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A. Introduction

The question of describing the decomposition of the restriction of an irreducible
complex representation = of a group G to a subgroup H of G is fundamental
in representation theory. The Frobenius reciprocity law: Hompy(w, p) =
Homg(x, Ind(p; G, H)) (see, e.g. [BZ1], Theorem 2.28) asserts that the restriction
7| H of n to H has the irreducible H-module p as a quotient precisely when the
G-module 7 embeds in the G-module Ind(p; G, H) induced to G from p on H.
Since Homy(w, p) = Homg(x ® p, C), where p is the H-module contragredient to
p, the question of the multiplicity of p in 7 can be stated in terms of linear forms
on T ®y p. The study of such forms for real groups, especially when H is the
group of fixed points of an involution on a real group G, has led to the rapidly
expanding subject of harmonic analysis on such symmetric spaces G/H (if p is
trivial; (G x H)/H in general); see, e.g., Flensted-Jensen [FJ], Oshima-Matsuki
[OM], Bien [Bi].

Various facts are known also when G is a p-adic reductive group. As an
example we recall a result of Gelfand-Kazhdan [GK] and Bernstein-Zelevinski
[BZ2], which asserts that the restriction of an irreducible admissible generic
(=having a Whittaker model) representation n of G = GL(n, F), where F is a

non-archimedean field, to its subgroup H=GL(n—1,F) <H & G via

h 0 . . - . .
hr—»(o 1)), contains each irreducible admissible generic representation p of

H with multiplicity one. Equivalently, there exists a unique up-to-a-scalar non-
zero H-invariant linear form on n ® p. Recently J. Bernstein showed this
(unpublished) for all irreducible admissible 7 and p, not necessarily generic,
namely that (GL(n, F), GL(n—1,F)) — and more generally (GL(n, F)x
GL(n—1,F), GL(n—1, F)) and (O(n, F) x O(n—1, F), O(n—1, F)) — is a “Gelfand
pair” (see [DP] when F is R and = is unitary, for the pair (GL(n, R),
GL(n—1, R))).
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When F is a global field with a ring A of adeles, # = ®m, an irreducible
cuspidal (hence generic) representation of G = G(A), G = GL(n), and p = ®p,
an irreducible cuspidal representation of H = H(A), H= GL(n—1), the local
result implies that there exists at most one (up-to-a-scalar) non-zero form on
7 ® p. Such a form actually exists, since the local forms have the property (a
proof is given in a remark at the end of this Introduction) that for almost all v
they are non-zero at 5, ® #,_,; here », is a non-zero K -fixed vector in 7,
K,=G(R,), R,=ring of integers in the completion F, of F at the non-
archimedean place v, and #,_, is a non-zero K¥-fixed vector in p,, where
K®=H(R,).

But there is a purely global, automorphic, statement, of number theoretic
interest, concerning a specific shape of this linear form on = ® p. The question is
whether the global form is a multiple of the automorphically defined bilinear form
B=B,,, on 1 ® p, where

_ h 0\ -
Bs(¢n7 d)n— 1) = J‘H\IH] ¢n <<0 1>> ¢n— l(h)ldet hIS71/2 dh’

¢, ranges over n = L3(G\G) and ¢,_, over p = L} ,(H\H). We again take the
algebraic group G to be GL(n), and assume that the central character of = is
unitary and fixed, and that, w, of p, is unitary. Then p consists of the complex
conjugates ¢,_, of the ¢,_, in p. The cuspidal representations =, p are realized
in the spaces L3(G\G), L3 ,(H\H) of cusp forms (which transform under the
center via the fixed character in the case of G and via w in the case of H). The
integral defining B, is clearly convergent since the cusp form ¢, is rapidly
decreasing (and so is ¢, _ ;).

To answer this question, consider the Fourier expansion of the cusp form ¢,

bu9)= Y Wilpg)

PeNy\H

with respect to the character Y(x) =WY(Z; <;<,X;;+1) of N\N, where N is the
upper triangular unipotent subgroup of G, and ¥ is a non-trivial complex
character of A mod F. Here Ny =N nH, and

W.(g9) = IN\N $.(xg) (x)dx satisfies W, (xg) = Y(x)W,(9).
Then

By(¢n> b1) = fN . W, (((’; ?)) b, (h)|det hj*~ 2 dh
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= _[ W, <<h 0)) j q;n_l(xh)l//(x)dxmet hls—1/2 dh
N\ 0 1)/ JNnNy

- f W, ((h 0)) W, () det hi:= 172 dh,
Np\H 01

This last integral is “Eulerian”, that is, can be expressed as a product of local
integrals, when W, and W, _, factorize as local products:

VVn((gv)) = l—[ VVn,v(gv)b I/Vn— 1((hv)) = l—[ mt* l,v(hv)'

In general, W, and W, _ are finite linear combinations of such local products. At
almost all places the local component is the normalized (value vol(K,)™! or
vol(K#)~1 at the identity) right K- (or K¥)-invariant Whittaker function W2, or
VVnO— 1,0

Using Shintani’s explicit form [Sh] of these invariant Whittaker functions,
and the theory of Schur functions [M], a computation — relegated to the remark
at the end of this Introduction — shows that the local integral

h 0)) -
J W), (<0 1)) W, 1l det ;™12 dh
Nu\H,

is equal to the local L-function L(s,7,® &,) associated to the unramified
components «, and p, of = and p at v. At the remaining finite set of places of F
where =, p or ¥ are ramified, or (W, ,, W,_, ,) are not (W,,, W2, ), the analysis
of [JPS], Theorem 2.7, shows that the local integrals are convergent for Re(s)
large, and relate them to a local factor L(s, n, ® p,), which is now defined to be
the normalized generator of the fractional principal ideal generated by these
local integrals (see [JS2], Theorem 5.1, for the archimedean case). The product
L(s,7 ® p) =11, L(s, =, ® p,) has analytic continuation to the entire complex
plane as a holomorphic function in s which satisfies a functional equation
relating its value at s and 1—s, and the automorphic criterion alluded to above
is as follows.

The bilinear form on n ® p is a multiple of B, namely B is not identically zero on
T ® p, precisely when L(s, m ® p) does not vanish at s =1/2.

It is clear from the argument above that when p is not generic, but = is still
cuspidal, then B, which is still defined by a convergent integral, is zero.

In the analogous situation of the pair G = SO(n) and H = SO(n— 1), B. Gross
and D. Prasad [GP] conjectured in particular that (1) dimc Homy,
(%, ® py, C) < 1 for every irreducible admissible G,-module 7, and H,-module
p,, and that (2) for cuspidal representations 7= ®=, of G and p = ®p, of H
with Homy (7, ® p,, C) = C for all v, the form B on © ® p is non zero precisely
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when L, 7 ® p) # 0, where L(s, # ® p) is the standard L-function associated to
n® p. When n=3 the pair with G=SO(3)=PGL(2) had been studied by
Waldspurger [W] who in fact took H to be an elliptic torus of G which splits
over a quadratic extension E of F, and showed that B # 0 precisely when (in
addition to the local condition Homy (7, p,) = C for all v) L(1/2,TI ® p) # 0,
where IT is the base-change of the cuspidal 7= to PGL(2, A) and p is a character
of Ag /E* = H(A)/H(F). When n =4 the groups SO(4) and SO(3) are related to
GL(2) x GL(2) and PGL(2), the local question was treated by Prasad’s thesis
[P], and the global (for some F, = and p) by Harris and Kudla [HK]] using
techniques of Garrett [G], Piatetski-Shapiro and Rallis [PR]. The multiplicity
of p in & is naturally related in these cases to that of p’ in n/, where p’, n’ are the
corresponding representations of the inner forms of G and H (when these exist).

Conversations with D. Prasad on the conjecture of [GP] were a source of
inspiration to the present work. While visiting Prasad, in email correspondence
concerning the archimedean case of the conjecture made in [F2] and studied in
[F3] for the pair G=GL(n,E) and H=GL(n,F) (more precisely
G = Resgr(GL(n)/F), H = GL(n)/F, E/F = quadratic extension of local or global
fields of characteristic # 2), F. Bien alluded to work which was identified for us
by J.G. M. Mars as that of van Dijk and his collaborators; see [DP] and
references there. In [DP] the H = GL(rn—1, R)-invariant distributions on
unitary G = SL(n, R)-modules © were studied.

Theorem 5.1 of [DP] essentially says that the unitary irreducible non-trivial
G-modules © which are H-spherical, namely admit a non-zero H-invariant linear
form, are of the form I(1 x t; G, P), normalizedly induced from the represen-

b
tation (8 c> > 7(c) of the standard parabolic subgroup P =P, _, , of G of type

(n—2,2) (thus ae GL(n—2, R), ce GL(2, R), det adet ¢ = 1), where 7 is a unitary
infinite dimensional representation of PGL(2, R) (or GL(2, R), with a trivial
central character). This work was another source of inspiration for our work.
We were especially intrigued by the occurrence in a new context for us of “small”
representations of the type which attracted the attention of Kazhdan, Savin, and
others (see, e.g. [FKS]).

Since packets are singletons, and by virtue of multiplicity one and rigidity
theorems in the global case, it is more natural to work with the group
G = GL(n), than with SL(n). An analogue over a non-archimedean field F of the
theorem [DP] of van Dijk and Poel is proven in Proposition 0 in the Appendix
below. It would do no harm to extend our perspective a little and consider a
character £(h) = E(det h) of H=GL(n—1, F), where & is a character of F*. It
asserts that the irreducible admissible unitarizable G = GL(n, F)-modules & which
admit a non-zero linear form which transforms under H via £ must be &(det), or of
the shape I1(¢ x 1; G, P), normalizedly induced from the parabolic of type (n—2,2)
where & is viewed here as a character of GL(n—2, F), and 7t is an irreducible
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unitarizable infinite dimensional representation of the 2x2 factor of the Levi
subgroup. The proof of Proposition 0 is based on the Gelfand-Kazhdan [GK]
and Bernstein-Zelvinski theory [BZ2] concerning the restriction of a represen-
tation of GL(n, F) to the subgroup P, of [BZ2], Section 3. We show in
Proposition 0.1 in the Appendix that these I(£ x t; G, P) do have a form which
transforms under H via & Consequently if an irreducible unitary automorphic
infinite dimensional representation n of G = G(A) admits a non-zero form
which transforms under H = H(A) according to &(h) = E(det h), where now & is a
character of A*/F*, then = is of the form I(¢ x t; G, P), normalizedly induced
from the parabolic of type (n—2,2), where & is the associated character of
GL(n—2, A) and 7 is an automorphic unitary representation of GL(2, A) with
no one dimensional components.

The restriction of an irreducible representation of GL(n) over a finite field F,
to the subgroup GL(n— 1, q) was considered by Thoma [Th], and by Zelevinsky
[Z2], Corollary 13.8, p. 148. Their results (“branching rule”) in the finite field
case are analogous to those of Proposition 0, in the p-adic case. The case of the
compact pair U(n, R), U(n—1, R), and that of the analytic finite-dimensional
representations of GL(n, C) (and GL(n— 1, C)), is also reviewed in the Appendix,
following the proof of Proposition 0.1, using the “Gelfand-Cetlin” basis
technique of [Zh].

Our main interest in this paper is in the purely global, or automorphic, notion
of G-modules with a form transforming under H via &, or more precisely in the
bilinear form B on n ® £~ 1. This B would be the linear form on = of the shape

h 0 .
B(¢) = L\H ¢ ((0 1>> &)~ ' dh.

It was noted above that this form is identically zero if = is cuspidal. If = is not
cuspidal then it can be realized in the space of automorphic forms by means of
Eisenstein series ¢(g) = E(g, @, p, ), when 7 ~ I(p, 4), where p is a discrete series
representation of a (standard, not necessarily proper) parabolic subgroup P of G
(p is trivial on the unipotent radical N of P), 1 i U¥ where A} is some real space,
and @ lies in the G-module I(p, ) normalizedly induced from the data p ® e+
on P.

The problem raised by this realization is that the Eisenstein series is slowly
increasing (in a Siegel domain) and is no longer rapidly decreasing. Consequent-
ly the integral which should have defined B(¢) does not converge. To overcome
this problem it is natural to apply B to the truncation ATE of the Eisenstein
series, where the truncation operator A7, for T in A, is the one introduced by
Arthur [A2] to develop the trace formula. Since E is slowly increasing, ATE (for
a sufficiently regular T) is rapidly decreasing, and the integral which defines
B(ATE) converges (absolutely).
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We computed B(ATE) in two important cases. The first is when P=P,_, ,,
and p=p,xp, where p; is a character of A*/F*, or of GL(n—2, A)/
GL(n—2, F) via the determinant map, and p, is a cuspidal GL(2, A)-module.
Then A lies in the one dimensional (over R) space i} ~ iR, and the result of the
computation is (a linear combination of) the product of a slowly increasing
function in A, and t*/J, where t is the projection of T to a line in the positive
chamber. The multiple is zero unless p; = &, and then it is the value at (n— 1)/2 of
an L-function of p, ® £ !, depending on ®. In any case the result is supported
on the line I(p,;v¥"~2 x p,v~*?) of representations (here v(x) = |x|, xe A *), and
not only at =0 as Proposition 0, Appendix, which is the non-archimedean
analogue of [DP], would suggest.

The second case is when p=p, X p, X p3 is a character of the minimal
parabolic subgroup P = B of G = PGL(3). The result of a lengthy computation
shows that B(ATE)is a linear combination of terms of the form: Product of a nice
function in A, depending on ®, and a factor of the form t'™/I(1) or
t2A2D/1 (A)],(4), where t, t; are components of T and the [, [; are linear forms in
the components of 4. Here A lies in the two dimensional (over R) space
iA%(~iR?), and not in a one-dimensional subspace as could have been
predicted by Proposition 0, Appendix, and [DP]. Some of the forms /; are not
homogeneous. But the kernels of the homogeneous forms [;, | do define the
representations n ~ I(p, A) which are permitted by Proposition 0, Appendix, and
[DP], to have H = GL(2, A)-invariant forms.

To explain this phenomenon note that the representation I(p, A) occurs in a
series of representations. As A varies over the space iU}, and p through a set of
representatives for the set of orbits p ® e<*f” of discrete series representations of
the various parabolic subgroups (more precisely, their Levi components), all
automorphic representations are obtained. In particular, for any test function
f € CX(G(A)), the convolution operator r(f) on the space of automorphic forms
is an integral operator:

r(N)P)9) = J K (g, hy@(h)dh,
G\G
whose kernel has the spectral decomposition

Ky(g. =2 nP)~" 3 | @ZQ (U(f, p, D@1, ®E(G, D3, p, DE(h, s, p, 4)d4;
P p Ji 1,02

Ay
see Arthur [A1]; the orthonormal bases ®@; of I(p, 1) have standard finiteness
properties. The matrix coefficient (I(f, p, A)®,, ®,) is rapidly decreasing in
AeiU% as |A] — oo, being the Mellin transform of a Schwartz function. Hence the

integrals and sums here are absolutely convergent.
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Our strategy is then to apply the truncation operator A’ to the second
variable, h, in K (g, h), multiply by ¢(h) and integrate over H\H. Changing the
order of integration over h and A we obtain an integral over A€iUF of an
integrand which has the factor B(ATE(h, ®,, p, A)). Also we multiply this kernel
by a character y/(g) of the compact group N\N, where N is the upper triangular
subgroup of G, and integrate over g€ N\N. Another factor in the integrand is
then the Fourier coefficient E (®,, p, 1) of E(g,®,,p, ). By virtue of the
computation of B(ATE), the rapid decay of the matrix coefficient, and the
elementary Lemma 10, asserting that limﬁwj,»R fAEHA)dA = f0) if f is a
Schwartz function on iR, the limit of

fj ATK ;(x, Wy(x)é(h)dx dh as T > oo

(T sufficiently regular) can be taken, and the I(p, 4) which contribute to this limit
are precisely those which are permitted by Proposition 0, Appendix, and [DP],
to have a non-zero H = H(A) invariant form.

On the other hand the integral () [y\n [ru K 7(x, B)é(RY(x) dh dx converges
absolutely, and so is equal to limy_, [[ ATK ((x, liy(x)&(h) dh dx. Indeed, the
kernel K /(g, h) of r( /) has the simpler “geometric” expansion Z,.; f(g~'vh), and
an elementary computation shows that () is integrable, equal to zero unless ¢
has index at most two, and can be expressed as a sum of a certain new type of
orbital integrals, the orbit being U(A)gH(A) for some subgroup U of N, when
Y has index two. Note that in general, given y and a non-trivial character
Y of AmodF, there is o= (ay,...,%,_1)€F" such that y =y,, where
V(X)) = V(2 <i<n X i+1) on xe N\N. The index of Y =, is the number of
non-zero entries in a. In dealing with this “geometric” side, it is more convenient
to work with another embedding of GL(n—1) as H in G = GL(n); see the
Statement of Result, or Geometric Side, below.

Our Fourier summation formula is the resulting identity of a sum of orbital
integrals on one hand, and a sum of distributions supported on the variety of
representations of the form I(p, X p,; G, P), where P is the parabolic of type
(n—2,2), p, is an automorphic generic representation of GL(2,A), and p, is a
character of A*/F* and so also of GL(n—2,A)/GL(n—2,F), via the
determinant.

It is called “Fourier” since it involves the Fourier coefficient E, (®,, p, 4), and
the character y occurs also in the orbital integral. It would be misleading to call
our formula a “trace formula”, as we did in an analogous context in [F2], since
no traces feature in the formula. It is a summation formula, comparing a sum of
integrals with a sum (possibly continuous) of distributions parametrized by
representations. OQur original question concerns the identification of the represen-
tations which occur in this parametrizing set.
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The proof of the summation formula is complete only in the case of n= 3.
Indeed, the computation of [gw &~ '(R)ATE(h, @, p, 2)dh is carried out for all
parabolic subgroups P only in the case of G = GL(3). For n > 4 it is merely
shown that if [¢ 'ATE has the expected form, then comparison with the
geometric side implies that only © = I(p, A) with index two (in the obvious sense)
occur, and these are of the form I(p, x p,; G, P, -, ,)) as above, or induced from
a character of a parabolic of type (n,, n,, n;). It would be natural to conjecture
that at least two of the n,, n,, n; are equal to 1 if  is in the support of the
summation formula, but we did not go beyond computing | ¢~ 'ATE when n; = 1
(i=1,2,3), that is, n= 3. To obtain the formula in the n > 4 case we used a
consequence of the theory of the Bernstein center (see [BD] or [B]) which
permits choosing a component f, of f such that n,(f,) is zero unless 7, is a
constituent of an induced I,(u; X -+ X u,_, X p,), where p, is supercuspidal on
GL(2, F,) and y; are characters of F .

The case of n = 2 is also studied in full, mainly as an example to shed light on
the general case. This is similar to a case treated by Jacquet [J2] — although his
truncation seems to be slightly different than the one we use (see the com-
putations of [J1], p.211, on which [J2], p.127, is based) — to reprove
Waldspurger’s beautiful theorem [W] about a cuspidal PGL(2, A)-module =,
that there is a character n of A*/F* with n? =1 and L3, 7 ® ) # 0, if and only
if # has square integrable components or &, #) = 1 if not.

In the case of n = 2, a similar summation formula is compared in [J2] with an
analogous formula which is obtained on integrating the kernel k7(x,y) of a
convolution operator #f) on LXG\G), against a character (x~'y), on x,
(1) :)} .In [J2] the group G is taken to be the two-
fold covering group of SL(2). For n > 3 the group G with which our summation
formula should be compared is GL(2). In the case of n = 3 the required identities
of Fourier orbital integrals are proven in [F4] for general and spherical
functions (see Propositions 7 and 16 there). This is the case of a place which
splits in the quadratic extension of [F4]. These identities permit a comparison of
our formula with the summation formula of [F2] on GL(2, A) obtained there on
integrating the kernel K ;(x, y) multiplied by y/(x~'y), on x, y e N(F)\N(A). Once
executed, such a comparison would show that the support of our Fourier
summation formula for GL(3) consists of all I(¢ x ), where © is a cuspidal
representation of GL(2, A) or one induced from a unitary character of the upper
triangular subgroup of GL(2, A). It will be interesting to carry out the transfer of
orbital integrals for such a comparison also for n > 3, but we have not done this.
As the present paper is already sufficiently long, and the comparison of our
formula with that for GL(2, A) is similar to the comparisons of [F2] and [F4],
this will not be done here.

yeN\N, where now N = {(
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It is interesting to note the occurrence of the factor of the form

Lip,®&71, (n—1)/2)

in the term in the summation formula which is parametrized by

n=1(p; ® py; G, lp(n—Z,Z))

where p, is a cuspidal GL(2, A)-module and p, a character (necessarily &), and
n = 2 (n =2 included). Trying to approximate between the case of a form B on
n® &1, & a character of H\H, which underlies our summation formula, and
that of B on n ® p, where 7 and p are cuspidal on G and H as mentioned at the
beginning of this Introduction, one may wish to deal with the question in the
general context of 7 ® p, where 7 is an automorphic G-module, and p is a
discrete-series (irreducible) representation of H. Moeglin and Waldspurger
[MW1] have shown that each such p is the unique subrepresentation of the G-
module I(p,v*~ 12 x p, v*" 32 x ... x p,v~*~112) which is normalizedly in-
duced from the indicated representation of the (Levi factor of the) parabolic
subgroup of type (m,...,m), where mk=n—1, p,, is a cuspidal GL(m, A)-
module, and v(x) = |x| (xe A ™).

It is tempting to ask whether it is true that if 7 ® p admits a non-zero form
which is automorphic (such as B, or in the sense of occurring in the support of a
suitable global summation formula as here), then (at least the least degenerate,
or unitarizable) x is of the form I(n, x 7, ), induced from the parabolic of type
(n—m—1, m+1), where n, is a character and =, is a generic automorphic
GL(m+ 1, A)-module, and the standard L-function L(s, 7, ® p,) does not
vanish at k/2. The extreme cases where m=n—1,k=1,andm=1,k=n—1, are
those elaborated on in this Introduction. The second condition is non-trivial
only when k = 1, since by Jacquet-Shalika [JS1], [JS2], and Shahidi [Sh1], the
L-function L(s, 7t,,.; ® p,,) does not vanish on Re(s) > 1. We have no further
evidence to answer the question affirmatively or otherwise. But it is important to
understand that the occurrence of the factor L(p, ® ¢!, (n—1)/2) in our
formula suggests that the condition that L(s, = x p) does not vanish at s=1/2
occurs only when p is cuspidal, as in the example discussed above for
GL(n) x GL(n—1), in Waldspurger [W] for SO(3) x SO(2), and in Harris-Kudla
[HK] for SO(4) x SO(3). In the case U(3)x U(2) of [F4] this L-function
condition does not appear since p is taken there to be a character, namely a non-
cuspidal discrete series representation of U(2, A).

Our techniques are likely to be applicable with other pairs, such as SO(n),
SO(n—1),and U(n), U(n— 1), but only when p is a character. This is indeed done
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in [F4] in the case of U(3), U(2), where global and local applications concerning
representations of U(3) with a U(2)-invariant linear form, are deduced. It would
be interesting to apply these techniques in the other situations too.

Local L functions

The Whittaker function computation alluded to above is a minor variation on
that given in [F1], p. 305. In the notations of [F1] we consider the integral

¥(s, W,, W,) = w, (9 0 W,(g)ldet g|°dg
N\G 0 1

where W, = W2 is the normalized unramified y-Whittaker function of the
unramified G = GL(r, F)-module p with Hecke parameters y,,...,y,, and
W, = W2 is the normalized unramified y-Whittaker function of the unramified
GL(n, F)-module = with Hecke parameters x,, ..., x,; n > r. We take ¢ which is
trivial on the ring R of integers in the non-archimedean field F, but not onn ™ 'R,
where & is a uniformizer.

The normalized unramified Whittaker function has been computed by
Shintani [Sh]. His result is recorded in the Lemma of [F1], p. 305. Using this
lemma, in the notations of [F1], our integral takes the form

> W, (m*O)W, (a6, (n?),
A

where the sum ranges over A=(4,,...,4)eZ’, A, = 4, = --- = A, = 0, we put
(4,0)for (A4,...,4,,0,...,0)eZ", and emphasize the dependence of the modular
function é of [F1], p. 305, on GL(m), by the index m(=r or n). Again by the
Shintani lemma this sum is

Y 51,0(X)0, A A M), ()6} 2 (mH)mH 6, ().
7

But
5, (n*9) = 6, (="

Hence the sum is

; S,0/% 0)s1,0(q """ "2(p, 0) = n (1=x;p;,q 777!
iJj

by virtue of homogeneity properties of the Schur function s, ((3.1), p. 24 of
Macdonald [M]), of the homomorphism p,, , of [M], p. 24, between (3.2) and
(3.3), and the identity (4.3) of [M], p. 33, which was used already in [F1], p. 305.
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The last product is equal to the local L-function

n—r
L(s +—2—, n®p>

attached to © ® p, at s + (n—r)/2. This is the required result as mentioned above
when r=n—1 and s is replaced by s—1/2.

B. Statement of result

To simplify the notations we work with G = PGL(n). The summation formula is
an equality of two sums of distributions on G(A), A = ring of adeles of a global
field F of characteristic # 2, namely complex valued linear functions in
feCP(G(A)). These distributions depend on a (unitary, complex valued)
character & (to simplify the notations we take & of order dividing n) of the idele
class group A*/F*, and on an additive character { # 1 of A mod F into C*.
The “geometric” side of the summation formula — see Proposition 1 — is

Y Wgss f5 & W) +03, Y0 5 & W) +0,.[Pes 5 E v +Pe; f3E W)

beF x

Here 6;, is 1 if i=n, and 0 if i#n For beF* we put
g, =diag(l,...,1,b)e G(F). Also

boo-l 1 -1 o1
—3 += - 7=
go= 1|1 0 1], g¢ (1 1>, Jdo (1 _1>-
0 1

0

To introduce ¥, note that the centralizer

a p b 10 1
H={h=['9q z -'q|eG; hxoh ' '=x,=|0 0 0
b —p a 1 01

of the n x n matrix x, (which has four non-zero entries, at the corners; also, p, ¢
are row vectors of length n—2, and z is an (n—2) x (n—2) matrix) in G, is
isomorphic to GL(n— 1) when n > 2. Denote by i: H - GL(n— 1), this isomor-
phism. In the case of n =2 it is given by

a b .
1 <<b a)) = diag((a+b)/(a—b), 1).
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Put é(h) = E(det 1(h))(= &(det h) since &" = 1); it is a character of H(A)/H(F) in
C*. Also denote by U the group of n x n matrices of the form

1 p b
u= 0 I tq s
0 0 1

where I is the identity (n—2) x (n—2) matrix, and put y(u)=\(p, + g, ,) Where
P=P1>---sPu-2)» 4=(q1,---,qn->)- Then Y is a non-trivial character of
U(A)/U(F)in C *. Denoting by du and dh Haar measures on U(A) and H(A), the
“geometric” distributions are

Y(g; f; & ¥) = J (™ *gh)E(h)(u) dh du.

UA)ngH(A)g~"\U(A) JH(A)

The spectral side of the summation formula is more difficult to express, and to
obtain. In any case we now write H for the subgroup

{((’; ?)eG; he GL(n— 1)} of G = PGL(n),

and write the spectral side in three different cases, when n =2, when n > 3 for a
special f, and for n =3 with a (more) general f.

In the case of G = PGL(2) the spectral side is the sum of the following terms.
The main term — see (2)1 below — is

2% Wyn(/)OLo(1/2, m® 7).

The first sum ranges over all cuspidal irreducible G(A)-modules =, and the
second over an orthonormal basis {®} of smooth functions in the automorphic

realization of © < L3(G(F)\G(A)). Here

1 x
W, (®) = L(F)M) W) du, N = {u - (0 1)}

is the yY-Whittaker functional on the space of automorphic forms, and

Lot 1® &) = wa ® ((g ?)) lal' " 24(@) " d* a

Lol o e
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is the L-function of 7 ® £~ ! which is associated with @, at ¢.
The other terms are

N —

DY fm ESI(f, 1 D, g, Lo — 4, &/pLaG—1 (18) ™)
Ly(1—24, p=%)71dA

and

2T T BN 1 D0, 1 DISHD) -+ 5(:E)D(0)]

— Ey(I(f, b —1/2)®, g, —1/2)[0(u&)(M(w, ™", —1/2)®)1)
+0(/E)M(w, u™1, —1/2)D)w)]}.

The sums over p are taken over a set of representatives of unitary characters u of
A*/F*, up to multiplication by v*, Ae R, v(x) = |x|, xe A*/F*. Then ® ranges
over an orthonormal basis — consisting of smooth functions — in the space of the
normalizedly induced PGL(2, A)-module I(y, 2) thus @ satisfies

o ((g b) g) — wa/elafcl** ().
C

We put

W= (? _(1)>, and M(w, p, A): I(u, 2) > I(u™ 1, — 4)
is the standard intertwining operator. Also é(u/E) (i=1, —1)is 0if u # & and 1
ifu=¢,0onA%={xeA*;|x|=1}.If p = & on A° we may — and do — choose the
representative u to satisfy u= ¢ on A,

In applications, the continuous sum over I(y, 4), A€iR, is of little or no
importance, and so are the contributions associated with I(u, +1/2) (since no
cuspidal representation has a component of the form I(yu,, +1/2)).

Next we describe the spectral side in the general n > 3 case, for a test function
e CP(G(A)) of the form f = f*f,, such that the component f, at some non-
archimedean place u of F has the following property. Fix a supercuspidal
PGL(2, F,)-module p,,, and write I(p,,, 4), A=(4y,...,4,_,, 4, for the G,-
module normalizedly induced from the representation

Vil X XVt X P, @ vy
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of the (Levi subgroup of the) parabolic subgroup of type (1,1,...,1,2). Here
v, (x)=|x|,and A, +---+A,_,+24,=0. Then: f, has the property that ,(f,)is 0
unless m, is a constituent of 1(p,,, A) for some A.

The theory of the Bernstein center has the corollary, recorded as Proposition
12 below, that there exist plenty of non-zero functions f,eC*(G,) with this
property. We need such f, to dispose of continuous sums of representations
which contribute to the summation formula, whose computation is beyond the
scope of this paper. Also we emphasize that our computation in the n > 3 case is
only sketched, and as such it is incomplete.

Then the spectral side is

N =

S % B p, 0%, 5,0

CLM(s,.p,0000 1 (P2 ® &1, (n—1)/2) + Lay o1 (P2 ® &, (n—1)/2)].

Here p, ranges over all cuspidal representations of GL(2, A) (with the supercus-
pidal component p,, at u) whose central character is £~ "; p is the represen-
tation & x p, of GL(n—2, A) x GL(2, A), extended trivially to P(A), P being the
parabolic of type (n—2, 2); ® ranges over an orthonormal smooth basis for the
G(A)-module I(p, 0) normalizedly induced from p on P(A). The L-functions are
associated to the indicated functions — for whose definition see Propositions 9
and 11 — in the spaces of the cuspidal GL(2, A)-modules p, ® £~ ! and p, ® E.
They are evaluated at (n—1)/2, in the domain of absolute convergence when
n = 4, and on the edge of the critical strip when n= 3.

The upshot of this is that (up to the minor local assumption at u) the support
of the summation formula consists of the G(A)-modules I(p) normalizedly
induced from the standard parabolic with Levi factor GL(n—2, A) x GL(2, A),
and the representation p = £ ® p, on it, where p, is an automorphic GL(2, A)-
module with central character 27",

When n=3, thus G = PGL(3), our computation of the spectral side in the
summation formula is complete, for a function f = f“f, where f, is no longer
required to have the property with respect to the supercuspidal p,,. The function
£, is nevertheless restricted to be spherical and have the following property.
Denote by 1,(4,, 4,, 13) the G,-module normalizedly induced from the character
(b)) [ ]1<i<3|bili of the upper triangular subgroup. Here

4eC  with x|} "4 =1 forall xeF,.

Then f, is taken as follows. f, satisfies trn,(f,)=0 if n,= 1,4, 4,5, 43) and
M) A;—4j= 11 for some i #j, or Q) A, = A, =23

The requirement (1) will not affect any possible applicability of the summation
formula, since no representation of G(A) of the form I(§ x p,), where p, is a
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cuspidal GL(2, A)-module with the central character &~ !, has a component
which is the unramified constituent of the induced representation of the form
I(Ay, A5, A3), with 4;—4; = + 1 for some i # j. The requirement (2) will not affect
applicability either, since if I(§ x p,) has the component I,(u,, 4,, f4,) for almost
all places v of F, where p, is a character of F)* of order 3 (or 1), then &> =1, and
P20 = I,(1) ® &, for almost all v. But there is no cuspidal representation p, ® &?
of PGL(2, A) whose component is the same as that of the principal series

representation I(1) at almost all places <I (1) is the PGL(2, A)-module norma-

lizedly induced from the trivial representation of {(; :)}) Thus the

requirement here on the component f, is put to simplify the computations, and
is not important. An analogous requirement in the case of PGL(2) would
annihilate the terms associated with I(u, +1/2), which — as noted in the
discussion of the case of PGL(2) above — are not important.

For f = f“, with such a component f,, the spectral side is the sum of the
terms parametrized by I(£ X p,), cuspidal p, on GL(2, A), as described above for
n >3, and terms parametrized by a line of representations, of the form
I(pv'* x p,v ™ x psy), id€iR. As explained at the end of this paper, these new
terms are integrals over iR, with integrand containing E,(I(f, p, )®, p, 4), and
the expressions labeled ((3)i,j); i=4,5;j = 1,2,3,4; and ((3)6.j), 1 <j < 5.

The term corresponding to ((3)4.1) take the form

1
Z Z 5(&/p3) J‘iR ; Ed/(l(.f; P ,l)(l), P j')'3‘('11/29 pl/p3)
‘Lyo(1—41/2, p3/p1)Lya(l1 +41/2, p3/p2)Laall + 44, Pl/Pz)_l di;.

Here 4 =(4,/2, —1,/2,0), and p = p, X p, X p; is a character of (A */F*)? with
p1P2p3=1, namely I(p, 1) = I(p,v**/?> x p,v~*2/* x p,), ® ranges over an or-
thonormal smooth basis for (the trivialized vector bundle) I(p, 4), M is some
intertwining operator and Ly4(p;/p;) is an L-function, attached to the character
pilp;-

The other (twelve) terms have a similar shape. It will be too long to write out
all these terms, although this can be easily derived from our computations. This
description, and convergence properties of the integrals and sums, lend
themselves to separation arguments used to derive applications from such
summation formulae (see, e.g. [FK], Theorem 2).

The main conclusion from our computations is however the following:

THEOREM. The support of the summation formula is concentrated only on those
automorphic (unitary) PGL(3, A)-modules of the form I(§ X p,), normalizedly
induced from a maximal parabolic subgroup, where p, is an automorphic (unitary)
generic GL(2, A)-module (with central character £~ 1).
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Appendix. Representations with one dimensional quotient

As suggested in the Introduction, we shall consider now irreducible represen-
tations © of G, = GL(n, F), where F is a local field, which admit a linear form
which transforms under G,_; according to a character £. Here G,_, is

0
paper, but they shed light on our global theory, being local analogues. In
Proposition 0, whose proof was suggested to us by J. Bernstein, we consider only
unitarizable representations, since every component of an automorphic repre-
sentation is such. The description is completed in Proposition 0.1, following
communication from D. Prasad [P3], who worked out the case of G; in general.

Put v(x)=|x|, xe F*. Denote by I,_,,(¢xp,) the representation of G,
normalizedly induced from the representation (?) l:) — &(@)p,(c) of the
standard parabolic subgroup of type (n—2, 2). Here p, is a representation of G,,
and &(a) =&(det a), for ain G, _,. Similarly we introduce I, _, ;,(&; x &,), where
&, are characters of F *. Let P, denote the group of matrices in G, whose bottom
row is (0,...,0,1).

0. PROPOSITION. Let n be a unitarizable irreducible admissible representation
of G,, such that Homyg, _,(m, &) # {0}, where & is a unitary character of F*. Then
7 = & or there is an irreducible admissible unitarizable representation p, of G, such
that m= I, 2(E X p,)-

Proof. The proof is based on the analysis — developed in Bernstein-Zelevinsky
[BZ2], Section 3 - of the restriction t of a representation of G, to its subgroup
P=P,. According to [BZ2], (3.5), p.452, there exists a natural filtration
1=1,21,> 251,20, such that 7, /7, = ®*'¥(z¥), where t® is the kth
derivative of t — see [BZ2], (3.5). This is a representation of G,_,. The functors
Y=¥*=i,,:AlgG,_, > AlgP,and®=®" =i, ,: AlgP,_, > P, are defined
in [BZ2], (3.2), where V is the unipotent radical of the parabolic of type (n—1, 1),
and 6 indicates a non-trivial (additive) character of F, and also of V, via
0((v;j)) = O(v,—, ,). The induction i is normalized — on [BZ2], p. 444 - by the
character mod}/%(m) = |det m|*/? of me P.

. 0 . . o
embedded in G, via g+ (g 1) . The following propositions are not used in this

It is also useful to recall — from [BZ2], (4.4) and (4.5), pp. 454-5 — thatif n is a
supercuspidal G,-module then its kth derivative ¥ is 0 (0 < k < n), and =™ = 1
when n is also irreducible. Further, the composition series of I(p; x p,)*
consists of I(p{) x p§ ), and if ¢ is a one dimensional representation of G, then
E® s 0 unless k = 1, where the character v~ /2¢ of G, _, is obtained.

Now if Homg, (7, &) # 0, then Homg,_, (7, /7 +1, &) # 0, for some k > 1.

If k=1 then 1,/1,=¥(t'V), and the restriction ¥(z'")|G, _, is t"v!/2. Hence

HomG,,—1(\P(T(1))’ é) = HomGn—l(T(l)vl/Z’ é) :/é 0
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precisely when v!/2t'1) has ¢ as a quotient. If 7| P =1, and = is a quotient of
I(py x---xp,), where p; are irreducible supercuspidal not necessarily uni-
tarizable representations of G;,, then the composition series of I(p; x --- x p,)'")
consists of

I(py x ---xp;x---xp,), where G; = GL(1, F).

The hat over p; indicates that p; is omitted. Such a composition factor may have
the quotient &v~'/2 only if it is of the form

iv— 1/2 ® I(v(n—Z)/Z X V("_4)/2 X oor X v—(n—2)/2)
(by Zelevinsky [Z]), namely 7 is a quotient of
[=EQ@ IV 2 x vy =92 5 o e x v~ M 1I2),
where p is a character. However, by [Z] and Tadic [T], the only unitarizable

quotient of I is &, obtained when u=v"~1/2,

REMARK. If g # y"~@k+ V2 (1 <k < n), then (by [Z]) I has the unique
irreducible quotient

T=8Q@Ip—1,1(v" 2 x ),
and the composition series of

W=(¢® I(n*l,l)(villz x )
consists of

I—2,1)(&v" P xEw) and &y 12
We have Homg, ,(m, &) # {0} precisely when v~ '/? is a quotient, not a sub, in
this composition series. But we have not investigated Homg,  (r, &) for these =,
nor for the quotients © of I when pu ="~ @+ DV2 (1 <k < n).

If k>2 the quotient t,/t;4, is of the form ®(B,_,), where B,_, is a
representation of P,_,. Note that

q)(ﬁn—Z)IGn— 1= lndg:A 1% V,,(vl/zﬁn—Z X 0)|G"_ 1= indIG’::ll(V”zﬁn— 2)’

since P,/P,_V,=G,_,/P,_,. Here ind indicates unnormalized induction. By
Frobenius reciprocity ([BZ1], (2.29)) we then have
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Homg, _,(®(B,->), {) = Homg,_ (ind3;-}(v'2B, ), &)

= HomP,,_l(v7 lvllzﬂn— 2> é)

This is O unless B,-, is 1 on V,, and if f,_, is 1 on ¥V, we obtain
Homg (v~ "?B,-31G,—2, &). In particular Homg, _ (v /T4 4+, &) =0 if k > 3.

If k=2then B,_,|G,_, = ¥(r"?)|G,_, =1v'/?, and Homg_ (1,/73, &) # 0 if
and only if Homg,_ (7%, £) # 0, namely ¢ is a quotient of ®. As in the case of
k=1 we represent m as a quotient of an induced I=1I(p, X --- x p,) from
supercuspidals p; of G;,. The second derivative I'*) is glued — in the terminology
of [BZ2] — from I(p, X --- X p; X --- X p,), where p; is a representation of G,, and
from I(p, X .- x p;x --- x p;x .- x p,), where p, and p; are characters (of G,). By
[Z] these can have £ as a quotient only when the non-deleted p; x p, x --- are of
the form

év("_3)/2 x év(n—S)/Z X eee X fv_("_3)/2.

In the first case, where p; e Alg G, it is not linked — in the terminology of [BZ2]
and [Z] - to the other characters, our = must be equivalent — by the
irreducibility criterion of [BZ2] - to the irreducible I, _, ,/(¢ x p,), and then n'®
is £ In the second case, where p;, p; are characters, if they are not linked to the
&v*, the same conclusion is obtained (again by [BZ2]). If they are it is easy to
conclude from [T] that the only unitarizable quotient of

ERIVm 32 x .o x pyx - Xp;X X y- (=32
n>3canbe &, or E@ I, 51 x1,), or E® I (-1 (T x 1 x1)

Let =n be irreducible on G; with Homg,(n, &) # {0}. Then
Homg,(v!/?1M), §) # {0} or Homg (7', &) # {0}. Noting that the Steinberg
representations sp of G, and st of G satisfy sp't) =v1/2, stV =y!/25p and
st® = v, computing the derivatives we conclude that = is &, or I, ,)(¢ x p), or
Iy o(ux EvEV2) (but neither I, ,,(Ev™ Y2 xEv)/¢, nor its contragredient
Iy 2)(Ev™ 1 x EVMA)/E; neither =1 ,)(ux Ev™2sp)(u # &) nor mw=¢Ev™ st have
Homg,(, &) # {0}, since both have Homg, (%, ¢ ') = {0}, and Homg,(m, &) ~
Homg, (%, £~ 1) by [GK]: #(g) = n('g ™)), or m =1 (& x Ev™32sp)/Ev™Lst or its
contragredient I, ,,(&v¥/2sp x &)/¢vst. (That each of these, except I(; (¢ x p),
with dimp =1, p # &v*'2 has Homg,(n, &) # {0}, is shown next.) The pro-
position follows.

0.1 PROPOSITION. An irreducible G,-module © of the form I, _ 1,1)(gfvirl/ 2% w),
or I, (& xEp), where u is a character and p is infinite dimensional or the
character v*"~22 has Homg _(m, &) # {0}. If dimp=1 but p # yE0=272
then Homg__ (m, &) = {0}, where n=1,_, ,(& % &p). The irreducible Gs-modules
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n with Homg,(n, &) # {0} are the irreducible n=¢, I ,(Exp) (dimp > 1),
Lao(px EVEVR) Ty (ExEvT¥2sp)/Ev=ist  and  its  contragredient
I(3,1)(&v¥2sp x &)/vst.

Proof. Since Homg__ (7, ) = Homg, _ (n&™ 1, 1), we assume that ¢ = 1. Using
the map ¢ ¢|G,_, (=restriction to G,_,), “Mackey’s theory” (see [BZ1],
(1.8)) implies that I,_, (v~ '/? x )| G,_, has trivial quotient. By [GK] = has a
G,_ -invariant form iff its contragredient 7 does. Hence

HomG,,_l(I(n— 1,1)(‘)i1/2 X u), 1]) # {O}

The same map and reference imply that I,_, , (1 x p)|G,_, has the quotient
I,-2,1\v'? x p'), where p'(a) = p(diag(a, 1). Now I,_, 1,(v*/* x y) has a trivial
quotient precisely when pu=v~"~2'2 (by [Z]). Hence Homg,__ (r,1) # {0} for
the irreducible mw=1I,_,,(Ixv " 22  and its contragredient
In— 2,21 x v~ 2/2) Moreover, for any infinite dimensional G,-module p, and
any character u, we have Homg, (p, ) # {0}, by [W1], Propositions 9, 10, or
[W3], Lemmas 8, 9, pp. 219-220. Hence Homg,(p’, v~ "~ 2/%) # {0}, and
Homg  (I(,-2,2(1 x p),1) # {0} for infinite dimensional p. The first assertion
follows.

If dim p=1, consider also the kernel of the map ¢+ ¢|G,_,, from
=152 xp)to I,_,.1,(uv'’? x p). By Corollary 5.1 below, G, is the disjoint
union of PG,_, (P=P,_,,), Pr(n—2,nG,_,, and PxG,_,. Hence Mackey’s
theory ([BZ1], (1.8)) implies that there are two constituents in this kernel, as
follows. The set of {g> @(r(n—2,n)g); p e n} is easily seen to be the space of
Iiu—3.2(ux pv~1/?); this G,_,-module has the trivial quotient only when u=v
and p =v~""%/2 The set of {g+ p(kg); p en} is the space of the unnormalized-
ly compactly induced G, _;-module t = ind((uv x 1 x pv~®~2/2); G, _,. Q), where
Q is the group of matrices in the standard parabolic subgroup of G,_, of type
(n—3,1,1), whose (n—2, n—2)-entry is 1, and the indicated representation of Q is
trivial on the unipotent radical. Now Frobenius reciprocity ([BZ1],(2.29))
implies that

Homg, (1, 1,-) = Homg((uv ™' x 1 x pv™~2/2) ),

this is non-zero only when p=v and p=v "~ 2/2 This proves the second
assertion.

By Proposition 13 below, G; is the disjoint union of P = P;, Pr(23)G,, and
Pr(23)uG,. Here r(23) is the matrix with entry 1 at (1,1), (2,3), (3,2), and 0
elsewhere; u has 1 along the diagonal, —1 at (2, 3), and 0 elsewhere. It follows
from the proof of Proposition 0 that m is not supercuspidal; hence = is a
constituent of I, 1,(p x ). The map ¢ — ¢|G, takes I, ;,(p x p) onto pv'/%. The
map ¢ — f, where f(g) = @(r(23)g), takes I, 1,(p X ) to I 5 1)(p" x v~ /?). The set
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of {gr> o(r(23)ug); @€l ) (p % 1)}, is the space of ind(v'/?p|P,; G,, P,) (un-
normalized compact induction). The cosets P and Pr(23)G, are closed and
disjoint, while Pr(23)uG, is open. Hence [BZ1], (1.8), asserts that we have the
exact sequence (*):

0—ind(v'/?p|P2; Gy, P2) = I,1)(p X WG, — pv'/? @ L,1)(p" x pv=1%) = 0.
The quotient in this sequence has a trivial quotient when p=v~ 2 or u=1
and p=v'2, or p=1 and dimp > 1 (since then Homg,(p, v*/?) # {0}). Hence
Homg, (7, 1) # {0} for irreducible n of the form I, (px1), dimp>1,
I (vEY2 x ), and I, 4)(v¥/2sp x 1)/vst (since Homg,(I(5,1,(v¥/?sp x 1), 1) # {0} as
we have just seen, and Homg,(vst, 1) = {0} as noted at the end of the proof of
Proposition 0).

Finally, if I, ;)(p x 4) admits a G,-invariant form which does not factorize
through the quotient in the exact sequence (*), then

0 # Homg,(ind(v'?p| P5; G,, P,), 1) = Homp,(v~/?p, 1);

the last equality is Frobenius reciprocity of [BZ1], (2.29). Since
Homyp,(v~!?p, 1) = Homg, (py, 1), where py is the normalized module of coinva-
riants of p ([BZ2], p. 444), we conclude that p must be v/2, or v 2sp (as
1y =v~ "% and spy =v'/?), or induced I; ;,(1; X i), with pu; =1 or u, = 1. But it
has already been shown above that Homg, (I, 1)(p X p), 1) # {0} for these p,
except for p = v~ 1/2sp, where Homy, (1. 1)(p x w), 1) = {0} by the end of the proof
of Proposition 0. The proposition follows.

Finite groups

We shall very briefly note now that the analogue of Proposition 0 —in the case of
the finite group G, = GL(n, q) over the field with g elements — follows from the
“branching rule”, i.e. Corollary 13.8 of [Z2], p. 148, whose proof shares much
with the proof of Proposition 0 above. We shall use the notations of [Z2]. The
irreducible representations of G, are parametrized by partition valued functions
@€eS,(C, P)([Z22], (4.19), pp. 68-9) on the set C of irreducible cuspidal represen-
tations p in R(q) = @, R(G,), with deg(p) = Z . deg(p)|¢(p)| equals n. Corre-
sponding to such ¢: C — P, deg(¢p) = n, we have then a representation {¢} in the
set XG,) = Irr(G,). Corollary 13.8 of [Z2], p. 148, asserts, for ¢,€S,(C, P) and
¢@n-1€8,-1(C, P), that the multiplicity of {¢,_,} in the restriction of {¢,} to
G, - is equal to the number of ¢” € S(C, P) with ¢"(p) 4 ¢,(p) and ¢"(p) 4 @, - 1(p)
for all p € C. The notation u 4 A means (see [Z2], (4.3), p. 50), that u is obtained by
removing at most one point from each row of the Young diagram of /.

The case studied in this paper is that of ¢,_, parametrizing the one
dimensional representation &,_; of G,_,. We denote by & the associated
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irreducible necessarily cuspidal representation of G,. Then ¢,_,(&)=
(n—1)eP,_y, and ¢, ,(p) =(0) for all peC, p # & If ¢"(p)1¢,—,(p) (for all
peC) then ¢@"(§) = (n—2) or (n—1), and ¢"(p)=(0) for all p # & in C. If also
@"(p) 1 @,(p) (for all p e C), then there are 6 possibilities.

M) @, E)=(n—2), @,(p)=(1) for some p,eC(G,), in which case
{@n} = In-2.2(& -2 % p2), where p, is an irreducible cuspidal representation
of G,.

2) ¢,E)=(n-2), @,Mm)=(1) for two distinct characters n; # &, where
{0n} =Tn-2.1.1)(Cn—2 XNy X M)

(3) 0,8 =(m—2,1), p,(m)=(1) for some n#&  where {¢,} is the unique
irreducible constituent of I,_, ; 1)(&,—, x & xn) (Whose length is 2 by [Z2],
(c), p. 46) specified by [Z2], (4.1), (9.4-5), as lying also in

I, 1,1)(88) xE X -+ xExM),

where s(E), indicates the generic (=non-degenerate) constituent
of Iy 1) (€ X )eR(G,).

(4) (Pn(g) = (n_ 1)’ (Pn(n) = (1) for some n # ga and then {(pn} = I(n— 1,1)(‘1:"— 1 X 'I)

(5) ¢, (8)=(m—1,1), where {¢p,} 1is the irreducible constituent of
Ip—11)(&—1 %) specified by [Z2] as lying also in
Iz, 1)(S(§)2X§X X&)

(6) ¢,(&) = (n), where {¢,} is the one dimensional representation &, = &(det) of
G,.

The analogy with the p-adic case is apparent.

Real compact groups

As noted in the Introduction, the irreducible unitary representations of SL(n, R)
with a non-zero GL(n— 1, R)-invariant linear form are determined in [DP]. We
shall observe here that the answer to the analogous question in the context of
the compact groups U(n, R) and U(n— 1, R) is classical.

We first note that there is a natural bijection between the set of irreducible
representations of the unitary group U(n, R), and the set of irreducible analytic
representations of the group GL(n, C), given by analytic continuation, or Weyl’s
“Unitarian trick” (see [Zh], Section 41, Theorem 1, p. 111, Section 42, Theorem
2, p. 113, and Section 44, p. 118).

Second, one knows that every such representation is uniquely determined by a
sequence (my, ..., m,) of nintegers with m; = m; . (1 < i < n) (“highest weight”),
and is denoted here by R, (m,,...,m,); see [Zh], Section 48, Theorem 3, p. 132,
and Section 49, Theorem 4, p. 133.

Third, the restriction of R,(m;,...,m,) to U(n—1, R) is completely reducible,
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and it contains R,_,(ky,...,k,_,), necessarily with multiplicity one, precisely
when m; > k; > m; ., for all i(1 <i < n); see [Zh], Section 66, Theorem 2, p. 186.

Now the character £(z) =z* defines the character ¢=R,_,(k,..., k) of
U(n—1,R), and it is unitary when keZ is 0. Clearly the restriction of
n=R,(m,,...,m,) to Umn—1,R) contains a copy of ¢ precisely when
m,=---=m,_, =k, and then n =¢ ® R,(m; —k,O,...,0,m,—k). The represen-
tations R,(l;,0,...,0,1), I; > 0> 1, are in bijection with the representations
p2=Ry(,1,) of U2, R). When & is taken to be unitary (§ =1,k =0) and = is
taken to have a unitary (namely trivial) central character, then p, ranges
through all of the unitary irreducible representations of the complexification of
U(2, R). Of course n can be viewed as an analytic irreducible unitary represen-
tation of GL(n, C), and p, as an analytic irreducible unitary representation of
GL(2, ).

This case then agrees with our p-adic result, that the irreducible admissible
unitarizable non-trivial 7 on GL(n, F) with a non-zero linear form which
transforms under GL(n—1, F) via the unitary character &, is of the form
n=E,® I,-;,(1xp,), where p, is an irreducible admissible unitarizable
representation of GL(2, F).

C. Geometric side

Put G = PGL(n), n > 2, and consider L = L%(G(F)\G(A)), where F is a global
field (char F # 2) and A denotes its ring of adeles. Then G(A) acts on L by
(r(g)®@)(h) = ®(hg), g, he G(A), e L. For any f in the space CX(G(A)) of smooth

compactly supported complex valued functions on G(A), the convolution
operator r(f) is defined by

(D)9 = JG(A) S (h)@(gh)dh,

where dh is a fixed Haar measure on G(A). Clearly

r(f )q))(g)=f A)Kf(g, hy®(h)dh, where K,(g, h)= 3. f(g~'vh).

G(F)\G( yeG(F)
Define
1 0 1
X 0= 0 0 0
1 0 1
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to be an n x n matrix whose entries are 0 except at (1, 1), (1, n), (n, 1), (n, n) where
the entry is 1. The centralizer H= {ge G; gxog ™' =x,} of x, in G consists of
matrices of the form

a p b
tq Z _tq H
b —p a

where a,b are scalars; p,q are row vectors of length n—2, ‘q indicates the
transpose of g; and z an (n—2)x(n—2) matrix. This H is isomorphic to
GL(n—1), since w=I—x, is conjugate in G to diag(l,..., 1,1, —1)e G. Note

1 1
that when n=2 this w is conjugate to diag(—1,1) by (1 1), and the

b
isomorphism is <Z a) i (a+b)f(a—b).

Denote by U the group of n x n matrices of the form

z

1 p
u=|0 I g
0 0 1

where here I is the identity (n—2) x (n—2) matrix. A complex valued character
y # 1 of A/F defines a character  # 1 of U(A)/U(F) by ¥(u) =VY(p, +¢,->),
where p=(py,...,P.->) and g =(qy,- .-, q,-»)- Denote by & a unitary character
of the idele class group A */F* and put £(h) = &(det 1(h)) for he H(A); det means
“determinant”, and : the isomorphism from H to GL(n—1). Note that
E(det 1(h)) = E(det h) since &" = 1. We shall integrate the product of K ((u, h), £(h)
and yY(u) over ue U(F)\U(A) and he H(F)\H(A), and obtain

1. PROPOSITION. We have

J f K ;(u, h)S(h)(u)du dh
UF\U(A) JH(F)\HA)

= Y Yoy f; & W) +85,¥(0; [ & W)

beF*

+0,.[¥(g5; f; &)+ Wlgos f3 & W)

Here

Yig; ;& ¥) =J )e(h(w) ™! dudh,

i f f(ugh
U(A)/UA)NgH(A)g~' JH(A)
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and g, = diag(1,...,1,b)e G(F), if b # 0, and

1 0 -1
. + 1 -1 _ 1 1\ .
go=|1 O 1| ifn=3,¢94 = 1 1 and go = 1 1 ifn=2.
01 0

Note that UngHg ™' = {I} for g=g,(b#0) or g, but it is
1 0 z
010 if g =gon=3).
0 01

This is the geometric half of our summation formula. It is to be compared
below with the integral over U(F)\U(A) x H(F)\H(A) of the product by y(u) and
¢(h) of the spectral expression for the kernel K ;(u, h) of the convolution operator
r(f) on L.

To prove the proposition it suffices to show that if Y(g; f; &, ) # 0 for g in
G(F) then g lies in U(F)g,H(F) for some b in F, and this follows from the local
analogue, asserting that if ¥(g; f,; &;¥,) # O for g in G, then g lies in U, g, H,, for
some b in F,. Here v denotes any place of F and F, is the associated completion
of F; we put G,=G(F,), H,=H(F,), U,=U(F,); y,(u)=V,(p; +3,->) is a
character of U, defined using a character , # 1 of F,; and f, lies in the space
CZ(G,) of smooth compactly supported complex valued functions on G,. The
local integral is defined in analogy with the global integral:

¥, fo» En V) = J JH £, (ugh)é (W, (w)~* dudh.

U,/U,ngH,g~"

Note that
Y(g; f, & ¥) =] YW for & W) ifg=(9.), &= ®E,, ¥ =®Y,, f = Rf,,

dh = ®dh, and du= ®du,.

2. LEMMA. If ¥(g; f,; &,; ¥,) # 0 then ge U, g, H, for some beF,.

Proof. To simplify the notations the index v is omitted in the course of the
proof, and so is the reference to y,& The integral W(g; f) satisfies
Y(gh; )= &~ Y(h)¥(g; f)(he H), hence its support depends only on the image of
g in G/H. The homogeneous space G/H is isomorphic to the space X of nxn
matrices (over F) of rank 1 and trace 2 via the map g+ gxo,g~!. Note that
Xxo ="'ee, where ¢=(1,0,...,0,1). The integral ¥(g; f) is then viewed as a
function Z(x) on X which satisfies Z(uxu ~!) = y(u)=(x). The image of the double
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coset Ug,H, b # 0, in X is the set of the matrices

z

1
(ugy'e)egy 'u™")="(1+zb, bg, b1, —p, p'q—z+b~") ifu=|0 ‘q|,
0 1

S~

namely the matrices in X whose (n, 1) entry is b # 0. To prove the lemma it
suffices to show that for any matrix x in X whose (n, 1) entry x, ; is O there exists
ue U with uxu™! = x and Y(u) # 1. Indeed, if ge G has the image x, namely
gxog ! =x, there would exist he H (with det h = 1) such that ugh=g. Then
W(ugh; )= Y(u)¥(g; f) is necessarily zero.

A matrix x in X whose last non-zero row is the Ith, and its first non-zero
column is the fth, is of the form x = ‘vw, where v =(v,,...,v,,0,...,0), v, # 0,
andw=(0,...,0,w,,...,w,),w, #0.Ifl >3 and f > 1 then uxu™' = x, where
u has ¢ =0, and top row (1, yv,, 0,...,0, —yv,,0,...), with the entry — yv, at the
Ith place. If f <n—2 and [ <n then uxu~! = x, where u has p =0 and its last
columnis “0,...,0, —yw,_4,0,...,0, yw,, 1), with the entry —yw,_, at the fth
place. If I<2 and f >n—1, then n=2 or n=3, since tr x =2. If n=3 then
I=2=f, and U acts by conjugation transitively on the orbit of

S O O

00
goxogo_1 =0 2
0 0

with stabilizer UngoHg, ! as stated in the proposition. If n=2 then U acts

simply transitively on the orbit of

00
+ +y—1 _
9o Xo(gdo) " = <O 2)

and on the orbit of

2 0
gaxo(go)“=<0 0>-

This completes the proof of the lemma and Proposition 1.

REMARK. Choosing the character y to be of the form y(u)=V(p, +4,), a
similar lemma is obtained but with a term indexed by a suitable g, is present for
all n> 2.

Denote by U’ the group of unipotent upper triangular matrices in G whose
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top row is (1,0,...,0) and last column is *(0,...,0, 1). Then U’ consists of the
identity matrix only, unless n > 4 as we now assume. For any y € G, denote by
¥f. the function *f,(g) = f,(yg). Clearly ¥(g;"f,; ¢,; ¥,) is independent of y if
yeU,, since this integral is non-zero only if ge U, g,H, for some be F, . Any
character of U'(F)\U'(A) is of the form

Yolu) =V <2<; 5 “i“i,iﬂ),
JIINn—

for some a« = (a,,...,0%,_,)e F"~3), The unipotent upper triangular subgroup
N, of G is equal to UU' =U'U. Put ¢ (uu') = Y(up(u'); it is a character of
No(F)\Ny(A), and we have that

J J f(ngh)E(hW(n)~* dndh
U'(F)\No(A) x H(A)

is 0 unless a =(0,...,0), in which case W(g; f; &; ¥) is obtained. Consequently
3. COROLLARY. The integral

J f K 15, DO () dn
No(F)\No(A) JH(F)\H(A)

= J‘ l/I;z(ul) [f Jv K(u'f)(ua h)é(h)l//(u) du dh] du’
UF\U'(A) UF\U(A) JH(F)\H(A)

is 0 unless o= (0,...,0), in which case it is equal to

Y. W9 3 & W) +03,¥(g0; f5 & W)+ 0,,[P(o; f5 & )+ Plgo; f5E:¥)]

beF*
The sum over be F™ is finite.
Only the last assertion remains to be proven. Thus consider f(uyh), with

ueU(A)/U(F), he H(F)\H(A) and yeG(F).

If this f(uyh) makes a non-zero contribution to K ;(u, h) then yxoy ' lies in the
discrete subset X(F) of the set X(A), and also is in a compact which depends on
the support of f and on the compact U(A)/ U(F). Hence the image of y € G(F) in
G(F)/H(F) lies in a finite set {y;H(F)} of cosets (and he H(A) ranges over the
compact

(U (7 -U(A)/U(F)-supp f)) nH(A) in H(/\)>,

as required.
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D. The case of PGL(2)

Let us consider separately, and briefly, the well-known spectral expression for
the kernel K (g, h) in the case where G = PGL(2). This is recorded here to
motivate the discussion for n >3 below. We shall truncate this spectral
expression with respect to the second variable h, integrate over

1 x\ . 1 =
g=<0 1) in N(F)\N(A\),N={<O 1>}

after multiplying by y(g) = Y(x), where ¥ # 1 is a character of A mod F, and
integrate over

a 0\ .
h=<0 1) in A(F)\A(A),

A being the diagonal group in PGL(2), after multiplying by &(a), ¢ being a
character of order 1 or 2 of A*/F* in C*. The Eisenstein series E(g, ®, p, 1), the
truncation operator A7, and the spectral expression for the kernel are defined
below in the case of a general n. Hence the standard definitions will not be
recalled here separately in the case of n = 2. We obtain (the first figure 2 in ((2)1)
below refers to n =2, as we now deal with PGL(2))

2 X Wa(NOLoth n® & @)1)

1 _ 0
) fm ¥, E( 1 O, 1. ) wa ATE ((g 1)) o, 1 ,1) H@)d*ads.
©@2)

Here the first sum ranges over all cuspidal irreducible representations 7 of
PGL(2, A), and @ ranges over an orthonormal basis — consisting of smooth
functions — for the space of m = L3(G(F)\G(A)). The Whittaker functional is
defined by

W, (n(f)®) = JN(F)\NU_\) ()Y (u) du,

and

Lo(t, T® é‘l)zj‘vax* i)} <<g ?)) lal'"Y2&a)"td”a

is the L-function of 7 ® &~ ! at t which is associated with ®@. Since @ is a cusp
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form, its Fourier expansion with respect to

New@ so0= 3 W (x((5 1))e)
aeF ™

and so

Lo(t, t® E™ 1) = LV W, ( T <<g (1)>> (I)> lal " Y2¢@) " 1d”a.

At each non-archimedean place v where ¢, is unramified and W, (n(g)®) is
right K, = PGL(2, R,) invariant, the local factor at v of this global integral is
easily computed (as in the Remark — which is based on [F1], p. 305 — following
the Introduction above) to be the local L-factor L,(t,n, ® &, ') attached to
n, ® &,.'. The infinite product converges for a sufficiently large ¢, and it has
analytic continuation to the entire complex plane. The local factors have no
zeroes, and no poles on the half plane Re(t) > 3.

Note that the discrete spectrum of L*(G(F)\G(A)) consists in addition to the
cuspidal = also of the one dimensional representations y: g — x(det g), where y is
a character of A*/F* of order two (or one). But (x(f)®)(u) is independent of
ueN(F)\N(A) for Pey(={0: GF)\G(A)—>C; P(g9)=x(g)®(1)}), and so
Wy(n(f)®) = O for such ®@. Hence such © = y do not contribute to our summation
formula.

The sum over p ranges over a set of representatives for the set of connected
components of unitary characters x+ u(x) of A*/F*, a connected component
consisting of uv'4, v(x) = |x|, A€ R. In the connected component of u = & we take
u= £ to be the representative. For ® e I(u, 4), thus

® ((g b) g, z) = u(a/b)la/bl**12d(g, J),

we have

E(I/((I)’ i, A') = J E(“’ q)’ i, l)‘l’(u) du.
N(F)\N(A)

The sum over @ in ((2)2) ranges over an orthonormal basis for I(u, A) consisting
of K-finite functions ®; this basis is independent of A as ® is determined by its
restriction to K.

The T is a sufficiently large positive number, and ATE(h, ®, u, A) is described
below for a general n in Proposition 14, for Ae C with Re(4) > 1/2, to be:

ATE(h, ®, p, )= Y, x(H(yh) < T)H(yh)**'/>Q(yh)
7B(F)\G(F)

— Y dHGR)> THE) > HM(w, p, HO)yh), W=<(1) _(1>>
yEB(F)\G(F)
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Note that ®(g) = (g, — 1/2). The characteristic function of the domain specified
by the condition X is denoted by yx(X). For g=(g,)e PGL(2, A) we put

H(g)=ZX, H,(g,), with H,(g,) = |a,), if g, N(F,) (“”

0 (1)> K,. In the higher rank
case below an additive form of H will be used.

a

We shall integrate ATE(h, 2)é(a) on h = ( 0

0
1) over ac A*/F*. It is useful to

note the simple

11
(2)3. LEMMA. We have B\G=Iuwuw <0 1> A.

This follows at once from the Bruhat decomposition G = B U BwN.
Note that

1 1\/a O
(o )G )
_u((® g ((vGa 0N _ ,
_H<<a 1))‘”(( 0 (La)))—lal/ll(l,a)ll. (2)4)

Further, |a,|,/Il(1,a,)|? is la,l, if |a,, <1 and |a,|, ! if |a,|, =1 (in the non-
archimedean case; in the archimedean case it is |a,|/(1 +|a,|?)), in any case it is
<1, and in particular (2)4) < T if T > 1, as we assume.

(2)5. LEMMA. The integral

1 T a O N
Jr*/mé (a)A E<<0 1>,l>d a

is the sum of 5 terms (or 6, where the 6th is zero):

le(u/é)(a)lal“ 12(l)d"a
=3(u/HRUNT*12[(A+1/2), aeA*/F*, (2)5.1)

where, for a character y of A*/F*,8(y)is 1 ifxis 1 on A°={aeA*;|a|=1}, and
d(x) = 0 otherwise,

j @) Ha PPH120(w)d a
la”Y<T

= S(uODW) T 12/ +1/2), aeA*/F*, (2)5.2)
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j A (lal/I(1, a)lI?)** 120k Ju(a/(1, a)*)é(a)~ ' d*a, ((2)5.3)

where k,e€ K depends on a and is easily computable from:

1 1\fa O
w <0 1)(0 1> - nadaka’

with n, in N(A), d, = diag(a/(1, a), (1, a)),

—ﬁ or uENa) a2 HM(w, p, YOI d " a

= —0(uE)(M(w, p, HOYDT?>~*/5—2), ((2)5.4)
J (u/é Na@)a™ V2~ HM(w, p, AD)w)d*a

= —3(u/EM(w, p, HR)Yw)T*2~*/(5—2). ((25.5)

The third term ranges over the ae A * with |a|/||(1, a)||*> < T, namely over A *,
while the sixth ranges over the ae A* with |a|/|/(1, a)||> > T, namely over the
empty set, hence it is 0 and we did not write it out. To compute the term ((2)5.3)
note that for almost all v the function ® is invariant under K, = PGL(2, R,), the
characters u, and £, are unramified, and the corresponding local factor is

ﬁ e (#u/év)(av)lavl.’}“’zd"au+j (o Xa) Mal, T d"a,

avly>1

+J d*a,.
lavlv=1

Denote by =, a local uniformizer of F,, and write &,/u, for (¢,/u,)(n,), and &, u,
for (¢, u,)(m,) in the following computation. Recall that |r,| = g, !, where g, is the
cardinality of the residue field R,/(x,) of R,. Then the integral is equal to:

3. (1/E)a5 YD + Y (1,6 gy A 41
1 1
) (1l)g, * 12
R R P A P e +1
= (=g, /A= (o/Eas ™ —podogy 712
= L,(A+1/2, p,/E )L (A+1/2, p,&)/L,(1+24, p2).

Analogous computation can be carried out at the ramified places too, and a



A Fourier summation formula 69

multiple — by a function holomorphic in A€ iR of polynomial growth in 1€iR as
|A] = oo — of the same product of local L-factors, as defined e.g. in [JSP] in the
non-archimedean, and in [JS2] in the archimedean cases, is obtained. We
denote these local L-factors, which depend on ®@,, by L, . Note that L, = L,
when ®, is the normalized (by ®%(1) = 1) K,-invariant function ®? in I(u,, 4).
The product over all v of the Ly, is denoted by L. We then obtain

(2)6. LEMMA. The term ((2)5.3) of the Lemma (2)5 is equal to
Lo(A+1/2, gfELo(A+1/2, &)/ La(l +24, 4.

This product of L-functions is holomorphic on A€iR, since L(1 +24, u?) has
no zeroes on Re(4) >0 (see, e.g. [JS1]), and is of polynomial growth in A€iR as
|[A] & 0. Of course, Ly(A+1/2, %) is holomorphic on AeiR for any unitary
character y of A*/F*.

Next we have to substitute the five terms of Lemma (2)5 in ((2)2), integrate
over A€iR, and take the limit as T — oo (in this order!). For any choice of a test
function f, the sums over y and ® in ((2)2) are finite. We fix then y and @, and
treat each of the 5 terms of Lemma (2)5 separately. Before we do that, note that
for each @, ®, e I(u, A), the matrix coefficient

dd) = cfs p, 43 @, @) = (I(f, p, HO, Dy),

being the Mellin transform of a Schwartz function f; is rapidly decreasing (as
|A] = o0) in any vertical strip a < Re(4) < b, and so is the finite sum

E-l/(I(j; U, l)(l)’ i, '1) = GZ (I(f; H, )‘)(D’ (I)l)Ew(q)l’ i }')

We shall use this observation with the vertical strip —3—& < Re(d) < 3 +¢, for
some small ¢ > 0.

Note also that it is not the integral of Lemma (2)5 which appears in (2)2, but
rather its complex conjugate. For 1€iR, note that 4 is —Ai. We then replace
T**VY2/(14+1/2) by T **Y2/(—4+1/2) in ((2)5.1), ((2)5.2), and vice versa in
((2)5.4), ((2)5.5).

Substituting ((2)5.1) in place of | £~ 'ATE in ((2)2), we may change the line of
integration from A€iR to A+%+e¢, A€iR. By Cauchy’s theorem the residue at
4 =4 will be picked up. The corresponding contribution to ((2)5.1) is

S/ ODMRE,I(f, 1, HO, 1, 3)
+30(w/O)@(1) L« EJI(f, b, A+3+8)®, p, A+3+e)(T™**/(—A—e))dA.

((2)6.1)



70 Y. Z. Flicker

As T — oo the integral over iR here is absolutely convergent to zero.
The case of ((2)5.2), when placed in ((2)2), is treated in the same way, the limit
as T — oo is equal to

uSYBWInEI(f, p, 1/2@, p, 1/2). (26.2)

Next we substitute the expression obtained in Lemma (2)6 for ((2)5.3) instead
of [ ¢7'ATE in ((2)2). We obtain, noting that ¢=¢" !, i=u !, and 1= —4 for
AeilR,

1

3 ﬁR E,(I(f, b, A®, u, HLy(—A+1/2, ¢/w)

“Ly(—=A+1/2, (ud) ™ "Le(1—24, =%~ 1 dA (2)6.3)

The integrand is integrable on iR being (the product of a slowly increasing and)
a rapidly decreasing function in 4, as |4| — oo. It is independent of T.

The discussion of the terms ((2)5.4) and ((2)5.5) is similar to that of ((2)5.1) and
((2)5.2), except that the line of integration will be moved from AeiR to
A—1/2—¢, A€iR. Before carrying this out we need to specify the dependence of
(M(w, u~1, —2)®@) on A. The operator M(w, u~!, —J) is not unitary in general,
but it can be expressed (see [Sh2], p.272) in the form

M(W’ #717 _'1) = m(”717 _'1) ®UR(ﬂv_1a _)')’

where R(u, *, —A): I(u, !, —4)—I(u,, A) is a unitary operator for all u,, 4, which
maps ®2eI(u, !, —A) to ®° e I(u,, A) whenever y, is unramified (and v nonarchi-
medean), and (R(u, !, —A)®,)(g) is holomorphic and slowly increasing in 1 in
any vertical band a < Re(4) < b, for any ®,eI(u, !, — 1) and ge G,. Moreover,
the scalar valued function

m(.u_ls _)“) = u_ls /‘AZ)/L(I_'{) 'u_z)g(—j,, ”72)
= L(1+'1’ #2)/1‘(1_'1> ”—2)

is holomorphic on —1 < Re(d) <O(L(1—4, 1~ 2) in the denominator has no
zeroes in Re(4) <0, see, e.g. [JS1]) except possibly for a simple pole on Re(1) =0
if p? factorizes through v(x)=|x|. In this last case we may choose u in its
connected component to have u? = 1. Then L(1+4) in the numerator would
have a pole at A=0 in the number field case, and at any Ae€iZ/logq in the
function field case. But L(1 — 1) would also have a pole there, canceling the pole
of the numerator, and m(u, 1) would take the value —1 at A =0. In conclusion,
M(u~1, —A)is holomorphic in —3/4 < Re A <0 and of slow increase as |4| — 0.
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With this knowledge we replace [ £~ 'ATE in ((2)2) by the right side of ((2)5.4),
move the line of integration from A€iR to A—1/2—¢, A€iR, pick the residue at
A= —1/2, and obtain

—(uERE,I(f; by —1/2®, p, —1/2)M(w, u~*, —1/2)@)I)
—30(uf) LR E,(I(f, p, A—e—1/2)®, p, A—e—1/2)
A(M(w, =1, A+e+1/2)BYwW)[ T */(A—e)] dA. (2)6.4)

The integrand is holomorphic and rapidly decreasing in A as |A| - co. The
integral is absolutely convergent to zero as T — 0.
The case of ((2)5.5) is similarly treated, to yield, as T — oo, the limit

— 3w/ OmEI(f, b, —1/2)®, p, —1/2)(M(w, p™*, —1/2)D)(w). (6.5

The spectral side in our summation formula is then the sum of ((2)1) and the
sum over u and ® of ((2)6.1)+ --- +((2)6.5).

E. On the general case

We now resume the discussion of the case of a general n > 2. Thus we note that
there is another expression for the kernel K (g, h), which we now recall from
Arthur [A1], p. 935. It is based on Langlands’ theory [L] of Eisenstein series
(and Morris [M] in the function field case); see the recent clearer exposition of
Moeglin-Waldspurger [MW2]. Thus let P denote a standard F-parabolic
subgroup of G, one which contains the upper triangular subgroup Py, let N be
its unipotent radical, and M its Levi subgroup which contains the diagonal
subgroup A. Let IT (M(A)) be the set of equivalence classes of irreducible unitary
discrete series representations of M(A). Put

X(M) = Hom(M, GL(1)), p = Hom(X(M), R)

for the Lie algebra of M, and A = X (M) ® R for its dual space. For m = (m,) in
M(A) define the vector H(m) in A, by

<MD — |ym)| = [T tulmr 7€ X (VD).

Extend H, to a function on G(A)=NA)M(A)K by H,(nmk)=H,(m),
where K =TI, K, and K, is the standard maximal compact subgroup in G,. If
M(A)! is the kernel of H,, on M(A), and A, is the center of M, then H,, is an
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isomorphism from
Ap(A) N M(A)'\Ay(A) =~ M(A)'\M(A)

to Ap. For any 1eUE =A% R C consider the character g eAHM) op
G(A), and denote its tensor product with p e II(M(A)) by p;. If LeiU} then p, is
unitary, and the group iU} acts freely on II(M(A)), making II(M(A)) a
differential manifold whose connected components are the orbits of i},

For peII(M(A)) denote by Hp(p) the Hilbert space completion of the space
HY(p) of smooth functions ®@: N(A)M(F)\G(A)— C which are K-finite, have the
property that

f J |D(mk)|* dm dk
K JM(F)\M(A)

is finite, and that for every g € G(A) the function m— ®(mg) on M(A) is a matrix
coefficient of p. Let pp be the vector in AF such that the modular function
35(p) = |det(Ad(p)|N)| on P(A) is equal to e?*»Hu®>; here N is the Lie algebra of
N. For

®eHp(p) and AeU%
put

D(g, ) = B(g)ePr - (ge G(A)),
and denote by I(p, 1) the right representation, (I(h, p, )®)g, A) = ®(gh, A), of
(he)G(A). The G(A)-module I(p, ) is unitary for Aei}.

Denote by Ap the set of simple roots of A,, in P. These are elements of
X (M) c U¥. Theset Ag=Ap, is a base for a root system, and there is a coroot a
in Ap, for every root a € Ap. If P; = P, are parabolic subgroups, then the group
M;,nP, is a parabolic subgroup of Mp, with unipotent radical
N;2=Np, " M,,. The set Af? of simple roots of A,,, in Mp, NP, is a subset of
Ap, which spans a subspace (Up2)* of A¥,. We have A¥, = (AF)* @ AE,. Define

Ar = {HeUp; (o, HY >0, aeAp},
and

(AT = {Ae U 4, aV> >0, acAp).

Then ppe(AX)*.
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Identify p, with the subspace {H e U, ; {a, H) =0, x€ A}?}, and denote by
A} the subspace of Ap, which is annihilated by A,. Then Ap, = 5> @ Up,.
Denote by Af? = {@,; « € AE?} the basis for (UF?)* dual to the basis {«¥; xe AF?}

of A2 Note that any root a e Af? is the restriction to (A52)* of a unique root

BeAf2; aV is defined to be the projection to AL of the vector B in AF2. Let 152
be the characteristic function on A, of the He A, with {&, H) > 0 for all
@e AP Put i, = 2. Note that = 1.

If Q is also a standard F-parabolic subgroup, denote by W(Up, Ay) the set of
elements s in the Weyl group W with s, = A,. Denote by w, a representative
in G(F) for the element s of W. For p e II(M(A)) and ® € H)(p), and 1€ A} ¢ with

real part Re A€ pp+(UF)*, define the Eisenstein series

Elg, ®,p, )= Y  Dyg, )
yeP(F\G(F)

and intertwining operator

(M(s, p, )D)(g, s4) = j O(w, 'ug, A)du.
No(A)nw,Np(A)w; "\Ny(A)

The functions E(g, ®, p, 2) and M(s, p, A)® can be continued as meromorphic
functions in A to WE. If A€ iWF then E(g, D, p, 4) is smooth and slowly increasing
in g, and M(s, p, 4) is a unitary operator from Hp(p;) to Hy(sp,,;). Denote by n(P)
the number of chambers of U, namely the connected components of the
complement to the union of the hyperplanes orthogonal to the roots in Ap.

The representation theoretic expression for the kernel K ((g, h) is

Y n(P)~ 'y f o & EG 1L p, 0, p, DE(h, @, p, 1) (3.1)
p Jillp @

P

Here p ranges over a set of representatives for the connected components (i 2 %-
orbits) of TI(M(A)), and ® over an orthonormal basis (chosen to have the
finiteness properties of [A1], p. 926, 1. — 12) for the space Hp(p); I(f, p, A) is the
convolution operator. By [A1], Lemma 4.4, p. 929, the sums over p and ® and
the integral over i} are absolutely convergent. Note that (I(f, p, )@, @) is a
rapidly decreasing function in |4| - co, where (-, ) indicates the inner product on
Hp(p).

Our summation formula is obtained on integrating K ,(n, h)&(h)y,(n) over n in
No(F)\No(A) and h in H(F)\H(A), using the spectral decomposition of the
kernel, and comparing with the result of Corollary 3. Put

on(g) = I $(ng)dn
N(F\N(A)
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for a continuous function ¢ on G(F)\G(A). Following [A2], p. 89, for a suitably
regular point T in A introduce

ATd(g) =Y. (= 1)4mA® % 2,(H(yg)— T)n(r9);
n JeP(NG(F)

here P ranges over the standard F-parabolic subgroups in G.

Denote by ATK (g, h) the image of the function h— K 7(g,h) under the
operator A”. Since h— K (g, h) is slowly increasing, it follows from [A2],
Lemma 1.4, that ATK /(g, h) is rapidly decreasing as a function of he G(F)\G(A).
Since K (g, h) is integrable over he H(F)\H(A) and ATK (g, h) > K ;(g, h) as
T — o0, and Ny(F)\Ny(A) is compact, we conclude that

lim J J ATK ;(u, h)E(h)(u) du dh
T=o JNo(F\NoA) JHF)\H(A)

= j J K ¢ (u, )E(h)yr(u) dudh. 3.2)
No(F)\No(A) JH(F)\H(A)

The function E(g, ®,p,2) is slowly increasing in ge G(F)\G(A), hence
ATE(g, @, p, A) is rapidly decreasing, and the expression

; n(P)! Y J s %: E(g, I(f, p, )@, p, DATE(h, @, p, ) dA

is convergent and equal to ATK (g, h). The integral over
(9, ) e No(F)\No(A) x H(F)\H(A)

of its product with &(h)(g) is equal to

n(P)~1 J EI(f, p, D, p, A) ATE(h, @, p, 2)E(h)dhd4,
% #) ; m;; Wis e 4 H(F)\H(A)
(3.3)
where
Elll(q)’ P A-) = J E(u, (I)’ ps A’)‘//(u) du.
No(F)\No(A)

We shall sketch a proof of the following. Suppose that n > 3 (the case of n =3
being trivial, we shall concentrate on n = 4 in the sketch of the proof below).
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4. PROPOSITION. The only possible non-zero contributions to (3.3) are
parametrized by:

(@) P of type (ny,n,, ns) and unitary, one dimensional p=p, X p, X p3 with
prPTPY =1

(b) P of type (n—2,2) and p=p, X p, where p, is unitary one dimensional and p,
is a cuspidal GL(2, A)-module whose central character w,, is equal to p;™";

(c) P=G, n=3 and p is a cuspidal PGL(3, A)-module, or n=4 and p is the
discrete-series representation of PGL(4, A) which is equivalent to the unique
subrepresentation of 1((p, x p,)35,!'%), where P, is the parabolic of type (2,2)

and p, is a cuspidal representation of GL(2, A).

Sketch of proof. (This is only a sketch since although a few cases of the
assertion made in the following sentence are explicitly computed below, the
assertion is not proven below in full generality. The assertion is the following).

As a function in T the integral [y pea) ATE(h, ®, p, )¢~ '(h) dh converges to
a linear combination of exponentials in linear forms in 4 and T divided by such
linear forms, in . Examples are computed explicitly below, see e.g. Propositions
9 and 11 for a general n, and the complete discussion in the cases of n =2 and
n = 3. In particular the limit over T cannot be taken inside the integral over i .
Instead, the elementary Lemma 10 below implies that the limit of (3.3) as T goes
to infinity is equal to

Y aP)1Y f - ; E,((f, p, H®, p, HF(@®, p, J, &)dA @.1)

| 4

where (U}) are the hyperplanes defined by the linear forms in A in the
denominator, and F(®, p, 4, £) are the residues of the

j ATE(h, @, p, )¢ () dh
H(F)\H(A)

on these hyperplanes. By virtue of a standard argument of “generalized linear
independence of characters (see, e.g. [FK], Theorem 2), using the absolute
convergence of the integrals, the ample supply of the f, unitarity estimates and
the Stone-Weierstrass theorem, Corollary 3 would imply, when n > 4, that the
coefficient E,,_(®, p, 4) is O for every character ¥,, e F"~2, unless a = (0, ..., 0),
for every pair (p, A) which occurs non-trivially in (3.3), and every ® e HY(p).

If (=, V) is an irreducible representation of G(A) and y a character of
No(F)\Ng(A), in analogy with [BZ] introduce the Ay(A)-modules of coinva-
riants

(my, Vy) by Vy=V/{n(upv—y(u; ve V, ueNy(A)).
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Any such character ¥ is of the form

'Pﬂ(u) =y ( Z Biui,i+ 1)

1<i<n

for some = (B,,..., B.—1)€F""!; here u = (u;;) € No(A). The largest number of
non-zero components of § such that ¥, # 0is an invariant of the representation
n, which we call here the index of 7. A G(A)-module with (maximal) index n—1
is called generic, or non-degenerate, and it is said to have a Whittaker model. A
discrete-series G(A)-module whose index is 0 is one dimensional.

Moeglin and Waldspurger [MW1] have shown that if # is an irreducible
discrete series G(A)-module then there are positive integers m and k with n = mk
and a cuspidal GL(m, A)-module p, such that x is the unique submodule of the
G(A)-module I((p x --- x p)dp /%) which is normalizedly induced from the G(A)-
module indicated, where P = MN is the standard parabolic of type (m,...,m),
and Jp is its modular function. The index of this = is j=(m—1k. If
M, =11, <;<, GL(n,) is the Levi subgroup of a standard parabolic, and the
GL(n;, A)-module p; has index j;, then the induced G(A)-module
I((py x -+ x p,) e*M1?) has the index (2, <;<,Jj)+r—1, for any 1e A} ..

The Eisenstein series E(u, @, p, ) which occurs in (3.3) is an element in the
space of the G(A)-module 7 = I(p ® e*H»”), whose index is 2. On the other
hand, if P is of type (n,...,n,), and p is a discrete series M(A)-module, then
n; = m;k;, and the index of wis r — 1 + X, ¢; <, (m; — 1)k;. Since the k;, m; and r are
positive integers, we conclude that either r =3 and m; = 1(1 <i<3),orr =2 and
m;=1,m,=2and k,=1,orr=1,in whichcase m; =3 and k, = 1 orm,; =k, =2.

This completes our sketch of the proof of the proposition.

REMARK. Note that in case (b) p, may not be taken to be one dimensional, as
then the index of = = I(p ® e*!”) be one. In case (c), when n = 3 the p cannot be
one dimensional (the index would then be zero). When n =4 the p cannot be
cuspidal (index 3) or one dimensional (index 0), nor can p, be one dimensional,
as then the index of = would be 1.

We shall need below several decompositions.

5. PROPOSITION. Denote by Py a parabolic subgroup of type x of G, by I the
identity (n—2) x (n— 2) matrix, and by r(i,j) the matrix whose entries are 0 except
for a single 1 on each row and column, which represents the reflection (i, j). Then

1 00
G=P,_,  HUP,_ , (n—1,)HUP,_,, [0 1 0|H,
01 1
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where

H= {(; ?); *eGL(n—l)} cG.

Moreover,

G=Py,_,HUP,_; r(n—2, HUP,,_, ,,

1
= P(z,nfz)HUP(z,n—z)r(l, n)HUP(z,n—Z) 0
1

- O

—

0 1

I 0|H
0 1

0

0 |H.
1

77

Proof. The map g+ (0, ...,0, 1)g is an isomorphism from P, _; ;,\G to the
projective n-space P", which decomposes as the disjoint union of three orbits,
namely (0,...,0,1)H, (0,...,0,1,0)H, and (0,...,0,1, 1)H. The first decom-

position follows.

Denote by U, the group of matrices (u;;) in G withu; =1(1 <i<n),and u; =0
if i # j unless i=1and i <j < n. Also put Uj for the group of (u;;) in G with
u;=1 (1 <i<n) and u;=0 if i #j unless (i, j)=(I,n). The Bruhat decom-
position, with P, =P, _, ;, and P, ;)=P_, ; ) asserts

P,= (J Py, n—1U,.

1<i<n

Hence

G=P, ,Hu U P yr(n—1, nyri, UH
1 2

<isn-—

1<i<n

I 00
v J Puay@n—110 1 0|H.
011

Then

G=P, ,,HU () P, ,,yi nUH
1 2

<isn-—

1

0 0
‘U ) Pp-zy,n—=1|0 1 0|H
? 11

1<isn-

0



78 Y. Z. Flicker

Note that

0 1
P, 57, U H=P,_, (i, n"HUP, _, ,r(1,n) I O|H
0 1

S O =

for any i(1 <i<n—2). The last double cosets in the two last displayed lines are
equal, since

00 1\/1 10 1 00
01 0{j0 1 O 010
1 0 1/\0 0 1/\-1 O 1

lies in the bottom right 3 x 3 corner of P,_, ,,. Taking i =n—2 the second
decomposition follows.

To obtain the last decomposition apply to the previous one the automorph-
ism o(g)=J'9 ™ 'J, where J =(a;)), @; p+,-;=1 and a;;=0 if i+ j # n+ 1. Then
0P, _5.2=P;.,-2), and cH=r(1,nHr(1, n). Since G = Gr(1, n), the last decom-
position follows, as required.

REMARK. Let I be the identity (n— 3) x (n—3) matrix and put

I 0 00
0 0 0 1
K= .
0 010
01 01
Then
0 01
P,_22 |0 I 0|H=P,_,,xH
1 01

Put H™ =r(1, )Hr(1, n). In the following P,l? denotes a standard parabolic
subgroup of H of type x. By 4 we indicate an (n— 3) x (n— 3) matrix, and B, C
will be row vectors of length n—3; a,c,d are scalars. Proposition 5 has the
following

COROLLARY. We have the disjoint coset decompositions
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A 'B 'C 0
0 1 ¢ O
Pu-22)\G = P::—Z,l)\H vrn—-2, n)'P::—a.z)\H' VK \H
0 0 a O
0O 0 0 1
(5.1)
and
H H™ —
P(2,n—2)\G =P;n-3\HU Pin-2\H™ -r(1,n)
1 0 C O
1 0 0
c d B O
ul0 I 0 \H. (5.2)
0 A O
1 0 1
0 0 0 1

REMARK. Proposition 5 implies that the structure of H\ G/H is independent of
n > 3. It would be interesting to pursue a comparison theory between G, (A)-
modules with a H,(A)-invariant form and G;(A)-modules with a H;(A)-
invariant form (for n > 3) on developing and then comparing the (non-Fourier)
bi-period summation formulae associated with such double cosets.

6. PROPOSITION. If n = 3, no discrete-series representation occurs in (3.3).
Proof. We need to show that the terms described by Proposition 4(c) do not

occur in (3.3). We give a complete proof in the case of n = 3, and a sketch in the

case of n = 4. Suppose first that n =3 and p is a cuspidal PGL(3, A)-module. If

®ep then AT® =@, since Oy =0 for all P # G by definition of cuspidality.
The Fourier expansion of the cusp form ® is

D)= Y Waylpg),

peNgy(F)\H(F)
where
Way(9) = J D (ug)(u)~ " du,
VT INGF)\No(A)
and
1 x O + x 0
Ng=1{(]0 1 O0]pcH={]|* %= 0
0 0 i 0 0 1
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The integral of ®¢ over H(F)\H(A) is equal then to

Way (h)c(h) dh = j

J Wi, (nh)E(h) dn dh.
Ny (ANH(A) J Ny (F)\Ng(A)

J Nyu(F)\H(A)

The inner integral here is 0 since Y is non-trivial on Ng(F)\N4(A) and
Wiy (nh) = Y(m) W (1).

Now the terms associated with the cuspidal p in the spectral expression for the
kernel have P =G, n(P) =1, A} = {0}, and these terms are

) QZE: (P(NDYWAT O(h) =, .,,Z (P(NDYW)D(h).

The integral of the product of this with y(u)é(h) over No(F)\No(A) x H(F)\H(A)
vanishes since jH(F)\H(A) d(h)E(h)dh = 0 for all @ e p, as required.

Of course this proof generalizes to show that when n >3 no cuspidal
representation (n=)p of G(A) would contribute a non-zero term to (3.3).

In order to deal with the remaining case of Proposition 4(c) suppose that
n =4 and p is the discrete series PGL(4, A)-module which is equivalent to the
unique irreducible subrepresentation of I((p, x p;)d5,?), where p, is a cuspidal
GL(2, A)-module, and Py, ,, is the standard parabolic of type (2, 2). Note that
the space of this p is spanned by residues of some FEisenstein series, which are
automorphic functions; the spectral expression for the kernel does not use the
realization of p as a subrepresentation of I((p, x p1)dp,"?). The coefficient @y of
®ep is 0 if N is the unipotent radical of a parabolic subgroup of type (1, 3) or
(3, 1), since the GL(2, A)-module p, is cuspidal. Indeed, the integral over
N(F)\N(A), of the Eisenstein series whose residue is @, vanishes, since
wNw ™! "M, ,, is non-trivial for every element w of the Weyl group. Hence

AT®(g) = d(g) — ). Tp,., (H(09) — T)®N,, , (59);
55P<z,z;(F)\G(F)

note that the dimension of the center of the Levi subgroup M, ,, of P, 5, is 1.
We need to show that [y r)pa) AT®(h)E ' (h)dh is zero, where H ~ GL(3)
0
g ) ;geGL(3)}. To compute this integral
we need to rewrite AT®(g). Since Oy, ,, is zero if N3 4 is the unipotent radical of
the parabolic of type (3, 1), the Fourier expansion of ® along N; ;, is

embeds in G = PGL(4) as H = {(

D= > On,,u(p9)
peP(F\H(F)

where
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DN, 0 (9) = f D(ug)(x)~ du,
Na,(F)\Ng,1(A)
1 0 0 z
01 0 y
u= ,
0 0 1 x
0 0 01
and
* x x 0 *x x x 0
* * 0 x x x 0
Py = cH-=
0 0 0 * x 0
0 0 0 1 0 0 0 1

To continue we need a special case of the Corollary to Proposition 5, namely
the decomposition

P(z,z)\G = P(2,1)\H ur2,4) P(1,2)\H v k-By\H,

where

oS O O =
(=
S .

QU O o o©

Here « is as defined above (5.1); P, ;, and P, ,, are the parabolic subgroups of
H of types (2, 1), (1,2); r(2,4) is an elementary matrix in G(F) representing the
reflection (2, 4). The sum over d in P, ;,(F)\H(F) is expressed compatibly with
the sum representing ®(g), as follows.

The Fourier expansion of @y, along N 1, "M is

On,,(9) = ; DN, N, w(@B)g),  alt) = diag(l, 1, ¢, 1)
teF x

Hence
(D(g) - Z %Ptz,z)(H(ég) - T)(DN(Z.z)(ég)
66?(2'1)(}:‘)\“(1:)

- Pu(%\ﬂ( ) [(DNQ”’./,(pg) - %Ptzm(H(pg) - T)((DNu,z;)(N(s,l»l//)(pg)]'
pE F
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The integral of the product of this by &~ !(g) over ge H(F)\H(A) is equal to

f (1 —7p,, (H(m) — T))
Mg, ,(FA\Mz,1(A)

X f ((I)N(z,z))(Na.n,'//)(mk)é B l(mk)é(m) ~dmdk,

since Py(A) = M, 1(A)N(,,2 N HY(A) and H(A) = Py (A)K n H(A)). This in-
tegral factorizes through N, 3(F)\N 3)(A), namely through Oy, ,, Which is
zero as observed above. Hence the integral over H(F)\H(A) is zero.

The second coset, r(2,4): P, ,)\H, in P, ,)\G, parametrizes the terms in the
sum in ATd(g), which — multiplied by ¢~ '(g) and integrated over H(F)\H(A)—
yield

- f Tpo, (H(r(2, 9h) — T)On,, , (2, Yh)E ' (h) dh.
Puo(F\HA) '

* *x *x 0 * 0 % x
0 0 01 00
Note that r(2, 4) r(2,4) = , and the product of this
0 » x 0 0 0 * =x
0 0 0 1 0 0 * =

with N, ,, contains N3 ;,. Hence this last integral factorizes through On, )
which is zero.

The last coset, kBy\H, in P ,\G, after multiplication by ¢~ '(g) and
integration over H(F)\H(A), yields

— J Tp,.,, (H(xch) — T)(I)N(zvz)(xh)é_l(h) dh.
By (F)\H(A)
1 » 00 1 —v 0 v
0100 0 1 00
Since k k' l= , and the product of this with
0 010 0 0 1 0
0 0 01 0 0 01

N(z,;) contains N, 3, the integral factorizes through Oy, ,» and this is zero.

It follows that the integral of (AT®)(h)¢ ~1(h) over h in H(F)\H(A) is zero. This
completes the (sketch of) proof of Proposition 5. Of course to complete the proof
it has to be shown that each of the three terms associated with the three cosets is
integrable, not only factorizes through an integral which vanishes.

Denote by P, the parabolic subgroup of type (n — 2,2), by p, a cuspidal
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representation of GL(2, A) with central character w,,, by p; a unitary character
of A*/F* with p} ™" =w,, and also the character p,(g) = p,(detg) of
GL(n — 2, A). Let p = p, x p, be the P,(A)-module defined by p, and p, on the
Levi factor, and extended trivially across the unipotent radical. For any AeC
put p; = p; V™ 2 x p, ® v~ *2, where v(x) = |x|, xe A*. Denote by 7, the
vector in the one dimensional space A¥ = A, with p, = p ® <™+,

Asin [Al], p. 917, for any F-parabolic subgroup P, let W(U,, UA,), A, = Ap,,
denote the set of (distinct) isomorphisms from 2, to 2, obtained by restricting
to A, elements of the Weyl group W. Note that when n # 4, the set W(2,, A,) is
empty unless P, = P, or P, ,_,,, in which case it consists of s = identity or of

I,
I, , O
P, = P,, and then it consists of s =1 and s = s,.

As in [A2], p. 113, for any F-parabolic subgroup P define W(,; P) to be the
union over all A, of the se W(U,, A,) such that sA, = A, contains A = A,
and s !'a > 0 for all xeA5. Then W(U,;P) is empty unless P = G, when it
consists of the identity, or P = P, when it consists of the identity if n # 4 and of
the identity and s, if n=4, or P=P,, ,_,), n # 4, when it consists of s,.

We shall use the following analogue of the formula (4.1) of [A2], p. 113.

s = s,, where s, = < ), respectively. If n = 4, W(U,, A,) is empty unless

7. PROPOSITION. We have

j E(ng5 d)a P, Tl)dn = z EP(g’ M(S’ T}.)CD’ Sp, STA),
N(F)\N(A) sSeW(U,;P)

where

Ep(9, ®, p,7)= ) d(yg, 1) (cf [Al], p. 927).
oeP(F)\P(F)

Proof. The equality is a tautology for P = G, so we assume that P # G. This
identity is asserted in (4.1), [A2], p. 113, when p is a cuspidal representation (of
the Levi factor of an F-parabolic). But the p in the proposition is not cuspidal.
The trivial representation 1 of GL(n — 2, A) is obtained as the residue at

n—3 n—5 3—
( B R
the upper triangular subgroup and the parameter ' =(4,,...,4,_,),
Yi<i<n—14; =0, in C""2. The Eisenstein series in the proposition is also
obtained as a residue. Denote by P, the F-parabolic of type (1,...,1,2). The
space W is (n — 1)-dimensional, represented by 7 + 7, © = (4,,...,4,-,,0,0)

A A

A A
i A - = 0, d = —9"',—__9 —_, — Al
with 4; + -+ 4,_, and 1, (n — — 5 2) Denote by

n) of the Eisenstein series on GL(n — 2, A) induced from
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p3=p; X -+ X p; X p, the representation of M3(A), where p; x---xp, is a
character of (A*)"2. For ®5€p,, consider the Eisenstein series E(g, @5, ps,
7+1,) on (ge)G(A). The series E(g, D, p, 7,) is obtained as the highest residue (of
degree n — 3), for some @ (which is in fact the restriction of @ to M;(A)), namely

E(g, ®, p,7;) = lim ( I - li—l)) E(g, @3, p3, T + 7).
Ai—Ai-1—1 \1<i<n—-2
1<i<n-2

Since p; is cuspidal, (4.1) of [A2], p. 113, applies:

J E(ng, @, p3, T + 1,)dn
N(F)\N(A)

= Z EP(g’ M(S9 T+ rl)q)3’ SP3, S(T + T).))‘
seW(U;;P)

Any of the Eisenstein series on the right can have a pole of (the maximal) order
n — 3 only when P(#G) is of type (n — 2,2) or (2,n — 2), and such a pole is
n—3 n—-S5 3—n

B ) Oy > i 0 = 0
R 3 O) precisely when st° = t° or

attained only at 1° = <

-3 n-5 3— . . .
st =1{0, 0, 112—, " 7 Tn>, namely when s is the identity or
0 I, . s .
S, = I 0/ respectively. Multiplying by [ [1<i<n_2(4; — 4;—) and taking
n-2

the n — 3 limits as 4; — 4;_; — 1, we obtain 0 unless P(#G) is P, or P;,_,,, in
which cases we obtain

EP(,,,Z‘Z)(g> (D9 P T}.) or EP(Z‘,,_Z,(g, M(S23 T).)(I)a $20, SZT}.)’

respectively, if n # 4, and their sum if n = 4. This is the expression asserted in the
proposition.

In [A2], the identity (4.1) is used in the proof [A2], Lemma 4.1, on p. 115, 7. 2.
The proof of that Lemma then applies without a change in our situation too, to
yield

8. PROPOSITION. For a sufficiently large 4 (i.e., Re(d) = 1), the truncated
Eisenstein series ATE(g, p, T;) is equal to

Z £(5T)P (575, Holyg) — T)
P, yeP,(F\G(F) seW(A,A,)

et (M(s, ,)@)(79),

with the sum over y converging absolutely.
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Recall that &,(A), for AeU¥, is defined in [A1], p. 940, to be 1 if the set of
aeA, with {(A,a¥) <0 is even, and —1 otherwise. The function ¢,(A, H) on
(A, H)e ¥ x A, takes the values 0 and 1. It is equal to 1 precisely when for every
aeA,, we have (A,a") < 0and {@,, H) > 0 or {A,«">>0and {&,, H) <0.
As noted in Proposition 7, P, ranges over the set

{Pl = P(n—2.2)’ P, = P(Zn—l)}’

and s =1 or s,. It is clear that &,(t;) = 1 and g,(s,7;) = —1. When s = 1, the
characteristic function ¢,(t;, Ho(g) — T) can be expressed as x(dp,(9)"/* < t,),
the characteristic function of the g such that dp (9)'/*> <t;, where t,(>0)
depends linearly on Te%Ag and t; - oo as T — co. When s = s, the character-
istic function ¢,(s,7;, Ho(g) — T) can be written as y(dp,(9)"/> > t,), the charac-
teristic function of the g such that dp_(9)"/? > t,, where t,(>0) depends linearly
on T and t, —» oo as T — oo. Further, the exponential e<++#1Hoé) js equal to
Op,(@** V2, while e<itr2Hi) s equal to dp,(g)* "’ In summary, the
identity of Proposition 8 can be rewritten as follows:

COROLLARY. The truncated Eisenstein series AT E(h, ®, p, t,) is equal to the
difference between

a”d
Ye 2“ G(I

We use this Corollary to prove, with p = p; x p,, the following
9. PROPOSITION. The integral of the product of (8.1) and &~ *(h) over h in
H(F)\H(A\) is equal to 3(p1/&)Lay :(p> ® & ™", (n — 1)/2)t1/A.
As usual, if y is a character of A*/F* we put 6(y) = 1 if yis 1 oneveryae A~
with |a| = 1, and §(x) = 0 if not. The L-function is the one associated in [JPS] to
I 0
the cusp form @y ;(A4) = j'KHCI)(( )k)f‘ Y(k)dk, Ae GL(2, A), in p,, twisted

0 4
by £ L
Proof. We use the Corollary to Proposition 5 to express the integral of (8.1) as
a sum of three integrals, corresponding to the three cosets in (5.1). Correspond-
ing to the second coset in (5.1), we obtain the integral

f x(0,(rh)'? < tl)él(rh)“ +D2Q(rh)é~ 1 (h)dh, (8.1.2)
Pi_ .5 (F)\H(A)
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where r = r(n — 2, n). By the Iwasawa decomposition H(A) = P{f,_m)(A)KH we
write h = mnk, and note that rmr ! ranges over L(F)\L(A), where L is the Levi
subgroup of type (n —3,1,2) of G. Note that GL(2, F)\GL(2, A) can be
expressed in the form N(F)\N(A)-S for some Siegel domain S, where N de-
notes here the upper triangular unipotent subgroup of GL(2). But
I 0 . .
®,(a) = (D<< 0 a> g) is a cusp form on GL(2, A), for any g in G(A). Conse-
quently the integral factorizes through an integral over ue N(F)\N(A) of the
cusp form ®,, and this inner integral is zero, as is (8.1.2).
Corresponding to the third coset in (5.1) we obtain the integral

f 2(01(kh) V25, (ch)* * V2 (ich) ™ (h)dh, (8.1.3)
r o oo A ‘B 'C 0
0 0 01 0 d ¢ O .
where k = . It ranges over (F)\H(A). Since
0 010 0 0 a O
01 01 0 0 0 d
0 0 1\ /1 ¢ O\ /-1 0 1 1 00
01 0fj0 1 O 01 0l=|0 1 0},
1 0 1/\0 0 1 1 00 0 ¢ 1

using the Iwasawa decomposition H(A) = PE_M‘U(A)KH it is clear that the
integral (8.1.3) factorizes through the integral over ‘N(F)\'N(A), where ‘N is the
lower triangular unipotent subgroup of GL(2), of the cusp form

1
®,(a) = (I)<<0 0> g) on GL(2,A). This inner integral is zero, and so is—
a

consequently — (8.1.3).
Corresponding to the first coset on the right side of (8.1) we obtain

j A8:1(h)'2 < )8, (h)" T P2 0(R)E (k) dh. (8.1.1)
Po—2.(F\H(A)

By the Iwasawa decomposition H(A) = N, _, 1 (A)M,_,, 1)(A\)ﬂ'\ﬁ'“' we may write
h = nmk, and m = diag(a, b, ¢), where a is in GL(n — 2), and b, ¢ in GL(1).
Note that 6,(h) = |det(a)®/(bc)" |, and the modular function & with respect to
N -2,1), which occurs in the integration formula dh =6 '(m)dndmdk, is
&(h) = |det(a)/b"?|. Note also that
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I 00
®(nmk) = p,(deta)®{[0 b 0 |k]| = p,(deta)®, ((g S)),
0 0 ¢
I 0 . . .
where @,(A4) = (D(<0 A> k> is a cusp form in p, (4 in GL(2, A)). Denote by

I 0
@y :(A) the integral over ke KH of (D<< 0 A) k> E~1(k). It is again a cusp form

in p,, on GL(2, A).
Consequently (8.1.1) is equal to the product by the volume

1 =|SL(n — 2, F)\SL(n — 2, A)|,
of the integral
[ er—21e a1, ()
x & Y(c! ""bdeta)p,(deta)d*ad*bd*c.

Here a, b, ¢ range over the quotient of (A*/F*)* by the equivalence relation
(z""2, z, z) = (1, 1, 1). Since p, has the central character w,, = p; ", we have

(DK,J:((I(; g>)= pl(cz"")(DK,é((b(/)c ?)) The integral ranges over the

domain |a?/(bc)"?|"/? < t,. Write u = b/c and v = a/b"~ 2. Then the range of
integration is |v| |u|"~?/2 = |a/b"” ?||b/c|"~?'* < t,. The integral takes the form

u 0
3= 2)12(1,,| "= 212\ D
fwuuw-m - |u| (|ul [v]) @i ¢ ((0 1))

x p,(vu" " 2)E(ou" ") " d*vd*u

(note that u, v range over A*/F™).
Integrating out v, and noting that Re(4) > 0, we obtain

3 0
5ou®) S pr i ((g 1)) e

Since @y ; is a cusp form, it is rapidly decreasing, and the last integral converges.
It is a “Tate integral” for the L-function of p,. Namely for any ®,ep,, the
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integral

J;‘V/F* 2 ((g (1)>) ul* " VPE"Hw)d u = Lo (p, ®E ™1, 3)

coincides—up to a finite number of factors— with the Euler product which
defines the L-function of p, ® §~1; for further details we refer to [JPS]. The
Proposition follows.

Before we proceed to integrate (8.2) over H(F)\H(A), note that the result of
Proposition 9, and 11 below, will be used in conjunction with the following
consequence of the Fourier inversion formula.

10. LEMMA. Let f be a Schwartz (smooth, rapidly decreasing as |u| — o0)
function on iR, and signify by (ig the principal value integral lim,_,o([© + [22,).
Then lim,_, o, ig f(Wp ™" exp(£ put)du = + £(0).

To complement Proposition 9, we have

11. PROPOSITION. The integral over g in H(F)\H(A) of the product of ¢~ (g)
and (8.2) is equal to

3(p1/E)LMis, prion (P2 ® B, (n — 1)/2)t5 %/

Proof. The coset decomposition (5.2) will be used, and as in the discussion of
(8.1) using (5.1), we express the integral of (8.2) as a sum of three integrals,
corresponding to the three cosets on the right of (5.2), beginning with the second
coset. Since r(1,n)H(A)r(1,n) = H™(A), the integral over H(F)\H(A) of the
summands in (8.2) parametrized by the second coset in (8.2) is equal to

f x(O2(h)'? = 15)0,(h) ~P2(M(s,, p,, ADYR)E ™ (h) dh.
P ,_3)(F)\H(A)

We shall abbreviate here and below and write M® for M(s,, p,, A)®; note that
A 0
(M®),(A4) = (MD) (( 0 I) g> is a cusp form in p, on 4e GL(2, A) for every

g€ G(A). The Iwasawa decomposition H(A) = Pg,,,_g,,(A)KH can be used to
show that the integral factorizes through h = mnk, with m = m;m,, and

A
m; = (O (I))’ with 4 in GL(2, F)\GL(2,A). Writing A as A,A4,, with A4,

ranging over N(F)\N(A), N being the upper triangular unipotent subgroup of
GL(2), and A4, over a suitable Siegel domain, since (¢ ~18,)(h) is independent of
A, we conclude that the integral factorizes through j(M(I))y(A 1A5)dA,,
A; e N(F)\N(A), and this is zero since (M®), is a cusp form.

The integral over H(F)\H(A) of the terms in (8.2) parametrized by the third
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coset in (5.2) is equal to

J 1S = 1)0,(r) = PHMPYrh)E ~ H(h)dh

where
1 00
r=|0 I 0],
1 0 1
a 0 C O
c d B O . .
and h ranges over 00 4 0 (F)\H(A). Applying again the Iwasawa
0 0 0 a 10 0
decomposition, and noting that r commutes with x = (¢ 1 0/, and that
0 0 I

E716,(xrh) = (E718,)(rh), it follows that the integral factorizes through the
integral

J(M(D),;. ((i ?))dc, ceAmodF,

which is zero since (M®),, is a cusp form in p,.
There remains the first coset in (5.2). The integral over H(F)\H(A), of the
terms in (8.2) parametrized by this first coset, is equal to

f 26:(h)12 = )0, (hr)* =M DYhr)E ™ (h)dh.
P, (F\H(A)

Here r = r(1,n), and we used the fact that rHr = H™. The Iwasawa decom-

position H™(A) = N(l;,z)(A)M“,"__Z)KH_ can be used to write h as nmk, and

we use the change of variables formula dh = §(m) ‘dndmdk, with
a 0 0

d(m) = |b""?/det(c)if m= [0 b O|;a,bin A*, cin GL(n — 2, A). Note that
0 0 ¢

(M®)(nmk) = p,(det c)(MD)

S O 8
(=2 N =]
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and the function 4+ (M®) <<:)1 2) g> = p,(detc)(MD) <<g (I)> g) for any

ceGL(n — 2,A) and ge G(A), is a cusp form in 4 € GL(2, A) in the space of the
cuspidal representation p, of GL(2, A). Put

oone = | oo (5 9) k) & ok
K

Since d,(hr) = |(ab)"~2/det(c)?|, our integral takes the form

J \(aby"~2/det(c)? ~P/2[b"~2/det(c)| " (M D)y ; <<g 2))

x py(detc)é(a” ' /bdetc)d*ad*bd*c.
a 00
It ranges over the |0 b 0

0 0 ¢
[(ab)"~2/det(c)*|'"* > t,. Integrating over ¢ in SL(n — 2, F)\SL(n — 2, A) we earn
a volume factor which is equal to 1, and we may assume that c lies in A*/F*,
as do a, b, and (a,b,c) are taken modulo the equivalence relation
(z,2,2""?) = (1,1,1). Write u = a/b and v = b"~2/c. Then the integral ranges
over |v||u|"~2/2 > t,, and it takes the form

f Iul(n—2)/2('u|(n~2)/2|UD—A(M(D)Ké u 0))
|U“u|(n—2)/2 >t, ? 0 1

X p1(v)” EW" v)d ¥ ud *v.

in M g n-2(F)\M 1,0 2(A), with

Integrating out v we obtain

2’ 0 e
5(§/pl)tTJ(M(D)K,5<<g 1>> ()" |~ 224y

.- _, n—1
=0d(p,/E)A " 't; lL(M(I))K’g (Pz ®E, T)’
—1
where Limay ¢ (Pz ® ff"‘ﬂ%) is the value at (n — 1)/2 of the L-function of

p, ®E" 1 associated with the cusp form ?;"_1(M(D)K,5 in p, ®E&" 1. This
completes the proof of our proposition.
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Bernstein’s center

It remains to compute the contribution to the spectral side of the summation
formula of the terms parameterized by the data of Proposition 4(a). It might be
true that for a general n > 3 the only terms described by Proposition 4(a) which
contribute to the summation formula are associated with a parabolic subgroup
of type (ny, n,, n3) where at least two of the n,, n,, n; are equal to 1, but we do not
pursue this question here. In fact we shall discuss below the contributions of the
terms of Proposition 4(a) only in the special case where n=3 (and
n, = n, = ny = 1). Before embarking on this computation for n = 3 we shall
complete a special form of the summation formula for a general n > 3, which
does not involve the terms of Proposition 4(a). This special case, for a general
n > 3, depends on a choice of the test function f.

Let v be a non-archimedean place of F. A cuspidal pair in G, is a pair (M,, p,)
consisting of a (standard) Levi subgroup M, and a supercuspidal (irreducible)
M module p,. The pairs (M,, p,), (M., p,) are equivalent if there is g in G, with
M, =g 'M,g and p, equivalent to m+— p,(g~ 'mg). An equivalence class is
called an infinitesimal character (of G,). For every irreducible G,-module n, there
exists a cuspidal pair (M,, p,) such that =, is a constituent of the composition
series of the G,-module I(p,; G,, P,) normalizedly (= “unitarily”) induced from
the P,-module extended from p, on M, by 1 on the unipotent radical of the
(standard) parabolic P, = M N, defined by M, . The infinitesimal character y(r,)
of 7, is defined to be the infinitesimal character of (M,, p,); it is uniquely
determined (see [ BZ]).

The set O(G,) of infinitesimal characters has the structure of a complex
algebraic variety. Indeed, the group X(M,) of unramified characters u: M, —» C*
of M, acts on the set Irr M, of irreducible M ,-modules by u: p, — up,. For any
cuspidal pair (M,, p,), the image of the map X(M,) —» ©O(G,), u+—(M,, up,), is
called a connected component of ®(G,). This component has the natural structure
of an affine complex algebraic variety as a quotient of X(M,) (~C*? for some
d = d(M,) = 0), by a finite group. The ©(G,) is a complex algebraic variety equal
to the disjoint union of infinitely many connected components ©.

As a consequence of the theory of the Bernstein center (see [BD] for a
preliminary draft, and the forthcoming work [B]), one has the following

12. PROPOSITION. Let ® be a connected component in ®(G,). Then for any
f,€CZ(G,) there exists f,g€ CE(G,) such that for any mn,elrr G, we have
nv(.ﬁ:.e) =0 !fX(nv)¢®’ and nu(ﬁ),e) = nv(ﬁ;) lf X(TI,)G@.

We use this Proposition 12 as follows. Fix a non-archimedean place u of F, a
unitary character p$, of F, and a supercuspidal (irreducible) representation p9,
of GL(2, F,) with central character w3, = (p?,)> " Denote by M, the standard
Levi subgroup of type (1,..., 1,2), and by p? the supercuspidal representation
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P x - xp% xp3, of M,. Denote by @2 the connected component of the
infinitesimal character of p?.

We shall derive the summation formula for a function f which is a (finite linear
combination of) product(s) over all places v of F of the form ® f,, where
£f,eC2(G,) for all v, f,=f2 is the quotient by vol(K,) of the characteristic
function of K, in G, for almost all v, and f, has the property that f, = f, 0. For
any such f we have that n(f) = 0 for every representation 7 of G(A) of the form
I(p; G(A), P(A)), normalizedly induced from a pair (P, p) described in Proposi-
tion 4(a).

For such f, the summation formula is obtained from (3.3), where the sums over
P and p range over the connected components of pairs (P, p) (up to conjugation)
as listed in Proposition 4(b). The factor | &~ 'ATE in (3.3) is equal - by virtue of
the Propositions 9 and 11 —to the difference

0(p1/8)[ Loy (P2 ® &L (n— 1)/2)t}/A
_L(M(sz,pz,i)(b)lK,{(p; ®E&, (n— 1)/2t;*/2],

since &" ! =p" ! =w; € if p, =&, and py, the contragredient of p,, is
equivalent to p, ® w,, where w, is the central character of p,. More precisely we
need the complex conjugate of this. Of course on A€iR we have 2 = —A. The
factor is then

501 /E) Lints sy o -1 (02 ® 1, (m — 1/2D)3/A
— Lagg (03 ®F, (n — 1/2)t7 /4],

For the given smooth function f; the sum over @ in (3.3) is finite, and the
function E(I(f, p, )®,p,4) is holomorphic and rapidly decreasing in
AeiUp (~iR) as |4] = oo.

By virtue of Lemma 10 we may take the limit as ¢; = oo (and so t, — o) to
obtain the required result, namely that when T — oo the limit of (3.3) is

> np)! % EI(f, p, 0@, p, 0)3(0,/8)

P,p)
X [M(syipy 0ppez—+ (P2 ® &Y (1 — 1)/2) + Ly o-1(p3 ® &, (n — 1)/2)].

F. The case of PGL(3)

It remains to compute the contributions to the summation formula from the
terms parametrized by the data described by Proposition 4(a). We shall do this
only in the case where n = 3, and then P = B is the upper triangular subgroup of
G = PGL(3),and p = p; X p, X p3 is a character of B(A)/B(F), which is trivial on
N(A)/N(F), N being the unipotent radical of B.
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Assume then that n = 3, and put P, = P, ,,. To integrate the automorphic
function ATE(g, ®@, p, ) over g€ H(F)\H(A), we note that we may — as we will —
integrate instead over H(F)\H°(A), where

* 0
HO =2, 3)Hr(2,3)={|0 + 0
* 0 =

Indeed, ATE(r'gr, ®) = AT E(g, ®") with ®'(g) = ®(gr) if ' € G(F), since ATE is
automorphic, and we may replace the orthonormal basis {®} by {®"}. We need a
coset decomposition analogous to that of Proposition 5, with H® replacing H,
and with respect to B. Put

1 0 0 1 00 100
=11 0|, e=[01 0], e&=[01 o0l
00 1 01 1 1 0 1

13. PROPOSITION. If G = GL(3) and P, =P, ,,, then we have the disjoint
union
G = P,H® U P,r(23)H° U P,&,r(23)H°
= BH® U Br(12)H® U Br(23)H® U Be,r(12)H°
UBe,r(23)H® U Beyr(23)HC.

Consequently, if

* 0 =*
01t,

*

B°=BnH=

(=

0
0
then we have the disjoint coset decomposition

B\G = B®\H° U r(12)- B®\H° U r(23)- B°\H°

a 0 z a 0 z
vuer(12)- 410 a 0 |}\H°Uer(23)- {|{0 b 0 |}\H°
0 0 b 0 0 b
[a 00
Uer(23)- {10 a O} \H°.
0 0 b
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DEFINITION. Below we refer to the six cosets in the last decomposition as “the
first coset”, ..., “the sixth coset”.

Proof. The homogeneous space P\ G is isomorphic to the projective 3-space
via the isomorphism g+ (0,0, 1)g. The orbit (0,0, 1)H® consists of the vectors
(a, b, ) with b = 0, that of r(23)H° consists of (a, b, c) with a = ¢ = 0, and the

1 00
orbit (0,0,1){0 1 0]|r(23)H° consists of (a,b,c) with b# 0, and a #0 or
01 1

¢ # 0. When the first decomposition.
To deduce from it the second decomposition, recall the Bruhat decomposition

P, = BuUBr(1, 2)N, = BuBr(l1, 2) u Be;r(12)A,
where A is the diagonal subgroup and

*

1 0
N, =1{|0 1 0|t ={a"'eya;aeA}.
0 01
Then
P,H° = BH® U Br(12)H° U Be, r(12)HC.
Moreover
P,r(23)H° = Br(23)H",
since r(23)r(12)r(23)eH® and
Be,r(12)r(23)H° = Br(23)HC.
Finally
P,e,r(23)HC = Be,r(23)HC U Beyr(23)HC,

since

Be;r(12)e,r(23)H® = Beye,r(12)r(23)H° = Be,yr(23)H®
(r(23)e,r(23)eHO).

To obtain the coset decomposition it suffices to note that
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B\BrH® = r-(r " 'Br n H®\H°).
The proposition follows.

REMARK. (1) Since
-1 0 1 0 0 b
0 b 0] &r23)=¢,r(12)|0 1 0],
0 0 1 1 00

we have that Beyr(23)H = Beyr(12)H®. (2) It is easy to see that
Be,r(12)H® = Be, H?, and that Be,r(23)H® = Be,H®.

Since the character p = p; xp, xp3 is a cuspidal representation of the
diagonal subgroup A(A) = B(A)/N(A), Lemma 4.1 of [A2], p. 114, applies. It
asserts, in our case, the following.

14. PROPOSITION. The truncated Eisenstein series ATE(h, ®, p, A), where
A€ UE ¢ hasreal part Re(d) in po + (UE)*, and T is sufficiently large in the positive .
Weyl chamber W, is equal to

eo(s)Po(s2, Ho(yh) — T)e+ oM (M(s, p, HDYyh).  (14.1)
seW yeB(F)\G(F)

We may identify the two dimensional spaces U, and A with the space of
the vectors (x;, x,, Xx3) in R® with x,+x,+x;=0. The simple roots are
oy =(1, —1,0) and a,=(0, 1, —1), and a dual basis is given by u, =(2/3, —1/3,
—1/3), =173, 1/3, =2/3) (eppp =9y I a=diaga,,aya,)
then o,(a) = |a,/a,| = e*H@ and «y(a) = |a,/a,| = eC2H@ - thus H(a) =
In|a,/a,)u, + Inja,/aslu;. Hence if a = diag(xy,x,/x;,x;"), then H(a) =
In|x,|a; + In|x,|a,. We shall also write 2 = Au, + 4,4, and note that 1€ (UF)™*
if 1; > 0and A, > 0. Recall that ¢q(A) is defined for A e A¥ in [A1], p. 940, to be
1if (A,a")> < Ofor an even number of xe A, = {a;,2,}, and it is —1 otherwise.
The function ®y(A, H) on (A, h)e UE x A, is defined there to be equal to 1 if
(A, o’><0 and {u;, H> >0, or {(A,¢>>0 and {y;, H) <0, for both
i=1,2; it is O otherwise.

First Coset

We are to consider the integral over H(F)\H°(A) of the product by &~ (h)
a 0 b

(=& Y(ad — bec)fe?) if h= [0 e 0 |eHA)) of the expression displayed in
c 0 d
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Proposition 14. Using the coset decomposition of Proposition 13, we consider
first the coset B(F)\H°(F). Applying the Iwasawa decomposition

H°(A) = N°(A)A°(A)KK°,
and noting the change of variables formula dh = 6 Ya)dndadk, where

8a) = oD (=la,/as] if a = (ay, a,, as), Ppo = 0y + o, = Uy + U,), our integral
takes the form

bolsh, H(a) — T)eC O (M(s, p, D®)o(@)¢ ™ (a)da,
(14.2)

Y eo(sA)

seW A(F\A(A)

where &(diag(a, b, c)) = E(ac/b?). Write T =Int,; o, + Int,-a, Note that
(M(s, p, A®)yo (@) = [o(M(s, p, AD(ak)é " (k)dk is zero unless *p = £(°p(a) =
p(s(a))) on A(A) N K°. We may choose p in its connected component with 5p = ¢
on A(A) if *p = £ on A(A) N K°. Then (M(s, p, ))®)io :(a)¢ ™ *(a) is independent of
aeA(A), and is equal to its value at a = 1. Also we write é(p/&) = 1if p = & on
A(A) " K%, and 8(p/¢) = 0 otherwise.

The following table lists the various functions in the integral.

s sA eo(sA) | Polsh, H(a) — T) e$SHH@)

id Ay + Az pts 1 [x] <ty Ixa] <t x1[*[x,*
r(12) — A+ (A + A, -1 ty <lIxql, Ixal <t B I
r(23) (A1 +A)p — Aty -1 Ixq] <ty, £ <|x,] [ e P e
r23r(12) | Auy — (A +4)u, -1 [x1l<ty, £ <Ix,) x4 |42|x, =A%
r(12r(23) | —(A+ A+ A, -1 £ <lIxql, Ix5] <t, B I P
r(13) — Aoty —Aphz 1 £ <|x4], £ <|x,] x4~ *2e,

We shall label below by ((3)i) the various terms in the integral | ¢~ 'ATE to be
substituted in (3.3), in our present case of PGL(3), where n = 3, and the character

p of the minimal parabolic subgroup.

Since

t
J |x|~*d*x = J |x|*d*x =
x>t Ix|<t~! i

our integral is equal to

B0 (1)
1112 K° /p)
tl—ll A1+ Az

t
f |x[*d*x = —,
x| <t A

Tl 112+ » (M(r(12), p, l)(D)Ko,é(l)g(é/r(lz)p)



A Fourier summation formula 97

A1+ A2 —12
/ltlTT N (M(r(23), p, D®)yo :(1)8(E/"*>p)
[}'2 l) A2
(M(r(23)r(12) P, D)o £ (1)5(E/ @312 )
Ay /11
tl Ar— A2 tll MO(12W(23 o s v,
mz( (r(12)r(23), p, @)yt (1)5(E/ 0)
i t2 " 13
o (ME13), oy A (1O Vp), @)1
2

Second Coset

Next we consider the coset r(12)-B°(F)\H°(F), and again integrate over
H°(F)/H°(A) the corresponding partial sum of (14.1), multiplied by &~ !(h).
Applying the Iwasawa decomposition HO(A) = N°(A)A(A)K®, noting that
r(12)N°(A)(12) consists of upper triangular unipotent matrices, and that
dh = e~ <Potld@dn dg dk, and making the change a— r(12)ar(12) of variables on
A(A), we obtain the integral

Z SO(SJ') ¢O(S},, H(a) — T)e<5;‘,H(a)>
seW A(F\A(A)

x (M(s, p, D)o £(r(12))5(" D& /*p)ePo~"12Pe @) g, (14.3)

The argument used in the case of (13.2) implies that (M(s, p,
D)o £(ar(12))é ™ 1(r(12)ar(12)) is zero unless *p = "¢ on A(A) N KO, but then
we may choose p in its connected component to satisfy *p = "¢ on A(A), and
our function is independent of a. If H(a) = In|x|o; + In|x,|a,, since

—r(12)po=(1, 0, —1)—(0, 1, —1)=(1, —1, 0), the new factor in the
integrand of (14.3) (as compared with that of (14.2)) is |x,|/|x,|.

The corresponding table for (14.3) is the same as for (14.2), except that the 6
entries in the last column are multiplied by |x,|?/|x,|. Consequently (14.3) is
equal to (put r = r(12), s = r(23), for brevity)

tll+2 tlz 1

CI) o :(r(12))d(p/"

T3 o1 Q1200679
t% A1 t§1+lz—1
2=l A+ A, —1
t2+ll+lz tzlz 1

P R

t2+lz t —A1—4A2—-1

L L+ L+

(M(r(12), p, A)@)o£(r(12))0(p/"¢)

(M(r(23), p, 2)®)io(r(12))5Cp/"E)

[ (M(r23)r(12), p, D) £ (r(12))2(" p/"¢)
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tf*}.x—lz til—l

2 rs r
~ I o ME2623), p, e (r12)5% /)

tf—lz tz—ll—l

2— I, A+ 1

(M(r(13), p, @) £ (r(12))5("p/"E). (3)2)

Third Coset

The subsum parametrized by r(23)- B%(F)\H(F) in (14.1), or rather its integral
over H°(F)\H°(A), can be treated analogously. Applying again the Iwasawa
decomposition and making the change a+—s r(23)ar(23) of variables on A(A), an
integral analogous to (14.2) and (14.3) is obtained, namely r(12) has to be
replaced by r(23) in (14.3). Note that p, — r(23)p, = (1,0, —1) — (1, —1, 0) = (0,
1, —1), and $Po~"@IeH@> — |x2/x | Hence the last column in the table for
(14.2) has to be multiplied by |x3/x,| to obtain the analogous table, for the coset
r(23)- B(F)\H(F). Integrating we obtain (put r =r(23), s=r(12), in the
following expression)

ti-l—l t§2+2

h—14,+2 Dyo £ (1(23))3(p/€)

tl—il—l t%1+12+2

F T L e MO0, A0 (2303

ti.1+12*1 t%—}.z

ThAL—12-7 (M(r(23), p, AP0 £(H(23))0( p/")

ti-z*l t%*ll—lz

Th—12-4 -7 (M(r(23)r(12), p, A)@)yco £ (1(23))0("p/"E)

t—).x—}.;,—l t2+}.1
+ 1 2

A+A,+124 4

R

A 12—

(M(r(12)r(23), p, D)o £ (r(23))3(" p/"E)

(M(r(13), p, D)o £ (H(23))0("*p/"&). (©3)3)

Fourth Coset
The next coset of B(F)\G(F) to be considered is

Q

a V4
er(12)- 110 a 0|} (F)\H(F).
00 b

S 8

The integral over HY(F)\H°(A) of the product by &~ '(h) of the subsum
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parameterized by this coset in (14.1) is the sum over s€ W of the integral over
u=>b/se A* and w=c/be A*/F*, of the product with ¢y(sA) of

Po(si, H(h) — TYM®)(h)e*+PoHE0Eb2 jac)|c/ald ™ (a/b)d (c/b),
where

(MD)(g) = fw’ (M(s, p, HY®)gr(12)k(E ™" (k)dk,

1 0 0M/b O O 1 0 O
h=|1 1 0|0 a O]=|1 1/u O].
0 0 1/\0 0 ¢ 0 0 w

As usual, the Iwasawa decomposition was used, and it was noted that ¢,
commutes with

1 00
r(2N%(12) = |0 1 =/
00 1

Note that (M®)h) is zero unless °*pi(w)= °p(diag(l,1,w)) is equal to
E(w) = &(diag(l,1,w)) on all we A with |w| = 1. We may choose p in its
connected component, when §(*p;/€) = 1, such that *p; = & on A*. With this
choice, (M®)(h)g~1(w) is independent of w. The integrand can therefore be
expressed in the form

1 0 O
8Cus/E)o(sh, H — TYM®) |[ 1 1/u O [} Ao luwlg(u)d* ud * w,
0 0 1

H = H(h).

Note that if g = (g9,)€ G(A) where g, = n,a,k,€ G(F,), the H(g) = Y, H,(9,),
where H,(g,) is defined to be Ha,), and In|y(a,)| = {x, H,(a,)> for any
x € X(A) = Hom(A, GL(1)). For x = (x,), y = (y,) in A, put |x| = IT,|x,|,, and
0, I =TI, [|(xps Yo)lly, Where [l(x,, y,)l, is max(|x,l,,|y.,) in the non-
archimedean case and (|x,|2 + |y,|2)!/? in the archimedean case. Also we write
(x, y) for an element in A* with |(x, y)| = [|(x, y)|. Then

H |1 u' 0| =H(diag(u(l, u=Y)"% (1, u""), w)
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= — 3In(jwu?| (1, u™ HII*)e, — FIn(uw?|)a,
= —In|wl(e; + 2a,) — FInful2a;, + oy) — In||(1, u™ Yoy

= —In|w| g, — Inful- gy — In (L, u™ Y] -y,

IV (1). We shall consider each of the summands indexed by se W. When s = 1,
the characteristic function ¢4(4, H — T) is non-zero when

sinjwl + $nful + In (1, u™ Y| > —Int,,

orlnjw| > A= —3Int; —2In|ul — 3In||(1, u™ V)],
and
2In|w| + 3Inju| > —Int,, orln|w| > B = —3Int, — 3In|u|.
Note that
B ATl e
is always non-positive, and consequently so is
—Injul = 2In |1, u™ Y| = =Y In [u,(1, u, V),

which is therefore less than In(t3/t,) if we choose ¢, and t, with t, < t} (later we
also require that ¢, < t2). It follows that B > A, namely the integral ranges, when
s =1, over the ue A* and we A*/F* with |w| ™1 < t3/%|ul'/%

On the domain of integration, the integrand is the product of

luwl exp(<A + po, HY) = uwlexp{—(1 + ;) In(wu?| [I(1, u™")]|*)/3
—(1 + 4,)In|u?w|/3}

= (I(1, u™ HIPluPwl) 44w T AT )

— ”(1’ u*l)“ -1 +).1)|u|(—2/1, +}.z)/3|W, —(A1+242)/3

and

1 0 0
(M®) [| 1 1/u 0O || §u)(us/8)-
0 0 1
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Integrating with respect to we A*/F* on |w| ™! < |u|'/?3/%, we obtain

(L, w™ )| 7O A0~ Ry 220 T 2AB )+ 34,

= (1, w™ Y AT AN M2 T2 5 (20, + Ay).

We need to integrate this over u = (u,) in A *. Note that p, is unramified and
that (M®)(g) is right-GL(3, R,) and left-A(F,) invariant, for almost all ». When

1 0 O
Spy = & we have that Eu)(M®) (|1 1/u 0]|, as a function in u,e F,’, is a
0 0 1

multiple of *p, (u,) = °p,(diag(l, 1/u,, 1)§,(u,) = °p,(diag(1, 1/u,, u,)) if |u,|, < 1,
and of *p, (u,) = °p,(diag(1/u,, 1, 1))§,(u,) = *p,(diag(l/u,, 1, ) if |u,|, > 1, for
almost all v. Note that in the non-archimedean case we have
1+41/2 flul <1
—1y (1 +A1/2),, |~ A/2 — |4l u,l, s 1
|(1,uv )Iv |uv|v {!uvlv—hlz if |uv|v > 1.
Hence the integral of the local factor over F,* against d *u, is equal —in the non-
archimedean case — to

1 0 O
J (M®), ({1 1/u O] |ulg™*/2E,(u)d™u
[ul, <1 0 0 1
0 O
+ j M®), || 1 1u 0] |y 2¢, ud*u.
ful,>1 0 0 1

At almost all v we put x = *p, (n,) and y = *p, (rn,), where =, is a uniformizing
parameter in F,. We obtain

0 0
Z q”—n(l+).|/2)xn + Z q;nil/2y—n
0 1

=(1— qv—l—lxﬂx)—l +(1— qu—lx/Z/y)Al —1
=(1 —xy~'q, ' ")/ — g, M2y — xq, P M)
=L,(4,/2, CpS) DL,(1 + 4,/2,°p, )/L(1 + A4, °p, [°p)).

At the remaining finite number of places we obtain a multiple of this product of

L-factors by a polynomial in ¢}'/?, or a holomorphic function in 2, in the
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archimedean case. Denote the product over v by

Lyo(A1/2, Cp™) Lyo(1 + 41/2,°p7)/Lygg(l + 4, p~/p™)
=&(41/2, Cp*) " HLyo(l — 44/2,°p ™)
x Lygo(1+21/2, °0 )/ Lua(1 + 41, *p /P ). (3)4.1)

This quotient has a simple pole on the line 4, €iR if *p~ (or *p™) factorizes
through v(x) = |x|; it is holomorphic, of polynomial grown as 1, €iR, |1,| - 0.
When the pole exists we may choose p in its connected component to satisfy
Sp~ =1 (or *p* = 1). In this case the pole occurs at A, = 0 (in the number field
case, and at A,€iZ/logq in the function field case). The result of our com-
putation is of course the product of ((3)4.1) with t32*%1/2/(24, + 4,)/3).

IV(5). The next summand is that of s = #(12), when sA = — A, u; + (4; + A,)u,.
The characteristic function ¢y(sA, H — T) is 0 unless In|w| < 4 and In|w| > B.
But B > A hence the integrand is always zero.

IV(6). Similarly, when s = r(12)r(23), so sA = —(4; + 4,)u; + 4,u,, the charac-
teristic function vanishes unless In|w| < 4 < B < In|w|, and the integrand is
always zero.

The remaining three cases of s are analogously treated. To simplify the
notations we consider only the case where p = 1 and ¢ = 1. The key ingredients
of the computations would then be seen, and the general case can be treated as in
the case of s = 1 above, with additional notational effort only.

IV(2). When s =r(23), then si = (4; + 4,)u; — A,u,, and the characteristic
function is zero unless In |w| > A4 and In |w| < B, namely the integral ranges over
the u, w with

] 2632 < |wl ™1 < lulPI(L, w1
Since

e(si+p0,H> — ”(1’ u—l)“ -1 +}.1+}.z)lwu2|7(1+}.1+}.z)/3|uW2|7(1 —lz)/3,

the integral over we A™/F* in the designed domain of the product of this with
|luw| is

”(1’ u- 1)” —(1+4 +).2)Iu| —(241+42)/3

X [l (1, w™ DI R 425 — (juf 252 24y = 25)/3).

The integral of this over u in A with respect to d*u is
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[t1 ™ *e(A;)Lygo(1 — A2)Lagg(1 + 45)/Lye(1 + 245)
— 172 2((Ay + 42)/2)Lya(l — (A1 + 1,)/2)
X Lyg(1 + (A + 45)/2)/Lye(l + A1 + 4)]/((41 — 45)/3); ((3)4.2)

the computation is carried out as in the case where s = 1.

IV(3). When s =r(23)r(12) and si = A,u; — (4; + A,)u,, the characteristic
function specifies the same domain of |w| as in the previous case of s = r(23), and

e(sl+p0,H> — |Wu2|4(1 +lz)/3"(1’ u—l)” —(1+Az)|uw2|(/11+2-2—1)/3

— H(l’ u” 1)” -1 +Az)lu‘(ll —/12)/3|W|(2,1, +lz)/3|uwl -1

Multiplying this by |uw|, and integrating over we A */F * in the domain specified
by the non-vanishing of the characteristic function, we obtain

(1, w™ = A RS2 16) 20

— (PPN, w7 RN + A)/3).
The integral of this over ue A ™ against d“u is equal to

[ty *1* #2200, /2) Laga(l — 25/2)Lya(l + 23/2)/Lago(1 + 15)

—t7 M7 R2g(Ay 4+ Ap)Lyo(l — Ay — 4y)

X Lyo(l + 4y + 45)/Lyo(1 + 241 + 245)1/(24, + 2,)/3). ((3)4.3)
IV(4). When s =r(13) and si= —A,u; — A u,, the characteristic function
¢o(sA, H— T) vanishes unless In|w| < A4 and In|w| < B; but A < B, hence the
support is specified by

wl < e 3ful 720, u” V)3

Also

e(sl+p0,H> — ”(1’ u—l)“ —(1—2.2)|wu2|-(1—lz)/3luw2|*(l—}.1)/3

— "(1, u” 1)” -1 7lz)|ul(ll +212)/3|W‘(211 +lz)/3|uw| - 1‘

The integral over we A*/F* (on the specified domain) of the product of this
with |uw| is equal to

(L, ™ )~ A2l e 2203 3| =2 (1, w73 2R ARA(22, + 4,)/3).
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The integral of this on ue A*, by d*u, is

£ 2474200 + 49)/3) 7 e(Ay) Lyl — A1) Lpgo(1 + A1)/ Lyl +24,)  ((3)4.4)
Fifth Coset

a 0 z
The coset &,r(23). {|0 b 0|} (F)\H’(F) is treated analogously. Carrying out
0 0 b
the computation we would obtain terms ((3)5.i), 1 < i < 4, analogous to ((3)4.1).
Sixth Coset
The remaining subsum of (14.1) to be considered ranges over the coset

a 00
£3r(23)- (|0 a O} (F)\H°F) in B(F)\G(F).
0 0 b

The integral over HY(F)\H°(A) can be expressed—on using the Iwasawa
decomposition H’(A) = N°%(A)A(A)K° - as the sum over s€ W of the product
with gg(sA) of the integral of

Go(sd, H — T)e P01 g/c| =Y (MDY h)E ~ Y(ac/b?)dz d *ud v,

where
1 0 O0\/a 0 O u 0 0
H=HMh),h=|0 1 0|0 ¢ 0|=|0 v 0],
1 z 1/\0 0 b u z 1

(M®)g) = JKD (M(s, p, A®)gr(23)k)S ™" (k) dk,

over
zeA, u=abeA™, v=c/heA*/F*.

Foru=(u)eA,z=(z)eA, welet|(1, z,, u,)|, be max(1, |z,,, |u,|,) if v is non-
archimedean, and (1 + |z,)? + |u,|2)"/? otherwise, put ||(1, z, u)| for IT, ||(1, |z,,,
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lu,,)ll, and put (1, z,, u,) for an element of F, with absolute value |(1, z,, u,)|,, and
(1, z, u) for ((1, z,, u,)) e A*. Then

u 0 0
0 v 0|eN(A)diag(u/(1, u), o(1, w/(1, z, u), (1, z, w)K,
u z 1

where K = I1,K,, and K, is the standard maximal compact subgroup of G,.
Changing variables z — z/v, noting that G is a projective group, H becomes

u 0 0
H||0 v 0| =GInk/ —In|d, wle; + Glnjus| — In||(1, 2, w)l)a,.
u z 1

VI(1). We shall consider separately each of the six terms indexed by se W, with
s = 1 treated now. As 4 = A, + A,u, with 4; > 0, the characteristic function
¢o(4, H — T) is supported on the set determined by (H — T, ;> <0 (i = 1, 2),
namely on the u, v, z with

/ol /0L Wl <ty JuolB/I(L u, 2 <ty
or equivalently

e *ul?/ICL WP < ol < 3lul I u, 2]

The integrand is the product by

u 0 0
E Nur)M®) ||0 v O (%)
u z 1

=&~ (uvy pldiagu/(1, u), v(1, WAL, z, ), (1, z, WNMO)(k(u, 2)),

where k(u, z) € I is independent of v, of (recall that ¢/a = v/u, and that the change
zz/v added a factor |v] 1)

A S - -
AP = = (P /ul/ (L, )P AR (ul/ (1, 2, w)| ) A3~

= (u?/ol/ I, w)lIPY2(ul/ (L, z, WI*)*=2I(L, 2, wl =11, w)] !

= ol AR R, 2, R, )
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The integral of this product over v in A°/F*, A° = {aeW*; |a| =1}, is a
multiple of 6(°p,/E), where *p,(v) = *p(diag(1, v, 1)). If *p, = & on A° we may
choose p in its connected component to have *p, =& on A ™. Then (%) is
independent of v.

Integrating against d“v over v in A*/F* we obtain

|| GA 223 (1, W) 7Y, z w)| TR

x [(elul ™ 2N, u, 274 = (e Hul®/1(L, w))*~*IA(4, — 40)/3).
This is

[e22 ™ #ul* (I, w2, wi) =t 4
— e 22 (I, wlIA, 2 wl) ™42, = Ay)/3).
Each term in this difference, multiplied by
u 0 0
oCpo/B)M®) {10 1 0| &w) ™',
u z 1

has to be integrated over z in A (against dz) and over u in A *, against d “u. These
global integrals are products of local integrals. We shall now compute these
local integrals for almost all v, where (M®), is K ,-invariant (and p,, is unramified
and v is non-archimedean). We first integrate the first summand against dz, to
obtain

J 2 (1L I (L 2 )25
xP(dlag(u/(l, u), (1, u)/u(l, z, u)’ (1, z, u)))dz

="p(diag(u/(1, u), 1/u, (1, u))) [ul# (1, w)||; 2~ 2% dz

lzl, < I(Lu),

+°p(diag(u/(1, ), (1, w)/u, 1) lulg (L, ully = * 2l ™ * u(z)dz

lzl,> [l (Lw)llv
="p(diag(u/(1, u), 1/u, (1, w))uls* (1, w)l, ' ~2*
x(1— g, ' "M /um )/ — g, */u(m,))

where u(z) = *p(diag(1, 1/z, z)), since

J dz = |a|
lzl,<lal
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and

fl ez = (1= g ) S (gt )
z,>q; n=r+
=(1 — g, Npulmy)gy,™ ")~ VAL — g " V() ~Y).

Put u,(u) = *p(diag(u, 1/u, 1)) and x = p,(rn,), and y = p(r,). The integration over
ueF,, of the product by p,uw) if |ul,<1 and by uu) of Jul,>1, of
[l (1, w)||,; > ~2*'d *u, has been carried out above as part of the discussion of
other cosets in B(F)\G(F). Thus integrating over u we obtain

(Lo(A1/2, ™ HLy(1 + A4/2, py)/Lo(1 + Ay, p1/1))
X (Ly(A, 1™ D/Lo(1 + Ay, ™).

The computation of the remaining finite number of ramified factors is similarly
u 0 0

yielding such factors, which depend however on (M®)v ||0 u O]|. The

u z 1
product over all v of these factors is equal to

Lyo(A1/2, ™ )Lpyo(1 + 21/2, py)LpgelAy, 1)
Lol + Ay, iy /WLpo(1 + Ay, )
_ &(41/2, #_1)8(11, liil)LMm(l — 44/2, ﬂ_l)LMm(l — A1, .u_l)LMtl)(l + 41/2, py)
Lyo(1 + Ay, 0™ YLpa(1 + Ay, py/1)

(3)6.1)

This product of L-functions is holomorphic on 4, €iR, unless u or u,
factorizes through u+ |u|. In this case we may choose p in its connected
component to have u = 1 or u; = 1. Then the product of the L-function has a
simple pole at A, =0 (4, €iZ/logq in the function field case), and has a
polynomial growth in A, as |A,| — oo. The integration of the term subtracted in
the difference is identical, except that A, and 1, have to be interchanged.

Since the presence of the characters p and ¢ considerably complicates the
notations, and the general case of any p and & has just been treated in the case of
s = 1, to simplify the notations in the remaining cases of s # 1 we restrict our
attention only to the case of p =1 =¢&. Clearly the general case similarly
follows.

VI(2). Next we consider s = r(12) in W. Then sA = —A,u; + (4, + A,)u,, the
characteristic function ¢y(sA, H — T) is 1 when

ol < e 2/ wl® (and Jol < Blul (L, w, 2))13,
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but this last inequality is implied by the first inequality), and

AP = = (P /ol/ (1, )P TAR(Juol/II(1, z, w)|P)t At A

- lul(lz—b)ﬂlvl(u;+}.z)/3”(1, u)HA'_IH(l, z, u)” —1-A1—42

The integral of the product of this by d“v over ve A*/F* in the specified
domain is

R )RR w, )] R R, +2)3),

The integral of this over ze A and ue A ™ is the same as in the previous case
where s = 1, with 1, (there) replaced by 4, + 4, (here). We then obtain

e((A1 + 45)/2)e(Ay + A)Lye(l — (A1 + 4,)/2)Lpye(1— A1 —45)
X Lygo(1 +(Ay + 22)/2)Lygal(1 + A1 + A5) 7217 247 2/(22, + 4,)/3).
((3)6.2)

VI(3). When s = r(23), then sA = (4, + 4,)u; — A,u,, we have
¢o(sd, H— T) # 0 when

o = 3lul = HI(L, w, 213>t 2/, W),
and

APl =1 = (u?/ol/ (1, w)lP)* A A3 /|1, 2, w) P H |~

= [u| B HADB|| R 23 (] | T E AR (L 2, W) TR
Integrating against d*v on A */F*, obtained is t; ** ~2%2/((1, + 21,)/3) times
g g ag
[ul* **2)|(1, w)|| =PRI, z, w)| TR

This factor, and its integral over ze A and ue A ™, is identical to the correspond-
ing factor and its integral in the previous case when s = r(12). The result of this
computation will take the label ((3)6.3).

VI(4). When s = r(23)r(12), sA = Au; — (44 + A,)p,, and ¢o(sd, H — T) # 0 on
[v] = 3lul~!|I(1, 4, z)|| 3. The integrand contains the term
e =1 = (2 /ol/|(1, w13+ (ul/[|(1, u, 2)] ) A !

= fu 42 AR =R 2R (L w, 2
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The integral of this (times d*v) over ve A*/F* is t; 41t 242 /(4, + 24,)/3) times
lul*21(1, W) 72 0(1, w, 2))| R

The expression (and its integral over ze A, ue A *) has already appeared in the
subtracted term in the difference associated with s = 1. In any case, the result of
this computation would be labeled ((3)6.4).

VI(5). When s = r(12)r(23), we have
sAh= —(Ay + A)uy + Apty, and  Po(sA, H — T)
is 1 when |v] < t73u)?/|(1,w)|3. In the integrand we find

e 00|~ = ((uol/ (1, )13 AR /(L w, 2)3)E A

= ol 343 24 (1, AR (1, w2

The integral over veA™/F* of the product of this with d*v is
to 2T A2)(24, + 4,)/3) times

lul*I(L, @) 72, w2 R

This expression is equal to that appearing in the first term in the difference
associated to s = 1. The label in this case would be ((3)6.5).

VI(6). Finally, when s =r(13), sA= — A,y — A 445, and @o(s4, H—T)#0 only
when

lul I, 2wl < ol < e ul?/I(L, )l

But this domain is empty.

This completes our evaluation of the integral over H°(F)\H°(A) of the
product by ¢ !(h) of the truncated Eisenstein series ATE(h, @, p, ) of (14.1),
when G = PGL(3) and p is a character of the diagonal subgroup. Namely the
result is the sum of (3(1)), (3)2), (3)3), (3)4.i) and ((3)5.() (1 < i < 4) and ((3)6,j)
1<j<g)).

G. Conclusion for PGL(3)

To obtain the terms of our summation formula in the continuous series, namely
those which are parametrized in (3.3) by the minimal parabolic subgroup P = B
and a character p of B(A)Y/B(F) (note that n(B) = 1/6 in (3.3)), we need to replace
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[ATE-¢& in (3.3) by the complex conjugate of the sum of ((3)i), 1 < i < 3, ((3)i,),
i=4,5 1<j<4, and ((3)6.1), 1 <i<5. Then we need to carry out the
integration over A in the two dimensional (over R) space i}, namely over A,
and 4, in R. Finally we shall take the limit as T — oo in the positive Weyl
chamber, namely as t; - o0 and ¢, — co. Note that for A in iU} the complex
conjugate 1 is — A. Then the function [ £AT E is analytic in 4 on i}, and each of
the expressions ((3)ij) has analytic continuation in 4 to A} . As functions in 4,
the ((3)ij) are slowly increasing in every band a; < Re(4,) < b;, 4; = {4, a,),i =1,
2, while the other factor, E, (I(f, p, )@, p, 4), in (3.3), is rapidly decreasing there.
For any f, the sums over p and ® are finite. With these comments out of the way,
we now point out the main features of the computations of the various terms.

I. In the case of (3(1)), as in the case of GL(2) we note (see [Sh2], p. 272) that the
intertwining operators M(s, p, ) are a product of (i) a scalar valued function,
m(s, p, A), which is a quotient of products of L-functions in the components of p,
and is holomorphic on 4,, 4, €iR, and of (ii) a normalized intertwining operator
R(s, p, A) = ®, R(s, p,, 2), with properties as listed in the case of GL(2). In
particular Lemma 10 applies to each of the six terms listed in ((3)1), and the limit
of the integral over A€i¥ as T — oo would be the value of the integrand at
Ay = 4, = 0 (after the factor of type T*/A is removed). Namely, the limit as
T — oo of (3.3) with ((3)1) replacing | &~ 'ATE, is the sum over p, @ of:

E,(I(f, p, 0), p, 0) ZPZV i(s)(M(s, p, 0)®)eo £ (1)0(E/°p)

with i(s) = 1 if s = 1 or s = r(13), and i(s) = — 1 otherwise.
It will be useful to recall the functional equation ([A1], (iii), p. 927)

M(s1S,, p, 4) = M(sy, S,p, S,A)M(s3, p, )

for any s,, s, W. The same functional equation holds for the normalized
operator R(s, p, 1), and the scalar valued function m(s, p, 4). Thus it suffices to
recall the definition of m(s, p, 4) (from [Sh2], p. 272), when s is a simple reflection,
and it is

m(s;, p, A) = L({A, 0, pi/pi+ D/L( + <4, 0>, pi/piv 1)e({As 0D Pi/Pi+1))

where s; = r(12), s, = r(23), p = p, X p, X p; and i = 1, 2, and by the functional
equation L(t, u) = &(t, WL(1 — t,u~ 1) it is

m(si, p, A = L(1 — Ay, pis1/p)/ LA + A5 pi/Pis1)s A = {4, ;).
The value of this factor at 4, =0 is 1 if p;/p;, is non-trivial, and —1 if it is.

Recall that we choose p in its connected component to have that p;/p; ., is 1 if it
factorizes through the absolute value x— |x|.
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II. Next we consider the contribution corresponding to ((3)2). In order to leave
((3(2)) as it is, we consider instead the complex conjugate of (3.3). Thus
E,(f, p, YD, p, A) in (3.3) will be replaced by Ez(I(f,p !, —A®, p~*, —A); this
is an analytic function in 1€i} (note that A = — A there), which has analytic
continuation in A on W} c. The analytic continuation of E,(...,4) is in fact
holomorphic in A. Indeed, the residue of the Eisenstein series at a value of 4
where it has a pole, lies in a space of a representation without a Whittaker
model, hence the Fourier coefficient E (..., A) has no pole there. Moreover, as a
function in A this E, is rapidly decreasing as |A| - oo in any vertical strip
a; <Re(d) <b;(i=1,2).

We shall substitute each of the six terms of ((3)2) in (the complex conjugate of)
(3.3) in place of j (£~ YATE)h)dh. In each of the six cases we shall move the line of
integration 4;€iR to a parallel line. In doing this, we need to watch out for poles
of the integrand; these will contribute to the integral, by Cauchy’s formula.

II(1). In the case of s=1 we move A, €iRto e 2+ 1, 4; €iR, small ¢ > 0. As the
integrand is holomorphic between these two lines, no residue would turn up.
The monomial t§'*2t52~! would then become t}'**t32~ !, When t, - 00 and
t,—> oo (in the domain t1’2 <t, <t?) the absolute value ti/t, has the
limit 0, and so the corresponding contribution to the limit of (3.3) as T — o0 is 0.

II(2). In the case of s =r(12) in ((3)2) inserted in (3.3), note that the only
singularity of the integrand may be obtained from the normalizing factor

m(r(12), p, A) = L(1 — Ay, pao/p1)/L(1 + 41, p1/p2)s

which depends only on 4,, and is holomorphic on 4, €iR. Moving the line of
integration in 4, from iR to & — 4 + iR, the monomial t?~*'t3'**2~1 would
become 4141t 42+¢=5 The limit as T — oo in the specified domain of T’s is
zero, and again no non-zero contribution to the limit of (3.3) as T — o0 is
obtained.

II(3). In the case of s = r(23), analogous change of 4, from iR to —2 + iR,
would yield the same conclusion. This change is permitted since m(r(23), p, 1)
depends only on 4,.

II(4). In the next case of s = r(23)r(12), the normalizing factor is

m(r(23)r(12), p, 4)
=m(r(23), p, X p1 X p3, (A2 — 41)/3, 24, + 4,)/3,
—(41 + 24,)/3)m(r(12), p, 2)

_ LAy + 23, p1/p3) . L(Ay, p1/p2)
L(1 + Ay + A3, p1/p3)e(Ay + A2, p1/p3) L1+ Ay, pi/p2o)e(Ay, pi/pa)’
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The e-factors have neither zeroes nor poles. Changing variables 1, —» 4, — 4, the

main part (i.e. up to a holomorphic, slowly increasing in vertical strips, function
in A) of the integrand is the product of the Fourier coefficient

Ez((f,p™h = 1)@, p7 1, =), (1Y)
where

A=2dipy + (A — Ay = Ay — p2) + Aot
with

LAy, pi/p2) LAy pi/ps) gl itk

. . 4(2
L+ Ay, pofpy) L+ Jo pafps) 2+ o =4y 141 (42

We shall move the line of integration of 1; from iR to 2 + iR. The resulting
expression is holomorphic and of rapid decay in 4, as |4;| = oo, and in 4,, and
the absolute value of t#27%1t; 1722 namely t; !, goes to 0 as T — oo. The only
pole encountered as 4; moves from iR to 2 + iR is of L(44, p;/p,), when p,/p,
(factorizes through the absolute value and so) is 1 (by our normalization). This
pole would occur at 1; = 1 (note that the pole at 4; = 0 is canceled by that of
L(1 + A4, p,/p,) in the denominator. We could take the residue at
Ay = (A, ay) = 1, but this would make our formula longer than necessary for
any possible practical applications. Instead, we shall introduce a zero at 4, = 1,
and explain why it would not restrict the applicability of the summation
formula.

To introduce a zero at 4, = 1, fix a place u of F, and let f = f*f, be a product
of a function f* on G(A*), A* is the ring of adeles without a component at u, and
a function f, on G,. We take f, to be spherical, namely K,-invariant. Then the
trace trz,(f,) is zero for any irreducible G,-module =,, unless =, is unramified,
namely has a non-zero K, fixed vector. In the latter case =, is the unique
unramified subquotient of a G,-module of the form I,(4), normalizedly induced
from the unramified character an— A(a) = e$H@# of the upper triangular
subgroup B, = 4,N, of G,. Moreover, tr n,(f,) = tr I,(f,, 4) is denoted by £,/ (1),
and named the Satake transform of f,, at AeWFc). Now
I(ﬁp—la _l’) = I(fu’ (pu)_l’ _)',)I(f—;n pu_l’ _,{’), and I(ﬁ’ pr:19 —)*,) acts as 0
unless p, is unramified, in which case it is the product by the scalar
trI(f,, p, !, — ) of the projection on the unique K,-fixed vector in I(p, *, ~A).

Our assumption on f, will be that f,/(4) = 0 at A with 1; = {4, ;) equals (1
or) —1).

Now if L(4;, p,/p,) of (4)2) has a pole, then p; = p, (by our normalization),
and I(p, !, —A') = I(— X' + A,u,) for some 4, which depends on p,, and
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tel(f, pa 'y —2) =Fd (= + dupta)
is zero when { — A’ + A,u,, ;> = — A, equals — 1. Hence ((4(1), which is equal to
T (=2 + Mp ) Eg((f*, (0") 1, =4, p7 1, —2),

vanishes at A; = 1, and cancels the pole, necessarily simple, of L(4,, p,/p,). The
fourth term of ((3)2) will consequently make no non-zero contribution to the
summation formula, under our assumption that f,(4) =0 at 1 with
Ay =LAo>=—1

REMARK. This assumption on f, (and f) does not restrict the applicability of
the summation formula. Indeed, the representations n of G(A) which occur in
the space L*(G(F)\G(A)) are unitary, and so are their components. Almost all
local components x, of 1 = @, are unramified, and we choose u (for a given 7)
such that =, is unramified. Then n, = I,(4), and it is unitary only for 4 with
[Re{4,a)| < 1 (all roots a). Then our assumptions on f, implies that tr I, (f,, 1)
vanishes only at n, = I,(4) which do not occur in the automorphic (unitary)
spectrum, and so no information could be obtained about such n, from the
summation formula even if the assumption was not made. In any case, no
information is lost.

We shall have to deal with various other terms, in analogous fashion, and will
need the vanishing assumption at {4, «) = 1 for all roots a.

VANISHING ASSUMPTION. The component of f at u is a spherical function
f. whose Satake transform f," is zero at any A = 4,1, + A,u, with (4, a) =1 for
some root o of A in G (in other words, at 4 with 4,, 4, or 4; + 4, equals 1 or
—1).

II(5). The next, fifth, summand, in ((3)2), and its contribution to (3.3), is similarly
treated. The normalizing factor m(r(12), r(23)p, r(23)A)m(r(23), p, 4) is the quotient
of

(L(Ay + A3, p1/p3)/L(1 + Ay + Az, p1/P3NLAA2s p2/P3)/ LA + 3, pa/p3))

by the holomorphic never-zero e-factors. Changing variables 4, — 1; — 4,, the
product of these L-function with the monomial in T in ((3)2) becomes

LAy, pi/ps)  Llda, polps) 7% 2!
L(1 + 4y, p1/p3) L(1 + Ay, pa/p3) 2 — 4y Ay — 4y — 1

Moving the line of integration in 4, from iR to 4 + 4,, 4, €iR, we obtain the
monomial with absolute value t3z; >, whose limit is 0 as T — oo in t; < t2. The
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integrand may have a pole in 0 < Re(4,) <4 only when p,/p; (factorizes
through the absolute value and so by our normalization) is equal to 1,at 2, = 1.
But this pole is canceled by the zero of £, (1) at A with {4,a,> = —1. No non-
zero contribution is then made to the summation formula.

II(6). The last term in ((3)2), parametrized by s = r(13), is the most difficult to
handle. The normalizing constant m(r(13), p, 4) is the quotient of

L(41, p1/p2) LAy + A3, p1/P3) L(5, p2/p3)
L(1 + Ay, p1/p2) L1 + Ay + Az, pi/p3) L(1 + Az, p2/p3)

by a product of ¢-factors. This has to be multiplied by

(742 = Atz P+ 4y))

It suffices to move the line of integration in 4, from iRto2 — e + 4,, 4,€R, as
then the monomial in T has absolute value t5¢; !, and its limit as T — oo in the
specified domain would be 0. The possible poles of the integrand on
0 < Re(4,) < 2 — ¢ are obtained from L(4,, p,/p3) when p,/p; =1, at 4, =1,
but this pole is compensated by a zero of f,/(4) at 4, = {4,a,) = —1, or from
L(A; + A5, p1/p3) Wwhen p,/p; = 1at A, + A, = 1, but this pole is canceled by the
zero of f,/(4) at 1; + A, = {4, a) = — 1, where « is the root a; + «,.

To summarize, the six terms of ((3)2), when substituted in (3.3), would give an
expression whose limit as T — oo is 0. Then there is no non-zero contribution to
the summation formula from the second coset.

III. The analysis of ((3)3) and the limit as T — oo of its contribution to (3.3) is
carried out analogously to that of ((3)2). In fact ((3)3) is obtained from ((3)2) on
interchanging (¢, 1, 1(12)) with (t,, 4,, #(23)).

To study the contribution of the remaining three cosets of B\G to the
summation formula we make the next

VANISHING ASSUMPTION II (VA II). The component f, of f at some place
u is a spherical function whose Satake transform f, is zero at
M=21u; + Au;) =0 (ie. when A, = 4, = 0).

The place u here may be different than that used in the first Vanishing
Assumption. Using a function f with such a component implies that trz(f) = 0
for m whose component at u is unramified and of the form y, ® I,,(1), where I,(1)
is the unramified irreducible G,-module normalizedly induced from the trivial
representation of B,, and y, is any unramified character of F, or order 3. Since
we can choose u at will, the n affected are those whose components are almost all
of the form n, = y, ® I,(1). The = which occur discretely in our summation
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formula are those of the form I(§ x p,), where p, is a cuspidal G(2, A)-module
with central character &~ 1. If I(§ x p,) has the component y, ® I,(1) for almost
all places u of F, then &3 = 1, and the component of p, ® & coincides with that
of the induced PGL(2, A)-module I(1) (from the trivial representation of

{(; :)}) at almost all palces of F. But no such cuspidal p, exists, hence the

VATII does not restrict the applicability of the summation formula.

The VA 11 is used to cancel singularities in the integrand of (3.3) introduced by
the L-function of the various ((3)ij); i =4, 5, 6. We deal with each term
separately, and cancel its singularity. However it is possible that adding up this
terms their singularities would cancel each other, and then the integral over
AeiW§ would be taken with no need to introduce zeroes using f. But we have
not pursued this line of investigation.

IV(1). Replacing [éATE in (3.3) by the complex conjugate of the product of
((3)4.1) and (3/2)t32**1/2)(J, + 4,/2), we first change variables A, 4, — 4,/2,
then apply Lemma 10 to take the limit as t, — oo of the integral over 4, €iR. The
result is the value of the integrand at 1, = 0, or if we do not change variables in
A,, the value of the integrand at A, = —A,/2 is obtained. The remaining
integrand is a function in 1., and its part described in ((3)4.1) will have a pole at
A, = 0 if at least two of the components p,, p,, p; of p are equal. However, the
VAII guarantees that the other factor in the integrand of (3.3), namely
E (I(f, p, A)®, p, A), would vanish on 4, = —4,/2 at A; = 0. Hence the integrand
is holomorphic and rapidly decreasing as |4,| —» o0, and the corresponding
contribution to the summation formula takes the form

1
72 LR ; EyI(f; p, A®, p, ANB)A1)®, p, 41)d4,

((3)4.1) depends on @, p and A,), where A=A, u; + A p, = A,(1y —3p,)=%4,0,. In
other words, the integral is supported on the line of representations of the form
I(p, ) =1(pv*'* x po™ 4112 x ).

IV(2). In this case ((3)4.2), or rather its complex conjugate, is put in (3.3) instead
of | EATE. Lemma 10, applied separately to each term in the difference of ((3)4.2),
permits taking the limit as T — oo of the integral over 4, — 4, €iR. The limit is
the value of the integrand at 4, = 4,, and VA Il implies that E (I(f, p, A)®, p, 1) is
0at 4, = 4, = 0, where the products of the L-functions of ((3)4.2) may have their
poles. The integral thus obtained as T — oo is supported on the

Ip, ) = I(pyv** x py x p3v™*), as

A=Ay + Ay = Ay(py + pp) = Aoy + o) = 44(1,0, —1).
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IV(3). In this case analogous discussion shows that the limit as T — oo of the
corresponding part of (3.3) is supported on the I(p, A) with 4, = —24,, thus
A=Ay — 2u,) = — Aoty and I(p, 2) = I(py x pov =+ x p3v™).

IV(4). Here the support of the integrand of (3.3) as T'— oo is as in the previous
case of I'V(3).

V. This case is entirely analogous to IV, the same results are obtained, except
that 4, and 4, may be interchanged.

VI. Entirely analogous discussion can be carried out in the case of the five non
zero terms of the sixth coset. The limit of the contribution to (3.3) as T — oo from
the term (1) is supported on 4; = 4,, in case (2) the supportis on 1, = —24,,in
case (3)on A, = —24,,incase (4) on A; = —241,,and in case (5) on 4, = —24,.

This completes our derivation of the summation formula for the symmetric
space PGL(3)/GL(2).
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