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Introduction

This paper is the continuation of "On the Classification of Primitive Ideals for

Complex Classical Lie Algebras", parts 1 and II ([3] and [4]). References to
items, the first of whose three digits is the numeral 1 or 2, are references to items
contained in one of those papers. Unexplained notation refers implicitly to parts
1 and II, as well. We also give an alphabetical index of notation, covering all
three papers, at the end of the present paper.
The first aim of this series of papers, as explained in the introduction to part I,

is to classify the primitive ideals in the enveloping algebra of a complex
semisimple Lie algebra of classical type by determining the fibres of the Duflo
map ([2]), that is, determining explicitly when two irreducible highest weight
modules have the same annihilator. Joseph, [8] and [9], first accomplished this
for g of type An-1, using the Robinson-Schensted algorithm. In part I, the
existence of an analogous algorithm, called A, for the Weyl groups of types Bn,
Cn, and Dn, was demonstrated. It produces a pair of domino tableaux. Another
algorithm, S (involving the notion of cycles, peculiar to the domino situation)
was also defined, which, given a domino tableau, produces one in a special shape
(corresponding to Lusztig’s notion of special irreducible Weyl group represen-
tation [11]).
When g is of type Bn or Cn this first aim is achieved in Theorem 3.5.11 (when

is integral, otherwise see remark 3.5.13) by showing that L(w103BB) has the same
annihilator as L(W2Â) precisely when S(A(03B4(w1))) = S(A(03B4(w2))) (for notation, see
section 5). The formulation of this theorem is the same when g is of type Dn, and
is postponed until a projected Part IV. (The proof for this type requires one
more significant ingredient compared to the material treated in parts 1 through
III since the generalized i-invariant, cf. 3.4.1, is no longer a complete
invariant - thus the use of T03B103B2’s must be supplemented by a new operator: cf. the
discussion in [6].)
The second aim of this series of papers is the proof of Vogan’s conjecture (or
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the appropriate correction thereof for type Dn) on the generalized i-invariant of
a primitive ideal. This is achieved for types Bn and Cn in Theorem 3.5.9. As
remarked previously, this result is essential for the author’s further work on
annihilators of irreducible Harish-Chandra modules for types Bn, Cn, and Dn,
generalizing [5]. The generalized i-invariant is defined using wall-crossings,
which can be computed both in category 0 and in the Harish-Chandra category,
and thus can be used to relate (annihilators of) modules of the different

categories.
Except for Section 3 which is stated in complete generality, the results of this

paper are stated for g of type Cn and when modifications for type Bn are
necessary they are given in the remarks. Otherwise the results are equally valid
for g of type Bn as well. The appropriate analogues for type Dn of these results
will be included in Part IV of this series of papers.

This paper is organized as follows: In Section 1 we describe the interaction of

T03B103B2 with cycles. In Section 2 we characterize the set of pairs of tableaux which
can be mutually connected by sequences of T03B103B2’s. The main result is Theorem
3.2.2, see also 3.5.2 in this regard where it is recapitulated in a more complete
form.

In Section 4 we recall, in Definition 3.4.1, the definition of the generalized T-
invariant (cf. Vogan, [12]) and give a tableau-theoretic characterization of the
equivalence classes generated by the relation of having the same generalized T-
invariant, in Theorem 3.4.17, using the algorithm S. A key step in the proof of
this requires a careful analysis of the properties of cycles. We divide cycles into
two sorts, called up cycles and down cycles (defined in 3.3.9 and 3.3.12). These
results are collected in Section 3. The results up through 3.3.13 are basic, and will
assume a greater importance, and require further study, in Part IV of this series
of papers, when we analyze the Dn case.

Finally in Section 5 we put all this together. The main theorems of Section 2
and 4 are collected with the results of Part II and used to prove the two main

results on primitive ideals: firstly, Theorem 3.5.9 on the generalized 03C4-invariant,
and secondly the classification theorem, 3.5.11 (see also the remark, 3.5.13).

Section 1

3.1.1. NOTATION. (1) Suppose T~TK(M) where K = B, C, or D, and let

u = inf M. If K = B or C let OC*(T) = OC(T)B{c(u, T)I; if K = D let

OC*(T) = OC(T).
(2) Suppose c E OC(T)BOC* (T). If K = B we write S(c) = Sb(c), if K = C we

write S(c) = Sf(c).
We now describe the interaction of T03B103B2’s with cycles.
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3.1.2. PROPOSITION. Suppose T~D03B103B2(TC(M)) where {03B1, 03B2} = {03B1i, 03B1i+1} with
i  2. Let T 1 = 7§p(T).

(1) Let

and let

Suppose G1 ~ T (respectively tG1 ~ T) and suppose Si,k (respectively Sk,i) is ~C-
fixed. Then {i - 1, il is a closed cycle in T and

Suppose G2 ~ T (respectively tG2 ~ T) and suppose Si,k (respectively Sk,i) is ~C-
fixed. Then {i, i + 11 is a closed cycle in T and

I n any of the above situations, if k E M, k ~ {i - 1, i, i + Il then

P’(k, Tl) = P’(k, T). In particular, if c is a cycle in T and c ~ {i - 1, i, i + 11 = QS
then c is a cycle in Tl. If neither T nor Tl is in one of the situations described above,
then we have T1 = In(a, a + 1; T) for some a ~ {i - 1, il, P’(a, T1) = P’(a + 1, T),
P’(a + 1,Tl)=P’(a,T), and for k ~ {a, a + 1} we have P’(k, T1) = P’(k, T). In
particular if c is a cycle in T and either c ~ {a, a + 11 = QS or {a, a + 1} ~ c then c
is a cycle in T,. If aflc(a + 1, T) then

and

(2) There is a c.s.p.b. p: OC(T) ~ OC(T1).

3.1.3. PROPOSITION. Let T ~ TC(M) and suppose F1 ~ T (respectively
F2 ~ T). Let T’ = (TBF 1) u F2 (respectively T’ = (TBF2) ~ Fl).

(1) If k E M, k ~{1,2} then P’(k, T’) = P’(k, T). In particular, any cycle in T
which is not equal to either c(1, T) or c(2, T) is also a cycle in T’.

(2) The cycle c(2, T) is closed if and only if 1 E c(2, T’). If c(2, T) is closed then
c(2, T’) = c(2, T) u c(1, T).
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(3) If c(2, T) is closed or 1 E c(2, T) then there is a c.s.p.b. J.1: OC(T) ~ OC(T’).
(4) If c(2, T) is open and 1 ~ c(2, T) then

OC(T)){c(1, T), c(2, T)j = OC(T’)){c(1, T’), c(2, T’)},

and this equality gives a c.s.p.b. We have Sb(c(2, T)) = Sb(c(2, T’)) and

Sf(c(2, T)) = Sf(c(1, T’)).
REMARK. The above proposition holds with T c-,9-,(M), except that we change
the last statement of 4) to state that we have Sf(c(2, T)) = Sf(c(2, T’)) and
Sb(c(2, T)) = Sb(c(1, T’)).

3.1.4. PROPOSITION. Let T~FC(n) and let c be a cycle in T such that either
c E OC* (T) or both c is closed and for all 1  a  n - 1, c :0 {a, a + 1}. Then
!(E(T, c)) = T(T).

Proof. Set T’ = E(T, c). We will show that ai E i(T) implies that ai E i(T’) (since
T = E(T’, c) this suffices). Since c(l, T) is the open cycle in T which is not in
OC*(T) we have P(l, T’) = P(l, T), so a 1 e i(T) implies that ai ~ 03C4(T’). Now let
i  2 and suppose that 03B1i~03C4(T), that is, that pl(i, T) &#x3E; p2(i - 1, T). We have
p2(i - 1, T’)  p2(i - 1, T) + 1 and 03C11(i, T’)  pl(i, T) - 1. So clearly either

03C11(i, T’) &#x3E; p2(i - 1, T’) (that is, ai E !(T’)) or one of the following hold:

(1) 03C11(i, T) = 03C12(i -1, T) + 1 and i - 1~c and 03C12(i -1, T’) = 03C12(i - 1, T) + 1
(2) pl(i, T) = p2(i - 1, T) + 1 and i E c and pl(i, T’) = pl(i, T) - 1
(3) pl(i, T) = p2(i -1, T) + 2 and f-lec and 03C12(i -1, T’) = 03C12(i -1, T) + 1 and

i E c and pl(i, T’) = pl(i, T) - 1.

We will derive a contradiction from each of (1), (2), and (3).
Assume first (1). Then we have (for some j and k) P(i - 1, T’) Sik, Sj+ 1,k}

and either P(i - 1, T) = {Sj-1,k, Sjk} or P(i - 1, T) = {Sjk, Sj,k+1}. Let

b = NT(Sj+1,k+ 1). Now we are assuming that 03C11(i, T) = j + 1, and thus we have
b = i. Now, since Sjk~P(i-1, T), Sj+1,k~P(i-1, T), and Sj+1,k+1~P(i, T),
condition (4) of Definition 1.1.8 implies that Sj+1,k~P(i, T), that is, that

P(i, T) = {Sj+1,k, Sj+1,k+1}. Similarly we have Sj,k+1 E p(i - 1, T). It follows that
P’(i,T) = {Sj,k+1,Sj+1,k+1}. Thus c(i - 1, T) = {i - 1, i} is a closed cycle in T,
contradicting our hypothesis on c.
Assume next (2). Then an argument analogous to the previous one arrives at

the same contradiction. Next assume (3). Let j = p2(i - 1, T). We must have for
some k and 1 that P(i - 1, T’) = {Sjk, Sj+1,k} and P(i, T’) = {Sj+1,l, Sj+2,l}.
Again by condition (4) of Definition 1.1.8 (applied to T’) we have l = k + 1. Let
b = NT, (Sj,k+ 1). By condition (4) of Definition 1.1.8 we must have i - 1  b  i,
a contradiction. D

3.1.5. PROPOSITION. Let (a, fil = {ai, ai+ 1} with i  2 and let T ~ D03B103B2(FC(n)).
(1) Suppose c ~ OC*(T). Let J.1: OC(T) ~ OC(T03B103B2(T)) be the c.s.p.b. of Proposi-

tion 3.1.2. Then T03B103B2(E(T, c)) = E(T03B103B2(T), 03BC(c)).
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(2) Let c be a closed cycle in T and suppose there is a k E c such that

k ~ {i - 1, i, i + 1}. Then T03B103B2(E(T, c)) = E(T03B103B2(T), c(k, T03B103B2(T))).
Proof. We note first that by Proposition 3.1.4 we have E(T, c) E DaP(5é(n)).

The proposition is clearly true if c ~ {i - 1, i, i + 1} = 0, so assume not.

Assume first that either T or T03B103B2(T) is in one of the distinguished situations
described in Proposition 3.1.2. In this case our proposition can be verified by
inspection. Henceforth assume the contrary, that is, assume that

T03B103B2(T) = In(a, a + 1; T) (for a = i - 1 or a = i), and that a + 1 does not occupy
in T the square whose occupant determines P’(a, T) (and vice versa). Without
loss of generality we may assume that 03B2 = 03B1i. Let T’ = E(T, c) and let

T 1 = T03B103B2(T). If c is open set c = J1(c), if c is closed set ci = c(k, T 1 ). Our
hypothesis on T says that P’(03B1, T 1 ) = P’ (a + 1, T), P’ (a + 1, T 1 ) = P’(03B1, T), and
that for l ~ {a, a + 1}, P’(l, T1) = P’(l, T), and hence that for l ~{a, a + 1}, l~c1 if
and only if 1 E c, and that a E c (respectively a + 1 eci) if and only if a + 1 ec
(respectively a~c). We want to show that E(T1, cl) = T03B103B2(T’). But what we have
said already it suffices to show that T03B103B2(T’) = In(a, a + 1; T’). Assume for

simplicity that a = i - 1 (the argument is entirely similar if a = i). Now since

T03B103B2(T) = In(i - 1, i; T) we have p2(i - 1, T)  pl(i + 1, T). To show that

T03B103B2(T’) = In(a, a + 1; T’) it suffices to show that p2(i - 1, T’)  03C11(i + 1, T’) (we
also need to show that F1(i - 1 ; r, s) e T’, but this follows from our hypothesis
on T). Now an argument similar to that given in the proof of Proposition 3.1.4
shows that this could only fail to happen if c = f i - 1, i + 1} and is a closed
cycle, which contradicts our hypothesis on c. D

3.1.6. PROPOSITION. Let (a, 03B2} = {03B11, 03B12} and suppose

Suppose c is an extended cycle in T1 relative to T2 such that 1 e c.
(1) If 2 e c then TL03B103B2(E((T1, T2), c, L)) = {E(Y, c, L) YE TL03B103B2((T1, T2»l
(2) If c = ec(2, Tl; T2) then TL03B103B2((T1, T2)) consists of a single element and we have

TL03B103B2(E((T1, T2), c, L)) = TL03B103B2((T1, T2)).
We add here some useful results of the type given at the end of section 5 of [3].

3.1.7. PROPOSITION. Let T E FK(M) for K = B, C, or D, and let U be a set of
cycles in T. Set T’ = E(T; U). Then OC*(T’) = OC* (T). If c ~ OC*(T) and c e U
then Sb(c, T’) = Sb(c, T) and S f(c, T’) = S f(c, T). If c ~ OC*(T) and c ~ U then
Sb(c, T’) = S f (c, T) and S f (c, T’) = Sb(c, T).

Proof. This follows from Propositions 1.5.28 and 1.5.20. 

3.1.8. PROPOSITION. Let T E FK(M) for K = B, C, or D, and let U and U’ be
sets of cycles in T. Set T’ = E(T; U) and T" = E(T’; U’) (this latter makes sense by
Corollary 1.5.29). Then T" = E(T; U") where U" = U u U’B(U ~ U’). In part-
icular E((E; U); U) = T.
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Proof. See the proof of Proposition 1.5.31. D

3.1.9. PROPOSITION. Let T, T’ ~ FK(M) for K = B, C, or D. Then

S(T’) = S(T) if and only if there is a U ~ OC*(T) such that T’ = E(T; U).
Proof. Let V ~ OC*(T) (respectively V’ ~ OC*(T’)) be the set of open

unboxed cycles in T (respectively T’), so that S(T) = E(T; h) (respectively
S(T’) = E(T’; V’». Assume first that S(T’) = S(T). Note that by Proposition 3.1.7
we have OC*(T’) = OC*(S(T’)) = OC*(T). Now by Proposition 3.1.8 we

have first that T’ = E(S(T’); V’), and then that T’ = E(T; U) where

U = Vu V’B(V ~ V’) ~ OC*(T).
Now assume T’ = E(T; U) for some U ~ OC* (T). Then (by Remark 5.3.2 and

Proposition 3.1.7) we have V’ = V ~ UB(V ~ U). Now by Proposition 3.1.8 we
have T = E(T’; U), so again using Proposition 3.1.8 we have

S(T) = E(T; V) = E(E(T’; U); V) = E(T’; V’) = S(T’). D

We also remark the following:

3.1.10. PROPOSITION. Let T~FK(M) for K = B or C. Then ’T is special if
and only if T is special.

Proof. Suppose first T E 5é(M). Then it is easy to see that T is special if and
only if for all i E N* either both P2i-l(T) and P2i(T) are even or,02i-,(T) = P2i(T).
Similarly, T is special if and only if for all i E N* either both 03BA2i-1(T) and K2i(T)
are even or 03BA2i-1(T) = 03BA2i(T). If instead T~FB(M) then we have that T is special
if and only if 03C11(T) is odd and for all i E N * either both 03C12i(T) and 03C12i+1(T) are
odd or P2,(T) = 03C12i+1(T); and also that T is special if and only if xl(T) is odd and
for all i ~ N* either both x2i(T) and 03BA2i+1(T) are odd or 03BA2i(T) = lç2i + l(T). The
proposition follows from this. D

REMARK. The above proposition does not hold for FD(M), e.g. for |M| = 1
and T~FD(M) we have T is special if and only if ’T is not special.

Section 2

3.2.1. DEFINITION. Let be a finite sequence of pairs of adjacent simple
roots, E = (03B11,03B21),...,(03B1k, 03B2k). We call such a L a sequence for II, and write

JY-1 = k. If 03A0’ ~ 03A0 and if we have {03B1l, 03B2l} ~ Il’ for all 1  l  k then we say that
E is a sequence for Il’. We set L -1 = (ak, 03B2k),..., (al, 03B21). If L’ is another sequence
for II, say E’ = (03B31, 03B41),...,(03B31,03B41), we define EE’ to be the sequence

(al, 03B21),..., (ak, 03B2k), (y 1 03B41),..., (03B3l, 03B41).
If X is one of the sets W, !7(n, n), or Fc(n, n), and if U z X we define TL03A3(U) as

follows:



193

(2) If k = 1 and a 1 and 03B21 have the same length then

(3) If k = 1 and {03B11, 03B21} = {03B11, 03B12} then TL03A3(U) = ~ TL03B1103B21(x) where this union
is taken over x ~ U n DL03B1103B21(X).

(4) If k &#x3E; 1 set 03A3’ = (03B11, 03B21),...,(03B1k-1,03B2k-1) and 03A3k = (03B1k, 03B2k) and define

TL(U) = TL03A3k(TL03A3’(U)).

For x E X we will write TL(x) for TL03A3({x}). If 03A3 is a sequence for 03A0B{03B11} then
TL(x) consists of at most one object. When (for such a 03A3) TL03A3(x) = {y} we will
write 7L03A3(x) = y.
We define similarly JiR. Also, for U ~ Fk(n) (with K = B. C, or D) and 03A3 a

sequence for 03A0B{03B11} we define T03A3(U), analogously to the above.

REMARK. If x E X and y E TL03A3(x) then x E TL03A3-1(y).
The main theorem of this section is the following:

3.2.2. THEOREM. Suppose (T1, T2), (T’1, T’2) ~ Fc(M1, M2) with Mi=
{1,...,n} and suppose S(T2) = S(T’2). Then there is a sequence L for II such that
(T’1,T’2) ~TL03A3((T1, T2)).

REMARK. We have also the analogous statement with left and right
interchanged.

We first prove the easy converse of Theorem 3.2.2.

3.2.3. PROPOSITION. Let (T1, T2) ~ Fc(M1, M2) with Mi = {1,...n}, let E

be a sequence for II, and suppose (T’1, T’2) ~ TL03A3((T1, T2)). Then S(T’2) = S(T2).
Proof. The proof is by induction on |03A3|. It then follows easily from the

definitions and Propositions 3.1.8 and 3.1.9. D

We will prove Theorem 3.2.2 in two steps. The first step is:

3.2.4. PROPOSITION. Suppose (T1 , T2) ~ Fc(M1, M2) with M1 = { 1,...,n}.
Then there is a sequence E for n and a (T’1’ T’2) ~ TL03A3((T1, T2)) such that T’2 is
special.

The proofs of both Theorem 3.2.2 and Proposition 3.2.4 use induction on n.
For these arguments we will use Lemmas 3.2.6-8.

3.2.5. DEFINITION. Let (T1, T2) ~ Fc(M1, M2) and let e = sup M1. Let

T’1 = Tl - e and let (T2, v, 8) = P((T 2, P(e, T1))). We define (T1, T2) - L =

(T’1, T’2). We define similarly (T l’ T 2) - R.

3.2.6. LEMMA. Let (T1, T2) ~ Fc(M1, M2) with M1 = {1,...,n} and suppose L
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is a sequence for 03A0B{03B1n}. Then

Proof. We prove the lemma when |03A3| = 1: the general result then follows

easily using induction on |03A3|. So assume E = (a, 03B2). If 03B11 ~ {03B1, 03B2} then the

statement is obvious, so assume a ~ {03B1, 03B2}. Then the lemma is a consequence of
Proposition 2.3.3.

3.2.7. LEMMA. Let (T1, T2) e Fc(M1, M2) with M1 = {1,...,n}, suppose L is a
sequence for 03A0B{03B1n}, and suppose (T’1, T’2) ~ TL03A3((T1, T2)).

(1) We have P(n, T’1) ~ {P(n, T1), P’(n, T1)}.
(2) If P(n, T’1) = P’(n, T1) then one of the following hold:

(i) there is a k ~ M1B{n} with P(k, Ti) n P(n, T1) ~ 0.
(ii) there is a k ~ M1B{n} and there are cycles ci, ci ~ OC*(T’1) (where possibly

c11=c21) and c2~OC*(T’2) with Sb(c2, T’2) = Sb(c21, T’1) ~ P(k, T’1) and

Sf(c2, T’2) = Sf(c11, T’1) ~ P(n, T1).
(3) If Shape(T’1 - n) = Shape(T1 - n) then P(n, T’1) = P(n, T1).
(4) Suppose P(n, Tl) is boxed and T’l - n is special. Then P(n, Ti) = P(n, T1); in

particular T’1 is special.
Proof. We prove statement (1) by induction on |03A3|: the case |03A3| = 0 is trivial

and the case |03A3| = 1 is clear from the definitions. Write E = 03A3103A32 with IL21 = 1,
and let (T11,T12)~TL03A31((T1, T2)) be such that (T’1, T’2) ~ TL03A32((T11, T12)). Then

P(n, T’1) ~ {P(n, T11), P’(n, T11)}. By induction we have P(n, T11) ~ {P(n, T1),
P’(n, T1)}. On the other hand, it is easy to see, (using Proposition 1.5.33) that the
set of ~c-fixed squares in Shape(T11) coincides with the set of ~c-fixed squares in
Shape(T1). It then is easy to see from Definition 1.5.8 (since n = sup M1) that if
P(n, T11) = P(n, T1) then P’(n, T11) = P’(n, T1), and if P(n, T11) = P’(n, T1) then
P’(n, T11) = P’(n, T1). This completes the proof of statement (1).
To prove (2), we again use induction on |03A3|, the case |03A3| = 0 being vacuously

true. Let 03A31, L2, and (TL T2) be as in the proof of part (1). By induction part (2)
of the lemma is true with LI and (T11, T12) in place of E and (T’1, T’2). Write
L2 = (03B1, 03B2). If {a, 03B2} ~ {03B11, 03B12} the desired conclusion is obvious, so assume

{03B1, 03B2} = {03B11, a2}. If P(n, Ti) = P(n, T1) then (in light of the last statement in the
proof of part (1)) the desired conclusion follows from the definition of TL03B103B2 and of
extended cycle. Finally, assume P(n, Tt) = P’ (n, T1). Then the number k given by
the lemma (and induction) is contained in ec(n, Ti; T2). It follows that, if the
conclusion of our statement does not hold (with the same k) then

P(n, T’1) = P’(n, T11) = P(n, T1).
Statement (3) is a direct consequence of statement (2), that is, clearly both (i)

and (ii) imply that Shape(T’1 - n) ~ Shape(T1 - n) (in the case that (ii) holds, we
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note that

Sb(c2, T’2) = Sb(c21, T’1) ~ Shape(T’1 - n);

on the other hand c2 is also a cycle in T2 (by Propositions 3.2.3, 3.1.9, and 3.1.7)
and since Sf(c2, T’2) ~ Shape(T1) = Shape(T2) we have Sf(c2, T2) = Sb(c2, T2)),
and so Sb(c2, T’2) ~ Shape(T2) = Shape(T1)).

Statement (4) also follows from statement (2): to see this assume that

P(n, Ti) = P’(n, Ti). If (i) holds then the square in P(k, T’1) n P(n, Ti) is a filled
corner in Shape(T’1 - n). If(ii) holds then since P(n, T’1) = P’(n, T1) is unboxed
and n E c11 we have that c11 is an unboxed cycle in T’1, hence that c2 is an unboxed
cycle in T2, hence that c21 is an unboxed cycle in T’1. It follows that Sb(c21, T’1) is a
filled corner in Shape(T’1 - n). So in each case we find a contradiction with the

hypothesis that T’1 - n is special. D

3.2.8. LEMMA. Let T~Fc(M) and let P be an extremal position in T. Let
e = sup M. Then there is a tableau Ti ~ Tc(M) such that Shape(T1) = Shape(T)
and P(e, T1) = P.

Proof If P = P(e, T) then we may take T1 = T so assume not. Write

M = {k1,...,km} with ki  ... ·  km = e. Let (T’,v,03B5) = 03B2((T, P)) and let j be
such that v = kj. Let T2 be the tableau obtained from T’ by replacing kj+1 with
kj, kj+2 with kj+1, etc., and let T1 = Adj(T2, P, e). Then T1 ~ Fc(M),
Shape(T1) = Shape(T) and P(e, T1) = P, as was to be shown. D

We can now prove Proposition 3.2.4 and Theorem 3.2.2.

PROOF OF PROPOSITION 3.2.4. The proof uses induction on n. We assume
by induction that both Theorem 3.2.2 and Proposition 3.2.4 are true when
Mi = {1,..., n - 1} (the case n = 0 being trivial). Let (Ti, T2) = (Ti, T2) - L. By
induction there is a sequence LI for 03A0B{an} and a (Ti, T12) ~ TL03A31((T1, T2)) with T12
special. By Lemma 3.2.6 there is a (T11, T12) ~ TL03A31((T1, T2)) such that

(T11, T12) = (TL Ti) - L. Now clearly either Ti is special or P(n, T11) is unboxed
and {n} is an extended cycle in Tt relative to T12. If the former we are done, so
assume the latter. We will assume also that P(n, Tt) is horizontal: the case where
P(n, Tt) is vertical follows from this case using Remark 2.1.12-2) and Proposi-
tions 2.3.6 and 3.1.10. Let P(n, Tt) = {Sij, Si,j+1}. Then Si,j+1 is a filled corner in
Tt and Si+1,j is an empty hole in TL in particular Si+ 1,j-1 ~ Shape(T11) and
~c(Sij) = 1’:

There are several cases. In the first three cases we assume that i &#x3E; 1. Then

since ~c(S1,1) = X we have that i is odd, in particular i  3. We set r = pi-2(Ti)
and s = pi-1(Ti).

Case 1. Here r &#x3E; s. Then (since T11 - n = tt is special) we have

~c(Si-2,r) = Y and ~c(Si - 1,s) = W; in particular r  s + 2 and s a j + 2. Let
P1 = {Si-2,r-1, Si-2,r} and P2 = {Si - 1,s - 1, Si-1,s}.
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Case 2. Here r = s &#x3E; j + 1. Set Pi = {Si-2,r,Si-1,r) and P2 =
{Si-2,r-1, Si-1,r-1}.
Case 3. Here r = s = j + 1. Let Pi and P2 be as in case 2.
In thèse three cases, by induction on Theorem 3.2.2 and using Lemma 3.2.8

(twice) there is a sequence L2 for 03A0B{03B1n} and a (Ti, T22) ~ TL03A32((T11, T12)) such that
T22 = T12, P(n - 1, T21) = P1 and P(n - 2, T21) = P2. Using Lemma 3.2.6 let

(T21, T22) ~ TL03A32((T11, T12)) be such that (T21, T22) = (T21, T22) - L. Set (T31, T32) =
TL03B1n-103B1n((T21,T22)) and let (T31, T32) = (T31, T32) - L. In cases 1 and 2 we have

Ti = In(n - 1, n ; Ti); in case 3 we have

Let L3 = (03B1n-1, 03B1n). By induction we have a sequence L4 for 03A0B{03B1n} and a
(T41T42)~TL03A34((T31, T32)) such that fi is special. Let (Ti, Ti) be such that

(Ti, Ti) E TL03A34((T31, T32)) and (Ti, fi) = (Ti, T42) - L. Then T41 is special: in cases 1
and 2 this follows from by Lemma 3.2.7-4 (in case 1 we note that since T11 is

special P1 is boxed), in case 3 we have that T41 special implies that

so

So, setting 03A3 = LIL2L3L4 and (T’1, T’2) = (Ti, T42), we have proved the proposi-
tion under the assumption that i &#x3E; 1.

Case 4. Here i = 1 and S3,j-l E Shape(Ti). Since fi is special we then have
that S4,j-1 ~ Shape(T11). Let r = 03BAj-1(T11), so r  4. Set Pi = {Sr-1,j-1,Sr,j-1},
and set P2 = {Sr-3,j-1, Sr-2,j-1}. The rest of the argument is as in cases 1 and 2,
except that we take L3 = (03B1n, 03B1n-1) and (Ti, T2) = TL03B1n03B1n((T21, T22)).

Case 5. Here i = 1, S3,j-1 ~ Shape(T11), and S3,j-2 ~ Shape(T11). Set

P2 = {S1,j-1, S2,j-1}. Set r = Kj-2(Ti). If r = 3 then fi special implies that j &#x3E; 3

and 03BAj-3(T11) = 3soletPi = {S3,j-3, S3,j-2}. If r &#x3E; 3 set Pi = {Sr-1,j-2, Sr,j-2}
(again, fi special says that P1 is boxed). The rest of the argument is as in case 4.

Case 6. Here i = 1, j &#x3E; 2, and S3,j-2 ~ Shape(T11). Set Pi = {S2,j-2, S2,j-1}
and P2 = {S1,j-2, S1,j-1}. The rest of the argument is analogous to that of case
3. (Here we have P(n, Ti) = Pi, and then P(n, Ti) = P’(n, T31) = {S2,j-1, S2,j}.)

Case 7. Here i = 1, j = 2, and S3,j-1 ~ Shape(T11). Then n = 2,
(TL T12) = (T1, T2)’ and T1 = (F1, ~C). Let (Ti, T’2) be such that

TL03B12,03B11((T1, T2)) = {(T’1, T2)}. Then T’1 = (F2, ~C) is special. Setting 03A3 = (a2, al)
we see that we have proved the proposition in this case. This completes the proof
of Proposition 3.2.4. D
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REMARK. For (T1, T2) ~ FB(M1, M2) we have to modify the above proof as
follows.

We note that ~B(S1,1) = W, so here i is even. In the first three cases, the

assumption i &#x3E; 1 is replaced with the assumption i &#x3E; 2. We then proceed as
before. The next three assumptions are modified accordingly, that is "i = 1" is
replaced with "i = 2", etc. Finally, assume i = 2 and j  2. Then in fact j = 1.
Assume first 03C11(T11) &#x3E; 3. Then T11 special implies that 03C11(T11)  5. Set r = 03C11(T11).
Setting Pi = {S1,r-1, S1,r} and P2 = {S1,r-3, S1,r-2}, we proceed as in cases 1

and 2. Finally, assume i = 2 and j = 1 and p(Tl) = 3. Then we have

Ti = (F2, 0,). This case now proceeds as in the last case of the proof of the
proposition.

We now proceed to prove Theorem 3.2.2. The key ingredient in that proof is
the following lemma.

3.2.9. LEMMA. Let (T1, T2) be as in Theorem 3.2.2 and suppose T2 is special.
Suppose P’ is an extremal position in Tl. Then there is a sequence Y- for II and a
(T’, T’2) ~ TL03A3((T1, T2» such that P(n, T’1) = P’ and T’2 = T2.

Proof. As in the proof of Proposition 3.2.4 we will assume by induction on n
that Theorem 3.2.2 is true when Mi = {1,...,n - 1}. Let P = P(n, T1). We may
assume P’ ~ P. We first prove the lemma under the additional assumption that
both P and P’ are boxed. As in the proof of Proposition 3.2.4 we will assume that
P is horizontal (here we note that for the C grid, P is boxed if and only if tP is
boxed, and similarly P’), so let P = {Sij, Si,j+1}. There are a number of cases. In
the first four cases we assume that P’ is also horizontal, and write

P’ = {Sk,l, Sk,1+1}.
Case A. Here k = i - 1. Then since P’ is an extremal position in Tl we have

1  j + 2. Set P1 = {Si-1,l-2,Si-1,l-1}.
Case B. Here k  i - 1. Let r = 03C1i-1(T1). Then l  r + 1. Set P1 =

{Si-1,r-1, Si - l,r 1
Case C. Here k = i + 1. Then 1 5 j - 2. Set P = {Si,j-2,Si,j-1}.
Case D. Here k &#x3E; i + 1. Let r = 03C1k-1(T1) and set P = {Sk-1,r-1, Sk-1,r}.
Let (T1, T2) = (Tl, T2) - L. In all the above cases, by induction on Theorem

3.2.2, and using Lemma 3.2.8, we can find a sequence E 1 for 03A0B{03B1n}
and a (Tl, l -Tl) 2 E TL03A31((T1, T2)) such that T2 = t 2’ P(n - 1, T11) = P’ and

P(n - 2,T11) = P1. Using Lemma 3.2.6 let (T11, T12) ~ TL03A31((T1, T2)) be such that
(T11, T12) - L = (T11, T12). By Lemma 3.2.7-3) we have P(n, T11) = P(n, T1), in

particular T2 = T2. In cases A and B set E2 = (03B1n-1, an); in cases C and D set
L2 (a,,, 03B1n-1). Then E = 03A3103A32 and (T’1, T2) = TL03A32((T11, T2)) verify the lemma in
these cases.

Now we assume that P’ is vertical and write P’ = {Sk,l, Sk+ 1,l}. Again there
are several cases. The first four are easier so we treat them first.
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Case E. Here k + 1 = i - 1. Let P1 be as in case A.
Case F. Here k + 1  i - 1. Let P be as in case B.
Case G. Here k = i + 1 and l  j - 1. Let P1 be as in case C.
Case H. Here k &#x3E; i + 1. Suppose first that 03C1i+1(T1)  j - 3. Then let

P1{Si,j-2, Si,j-1}. Suppose next that 03C1i+1(T1) = j - 1. Then let

r = 03BAj-1(Shape(T1)BP’) and set P1 = {Sr-1,j-1, Sr,j-1}. Finally, suppose

03C1i+1(T1) = j - 2. Then T1 special and P boxed implies that ~C(Sij) = Z,
and thus that 03BAj-2(Shape(T1)BP’)  i + 2 (since P’ is vertical). Let

r = 03BAj-2(Shape(T1)BP’) and set P1 = {Sr-1,j-2, Sr,j-2}.·

In cases E and F we prove the lemma as in cases A and B; in cases G and H we

prove the lemma as in cases C and D.

Case I. Here k = i - 1, that is P n P’ = {Si,j+1}. Then since both P and P’ are
boxed we have ~c(Sij) = Z. In particular since ~c(S1,1) = X we have that i is
even. There are several subcases of this case.

Subcase (a). Here i &#x3E; 2. Then we have i  4. Set r = Pi - 2(T1)s = Pi - 3(T1).
Assume first r = j + 1. Set

and

Then as above there is a sequence LI for 03A0B{03B1n} and a (T11, T12) ~ TL03A31((T1, T2))
with Ti = T2, P(n - 1, Tt) = Pi, and P(n - 2, Tt) = P2. Setting
L2 = (03B1n-1, 03B1n), 03A3 = 03A3103A32, and (T’1, T’2) = TL03B1n-103B1n((T11, T12)), we see that we have
verified the lemma under this assumption.
Assume next that s = r &#x3E; j + 1 and set P" = {Si-3,r, Si-2,r}. Then by case F

there is a sequence LI for II and a (T11, Ti) E 03A3L03A31((T1, T2)) such that Ti = T2 and
P(n, Tt) = P". By case A or B (transposed) there is a sequence L2 for II and a
(T21, T22) ~ TL03A32((T11, T12)) such that T22 = Ti and P(n, T21) = P’. Setting 03A3 = LIL2
and (T’1, T’2) = (Ti, T22) verifies the lemma under this assumption.

Finally, assume s &#x3E; r. Then Ti special implies that ~c(Si-3,s) = Y and
s  r + 2. Then we set P" = {Si-3,s-1, Si-3,s} and argue as in the previous
paragraph, using case B in place of case F and case H in place of case A or B.
This completes the proof of subcase (a).

Subcase (b). Here j &#x3E; 1. This subcase is parallel to subcase (a). We omit the
argument.

Subcase (c). Here we have i = 2 and j = 1. Then we must have n = 2 and
Ti = (F2, ~c). Then, setting E = (al, a2), T i = (F1, ~c). and T’2 = T2, we see that
(T’1, T’2) ~ 1iL((T l’ T 2)), as was to be shown. This completes the proof of case I.
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Case J. Here k = i + 1 and l = j - 1. Then again the hypothesis that P and P’
are boxed implies that ~c(Sij) = Z. Again, i is even, so i  2. Let r = Pi-l (T1). If
r = j + 1 let P" = {Si-1,j+1, Si,j+1}. Using case 1 we find a sequence E for II
and a (TL T12) ~ TL03A31((T1, T2)) such that T22 = T2 and P(n, T11) = P". Then, using
case B (transposed) we can find a sequence I:2 for II and a (Ti, T’2) e TL03A32((T11, T12))
such that T’2 = T12 and P(n, T’2) = P’. Setting as usual 03A3 = 03A3103A32 verifies the

lemma under this assumption. If instead r &#x3E; j + 1 then T1 special implies that
r  j + 3, so set P" = {Si-1,r-1,Si-1,r}. We now proceed, as under the as-
sumption r = j + 1, to move the n first to P" and then to P’, using the previous
cases. This completes the proof of the lemma in the case where both P and P’ are
boxed.

We now assume that P’ is boxed and P is unboxed. Again we assume that P is
horizontal and set P = {Sij, Si,j+1}. Since Ti is special we have 4JC(Sij) = W and
03C1i-1(T1) = j + 1. Set (T 1, T 2) = (Tl, T 2) - L. By Proposition 3.2.4 there is a

sequence LI for 03A0B{an} and a (T11, T12) ~ TL03A31((T1, T2)) such that T11 is special.
Let (T11, T12) ~ TL03A31((T1, T2)) be such that (T11, T12) = (T11, T12) - L. Then

Shape(T11) = (Shape(T1)B{Si-1,j+1}) u {Sij}, and so by Lemma 3.2.7-1) we have

P(n, T11) = P’(n, T1) = {Si-1,j+1, Si,j+1},

which is boxed. Now we have already proved this lemma in the case where the
two positions are boxed, that is, we have shown that there is a sequence 03A32 for II
and a (T’1, T2) ~ TL03A32((T11, T12)) such that P(n, T’1) = P’. Setting L = 03A3103A32 proves
the lemma under this second set of assumptions for P and P’.

Finally we treat the case where P’ is unboxed. Here we may assume that P’ is
horizontal, so we set P’ = {Sij, Si,j+1}. Then as in the previous case we have
~c(Sij) = W and 03C1i-1(T1) = j + 1. Set P" = {Si-1,j+1, Si,j+1}. Then P" is an

extremal position in T1 and P" is boxed. Thus, using the cases of the lemma
which we have already proved, we have a sequence Ei 1 for II and a

(T11, T12) ~ TL03A31((T1, T2)) such that T12 = T2 and P(n, T11) = P". Now let

(T11, T12) = (T11, T12) - L. By Theorem 2.2.3, there is a cycle c ~ OC(T21) with
Sb(c) = Sij and Sf(c) = Si-1,j+1. By Lemma 3.2.8 there is a tableau T~Fc(n - 1)
with Shape(T) = Shape(T11) and P(n - 1,T) = {Si-1,j,Sij}. Then {n - 1} is an

extended cycle in T relative to T12. Set (T21, T22) = E((T’, T12), {n - 1}, L), so

Shape(T21) = (Shape(T)B{Sij}) u {Si-1,j+1}.

Now S(T22) = T12, so by induction on Theorem 3.2.2 there is a sequence I:2 for
IIB an such that (T21, T2) E TL03A32(T11, T2)). Let (T’1, T’2) ~ TL03A32((T11, T2)) be such that
(T’1, T’2) - L = (Ti, T22). Then P(n, Ti) = P’(n, Tt) = P’, so, setting E = I:IL2, we
have prove the lemma in this case. D

REMARK. If (T1, T2) e FB(M1, M2) we must modify the proof of Lemma 3.2.9
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as follows. The argument in subcase (a) of case 1 breaks down if i = 3 and

r &#x3E; j + 1 (since now i is odd, it is not now true that i &#x3E; 2 implies i  4). If

r &#x3E; j + 3 we can set P" = {S1,r-1,S1,r} and proceed as before. Similarly the
argument in subcase (b) of case 1 breaks down if 1 = 3 and 03BA1(T1) &#x3E; k + 1.

Again, if Kl(T 1) &#x3E; k + 3 we can proceed as usual. We are left (in case I) with the
situation where i = l = 3, Pl(T 1) = Kl(T 1) = 5, P(n, Tl) = {S3,2, S3,31, and

P’ = {S2,3, S3,3}. In this case set P" = {S1,4, S1,5} and P* = {S4,1, S,,11. Then,
using cases B, H, and the transposed case D, we can proceed as in case J to move
the n first to P", from there to P*, and finally from P* to P’.
We must also modify the proof of case J. In case J we need not have i &#x3E; 1. If

i &#x3E; 1, we proceed as before. If i = 1 but j &#x3E; 2 we can proceed in an analogous
fashion, that is we set r = Kj-2(T1). If r = i + 2 we set P" = {Si+2,j-2, Si+2,j-1};
if r &#x3E; i + 2 we set P" = {Sr-1,j-2,Sr,j-2}. In either case we proceed as before.
We are left with the situation where i = 1 and j = 2. But then we must have
Tl = (F1, ~B), so we may take X = (a2, al) and (T’1, T’) = «F2, ~B), T 2).

3.2.10. COROLLARY. Theorem 3.2.2 holds when T2 and T2 are special.
Proof. As usual we assume by induction on n that Theorem 3.2.2 is true when

M1 = {1,...,n - 1}. Let P’ = P(n, T’1). Applying Lemma 3.2.9, let E 1 be a

sequence for n and (T11, T12) ~ TL03A31((T1, T2)) be such that P(n, T11) = P’ and
T2 T 2- Since by hypothesis T2 = T2, we have T’ 2 = T’. 2 Now let

(TL T12) = (Tl, T12) - L and (T’1, T’) = (T’, T’) - L. Since P(n, T’) = P(n, T’1)
and T2 T’ 2 we have T2 = T’. 2 Thus by induction on Theorem 3.2.2 there is a
sequence E2 for 03A0B{03B1n} such that (T’, 1 T2) E TL03A32((T11, T12)). Let (by Lemma 3.2.6)
(T’3, T’4) E TL2«T’, T12)) be such that (-T’1, T’2) = (T’3, T’4) - L. Setting L = LIL2,
we will have proved the corollary once we show that (T’3, T’4) = (T’, T’).
Now Shape(T’) = Shape(il), and thus by Lemma 3.2.7-3) we have

P(n, T’) = P(n, T11). Since P(n, Tl) = P(n, Ti) and T’ - n = Ti = T’1 - n we
have T’ = T’1. It follows that Shape(T’4) = Shape(T2), and since Tl = T’ we
have T4 Tl 2 = T2. D

We can now complete the proof of Theorem 3.2.2.

PROOF OF THEOREM 3.2.2. By Proposition 3.2.4 we can find sequences El
and L2 for TI and pairs of tableaux (T11, T12) E TL03A31((T1, T2)) and

(T21, T22) ~ TL03A32((T’1, T’2) such that T2 and T2 are special, that is, T2 = S(T2) and
T2 = S(T’2). By hypothesis then T2 = T2. By Corollary 3.2.10 there is a sequence
L3 for TI such that (Ti, T22) ~ TL03A33((T11, Tl». 2 Setting 03A3 = LIL3L21, we have
(T’1, T’2) ~ TL03A3((T1, T2)) (this uses Remark 3.2.1), as was to be shown. D

Section 3

3.3.1. NOTATION. (1) If SE ff and S = Sij we write p(S) = i and 03BA(S) = j.
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(2) Let T ~ FK(M) with K = B, C, or D. We write

nh(T)=|{k|k~M and P(k, T) is horizontal}| and

nv(T)=|{k|k~M and P(k, T) is vertica}|.

3.3.2. PROPOSITION. Let T E Fk(M) with K = B, C, or D.
(1) Let c, c’ E OC*(T). Then
(a) p(Sb(c))  03C1(Sb(c’))  03C1(Sf(c)) if and only if p(Sb(c))  03C1(Sf(c’))  p(S f(c)),
(b) 03C1(Sf(c))  03C1(Sb(c’))  P(Sb(C)) if and only if 03C1(Sf(c))  03C1(Sf(c’))  P(Sb(C)).

(2) If c and c’ satisfy either side of either equivalence of part (1), we have
inf c  inf c’.

(3) Suppose K = B or C, c ~ OC(T)BOC*(T), and c’ ~ OC*(T). Then

p(S(c))  03C1(Sb(c’)) if and only if 03C1(S(c))  03C1(Sf(c’)).
(4) Statements (1), (2), and (3) also hold with K in place of p.

3.3.3. DEFINITION. If c and c’ are related by one of the pairs of inequalities of
Proposition 3.3.2-1) then we say that c’ is nested in c. By Lemma 3.3.5 this is
equivalent to a similar relation involving K’S.

We will use the following lemmas in the proof of Proposition 3.3.2.

3.3.4. LEMMA. Let T ~ FK(M) with K = B, C, or D, and let c ~ OC*(T). Then
we have

(1) P(Sb(C)) :0 03C1(Sf(c)).
(2) If c’EOC*(T) and c * c’ then {03C1(Sb(c’)), 03C1(Sf(c’))} n {03C1(Sb(c)), 03C1(Sf(c))} = .

(3) If c’ E OC(T)BOC*(T) then 03C1(S(c’)) ~ {03C1(Sb(C)), 03C1(Sf(c))}.
(4) Statements (1), (2), and (3) also hold with K in place of p.
Proof. These statements assert that any row has at most one corner or hole in

it, and that a corner and a hole cannot occur in the same row (and similarly with
column in place of row), which facts are obvious from the definitions. D

3.3.5. LEMMA. Let T E FK(M) with K = B, C, or D, and let c, c’c- OC* (T). Then
we have

(1) 03C1(Sb(c))  03C1(Sb(c’)) if and only if 03BA(Sb(c)) &#x3E; 03BA(Sb(c’)),
(2) P(Sb(C))  03C1(Sf(c’)) if and only if K(Sb(C)) &#x3E; 03BA(Sf(c’)),
(3) 03C1(Sf(c))  03C1(Sb(c’)) if and only if 03BA(Sf(c)) &#x3E; 03BA(Sb(c’)),
(4) 03C1(Sf(c))  03C1(Sf(c’)) if and only if 03BA(Sf(c)) &#x3E; 03BA(Sf(c’)).

Proof. Assume first c :0 c’. Then it suffices to prove (1), since then to prove (2)
(respectively (3) or (4)), we can, by Proposition 1.5.33-2), replace T with E(T, c’)
(repectively E(T, c) or E(T, c, c’)). Using the symmetry between rows and

columns, it suffices to prove the foward implication of (1). So assume

P(Sb(C))  P(Sb(C’)). Let Sii = Sb(c) and SII = Sb(c’). Then 03C1i(T) =j, 03C1i+1(T)  03C1i(T),
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and 03C1k(T) = 1. Then we have i  k, so i + 1  k so 03C1k(T)  03C1i+1(T). Since

03C1i+1(T)  pi(T), we have 03C1k(T)  p,(T), that is 1  j, that is 03BA(Sb(c’))  03BA(Sb(c)), as
was to be shown.

Now assume c = c’. Then (1) and (4) are vacuously true, and again by
symmetry it suffices to prove the foward implications of (2) and (3). Set

Sij = Sb(c) and Skl = Sf(c). We have pi (T) = j, 03C1i+1(T)  03C1i(T), 03C1k(T) = 1 - 1 and

Pk - l(T) &#x3E; Pk(T). Assume first P(Sb(C))  03C1(Sf(c)). Then as is the first part of the
proof we have Pk(T)  pi(T), so 1 - 1  j so l  j. But by Lemma 3.3.4-4) l ~ j,
so we have x(S f(c))  K(Sb(C)), which proves the foward implication of (2). For
(3), assume p(Sf(c))  03C1(Sb(c’)), that is, k  i. Then 03C1k(T)  pi(T), that is

1 - 1  j. But then 1 &#x3E; j, so x(S f(c)) &#x3E; K(Sb(c», as was to be shown. n

PROOF OF PROPOSITION 3.3.2. By Lemma 3.3.5 it suffices to prove
statements (1), (2), and (3). The proof uses induction on |M|, the proposition
being vacuously true when |M| = 0. Let e = sup M. We prove first parts (1) and
(2). If e e c u c’ then the proposition is true by induction (using the appropriate
c.s.p.b. of Proposition 2.2.4) so assume e ~ c ~ c’. Set To = T - e. We will also
assume that P(e, T) is horizontal. (If not, we can look at ’T. A comparison of row-
indices in T becomes a comparison of column-indices in tT, which by Lemma
3.3.5 is equivalent to a comparison of row-indices in ’T.) If P’(e, T) is also

horizontal then again by induction the proposition is true, that is, we consider
the cycles co = c n (MB{e}) and ci = c’ n (MB{e}) in To. By Proposition 2.2.4 we
have 03C1(Sb(co)) = 03C1(Sb(c)), and similarly for 03C1(Sf(c0)), 03C1(Sb(c’0)), and 03C1(Sf(c’0)). For
part (2) we note that inf co = infc and inf c’ 0 = inf c’.
We are left with three cases. They are (1) c’ = {e}, (2) e c- c’, c’ :0 {e}, and

P’(e, T) is vertical, and (3) e E c, c :0 {e}, and P’(e, T) is vertical. Assume first
c’ = {e}. Then (since P(e, T) is horizontal) 03C1(Sf(c’)) = 03C1(Sb(c’)) + 1. So Lemma
3.3.5 proves part (1) of the proposition, and part (2) is obviously true.
Now assume that e E c’, c’ ~ {e}, and P’(e, T) is vertical. Let P(e, T) =

{Si,j-1, Sij}. Then P’(e, T) = {Si-1,j, Sij}. By Proposition 2.2.4 c is a cycle in
To (with the same Sb and Sf), and we can write c’B{e} = Ci U c2 where c’1 and c2
are cycles in To such that Sb(c’1) = Sb(c’), Sf(c’1) = Si,j-1, Sb C2) = Si-1,j, and
S f(c2) = S f(c’). We prove first the foward implication of part (1) (a) of the
proposition. Assume then 03C1(Sb(c))  03C1(Sb(c’))  03C1(Sf(c)). By induction we have

then by Lemma 3.3.4 we have

03C1(Sb(C))  03C1(Sb(c’2))  03C1(Sf(c)) (since 03C1(Sb(c’2)) = 03C1(Sf(c’1)) - 1). Again by in-
duction we have
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and thus 03C1(Sb(c))  03C1(Sf(c’))  p(Sf (c», as desired. This argument also shows
that the conclusion of part (2) holds under the stated hypotheses, since

inf c’ = inf(infc?, inf c’l, and we have shown that both Ci and c’ satisfy the two
sides of the implication of part (1) (a). The rest of parts (1) and (2) of the

proposition are proved in an analogous fashion.
Finally, assume tht e ~ c, c ~ {e}, and P’(e, T) is vertical. Let

P(e, T) = {Si,j-1, Sij}. Then P’(e, T) = {Si-1,j, Sij}. We can write cB{e} C 1 U C2
where c 1 and c2 are cycles in To such that Sb(c1) = Sb(c), Sf(c1) = Si,j-1,
Sb(c2) = Si-1,j, and S f(c2) = Sf(c). Replacing if necessary T with E(T, c’) it

suffices to prove one implication of each of (1) (a) and (1) (b).
We will prove first the foward implication of part (1) (a). Assume

03C1(Sb(c))  03C1(Sb(c’))  03C1(Sf(c)). Then (using Lemma 3.3.4) we must have either
03C1(Sb(c))  i - 1 or 03C1(Sf(c)) &#x3E; i. We will assume that 03C1(Sb(c))  i - 1; the proof
under the other assumption is similar. Then 03C1(Sb(c1))  03C1(Sb(c2))  03C1(Sf(c1)), so
by induction we have

Now, since 03C1(Sb(c’))  03C1(Sf(c)) = 03C1(Sf(c2)) and since Sb(c1) = Sb(C), we have

so again by induction

So we have 03C1(Sb(c))  03C1(Sf(c’)). It remains to show that 03C1(Sf(c’))  03C1(Sf(c)).
To do this we will assume the contrary and derive a contradiction. So assume

03C1(Sf(c’))&#x3E;03C1(Sf(c)). Now Sf(c2)=Sf(c) , and we have already 03C1(Sf(c’)) 
03C1(Sf(c1)) = i, so (again using Lemma 3.3.4) we have

so by induction we conclude that p(S f(c2))  p(Sb(c’))  p(Sb(c2)). But

Sf(c2) = Sf(c), so this contradicts 03C1(Sb(c’))  03C1(Sf(c)). So this proves the foward
implication of part (1) (a) under these hypotheses. The conclusion of part (2) in
this situation can now also be easily seen. By induction and by what we have
shown above, we have inf c1  inf c’ and also inf c1  inf c2. Since

inf c = inf {inf c1, inf c2}, we have inf c  inf c’, as desired.
We now prove the foward implication of part (1) (b). Assume

03C1(Sf(c))  03C1(Sb(c’))  03C1(Sb(c)). We first show that
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To do this, assume not. So suppose 03C1(Sb(c1))  i - 1. (As usual,
03C1(Sb(c1))~{i-1,i} is ruled out by Lemma 3.3.4.) Then

03C1(Sb(c1))  03C1(Sb(c2))  03C1(Sf(c1)), so by induction we have 03C1(Sb(c1))  O(Sf(C2»-
But Sb(c1) = Sb(c) and Sf(c2) = Sf(c), so this contradicts 03C1(Sf(c))  03C1(Sb(c)).
Similarly, 03C1(Sf(c2)) &#x3E; i is impossible, so we have established 3.3.6. Given this, we
have either 03C1(Sf(c1))  03C1(Sb(c’))  03C1(Sb(c1)) or 03C1(Sf(c2))  03C1(Sb(c’))  03C1(Sb(c2)).
Then by induction we have either 03C1(Sf(c1))  03C1(Sf(c’))  03C1(Sb(c1)) or

03C1(Sf(c2))  03C1(Sf(c’))  P(Sb(C2)). In the first case, since Sb(c1) = Sb(c) and since

03C1(Sf(c1)) = i &#x3E; 03C1(Sf(c2)) = p(S f(C)), we have 03C1(Sf(c))  03C1(Sf(c’))  p(Sb (c)) (as
desired); in the second case an analogous argument gives the same conclusion.
Also, the conclusion of part (2) of the proposition under these hypotheses follows
from what we have shown;
by induction we have either inf c  inf c’ or inf c2  inf c’, and

infc = inf {inf c1, inf c2}. This completes the proof of parts (1) and (2) of the
proposition.

Part (3) of the proposition is proved in a similar fashion; we omit the details.
D

3.3.7. PROPOSItION. Let T ~ FK(M) with K = B, C, or D, and let c E OC*(T).
The following are equivalent:

(1) P(S f(C))  P(Sb(C))
(2) 03BA(Sb(c))  03BA(Sf(c))
(3) nh(E(T, c)) = nh(T) + 1
(4) nv(E(T, c)) = nv(T) - 1

(5) P(inf c, T) is vertical.

3.3.8. PROPOSITION. Let T ~ FK(M) with K = B, C, or D, and let c ~ OC*(T).
The following are equivalent:

(1) 03C1(Sb(c))  03C1(Sf(c))
(2) 03BA(Sf(c))  K(Sb(C»
(3) nh(E(T, c)) = nh(T) - 1
(4) nv(E(T, c)) = nv(T) + 1
(5) P(inf c, T) is horizontal.

3.3.9. DEFINITION. A cycle c E OC* (T) which satisfies the equivalent con-
ditions of Proposition 3.3.7 is called an up cycle (in T). A cycle c ~ OC* (T) which
satisfies the equivalent conditions of Proposition 3.3.8 is called a down cycle
(in T).

REMARK. Of course (e.g. by the conditions (5)) every c ~ OC* (T) is either an up
cycle or a down cycle. This implies the non-obvious fact that

nh(E(T, c)) = nh(T) l 1.
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PROOF OF PROPOSITIONS 3.3.7 and 3.3.8. We note first that the equival-
ence of conditions (3) and (4) (of either proposition) is obvious, and that the

equivalence of conditions (1) and (2) is part of Lemma 3.3.5. Thus it suffices to

prove that given a cycle c ~ OC* (T), either c satisfies conditions (1), (3), and (5) of

Proposition 3.3.7 or c satisfies conditions (1), (3), and (5) of Proposition 3.3.8.
The proof uses induction on |M|, the propositions being vacuously true when
I MI = 0. Let e = sup M. If e ~ c the propositions are true by induction, so assume
e ~ c. If c = {e} the propositions are obvious, so assume c ~ {e}.
We will assume P(e, T) is horizontal (when P(e, T) is vertical we have an

analogous argument, interchanging rows and columns). Let

Let To = T - e. Suppose first that P’(e, T) is also horizontal. Let co = cB{e}.
Then Co e OC*(T0). We have 03C1(Sf(c0)) = 03C1(Sf(c)), 03C1(Sb(c0)) = 03C1(Sb(c)),
nh(T0) = nh(T), nh(E(T 0, co)) = nh(E(T, c)), and inf co = inf c. By induction either
co satisfies conditions (1), (3), and (5) of Proposition 3.3.7 or co satisfies

conditions (1), (3), and (5) of Proposition 3.3.8, and thus the same is true for c.
Henceforth assume that P’(e, T) is vertical. Then P’(e, T) = {Si-1,j, Sij}. We

can write cB{e} = Cl U C2 where ci and c2 are cycles in To such that

Sb(cl) = Sb(C), Sf(C 1) = Si,j-1, Sb (C2) = Si-1,j, and Sf (C2) = S f(c). By induction
we have that each of c 1 and c2 satisfy the equivalent conditions of either
Proposition 3.3.7 or Proposition 3.3.8.
Suppose first that both c 1 and c2 are up cycles. We will show that c satisfies

conditions (1), (3), and (5) of Proposition 3.3.7. Note first that

so statement (1) of Proposition 3.3.7 holds. Next we have (since
P(e, E(T, c)) = P’(e, T) is vertical and since E(To, c1, c2) = E(T, c) - e) that

so statement (3) of Proposition 3.3.7 holds. Finally, if a = infc then either

a = inf c1 or a = inf c2 so statement (5) of Proposition 3.3.7 holds.
Suppose next that c is a down cycle. We will show that c satisfies conditions

(1), (3), and (5) of Proposition 3.3.8. We first establish that c2 is an up cycle. To
see this, note first that 03C1(Sb(c1))  03C1(Sb(c2))  03C1(Sf(c1)) (this uses Lemma 3.3.4).
Then by Proposition 3.3.2 we have 03C1(Sb(c1))  03C1(Sf(c2))  03C1(Sf(c1)). Thus

03C1(Sf(c2))  p(Sb(c2)) (again using Lemma 3.3.4), so C2 is an up cycle. Since

Sb(c) = Sb(cl) and S f(c) = S f(c2), we have also established that
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p(Sb(c))  03C1(Sf(c)), that is, statement (1) of Proposition 3.3.8 holds for c. Now

so statement (3) of Proposition 3.3.8 holds. Finally, by Proposition 3.3.2 we have
inf cl  inf c2 so infc = inf cl. Thus since statement (5) of Proposition 3.3.8
holds for c1 it holds for c.

Finally, suppose that C2 is a down cycle. Then, in the same way as in the
previous paragraph, we show first that c is an up cycle, and then that c sataisfies
conditions (1), (3), and (5) of Proposition 3.3.8. This completes the proof of
Propositions 3.3.7 and 3.3.8. D

3.3.10. PROPOSITION. Suppose T ~ FK(M) with K = B, C, or D. Let c be a
closed cycle in T. The following are equivalent:

(1) nh (E(T, c)) = nh(T) + 2
(2) nv(E(T, c)) = nv(T) - 2
(3) P(inf c, T) is vertical.
(4) P(sup c, T) is vertical.

3.3.11. PROPOSITION. Suppose T ~ FK(M) with K = B, C, or D. Let c be a
closed cycle in T. The following are equivalent:

(1) nh (E(T, c)) = nh(T) - 2
(2) nv(E(T, c)) = nv(T) + 2
(3) P(inf c, T) is horizontal.
(4) P(sup c, T) is horizontal.

3.3.12. DEFINITION. Suppose T ~ FK(M) with K = B, C, or D. Let c be a
closed cycle in T. Then c is called an up cycle if it satisfies the equivalent
conditions of Proposition 3.3.10, otherwise c is called a down cycle.

PROOF OF PROPOSITIONS 3.3.10 and 3.3.11. The proof uses induction on
|M|, the propositions being vacuously true when |M| = 0. Let e = sup M. If e fi c
the propositions are true by induction, so assume e E c. Since the two conditions
(4) are mutually exclusive, it suffices to prove, for each proposition, that (4)
implies (1), (2), and (3). We will prove this for Proposition 3.3.11 (an analogous
argument works for Proposition 3.3.10). So assume P(e, T) is horizontal, say
P(e, T) = {Si,j-1,Sij}. Since c is closed we have P’(e, T) = {Si-1,j,Sij}. Let

To = T - e and let c0 = cB{e}. Then coeOC*(TO), Sb(c0) = Si-1,j, and

Sf(c0) = Si,j-1. Thus Co satisfies condition (1) of Proposition 3.3.8, and so co
satisfies conditions (5) and (3) of Proposition 3.3.8. So we have that P(inf co, To)
is horizontal. Since inf c = inf co we have P(inf c, T) is horizontal, that is,
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condition (3) of Proposition 3.3.11 holds. Also, we have

nh(E(T 0, co)) = nh(T0) - 1. But then

that is, condition (1) of Proposition 3.3.11 holds. Since clearly condition (1)
implies condition (2), we are done. D

3.3.13. REMARK. Let c be an up cycle in T. Then c is a down cycle in ’T. (This
follows from condition (5) of Propositions 3.3.7 and 3.3.8 when c is open, and
from condition (3) of Propositions 3.3.10 and 3.3.11 when c is closed.) Also, c is a
down cycle in E(T, c). (This follows from condition (3) of Propositions 3.3.7 and
3.3.8 when c is open, and from condition (1) of Propositions 3.3.10 and 3.3.11
when c is closed.)

3.3.14. DEFINITION. Let T ~ FK(M) and let c be a non-empty subset of M.
We set

We let p;nf(C) = inf{i | Vi(c) ~ }, and similarly 03C1sup(c). If i = p;nf(c) we write V(c)
for Vi(c). If Vi(c) ~  we let ri(c) = inf Vi(c). We write r(c) = inf V(c) and
s(c) = sup V(c).

3.3.15. LEMMA. Let T ~ JK(M) and let c E OC*(T). Then

(1) 03C1inf(c)  03C1(Sf(c)) and 03C1sup(c)  03C1(Sf(C)) - 1.

(2) Let e = sup M and suppose e ~ c and c * {e}. Then 03C1inf(cB{e}) 
P1(l’(e, T)), that is, 03C1inf(cB{e}) = 03C1inf(c).

Proof. To prove statement (1), let Sf(c) = Sij. Since Sf(c) is empty in T and
Sf(c) E P’ (k, T) for some k E c, then (from the definition of P’ (k, T)) we must have
either Si-1,j E P(k, T) or Si,j-1 E P(k, T). Statement (2) is verified by an examina-
tion of the cases (and their transposes) of Proposition 2.2.4, using in some cases
statement (1) of this lemma. D

3.3.16. LEMMA. Let T ~ FK(M). If c, c’ ~ OC* (T) and if c’ is nested in c then
03C1inf(C)  03C1inf(c’) and 03C1sup(c)  03C1sup(c’).

Proof. The proof is by induction on |M. Let e = sup M. If e e c u c’ then the
lemma is true by induction, so assume e ~ c ~ c’. Suppose c’ = {e}. Then {03C1inf(c’),
03C1sup(c’)} = {03C1(Sb(c’)), 03C1(Sf(c’))}, so this lemma is a consequence of Lemma
3.3.15-1. So assume c’ ~ {e}. Let To = T - e. Assume first that either

Sb(c) E P(e, T) or S f(c) E P’(e, T). Let Co = cB{e}. Then Co and c’ are open cycles in
To and c’ is nested in co (since by Proposition 2.2.4, if P(e, T) is horizontal we
have 03C1(Sb(c0)) = 03C1(Sb(c)) and 03C1(Sf(c0)) = 03C1(Sf(c)), and if instead P(e, T) is vertical
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we have the corresponding statement with K in place of p). Now clearly
03C1inf(c)  Pinf(CO) and 03C1sup(c)  psup(co). Thus by induction the lemma is true in
this case. Assume next that Sb(c’) ~ P(e, T) or Sf(c’) ~ P’(e, T). Let ci = c’B{e};
then, as cycles in T0, c’0 is nested in c. Now Lemma 3.3.15-2 says that

03C1inf(c’) = 03C1inf(c’0), so induction proves the first statement of this lemma. Now if
P(e, T) is horizontal then p.,up(c’) = 03C1sup(c’0), if P(e, T) is vertical and Sb(C) E P(e, T)
then Psup(c’) ~ {03C1sup(c’0), 03C1(Sb(c’))}, if P(e, T) is vertical and Sf(c) E P’ (e, T) then
03C1sup(c’) ~ {03C1sup(c’0), 03C1(Sf(c’)) - 1}. So (using also Lemma 3.3.15-1 and the ineq-
ualities of Proposition 3.3.2-1 when 03C1sup(c’) ~ {03C1(Sb(c’)), 03C1(Sf(c’)) - 1}) the

second statement of the lemma is proved in this case by induction. Next assume
that e ~ c’ and c’B{e} = c’ 1 u c2 where c’1 and c2 are open cycles in To. Then the
argument given in the proof of Proposition 3.3.2 shows that, considered as cycles
in To, both c’1 and c2 are nested in c. Now by Lemma 3.3.15-2 we have

Pinf(c’) = inf{03C1inf(c’1), 03C1inf(c’2)}. Also, if P(e, T) is vertical then

if P(e, T) is horizontal then either

or

So again the lemma is true by induction (and using Lemma 3.3.15-1 and the
inequalities of Proposition 3.3.2-1 in the last-mentioned situation). Finally
assume that e ~ c and cB{e} = CI U C2 where CI and c2 are open cycles in To.
Then the argument given in the proof of Proposition 3.3.2 shows that either c’ is
nested in c or c’ is nested in c2 (considered as cycles in To). Again, the lemma
now follows by induction. D

3.3.17. LEMMA. Let T ~ FK(M) and let c ~ OC*(T). If 03C1inf(c)  i  p,.P(c) then
Vi(c) ~ 0.

Proof. The proof is by induction on IMI. Let e = sup M. It e ~ c the lemma is
true by induction, so assume e ~ c. The lemma is clear when c = {e}, so assume
c ~ {e}. The lemma is also easy to verify, using induction and Lemma 3.3.15-1,
when Sb(c) E P(e, T) or Sf(c) ~ P’(e, T). Now suppose cB{e} = Cl U C2 where
c1, c2 ~ OC*(T - e). If c is an up cycle then the argument in the proof of
Propositions 3.3.7 and 3.3.8 shows that either P(e, T) is horizontal and cl and c2
are up cycles or P(e, T) is vertical and (say) cl is an up cycle and C2 is a down
cycle which is nested in cl. The latter situation splits into two cases, depending
on whether S f(cl) E P(e, T) or S f(c2) E P(e, T). We have an analogous description
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of three cases when c is a down cycle. Then an examination of these six cases,
using Lemmas 3.3.15-1 and 3.3.16 and induction, verifies this lemma. D

3.3.18. LEMMA. Let c and c’ be as in Lemma 3.3.16. 7hen for all

03C1inf(c’)  i  03C1sup(c’) we have ri(c)  ri(c’).
Proof. Given the previous lemma, this is easy to prove, using induction and

the same breakdown into cases which was used to prove Lemma 3.3.16. We omit

the details. D

3.3.19. PROPOSITION. Let T ~ £(M) and let c be an open up cycle in T. Then

(1) P(ri(c), T) is vertical for all 03C1inf(c)  i  03C1sup(c).
(2) If S E P(ri(c), T) and p(S) = pl(ri(c), T) then S is 0,-fixed.
(3) If 03C1inf(c) ~ 03C1(Sf(C)) then P(s(c), T) is vertical.

Proof. The proof is by induction on IMI. Let e = sup M. If e e c then the
proposition is true by induction, so assume e ~ c. If c = {e} then the proposition
is obviously true, so assume c ~ {e}. Let To = T - e. There are several cases. In
the first four cases cB{e} ~ OC* (T0). We set Co = cB{e}. By Lemma 3.3.15-2 we
have 03C1inf(c0) = 03C1inf(c).

Case 1. Here P(e, T) is horizontal and Sb(c) E P(e, T). Then Sf(c0) = Sf(c).
Write P(e, T) = {Sj,k, Sj,k+1}. Then Sb(c0) = Sj,k-1, in particular NT(Sj,k-1) ~ c.
Then psup(co) = Psup(c). Since c is an up cycle, Lemma 3.3.15-1 says that

03C1inf(c)  j. Thus s(c) = s(co) and for all 03C1inf(c)  i  Psup (C) we have ri (c) = ri(c0),
so the proposition is true by induction.

Case 2. Here P(e, T) is horizontal and Sf(c) E P’(e, T). Then Sb(CO) = Sb(c).
Write P(e, T) = {Sj,k-1, Sj,k}, so that Sf(c) = Sj,k+1. By Lemma 3.3.15-1 we
have 03C1inf(c0)  j, and since c is an up cycle we have j  03C1(Sb(c0))  Psup(co). Thus
03C1sup(c) = 03C1sup(c0), and, using Lemma 3.3.17, we have for all 03C1inf(c)  i  03C1sup(c),
ri(c) = ri (co). Now, either 03C1inf(c)  j or p;nf (c) = 03C1(Sf(c)), so again the pro-
position is true by induction.

Case 3. Here P(e, T) is vertical and Sb(c) E P(e, T). Then Sf(c) = Sf(c0). Let
P(c, T) = {Sj-i,k, Sj,k}. Then Sb(c0) = Sj-1,k. Here the proposition is clearly true
by induction, and inspection if o,up(co) = j - 1.

Case 4. Here P(e, T) is vertical and Sf(c) ~ P’(e, T). Let P(e, T) = {Sj-1,k, Sj,k},
so Sf(c0) = Sj-1,k and Sf(C) = Sj+1,k. Then 03C1inf(c0)  j - 1 and 03C1sup(c0) 
p(Sb(co)) &#x3E; j + 1. Thus, as in case 2, Psup(c) = psup(co) and ri(c) = ri(co)
for all 03C1inf(c)  i  psup(c), so statements (1) and (2) of the proposition are true by
induction. For statement (3), we note that either 03C1inf(c)  j - 1, in which case (3)
is true by induction, or p;nf(c) = j - 1, in which case s(c) = e, so again (3) is true.

In the remaining cases cB{e} = CI UC2, where cl, c2 E OC*(To). Again by
Lemma 3.3.15-1 we have Pinf(C) = inf{03C1inf(c1),03C1inf(c2)}. As in the proof of
Propositions 3.3.7 and 3.3.8, there are three possibilities (up to interchange of c 1
and c2).
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Case 5. Here cl and C2 are up cycles and (for some j and k) we have
P(e, T) = {Sj,k-1, Sj,kl, P’(e, T) = {Sj-1,k,Sj,k}, Sb(c1) = Sb(c), Sf(c1) = Sj,k-1,
Sb(c2) = Sj- l,k, and Sf(c2) = Sf(c). Then

In particular by Leuima 3.3.17 we have e ~ rj(c) and Psup(c) = sup{03C1sup(c1),
03C1sup(c2)}· So for all 03C1inf(c)  i  03C1sup(c) we have either ri(c) = ri(c1) or

ri(c) = ri(C2). This proves statements (1) and (2) of the proposition by induction.
Now

so e ~ s(c), and thus also statement (3) of the proposition is true by induction.
Case 6. Here c 1 is an up cycle, C2 is a down cycle, P(e, T) = {Sj-1,k, Sj,k},

P’(e, T) = {Sj,k-1, Si,k}, Sb(c1) = Sb(c), Sf(c1) = Sj-1,k, Sb (C 2) = Sj,k-l, and

Sf(c2) = Sf(c). Thus

and

In particular by Lemma 3.3.16 we have p;nf(c) = 03C1inf(c) and psup(c) = 03C1sup(c1). By
Lemma 3.3.17 (applied to Ci) we have e ~ rj-1(c) and e ~ rj(c). Then by Lemma
3.3.18 we have that for all

So as usual we are done by induction (and inspection if e = s(c).
Case 7. Here c 1 is an up cycle, C2 is a down cycle, P(e, T) = {Sj-1,k, Si,k

P’(e, T) = {Sj,k-1, Sj,kl, Sf(c1) = Sf(c), Sb(Cl) = Sj,k-1, S f(C2) = Sj- l,k, and

Sb(C2) = Sb(c). The argument in this case is like that of the previous case, so we
omit it. r-1

3.3.20. PROPOSITION. Let T ~ FK(M) and let c be a closed up cycle in T. Then

(1) P(ri(c), T) is vertical for all 03C1inf(c)  i  Psup(c).
(2) If S E P(ri(c), T) and p(S) = 03C11(ri(c), T) then S is 0,-fixed.
(3) P(s(c), T) is vertical.
(4) If S E P(s(c), T) and p(S) = pl(s(c), T) then S is 0,-variable.
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Proof. The proof is by induction on 1 MI. Let e = sup M. If e e c then the
lemma is true by induction, so assume e ~ c. Then by Proposition 3.3.10-4,
P(e, T) is vertical. Let To = T - e and let co = cB{e}. Then co is an open up cycle
in To (by Proposition 3.3.7-5 and Proposition 3.3.10-3) and by Lemma
3.3.15-2, we have 03C1inf(c0) = Pinf(C). Write P(e, T) - {Sj-1,k,Sj,k}. Then

P’(e, T) = {Sj,k-1, Si,k 1, Sf (CO) = Sj-1.k, and Sb (co) = Sj,k - 1 . In particular
Psup(C) = Psup(c0), and by Lemma 3.3.15, 03C1inf(c0)  j - 1. Then by Lemma 3.3.17
we have that ri(c) = ri(c0) for all 03C1inf (c)  i  psup (c). Thus statements (1) and (2)
of this proposition follow from Proposition 3.3.19, as does statement (3), since
P(e, T) is vertical. Now statement (4) is an obvious consequence of statement (3).
To see this, note that if l ~ M and P(l, T) = {St,u, St,u+1} and St,u is 0,-fixed then
either St-1,u E P’(l, T) or St,u+ 1 E P’(l, T). So such an 1 cannot be s(c). 

Section 4

3.4.1. DEFINITION. Let X be either W, Y(n, n), 5é(n, n) or FB(n, n). We define
an equivalence relation, the left generalized i-invariant, on X, as follows. Let
x, y e X. We say that x -o y if 03C4L(x) = 03C4L(y). Inductively, for m  1 we say that
x ~m y if x ~ m-1 y, and if for every sequence E for 1-1 with JY-1 = 1 we have

(1) for every ze TL (x) there is a we TL03A3(y) such that z ~m-1w, and
(2) for every we TL03A3(y) there is a ze TL03A3(x) such that z ~m-1 w.

We say that x ~GTLy, or that x and y have the same left generalized i-invariant,
if x ~my for every non-negative integer m.
We define similarly the right generalized i-invariant. For the convenience of

our proofs by induction we extend (in the obvious way) the definition of ~GTL to
9C(Ml, M2) when Mi = {1,..., nl.
3.4.2. REMARK. (1) Since |TL03A3(x)|  2 when |03A3| = 1 we see that if x ~GTL y then
(1) and (2) above hold, for any X, with Z ~GTL w in place of z ~ m-1 w.

(2) Let Z be a sequence for 03A0B{03B11}, let x, y ~ X, and suppose that TL03A3(x) ~ 0.
Then x ~GTL y if and only if TL(x) ~GTL TL(y).
The purpose of this section is to prove that for (T1, T2), (T’1, T’2) ~ Fc(n, n) we

have (T1, T2) ~GTL (T’1, T’2) if and only if S(T1) = S(T’). We start by proving the
easy implication, that is, Proposition 3.4.7.

3.4.3. PROPOSITION. Let (T1, T2) ~ fc(M1, M2) where M, = {1,...,n}. Let
U be a set of extended cycles in Tl relative to T2 such that for every cycle c in T,
such that c ~ c for some c E U we have c ~ OC* (T1). Let

(T’, 1 T2) = E«T1, T2); U, L). Then (T’1, T’2) ~GTL (T1, T2).
Proof. We prove by induction on m that (T;, T’2) -,n (Tl, T2). When m = 0
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this is part of Proposition 3.1.4. Assume then that m &#x3E; 1 and that the

proposition is true with ~m-1 in place of ~GTL, and let E be a sequence for II
with |03A3| = 1. Suppose first that E = (03B1, 03B2) where {03B1, 03B2} = {03B1i, ai+1} with i  2.

Then Proposition 3.1.5-1 and induction give the desired conclusion, since, by
that proposition, TL03B103B2((T’1, T’2)) = E(TL03B103B2((T1, T2)); U’, L) where U’ is the set of

extended cycles corresponding to U via the map 11. Now assume E = (a, 03B2) with
{03B1, 03B2} = {03B11, 03B12}. For simplicity we will assume a = a2 (an analogous argument
holds when a = 03B11). Suppose first either that F1 ~ T1 1 or that F1 ~ T 1 and
1 ~ ec(2, Ti; T2). Then clearly one of these is also true with Ti and T’2 in place of
Ti and T2. Now TL03A3((T1, T2)) consists of a single element, say TL03A3((T1, T2)) = {Z}.
Then clearly we have TL03A3((T’1, T’2)) = {E(Z; U’, L)}, where U’ = U if

ec(2, T1; T2) ~ U, otherwise U’ = UB{ec(2, T1; T2)}. Thus by induction we have
the desired result. Suppose next that F1 ~ T1 and 1 ~ ec(2, T1; T2). Again, the
same is true with T’1 and T’2 in place of Ti and T2. Then TL03A3((T1, T2)) =
{Z1,Z2} where Z1 ~ Z2, and, say, Z1 = (T11, T2) with F2 ~ T11. Then

TL03A3((T’1, T’2)) = {Z’1, Z’2} where Z’j = E(Zj; U, L) for j = 1, 2. So again by induc-
tion we are done. D

3.4.4. COROLLARY. Let (T1, T2) ~ DL03B103B2(Fc(M1, M2)) with M1 = {1,..., n} and
{03B1, 03B2} = {03B11’ 03B12}. Suppose that TL03B103B2((T1, T2)) = {Z1, Z2} with Z1 ~ Z2, and

suppose c(2,Ti)eOC*(Ti). Then Zi ~GTL Z2·

3.4.5. DEFINITION. Let (T1, T2) e FK(M1, M2) (for K = B, C, or D). We define

S((T l’ T 2)) = (S(T 1), S(T 2)).

Since in general Shape(S(T)) is determined by Shape(T) we have that

S((T1, T2)) ~ FK(M1, M2).

As a consequence of Proposition 3.4.3 we have

3.4.6. PROPOSITION. Suppose (T1’ T2) ~ Fc(M1, M2) with M1 = {1,...,n}.
Then S((T1, T2)) ~GTL(T1, T2)·

3.4.7. PROPOSITION. Let (T1, T2), (T’1, T’2) e Fc(M1, M2) where Mi =

{1,...,n}. Suppose S(T1) = S(T’1). Then (T1, T2) ~GTL (T’1, T’2)·
Proof. By Proposition 3.4.6 we may assume T1 is special and Ti = T’1. We

will prove by induction on m that (T1, T2) ~m(T’1, T’2). When m = 0 this is

obvious, so assume that m &#x3E; 1 and that (T1, T2) ~m-1(T’1, T’2) whenever
t = T’1 is special. Let L = (a, 03B2) be a sequence for II. If {03B1, 03B2} = {03B1i, 03B1i+1} with
i  2 then since T1 = Ti we have T03B103B2(T1) = T03B103B2(T’1) and thus are done by
induction. Suppose now {03B1, 03B2} = {03B11, 03B12}. There are three possibilities. First is
that c(2,Ti) is closed. In this case TL03A3((T1, T2)) = {(T3, T2)} and
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TL03A3((T’1, T’2)) = {(T3, T’2)} for some T3 ~ Fc(n). The second possibility is that

with T11 ~ Tf. In this case

The third possibility is that

(where possibly Z1 = Z2) with Z1 = S(Z1) = S(Z2). In this case we have, setting
Z1 = (T11, T2), that TL03A3((T’1, T’2)) = {Z’1, Z’2}, with Z’1 = S(Z’1) = S(Z’2), and

Z’1 = (T11, T’2). Then by Proposition 3.4.6 (or Corollary 3.4.4) we have

Zi ~GTL Z2 and Z’1 ~GTL Z’2· So in all three cases we are done by induction.

We now prove that for (T1, T2), (T’1, T’2) e 5é(n, n) we have

(T1, T2) ~GTL (Ti. T’2) implies S(T1) = S(T’1). A key step in the proof is the special
case contained in Lemma 3.4.15. The following results will be used in its proof.

3.4.8. LEMMA. Let (T1, T2) ~ Fc(M1, M2) with M1 = {1,...,n}. Let 1  1  n
and let T1 be the tableau obtained from T1 by removing the numbers 1 + 1,..., n.
Let P be an extremal position in T 1. Then there is a sequence 03A3 for {03B11,..., 03B1l} and
a (T3’ T2) E TL03A3((T1, T2)) such that P(l, T3) = P and for 1 + 1  r  n,

P(r, T3) = P(r, T1).
Proof Let (Tl’ T2) be the pair of tableux obtained from (T1, T2) by applying

the procedure "- L", n - Mimes. By Lemma 3.2.6 there is a T 3 ~ Fc({1,...,l})
such that Shape(T3) = Shape(T1) and P(l, T3) = P. By Theorem 3.2.2 there is a
sequence L for {03B11...,03B1l} such that (T3’ T2) ~ TL03A3((T1, T2)). Using repeatedly
Lemma 3.2.5, parts (1) and (3), we find that there is a (T 3’ T4) e TL03A3((T1, T 2)) such
that applying the procedure "- L" n - l-times to (T 3’ T4) results in (T 3’ T2), and
such that P(r, T3) = P(r, T1) for all 1 + 1  r  n. Then we have

Shape(T3) = Shape(T1) and thus T4 = T2. D

3.4.9. LEMMA. Let (T1, T2), (T’1, T2) ~ Fc(M1, M2) with M1 = {1,...,n}.
Suppose (Tl’ T2) ~GTL(T’1, T’2). Then (T1, T2) - L ~GTL(T’1, T’2) - L.
Proof We want to show that (T1, T2) ~m(T’1, T’2) implies (T1, T2) - L ~m

(T’1, T’2) - L. We prove this by induction on m, the case m = 0 being obvious.
Now the desired result is a consequence of Lemma 3.2.5-1. D

3.4.10. PROPOSITION. Let T ~ Fc(n) and suppose a and k a 2 are such that
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Then 1i(T) i= , and setting T’ = 1i(T), we have

and

for 0  j  k - 2.
Proof. The proof is by induction on k. When k = 2 we have L = (03B1a+2, aa+ 1);

then our hypotheses ensure that Ty(T) = In(a, a + 1; T), as desired. Suppose now
that k &#x3E; 2. Since 03B1a+k~03C4(T) we have K2 (a + k, T) &#x3E; x2(a + k - 1, T), and so the
hypotheses of this proposition are satisfied with k - 1 in place of k. So, setting

and T = 1i,(T), we have P(a + k, T) = P(a + k, T), and by induction

and

Now the hypotheses of this proposition are satisfied with T in place of

T, a + k - 2 in place of a, and 2 in place of k. So

as desired. 0

3.4.11. PROPOSITION. Let TE.9C(n) and suppose that for some 0  b  n - 2
and some l  1 we have
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and suppose we have

Then there is a sequence E for {03B1b+ 2, 03B1b+ 3,..., 03B1b+ 2l} such that T03A3(T) = T’ with

and

Proof. The proof is by induction on l, the case 1 = 1 being trivial (i.e. T’ = T).
So assume 1 &#x3E; 1. Now the hypotheses of Proposition 3.4.10 are satisfied with
b + 1 in place of a and 1 in place of k, so let E be the sequence given by that
proposition, and let T, = T03A31(T). Then

and for 0  j  1 - 2 we have

Now the hypotheses of Proposition 3.4.11 are satisfied with T, in place of T and
1 - 1 in place of 1 (we have to check that ab + 1 E T(T 1); now by hypothesis

and our conditions on i(T) show that

so

as desired), so let L2 be a sequence given by the conclusion thereof. Setting
03A3 = 03A3103A32 we are done. 

3.4.12. PROPOSITION. Let T ~ Fc(n) and suppose a and k  2 are such that
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and

Let L = (03B1a+k-1, 03B1a+k),..., (aa+ 1, aa + 2). Then T03A3(T) ~  and, setting T’ = 7i(T),
we have

and

Proof. The proof is similar to that of Proposition 3.4.10; we omit the details.
D

3.4.13. PROPOSITION. LetTE3C(n) and suppose that for some 0  b  n - 3
and some 1  1 we have 03B1b+ 2k E 03C4(T) for 1  k  1 and ab + 2k + 1 e T(T) for 1  k  l,
and suppose in addition that

and

Then there is a sequence E for 1 ab + 2, ab + 3, ... , ocb + 2l + 1} such that

and

Proof The proof is by induction on 1. When 1 = 1 we take L = (03B1b+3, 03B1b+2);
then our hypotheses ensure that T03A3(T) = In(b + 2, b + 3; T), as desired. In

particular this applies with b + 21- 2 in place of b and 1 in place of 1; so let
LI =(03B1b+2l+1, 03B1b+2l) and T1 = T03A31(T). Then T 1= In(b + 2l, b + 2l + 1 ; T). Now
assume 1 &#x3E; 1. The hypotheses of Proposition 3.4.13 are satisfied with T 1 in place
of T and 1 - 1 in place of l, so let E2 be a sequence for {03B1b + 2, ..., ab + 2l-1} such
that T2 = 7i2(T 1) satisfies P(b + k, T2) = P(b + 2k - 1, T1) for 1  k  1 and
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Then the hypotheses of Proposition 3.4.12 are satisfies with T2 in place of
T, b + 1 + 1 in place of a, and l in place of k, so let L3 be the sequence given by
that proposition. Setting E = LIL2L3 we are done. 1:1

3.4.14. PROPOSITION. Let TE *(n) and suppose T satisfies the hypotheses of
Proposition 3.4.11 for some 0  b  n - 3 and some 1 with b + 21 + 1  n, and

suppose in addition that p2(b + 21 + 1, T)  p2(b + l, T). Then there is a sequence
E for {ab + 2, ... , ab + 21 + 1} such that 1i(T) = T’ with

and

Proof. Let 03A31 be any sequence given by Proposition 3.4.11 and let

Tl = T,,(T). Then Tl satisfies the hypotheses of Proposition 3.4.13, so let E2 be
any sequence given by that proposition. Setting 03A3 = 03A3103A32 we are done. D

3.4.15. LEMMA. Let (T1, T) ~ Fc(M1, M2) where Ml = {1,...,n} and suppose
Tl is special. Let c be a closed cycle in Tl and let T; = E(T1, c). Then

(T1, T) GTL(T’1, T).
Proof. Interchanging if necessary Tl and T’ (cf. Remark 3.3.13) we may

assume that c is an up cycle in Tl. The proof of this lemma is, in the first instance,
by induction on n. Since the lemma is vacuously true when n = 1, we will assume
the lemma is true when M1 = {1,...,n - 1}. Assume first nec. Then induction
and Lemma 3.4.9 verify this lemma. So henceforth we will assume that nec.
Now we will proceed to prove the lemma by a downward induction on inf c. Set
a = inf c. When a = n - 1 we have an~03C4(T1) and an~03C4(T’1), so

(T1, T) ’r’GTL (T’1, T). So henceforth we will assume that a  n - 1 and that the

lemma is true for all (T1, T), etc., with infc &#x3E; a. We now let

If W(c) ~ 0 we set k(c) = inf W(c). There are two cases:

Case A. Here we have W(c) ~ 0. We first prove the lemma under the
additional hypothesis that for all i with a + 1  i  k(c) - 1 we have ai ft !(T 1).
(Note that by the definition of k(c) we have 03B1k(c) ~ 03C4(T1).) Since the argument is
lengthy we state this as a lemma here and postpone the proof thereof until after
completing the proof of Lemma 3.4.15.

3.4.16. LEMMA. Suppose (T1, T), etc., are as in Lemma 3.4.15 with c an up cycle,
and suppose that nec, that W(c) ~ 0, and that for all inf c  i  k(c) we have

ai ft !(T 1). Suppose further that for every (T1, T) E Fc(M1, if 2) and every closed
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cycle c of T1 such that either M1 = {1,...,n-1} or M1 = {1,...,n} and
inf c &#x3E; inf c we have (T1, T) GTL(E(T1, c), T). Then (T 1, T) GTL(T’1, T).

We now proceed to prove Case A of Lemma 3.4.15 by induction on k(c). Set
k = k(c). If k = a + 1 then necessarily (T1, T), etc., satisfy the hypotheses of
Lemma 3.4.16, and so we are done. So assume that k &#x3E; a + 1 and that Lemma

3.4.15 is true for all (Ti, T), etc., with inf c = a, W(c) ~ 0, and k(c)  k. If (T1, T),
etc., satisfy the hypotheses of Lemma 3.4.16 then again we are done, so assume
that there is an a + 1  i  k - 1 such that ai e 03C4(T1), and assume further that i is
maximal given this criterion. We will complete the argument by a downward
induction on i. Assume first that i = k - 1. Since 03C11(k, T1)  03C11(k - 2, T1) we
have T03B1k03B1k-1(T1) = In(k - 1, k; T1). Set T2 = T03B1k03B1k-1(T1) and T’2 = T03B1k03B1k-1(T’1). Let
c2 = c(n, T2). Then by Proposition 3.1.5-2 we have T’2 = E(T2, c2). Since

k(c2) = k - 1 (we observe that T1 does not fall under any of the exceptional
situations described in Proposition 3.1.2-1), we have by induction

(T2, T) GTL(T’2, T), and so by Remark 3.4.2-2 we have (Tl’ T) GTL(T’1, T).
Finally, assume that i  k - 1. Let T2 = T03B1l+103B1l(T1) and T’2 = T03B1l+1,03B1l(T’1). Let

c2 = c(n, T2). Then by Proposition 3.1.5-2 we have T’2 = E(T2, c2), and by
induction we have (T’2, T) GTL(T’1, T). (If i = a + 1 then possibly inf c2 &#x3E; a. In

this case the conclusion (T’2, T)GTL(T’1, T) follows from an appeal to our
earlier induction hypothesis. If inf c2 = a then Proposition 3.1.2-1 shows that
W(C2) i= 0 and k(C2) = k.) So again by Remark 3.4.2-2 we are done. This
completes the proof of Case A.

Case B. Here we have W(c) = 0. Since we have already proved Case A, we
will assume that the lemma is true for every (T1, T), etc., with inf c = infc and
W(c) ~ 0. Set i = Pinf(C). The proof of Case B is by induction on s(c). That is, we
must first prove Case B under the further assumption that s(c) = a + 2, so
assume this. (Proposition 3.3.20 rules out s(c) = a, and s(c) = a + 1 would, by
that same proposition, imply that c = {a, a + 1}, contradicting our hypothesis
that inf c  sup c - 1.) Then by Proposition 3.3.20 we have, for some j,
P(a, T1) = {Si,j-1, Si+1,j-1} and P(a + 2, T1) = {Sij, Si+1,j}, and since

W(c) = 0 we have 03C11(a + 1, T1)  i + 2. (Note that it is not possible that a + 1
occupy the position which we have allotted to a in the previous sentence, since
then we would have c = {a + 1, a + 2}.) Assume first that a + 2 = n. Then since
c is closed we have P’(n, T1) = {Si+1,j-1,Si+1,j} and thus c = {n - 2, n}. That is,
we have P(n - 2, T’1) = {Si,j-1, Sij} and P(n, T’1) = {Si+1,j-1, Si+1,j}. Then

(transposing and interchanging the roles of (T1, T) and (T’1, T)) we see that this
situation corresponds to a case of Lemma 3.4.16 (with k(c) = n - 1), so we
proceed accordingly. We note first that P(n - 1, Tl) = P(n - 1, T’1), and thus
since 03C11(n - 1, T1)  i + 2 we have 03BA2(n - 1, T1)  j - 1. We let 1 be maximal

given that Sl,j-2 ~ Shape(T1)BP(n - 1, T1). Using Lemma 3.4.8 we find a

sequence L for (ai, a2, ... , 03B1n-3} and a (T2, T) e TL03A3((T1, T)) with
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P(n - 3, T2) = {Sl-1,j-2, Sl,j-2} and P(r, T2) = P(r, T1) for n - 2  r  n.
Let T’2 = E(T2, c). Then (using Claim 1 of the proof of Lemma 3.4.16) we
have that (T1, T) ~GTL(T’1, T) implies (T2, T) ~GTL(T’2, T). Now let (T3, T) =
TL03B1n-203B1n-1((T2, T)) and (T’3, T) = TL03B1n-203B1n-1 ((T’2, T)). Then by Remark 3.4.2-2 we
have (T2, T) ~GTL(T’2, T) if and only if (T3, T) ~GTL(T’3, T). Now we observe that
T3 = In(n - 2, n - 1; T2) and Tg = In(n - 2, n - 1; T’2), so 03B1n~03C4(T3) and

03B1n~03C4(T’3), and so we conclude that (T1, T) GTL(T’1, T), as desired. Now assume
a + 2  n. Then c ~ {a, a + 2}, so

It follows that Si+2,j-1 ~ P(a + 1, T1), and since by Proposition 3.3.20 we have
that Si+2,j-1 is oc-fixed, we have a + 1 ~ c and F,(a; i, j - 1) - T’. Let

and

and let c2 = c(n, T2). Then (by Propositions 3.1.2-1 and 3.1.5-2) we have
C2 = c){a, a + 1} (in particular inf c2 &#x3E; inf c) and T2 = E(T2, C2). So by in-

duction and Remark 3.4.2-2 we have proved the lemma in this case.
Henceforth assume that s(c) &#x3E; a + 2 and that the lemma is true for all (T1, T),

etc., with n~c, inf(c) = a, W(c) i= 0, and s(c)  s(c). Set s = s(c). By Proposition
3.3.20 we have that P(s, T1) is vertical, so let P(s, T1) = {Sij, Si+1,j}. Let

b = NT1 (Si,j-l). Since i = inf c and Si-1,j is oc-fixed (by Proposition 3.3.20) we
have P’(b, T1) = {Si,j-1,Sij}. Now b  s - 2, since b = s - 1 and P(b, T1)
vertical implies that c = {s - 1, sl, contradicting s &#x3E; a + 2, whereas b = s - 1
and P(b, Tl) horizontal contradicts condition (4) of Definition 1.1.8. There are
four cases:

Case 1. Here b = r(c) = s - 2 (so b &#x3E; a). Then by Proposition 3.3.20 we have

P(s - 2, T1) = {Si,j-1Si+1,j-1}. Then as in the previous situation (since
c ~ {s - 2, s} and W(c) = 0) we have Si+2,j-1~P(s-1,T1) and

2(s - 2; i, j - 1) ~ T’l. Let (T 2, T) = TL03B1s03B1s-1((T1, T)) and (T’2, T) = TL03B1s03B1s-1 ((T’1, T)),
and let c2 = c(a, T 2). Then (by Propositions 3.1.2-1 and 3.1.5-2) we have
c2 = cB{s - 2, s - 1}, T’2 = E(T2, c2), and pinf(c2) = i + 2. Now n ~ c2, and

inf c2 = a, but on the other hand W(C2) i= 0, since

So, as far as (T2, T) and c2 are concerned, we are in Case A of this lemma, that is,
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we have already proved that (T2, T) GTL(T’2, T). Then by Remark 3.4.2-2 we
have (T1, T) GTL (T’1, T).

Case 2. Here we assume that b = s - 2 ~ r(c) and that

Then as in Case 1 we have

Let T2, T2, and c2 be as in Case 1. Then c2 = cB{s - 2, s - 1}, T’2 = E(T2, c2),
and, since s - 2 ~ r(c), we have pinf(c2) = 03C1inf(c) and S(C2)  s(c). So by induction
(T 2, T) GTL(T’2, T), and thus (T1, T) GTL(T’1, T).

Case 3. Here we assume that b = s - 2 ~ r(c) and that

Then by condition (4) of Definition 1.1.8 we must have

that is, F1(s - 2; i, j - 2) ~ T1. Let T2, T’2, and c2 be as in Case 2. Then

c2 = cB{s - 1, s} and s(c2) = s - 2. If s ~ n then the desired conclusion follows
as in Case 2; if s = n then we have n ~ c2 in which case the fact that

(T2, T) GTL(T’2, T) is a consequence of our first induction hypothesis.
Case 4. Here we assume that b  s - 2. Now since W(c) = 0 we must

have 03B1b+1 ~ 03C4(T1) and 03B1s~03C4(T1). Let m = m(c) be maximal given that

b + 1  m  s - 1 and 03B1m ~ 03C4(T1). We will prove this case by a downward
induction on m. Assume first that m = s - 1. Let

and let c2 = c(a, T2). Then by Proposition 3.1.5-2, we have T’2 = E(T2, c2). Since
03C11(s, T1)  03C11(s - 2, T1) we have T2 = In(s - 1, s; T1), and by Proposition
3.1.2-1 we have inf c2 = inf c, Pinf(C2) = 03C1inf(c), W(C2) = 0. and S(C2) = s - 1. If
s ~ n or if s = n and n~c2 then the desired conclusion follows by induction on s;
if n ft c2 then instead we use induction on n.

Finally, if m  s - 1, we let (T2, T) = TL03B1m+l103B1m((T1, T)), (T’2, T) = TL03B1m+103B1m((T’1, T)),
and c2 = c(n, T2). As usual we have T’2 = E(T2, c2). If m = b + 1 = a + 1 it is

possible that inf c2 &#x3E; infc, in which case we are done by the induction

hypothesis involving a; if inf c2 = infc then we have p;nf(c2) = PinfM?
W(C2) = , S(C2) = s, and m(c2) = m + 1, and so we are done by induction on m.
This completes the proof of Case B and of Lemma 3.4.15. D
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PROOF OF LEMMA 3.4.16. Let a = inf c. We will assume (T1, T) GTL(T’1, T)
and derive a contradiction. We will need the following:

Claim 1. Suppose a &#x3E; 2. Let E be a sequence for {a1, 03B12,...,03B1a-1}, and
suppose that (T2, T) ~ TL03A3((T1, T)). Then c is a closed cycle in T2. Let

T’2 = E(T2, c). Suppose (T1, T) GTL(T’1, T). Then (T2, T) GTL (T’2, T).
The proof of this claim is by induction on |03A3|, the case |03A3| = 0 being trivial. So

assume |03A3|  1 and write 03A3 = 03A3’(03B1, 03B2). Assume first that 03B11 ~{03B1, 03B2). Let

T3 = T03B203B1(T2). Then (T 3’ T) E TL03A3’((T1, T)), so by induction c is a closed cycle in T3.
Let Tg = E(T3, c). Now by Proposition 3.1.2-1 we have that c is a closed cycle in
T2, and by Proposition 3.1.5-2 (since T2 = T03B103B2(T3)) we have that T’2 = T03B103B2(T’3).
Now by Remark 3.4.2-2 we have (T3, T) ~GTL(T’3, T) if and only if

(T2, T) ~GTL(T’2, T). So by induction we are done in this case.
Assume now that 03B11 ~ {03B1, 03B2}. Note first that TL03B203B1((T2, T)) ~ TL03A3’((T1, T)) ~ 0.

There are three cases:

Case 1. Here TL03B203B1((T2, T)) is a two-element set. Let

(T3, T) E TL03B203B1((T2, T)) n TL03A3’((T1, T)).

By induction c is a closed cycle in T3 so let T’3 = E(T3, c). Then by induction we
have that (T3’ T) ~GTL(T’3, T). Now TL03B103B2((T3, T)) = {(T2, T)}, so by Proposition
3.1.6-1 we have TL03B103B2((T’3, T)) = {(T’2, T)}. Then by Remark 3.4.2-1 we have
(T2, T) ~GTL(T’2, T).

Case 2. Here TL03B203B1((T2, T)) = {(T3, T)} and TL03B103B2((T3, T)) = {(T2, T), (T4’ T)} with
T ~ T. Then by Corollary 3.4.4 we have (T2, T) ~GTL(T4, T). Now c is a closed
cycle in T3 (by induction) and in T2 and T4 (by Proposition 3.1.3-1). Set
T’k = E(Tk, c) for k = 3, 4. Then by Proposition 3.1.6-1 we have

TL03B103B2((T’3, T)) = {(T’2, T), (T4, T)} and so by Corollary 3.4.4 we have

(T2, T) ~GTL(T’4, T). Thus by Remark 3.4.2-1 we have (T2, T) ~GTL(T’2, T) if and
only if (T3, T) ~GTL (T’3, T). So by induction we are done in this case.

Case 3. Hère TL03B203B1((T2, T)) = {(T3, T)} and TL03B103B2((T3, T)) = {(T2, T),(T4, T)} (so
c(2, T2) is closed and T4 = E(T2, c(2, T2))). Set c’ = c(2, T2). (By hypothesis
inf c &#x3E; 2 so c ~ c’; in particular n fi c’.) Let T’k = E(Tk, c) for k = 3, 4. Then as in
the previous case we have that c is closed cycle in T2, T3, and T4, and
TL03B103B2) ((T’3, T)) = {(T’2, T), (T’4, T)}. Now (T3, T) ~ TL03A3’((T1, T)), so by induction we
have (T3, T) ~GTL(T’3, T). Thus by Remark 3.4.2-1 we have either

(T 2’ T) ~GTL (T’2, T) or (T2, T) -crL (T’4, T). We will show that

(T2, T) GTL(T’4, T) and thus complete the proof of this case. Let

(Tk, T) = (Tk, T) - L for k = 2 and k = 4 (since P(n, T2) = P(n, T 4) the right
tableaux of these two pairs are equal) and let (T’4, T’) = (T’4, T) - L. Now
cB{n} is an open cycle in T4, and by Proposition 2.3.3c) we have

(T4, T’) = E((T4, T), cB{n}, L), so by Proposition 3.4.3 we have

(T’4, T’) ~GTL(T4, T). On the other hand, since T4 = E(T2, c’) we have
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T4 = E(T2, c’). Now (T2, T) is an element of some Fc(M1, (M1, M2) with

Mi = {1,..., n - 1}, so by the hypothesis of Lemma 3.4.11 (and using again
Proposition 3.4.3 if T2 is not special) we have that (T 2’ T) + GTL (T 4, T). Thus
(T2, T) GTL(T’4, T’) and so by Lemma 3.4.9 we have (T2, T) GTL(T’4, T). This
completes the proof of Claim 1.

Now let k = k(c). By hypothesis, for all a  l  k we have

and

Let a = j0  j1  ...  jr = k be such that for 0  i  r - 1 we have

03C11(ji+1, T1)  pl(ji’ Tl) and for ji  1  ji+ 1 we have pl(l, T,) = pl(ji, T1). Set
ti = 0’(ji, Tl). We claim that

Claim 2. (1) For 0  i  r - 1 we have that P(ji, Tl) is vertical and, if

S ~ P(ji, T1) is such that p(S) = 03C11(ji, T1) then S is a fixed square.
(2) For 0  i  r - 1 and ji  1  ji+1 we have that P(l, T1) is horizontal, and,

if S e P(1, Ti) is such that 03BA(S) = K2(l, Tl), then S is a fixed square.
(3) For a  1  k, if St,u E P(l, Tl) is such that t = pl(l, Tl) and u = K2(l, Tl)

then St,u+1 ~ P’(l, T1). Furthermore, NT1(St-1,u+1)  a.

(4) We have 03C12(k, T1)  tr-1.
Part 1 of this claim follows from Proposition 3.3.20 and the observation that

ji = rti(c). We have also that P’(ji, Tl) is horizontal, since else let S E P’(ji, Tl),
S e P(ji, T,), and let d = NT1(S). Then d ~ c, d  ji, and K2(d, T1)  xl(ji, T,),
contradicting the fact that for a  1  k we have K’(1, Tl)  K’(1 + 1, Tl). Thus
the first statement of part 3 holds for l = ji . We prove part 2 by induction on
1 - ji. Suppose first that l = ji + 1. If PUi, Tl) were vertical then by the above we
would have c = {ji, ji + 1}, contradicting our hypothesis that W(c) ~ 0. Thus
P(l, T1) is horizontal, and the statement about S ~ P(1, T1) is an obvious

consequence of the corresponding statement in part 1. Now suppose that

ji + 1  1  ji+1 and that 2 holds for all m with ji + 1  m  1 - 1. Suppose that
P(l, T1) is vertical. Let u = 03BA1(l, T1) and let d = NT1(Stl + 1,u-1). Then by con-
dition (4) of Definition 1.1.8 we have ji  d  l, contradicting our induction
hypothesis. Thus P(l, T1) is horizontal, and the statement about S E P(l, T1) is an
obvious consequence of the corresponding statement about 1 - 1. This

completes the proof of statement 2. Now the first statement of part 3 is proved
for the rest of the 1 by the same argument as that used for l = ji. The second
statement of 3 is now clear, since we have that NT1(St-1,u+1)  l, so

NT1(St-1,u+1)  a would contradict the fact that for a  r  k we have

K2(r, Tl)  Kl(r + 1, Tl). Now part 4 follows from 3, since

by condition (4) of Definition 1.1.8, if p2(k, Tl) = tr-l 1 then 03BA1(k, T1) =
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K 2(k - 1, T 1 ) + 1, so by 3 we have P(k, T1) n P’(k - 1, T1) ~ 0, contradicting
k - 1 E C, k ft c. This completes the proof of the claim.
Now for 0  i  r - 1 set ui = ti - 1 and let

By part 3 of Claim 2 we have vi  03BA2(ji+1 - 1, T1) + 1. For 0  i  r set

mi = jl - a and for 0  i  r - 1 let

Then by part 2 of Claim 2 we have wi  K2Ui, Tl) + 1. For 0  i  r - 1 and

mi  l  mi+1 set

Let b = 2a - k - 1. By Lemma 3.4.8 (applied repeatedly) there is a sequence Y-
for {03B11, 03B12,...,03B1a-1} and a (T2, T) E Tt((T 1, T)) such that P(b + l, T2) = Pl for
1  l  k - a and P(r, T2) = P(r, Tl) for a  r  n. (That is, in T2 we have
placed the numbers between a - (k - a) and a - 1 (inclusive) as horizontal
dominos so that the numbers between ji - (k - a) and ji + 1 - 1 - (k - a)
(inclusive) are in the row above the numbers between ji and ji + 1 - 1. See the
example, below.) Set T2 = E(T2, c). Then Claim 1 says that (T2, T) ~GTL(T’2, T).
Now Claim 2 shows that T2 satisfies the hypotheses of Proposition 3.4.14 with
k - a in place of l, so let E2 be the sequence given by that proposition, let
(T3, T) = TL03A32((T2, T)), let (T’3, T) = TL03A32((T’2, T)), and let C3 = c(n, T3). Then by
Proposition 3.1.5-2 (applied repeatedly) we have T’3 = E(T3, C3). On the other
hand we have clearly (i.e. using Claim 2) that c3 = (cB{a}) ~ {k}, in particular
inf c3 = a + 1. By Remark 3.4.2-2 we have (T3, T) ~GTL(T’3, T), on the other
hand by hypothesis, since inf c3 &#x3E; a, we have (T3, T) + GTL (T’3, T). This contra-
diction proves Lemma 3.4.16. D

EXAMPLE. In this example Tl is the tableau pictured below, and c is the cycle
{14, 15, 16, 18, 19, 20, 21, 22}.
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Then T’ is the tableau picture here

We have Pinf(C) = 3, a = jo = 14, k = j2 = 17, and jl = 16. We may take for T2
this tableau.

Then T3 is the following tableau.

We have C3 = {15, 16, 17, 18, 19, 20, 21, 22} and in fact W(c3) = 0, so that for
this tableau we are in Case B of the proof of Lemma 3.4.15.

3.4.17. THEOREM. Let (Tl’ T2), (T’, T’2) ~ Fc(M1, M2) where M, = {1,...,n}.
Then (T1, T2) -GTL (T’1, T’) if and only if (T1) = S(T’1).
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Proof. We have already proved one implication as Proposition 3.4.7. We will
now prove the other implication. The proof is by induction on n, the theorem
being vacuously true when n = 0. By Proposition 3.4.6 it suffices to prove the
theorem when T1 and T’1 are special, so assume this. That is, we have (T1, T2),
(T’1, T’2) ~ Fc(n, n) with T1 and T’1 special, and such that (T1, T2) ~GTL(T’1, T’2),
and we want to prove that T1 = T’1. Set (T1, T2) = (T1, T2) - L and
(Ti, T’2) = (Ti, T’2) - L. By Lemma 3.4.9 we have (T1, T2) ~GTL (T’1, T’2). Then by
induction we have S(T1) = S(T’1). We will now assume that T1 ~ Ti and derive a
contradiction. There are several cases. In general the point of the proof is to
choose carefully a sequence 03A3 for 03A0B{an} and a (T 3’ T4) ~ TL03A3((T1, T2)). Then by
Remark 3.4.2-1 there is a (T’3, T’4) ~ TL03A3((T’1, T’2)) with (T3, T4) ~GTL(T’3, T’4).
Setting (T3, T 4) = (T 3’ T4) - L and (T’3, T’4) = (T’3, T’4) - L we have, by Lemma
3.4.9, that (T 3’ T4) ~GTL(T’3, T’4). Then by induction we have S(T3) = S(T’3). On
the other hand, Lemma 3.2.7 gives information about information about the
relation between P(n, T3) and P(n, T1), and similarly between P(n, T’3) and
P(n, TB). Now in many cases we will have been able to choose E so that at this
point we have the contradiction that an e 03C4(T3) and an ft 03C4(T’3), or vice versa. Then
there are two cases in which we make a more elaborate argument. Finally, there
is one case in which neither of thèse arguments work. This case was handled

separately as Lemma 3.4.1 S.
We will assume that P(n, T1) is horizontal. (Our arguments can then be

applied to the case where P(n, T1) is vertical by interchanging rows and
columns.) Let P(n, T1) = {Sij, Si,j+1}. Since T 1 is special we have either (i)
~c(Sij) = X or (ii) ~c(Sij) = Z or (iii) ~c(Sij) = W and i &#x3E; 1 and

Si-1,j+2~Shape(T1).
Case A. Here we have 03C12(n, T’1)  i. Let r = 03C1i-1(T1) and let

P1 = {Si-1,r-1, Si-1,r}. Then by Lemma 3.2.8 and Theorem 3.2.2 there is

a sequence E for 03A0B{03B1n} and a (T3, T4) ~ TL03A3((T1, T2)) such that

Shape(T3) = Shape(T1) and P(n - 1, T3) = P1. Using Lemma 3.2.6, let

(T3, T4) ~ TL03A3((T1, T2)) be such that (T3, T4) = (T3, T4) - L. By Lemma 3.2.7-3
we have P(n, T3) = P(n, T1). Then 03B1n ~ 03C4(T3). Let (T’3, T’4) and (T’3, T’4) be as
described above. Since S(T3) = S(T’3) we have P(n - 1, T’3) ~ {P(n - 1, T1),
P’(n-1, T1)}, and thus 03C12(n - 1, T3)  i - 1. By Lemma 3.2.7-1 we have
P(n, T’3) ~ (P(n, T’1), P’(n, T’1)}, and thus 03C11(n, T’3)  i - 1. Thus 03B1n ~ 03C4(T’3).

Henceforth we assume that p2(n, T’1)  i. Note that in general any square
S ~ Shape(T1) which is ~c-fixed is also in Shape(T’1). We use this implicitly in
what follows to rule out some possibilities for P(n, T’1). If P(n, T’1) is horizontal
then p2(n, Ti) &#x3E; i (since if p2(n, T’1) = i then Ti and T’l special implies that
T 1 = T i, contradicting our hypothesis), so, interchanging the roles of (T1, T2)
and (T’1, T’2), we are reduced to case A. So we also assume that P(n, T’1) is vertical.

Case B. Here we have that 03C11(n, T’1) &#x3E; i, that Si+1,j-1 ~ Shape(T1), and that
P(n, T’1) ~ {Si+1,j, Si+2,j}. Then 03BA2(n, T’1)  j. Let r = 03BAj-1(T1), and let
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Pi = {S1-1,j-1, Sr,j-1}. We now proceed as in case A and find that an ~ 03C4(T3) and
an e 03C4(T’3) (for this last fact we transpose the argument given in case A.

Case C. Here we assume that 03C11(n, T’1) &#x3E; i, that Si+1,j-1 ~ Shape(T1), that
Si+1,j-2 ~ Shape(T1). and that P(n, T’1) ~ {Si+1,j-1, Si+2,j-1}. Then T1 special
implies that ~c(Sij) ~ X. If ~c(Sij) = Z then T 1 special implies that

Si+2,j-2 ~ Shape(T1). Here our hypotheses show that 03BA1(n, T’1)  j - 1. Let

r = 03BAj-2(T1) and let P1 = {Sr-1,j-2, Sr,j-2}. If ~c(Sij) = W and

03BAj-2(T1) &#x3E; i + 1 then again we set r = 03BAj-2(T1) and Pi = {Sr-1,j-2, Sr,j-2}.
Here again we have 03BA1(n, T’1)  j - 1 (note that P(n, T’1) = {Si+2,j-1, Si+3,j-1} is
impossible since else Si+3,j-1 is a filled corner in T’l). If ~c(Sij) = W and
03BAj-2(T1) = i + 1 then T1 special implies that  4 and Si+2,j-3 ~ Shape(T1), so
we set P1 = {Si+1,j-3, Si+1,j-2}. · Since P(n, T’1) is vertical we have

03BA1(n, T’1)  j - 2. Now we proceed as in the previous cases and find that

03B1n ~ 03C4(T3) and 03B1n ~ 03C4(T’3).
Case D. Here we assume that 03C11(n, T’1) &#x3E; i and Si+1,j-2 ~ Shape(T1). Since

P(n, T’1) is vertical we have 03BA2(n, T’1)  j - 2. Let P1 = {Si,j-2, Si,j-1}. We
proceed as in the previous cases, and find that an ft !(T 3) and an e 03C4(T’3).

Case E. Here we assume that P(n, T’1) = {Si+1,j,Si+2,j}. Then Sij is ~c-
variable, so ~c(Sij) ~ Z. We have also ~c(Sij) ~ X, since else Si+2,j is a filled
corner in T’1. So ~c(Sij) = W Set Pi = {Si-1,j, Sij} and let (T11, T12) = S((T1, T2)).
Then

so we can apply Lemma 3.2.8 to find a tableau T3 ~ Fc({1,...,n - 1}) with
Shape(T3) = Shape(T11) and P(n - 1, T3) = Pl. Then we set T4 = T2 = S(T2)
and apply Theorem 3.2.2 to find a sequence X for 03A0B{03B1n} such that

(T3, T4) ~ TL((T 1, T2)). Let (T3, T4), etc., be as in previous cases. Then

so 03B1n ~ 03C4(T3). On the other hand, since S(T’3) = S(T3) and P(n, T’3) ~ {P’(n, T’1)},
P’(n, T’1)}, we see that 03B1n ~ 03C4(T’3).

Case F. Here we assume that P(n, T’1) = {Si+1,j-1, Si+2,j-1}. The subcase
where ~c(Sij) = X is the transpose of the subcase where ~c(Sij) = W, so we will
assume ~c(Sij) = W or ~c(Sij) = Z, in particular, since ~c(S1,1) = X, we have
i &#x3E; 1. If ~c(Sij) = W then, since Ti is special we have 03C1i-1(T1) = j + 1 and

Si+1,j-1 ~ Shape(T1), so let P1 = {Si-1,j, Si-1,j+1} and P2 = {Si-1,j-1, Si,j-1}.
If 4JC(Sij) = Z and 03C1i-1(T1) = j + 1 then let Pi and P2 be as above. If

03C1i-1(T1) &#x3E; j + 1 then since Ti is special we have 03C1i-1(T1)  j + 3, so let

r = 03C1i-1(T1) and let P1 = {Si-1,r-1, Si-1,r} and P2 = {Si-1,r-3, Si-1,r-2}. By
Lemma 3.2.8 and Theorem 3.2.2 there is a sequence E for 03A0B{03B1n} and a
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(T3, T4) ~ TL03A3((T1, T2)) such that Shape(T3) = Shape(T1), P(n - 1, T3) = P1,
and P(n - 2, T3) = P2. Let (T3, T4) ~ TL03A3((T1, T2)) be such that (T3, T4) =
(T3, T4) - L. Let (T13, T14) ~ TL03A3((T’1, T’2)) be such that (T13, T14) ~GTL(T3, T4)· By
Lemma 3.4.2-2 we have

Let (T’3, T’4) = S((T13, T14)). Then P(n, T’3) ~ {P(n, T’1), P’(n, T’1)}, and by Proposi-
tion 3.4.6 we have (T’3, T’4) ~GTL(T3, T4). Let (T’3, T’4) = (T’3, T’4) - L. By in-
duction S(T’3) = S(T3). In the case where cpC(Sij) = W we then have

In the other cases we have

and

Now let (T5, T6) = TL03B1n-103B1n((T3, T4)) and (T’5, T’6) = TL03B1n-1,03B1n((T3, T4)). Let

(T5, T 6) = (T5, T6) - L and (T’5, Te) = (T’5, T’6) - L. Then by induction we have
S(Ts) = S(T’5). On the other hand, we observe directly that S(T5) ~ S(T’5).

Case G. Here P(n, T’1) = {Sij, Si+ 1,j}. Then we must have ~c(Sij) = X. (To see
this, note that since T’1 is special we have that ~c(Sij) ~ Z. Now assume
~c(Sij) = W Then since T1 is special and Si-1,j+1 is a filled corner in T 1 and Sij
is an empty hole in T1, it follows that there is a cycle CE OC* (T 1) with
Sb(c) = Si-1,j+1 and Sf(c) = Sij. Similarly, there is a cycle c’ ~ OC*(T’1) with
Sb (c’ ) = Si + ij-1 and Sf(c’) = Sij. Since S(T1) = S(T’1) this is impossible.) If i = 1

and j = 1 then n = 1, 03B11 ~ 03C4(T’1), and 03B11 ~ 03C4(T1). Henceforth assume that i &#x3E; 1.

(The situation where i = 1 and j &#x3E; 1 is the transpose of the situation where

j = 1 and i &#x3E; 1.) Since ~c(S1,1) = X we have i  3. There are several cases.

If Si-1,j+3 ~ Shape(T1) let r = 03C1i-1(T1), P1 = {Si-1,r-1, Si-1,r}, and

P2 = {Si-1,r-3, Si-1,r-2}. If Si-1,j+3 ~ Shape(T1) and Si-1,j+2 ~ Shape(T1) then
since T1 is special we have Si-2,j+3 ~ Shape(T1) so let P1 = {Si-2,j+2, Si-1,j+2}
and P2 = {Si-1,j, Si-1,j+1}. If Si-1,j+2 ~ Shape(T1) and Si-2,j+2 ~ Shape(T1)
then since T1 is special we have Si-2,j+3 ~ Shape(T1) so let r = 03C1i-2(T1),
l’1 = {Si-2,r-1, Si-2,r} and P2 = {Si-1,j, Si-1,j+1}. If Si-2,j+2 ~ Shape(T1) then
let P1 = {Si-2,j+1, Si-1,j+1} and P2 = {Si-2,j, Si-1,j}. In all four cases we

proceed as in case F and arrive at the contradiction that S(T5) ~ S(T’5).
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Case H. Here we assume that P(n, T’) = {Si,j-1, Si+1,j-1}. This case is the
transpose of case E.

Case I. Here we assume that P(n, T’1) = {Si-1,j+1, Si,j+1}. Then ~c(Sij) = X
or oc(Sij) = W, and we have T’1 = E(T1, c(n, T1)). Here the arguments used in the
previous cases will not work. We could set P1 = {Si-1,j, Si-1,j+1} and find
(T3, T4), etc., as in case A, but it is then possible that T3 = T’. So instead we have
proved this case by a different method, in Lemma 3.4.15.

This completes the proof of Theorem 3.4.17. D

REMARK. To prove this theorem for (T1, T2), (T’1, T’2) ~ FB(n, n) we need the
following variations on cases F and G.

Case F. We can no longer assume that i &#x3E; 1. So assume that i = 1. Then T1

special implies that ~B(Sij) = Z. If j &#x3E; 2 then transposing takes us to the

situation where i &#x3E; 1, so we are reduced to the case where i = 1 and j = 2. But
then n = 1, 03B11 ~ 03C4(T1), and al ~ 03C4(T’1), so we are done.

Case G. Here we have to consider the possibility that i = 2 and j = 2 and
Pl(T 1) = 3 and Ki(Ti) = 3. We will assume that Tl = T’ 1 = (F2, ~B) (the case
where T = Ti = (F 1, OB) is entirely similar). Then TL03B11,03B12((T’1, T’» consists of one
element, say (T’3, T’4), and we have a3 ~ 03C4(T’3). On the other hand, TL03B11,03B12((T1, T2))
consists of two elements, and a3 is not in the left i-invariant of one of them.

Section 5

We now recall the equivalence relation of cells defined by Joseph in [8].

3.5.1. DEFINITION. Let X be either W, Y(n, n), 9-c(n, n) or FB(n, n). We define
an equivalence relation, the left cell relation of Joseph, on X. If x, y E X then
x ~JL y if and only if there is a sequence L for 03A0 such that y E TL(x). (That this is
an equivalence relation follows from the definition of TL and Remark 3.2.1.) We
define analogously the right cell relation of Joseph, -,,.
We recall here the main result of Section 2, in the form in which we will use it

in this section.

3.5.2. THEOREM. Let (T1, T2), (T’, T’) e %(n, n). Then (T1, T2) ~JR (T’, T’2) if
and only if S(T1) = S(T’1).

Proof This combines Theorem 3.2.2 and Proposition 3.2.3. 

3.5.3. NOTATION. For this section we will consider the map A defined in part
1 of this series of papers as a map from Y(n, n) to 5-c(n, n) in the obvious way, that
is, the image of a y E Y(n, n) is a pair of tableaux with the C grid. We will write
A(y) = (L(03B3), R(y».
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3.5.4. PROPOSITION. Let w1, w2 ~ W. Then

(1) w1 ~JL w2 f and only if A(03B4(w1) ~JR A(03B4(W2)).
(2) wl ~GTR w2 if and only f A(03B4(w1)) ~GTL A(03B4(w2)).

Proof. These statements are an obvious consequence of Remark 2.1.7-1),
Proposition 2.1.18, and Theorems 2.1.19 and 2.3.8. D

3.5.5. PROPOSITION. Let w1, w2 ~ W. Then

(1) A(03B4(W1)) ~JR A(03B4(w2)) if and only if S(L(03B4(w1))) = S(L(03B4(w2))).
(2) A(03B4(w1)) ~GTL A(03B4(w2)) if and only if S(L(03B4(w1))) = S(L(ô(W2»)-

Proof. Statement (1) is simply Theorem 3.5.2 applied to A(03B4(w1)) and A(Ô(W2»,
Similarly, statement (2) is Theorem 3.4.17 applied to A(03B4(w1)) and A(03B4(w2)). D

3.5.6. COROLLARY. Let w1, w2 ~ W. Then

(1) Wl -GTR W2 if and only if S(L(03B4(w1))) = S(L(03B4(w2))).
(2) Wl -JL W2 if and only if w1 ~GTR w2·

Proof. This combines Propositions 3.5.4 and 3.5.5. D

Now let g be a complex semisimple Lie algebra. Let U(g) be its universal
enveloping algebra, and let Prim U(g) be the set of primitive ideals in U(g). Fix a
Cartan subalgebra b of g, let A = 0394(g, 1)), and fix 0394+ a choice of positive roots for
A. Let n = 03A303B1~0394+ gtt and let b = b + n. Let p = 1 2 03A303B1~0394+ a.

If 03BB~b* we write 039403BB for the integral roots with respect to 03BB, that is,

We set 0394+03BB = 0394+ n 039403BB and we let 11;. be the simple roots of A’. We write W03BB for
the Weyl group of 039403BB. We define 03C4L, DL03B103B2, and TL03B103B2 on W03BB exactly as they were
defined on W in section 1 of [4], and similarly for their counterparts on the
right, and for the equivalence relations ~JL, ~JR, ~GTL, and ~GTR. We write
Prim,(U(g» for the set of primitive ideals in U(g) with infinitesimal character 03BB.

Now suppose 03BB~b* is anti-dominant and regular. Let we W03BB. We write I;.(w)
for the annihilator in U(g) of the irreducible highest weight module L(w03BB), where
L(w03BB) is the unique irreducible quotient of the Verma module

M-Â = U(g) ~U(b) 03BB-03C1.
Duflo [2] has shown that the map W03BB ~ Prim03BB(U(g)) given by w  I03BB(w) is

surjective. One can define i, D03B103B2, and 7§p for Prim03BB(U(g)) by means of the Duflo
map:

3.5.7. DEFINITION. We define 03C4(I03BB(w)) = iR(w) and

D03B103B2(Prim03BB(U(g))) = {I e Prim03BB(U(g))|03B2 e 03C4(I) and 03B1 ~ 03C4(I)}.
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Suppose I03BB(w) ~ D03B103B2(Prim03BB(U(g))). We define T03B103B2(I03BB(w)) = I03BB(TR03B103B2(w)) when a and
03B2 have the same length, otherwise T03B103B2(I03BB(w)) = {I03BB(w’) w’ E TR03B103B2(w)}.

Duflo [2], Borho-Jantzen [1], and Jantzen [7] have shown that the above are
well-defined. Vogan [12] then defines the generalized i-invariant as an equival-
ence relation on Prim03BB(U(g)), written ~GT, as in Definition 3.4.1. We have

clearly

3.5.9. THEOREM. Suppose all the simple factors of 039403BB are of type An, Bn, or

Cn . Let I1, I2 E Prim03BB(U(g)). Then I ~GT I2 if and only if I1 = 12.
This is Conjecture 3.11 of [12]. In that paper it was proved when the simple

factors of AÂ are of type An. As we will show in part IV of this series of papers, it
is false as stated for type Dn, but true when ~GT is replaced by a stronger
equivalence relation, which will be described in that paper.

PROOF OF THEOREM 3.5.9. Let Wl, W2 E W03BB. Joseph has shown [8] that
Wl -11 W2 implies that I03BB(w1) = Â(W2). Clearly if I03BB(w1) = I03BB(w2) then

1;,(Wl) ~GT I03BB(w2), and the observation 3.5.8 says that I03BB(w1) ~GT I03BB(w2) implies
that Wl ~GTR W2. So it suffices to prove that w1 ~GTR N’2 implies that w, -JL w2,
and clearly it suffices to prove this when 039403BB is simple. For type An this was done
by Jantzen in [7], and also by Vogan in [12], where the above argument was
used to complete the proof of Theorem 3.5.9 for type An. For type Cn we have
proved that wl ~GTR W2 implies w1 ~JL W2 as Corollary 3.5.6-2). Since the
standard identification of the Weyl groups of types Bn and Cn commutes with the
definitions of 1:L, etc., we have also proved this for type Bn . D

3.5.10. DEFINITION. Recall that JSC(n) was defined by 1$(n) = {T e %(n) ) T
is speciall, and similarly JSB(n). We define 1: on FSC(n) as on 9-c(n), and then
define D03B103B2 as usual. When {03B1, 03B2} = Oti, 03B1i+1} with i  2 we define T03B103B2 on
D03B103B2(JSC(n)) as on D03B103B2(FC(n)), that is, using Definition 2.1.10. When

oc, = {03B1i, 03B1i+1} with i = 1 and T E D03B103B2(FSC(n)) we define T03B103B2(T) as a one or two
element subset of D03B2a(FSC(n)) as follows.

(1) If F1 ~ T (respectively F2 ~ T) then, since T is special, we have that c(2, T)
is closed. Let T’ = E(T, c(2, T)) and define 7§p(T) = {(T’BF1) ~ F2} (respectively
T03B103B2(T) = {(T’BF2) u Fil).

(2) If F1 ~ T (respectively F2 ~ T) let T’ = (TBF 1) u F2 (respectively
T’ = (TBF 2) u Fi). If c(2, T’) is open define T03B103B2(T) = {T’}. If c(2, T’) is closed,
define 7§p (T) = {T’, E(T’, c(2, T’))}.
We now have the classification theorem.
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3.5.11. THEOREM. Suppose g is of type Cn or type Bn and À E 1) is integral,
regular, and anti-dominant. Then the map

given by cl(I03BB(w)) = S(L(Ô(w») is a bijection. The map cl has the following
properties:

(1) 03C4(cl(I)) = 03C4(I) for 1 E Prim03BB(U(g)),
(2) cl(T03B103B2(I)) = T03B103B2(cl(I)) for I E D03B103B2(Prim03BB(U(g))).

The map cl is the unique map from PrimÂ(U(g» to FSC(n) having properties (1)
and (2).

Proof. The surjectivity of cl follows from the surjectivity of the map A. The
injectivity of cl is a combination of Corollary 3.5.6-1 and Theorem 3.5.9.

Properties (1) and (2) follow from Definitions 3.5.7 and 3.5.10 and the results
cited in the proof of Proposition 3.5.4. To see the uniqueness, let 03C8:
Prim03BB(U(g)) ~ FSC(n) be another map with properties (1) and (2). Then Cl-l 0 03C8
commutes with i and the T03B103B2’s, and thus for every 1 E Prim03BB(U(g)) we have
(cl-1 ° 03C8)(I) ~GT I. Then by Theorem 3.5.9 we have (cl-1 ° 03C8)(I) = I, as desired.

a

3.5.12. REMARK. For g of type Bn and as in Theorem 3.5.11 it will

sometimes be necessary to have a classifying map cl : Prim03BB(U(g)) ~ FSB(n). This
map is defined as in Theorem 3.5.11 except that L(03B4(w)) is defined with reference
to the map A0 of Remark 1.2.14. Theorem 3.5.11 still holds for this map cl, as

every input to this theorem is either true as stated for this situation and has the
same proof, or we have, in the various remarks of these papers, shown how to
modify the statements and proofs for this situation.

3.5.13. REMARK. Recall that for g of type An and integral, regular, and anti-
dominant Joseph has proved the analogue of Theorem 3.5.11 for a classifying
map Prim03BB(U(g)) ~ FA(n), where FA(n) is the set of standard Young tableaux of
size n. It follows from this and our results that, for g and as in Theorem 3.5.9,
we can, by choosing an identification of 039403BB with a product of root systems of
type An, Bn, and C,,, define a classification map which takes Prim03BB(U(g)) to a
product of 9A(n)’s, FSB(n)’s, and FSC(n)’s. This map will also have the properties
stated in Theorem 3.5.11. (Cf. [5], Chapter 5 and section 6.3. In that paper
Joseph’s classification map for type An is called clad and there is another

classification map cid. For types Bn and Cn, since the long element of the Weyl
group is equal to - 1, we do not need to distinguish two classification maps: they
are equal.)
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