an elliptic curve E defined over Q. Our previous construction

yields a curve C defined over a number field K, that has no maps of degree d or
less onto P’ or an elliptic curve. We may assume that E(K) is infinite. Then the
inclusion E c Wd (C) and the discussion above imply that C has infinitely many
points defined over extensions of degree d or less of K. This gives counter-
examples to the conjecture for d  4 and C of genus d(d - 1)/2 + 1, and for
d = nm with n  2 and m  4 and infinitely many different genera.
Another series of counterexamples is given by the construction in (4.3): by

[M2], there exists a smooth genus 2 curve B defined over Q such that the
Néron-Severi group (over C) of its Jacobian (J(B), 0) is generated by the class of
8. Our construction yields a curve C defined over a number field K, such that
W2e(C) contains J(B). We may assume that J(B)(K) is infinite. It follows that C
has infinitely many points defined over extensions of degree 2e or less of K.
However, according to proposition 5.15, the curve C has no morphisms of
degree 2e or less onto a curve of degree one or less. This gives other

counterexamples to the conjecture for d even 8 and C of genus g = d2/4 + 1.
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