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A. Introduction

The question of describing the decomposition of the restriction of an irreducible
complex representation 03C0 of a group G to a subgroup H of G is fundamental
in representation theory. The Frobenius reciprocity law: HomH(03C0, 03C1) =
HomG(03C0, Ind(p; G, H)) (see, e.g. [BZ1], Theorem 2.28) asserts that the restriction
7T H of 03C0 to H has the irreducible H-module p as a quotient precisely when the
G-module 03C0 embeds in the G-module Ind(p; G, H) induced to G from p on H.
Since HomH(03C0, p) = HomH(03C0 Q p, C), where p is the H-module contragredient to
p, the question of the multiplicity of p in n can be stated in terms of linear forms
on 03C0 ~H. The study of such forms for real groups, especially when H is the
group of fixed points of an involution on a real group G, has led to the rapidly
expanding subject of harmonic analysis on such symmetric spaces G/H (if p is
trivial; (G x H)IH in general); see, e.g., Flensted-Jensen [FJ], Oshima-Matsuki
[OM], Bien [Bi].
Various facts are known also when G is a p-adic reductive group. As an

example we recall a result of Gelfand-Kazhdan [GK] and Bernstein-Zelevinski
[BZ2], which asserts that the restriction of an irreducible admissible generic
( = having a Whittaker model) representation 03C0 of G = GL(n, F), where F is a

non-archimedean field, to its subgroup H = GL(n -1, F) H 4 G via

h ~(h 00 1)), contains each irreducible admissible generic representation p of
H with multiplicity one. Equivalently, there exists a unique up-to-a-scalar non-
zero H-invariant linear form on rc Q9 p. Recently J. Bernstein showed this

(unpublished) for all irreducible admissible n and p, not necessarily generic,
namely that (GL(n, F), GL(n -1, F)) - and more generally (GL(n, F) x
GL(n -1, F), GL(n -1, F)) and (O(n, F) x O(n-1, F), O(n-1, F)) - is a "Gelfand
pair" (see [DP] when F is R and rc is unitary, for the pair (GL(n, R),
GL(n-1, R»).
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When F is a global field with a ring A of adeles, n = ~03C0v an irreducible
cuspidal (hence generic) representation of G = G(A), G = GL(n), and p = Qpv
an irreducible cuspidal representation of H = H(A), H = GL(n -1), the local
result implies that there exists at most one (up-to-a-scalar) non-zero form on
n ~ p. Such a form actually exists, since the local forms have the property (a
proof is given in a remark at the end of this Introduction) that for almost all v
they are non-zero at ~n ~ n-1; here ’1n is a non-zero Kv-fixed vector in 03C0v,

Kv = G(Rv), Rv = ring of integers in the completion F v of F at the non-

archimedean place v, and n-1 is a non-zero KHv-fixed vector in v, where
KHv = H(Rv).

But there is a purely global, automorphic, statement, of number theoretic
interest, concerning a specific shape of this linear form on n Q p. The question is
whether the global form is a multiple of the automorphically defined bilinear form
B = B1/2 on 03C0 Q p, where

4Jn ranges over n c L6(GB G) and 4Jn-l over p c L20,03C9(HB[H]). We again take the
algebraic group G to be GL(n), and assume that the central character of 03C0 is

unitary and fixed, and that, co, of p, is unitary. Then p consists of the complex
conjugates ~n-1 of the 4Jn - 1 in p. The cuspidal representations 03C0, 03C1 are realized
in the spaces L6(GB G), L20,03C9(HB[H]) of cusp forms (which transform under the
center via the fixed character in the case of G and via cv in the case of H). The
integral defining B, is clearly convergent since the cusp form 4Jn is rapidly
decreasing (and so is ~n-1).
To answer this question, consider the Fourier expansion of the cusp form ~n

with respect to the character 03C8(x) = 03C8(03A31in xi,i+1) of NBN, where N is the
upper triangular unipotent subgroup of G, and W is a non-trivial complex
character of A mod F. Here NH = N n H, and

Then
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This last integral is "Eulerian", that is, can be expressed as a product of local

integrals, when w:. and Wn-1 factorize as local products:

In general, W,, and Wn-1 are finite linear combinations of such local products. At
almost all places the local component is the normalized (value vol(Kv)-1 or
vol(KHv)-1 at the identity) right K"- (or K’)-invariant Whittaker function W0n,v or
W0n-1,v.
Using Shintani’s explicit form [Sh] of these invariant Whittaker functions,

and the theory of Schur functions [M], a computation - relegated to the remark
at the end of this Introduction - shows that the local integral

is equal to the local L-function L(s, nv Q 6") associated to the unramified

components 03C0v and Pv of 03C0 and p at v. At the remaining finite set of places of F
where 03C0, p or 03C8 are ramified, or (Wn,v, Wn-1,v) are not (W0n,v, W0n-1,v), the analysis
of [JPS], Theorem 2.7, shows that the local integrals are convergent for Re(s)
large, and relate them to a local factor L(s, 03C0v Q Pv), which is now defined to be
the normalized generator of the fractional principal ideal generated by these
local integrals (see [JS2], Theorem 5.1, for the archimedean case). The product
L(s, n Q p) = rI" L(s, nv Q v) has analytic continuation to the entire complex
plane as a holomorphic function in s which satisfies a functional equation
relating its value at s and 1- s, and the automorphic criterion alluded to above
is as follows.

The bilinear form on n Q p is a multiple of B, namely B is not identically zero on
03C0 ~ p, precisely when L(s, n ~ p) does not vanish at s = 1/2.

It is clear from the argument above that when p is not generic, but n is still
cuspidal, then B,, which is still defined by a convergent integral, is zero.

In the analogous situation of the pair G = SO(n) and H = SO(n -1), B. Gross
and D. Prasad [GP] conjectured in particular that (1) dimC HomHv
(03C0v 0 bv, C)  1 for every irreducible admissible Gv-module nv and H"-module
pv, and that (2) for cuspidal representations n = ~03C0v of G and p = 0 pv of H
with HomHv(03C0v Q Pv, C) = C for all v, the form B on 03C0 0 p is non zero precisely



42

when L(1 2, 03C0 Q ) ~ 0, where L(s, n Q p) is the standard L-function associated to
03C0 Q p. When n = 3 the pair with G = SO(3) = PGL(2) had been studied by
Waldspurger [W] who in fact took H to be an elliptic torus of G which splits
over a quadratic extension E of F, and showed that B ~ 0 precisely when (in
addition to the local condition Hom,,,(n,, pj = C for all v) L(1/2, 1-1 Q 03C1) ~ 0,
where II is the base-change of the cuspidal rc to PGL(2, AE) and p is a character
of A e /E  = H(A)jH(F). When n = 4 the groups SO(4) and SO(3) are related to
GL(2) x GL(2) and PGL(2), the local question was treated by Prasad’s thesis
[P], and the global (for some F, rc and p) by Harris and Kudla [HK] using
techniques of Garrett [G], Piatetski-Shapiro and Rallis [PR]. The multiplicity
of p in 03C0 is naturally related in these cases to that of p’ in n’, where p’, n’are the
corresponding representations of the inner forms of G and H (when these exist).

Conversations with D. Prasad on the conjecture of [GP] were a source of
inspiration to the present work. While visiting Prasad, in email correspondence
concerning the archimedean case of the conjecture made in [F2] and studied in

[F3] for the pair G = GL(n, E) and H = GL(n, F) (more precisely
G = ReSE/F(GL(n)/F), H = GL(n)/F, E/F = quadratic extension of local or global
fields of characteristic ~ 2), F. Bien alluded to work which was identified for us
by J. G. M. Mars as that of van Dijk and his collaborators; see [DP] and
references there. In [DP] the H = GL(n - 1, R)-invariant distributions on

unitary G = SL(n, R)-modules n were studied.
Theorem 5.1 of [DP] essentially says that the unitary irreducible non-trivial

G-modules rc which are H-spherical, namely admit a non-zero H-invariant linear
form, are of the form I(1 X!; G, P), normalizedly induced from the represen-

tation (a b0 c)~03C4(c) of the standard parabolic subgroup P = Pn-2,2 of G of type
(n - 2,2) (thus a E GL(n - 2, R), c ~ GL(2, R), det a det c = 1), where r is a unitary
infinite dimensional representation of PGL(2, R) (or GL(2, R), with a trivial
central character). This work was another source of inspiration for our work.
We were especially intrigued by the occurrence in a new context for us of "small"
representations of the type which attracted the attention of Kazhdan, Savin, and
others (see, e.g. [FKS]).

Since packets are singletons, and by virtue of multiplicity one and rigidity
theorems in the global case, it is more natural to work with the group
G = GL(n), than with SL(n). An analogue over a non-archimedean field F of the
theorem [DP] of van Dijk and Poel is proven in Proposition 0 in the Appendix
below. It would do no harm to extend our perspective a little and consider a
character 03BE(h) = 03BE(det h) of H = GL(n -1, F), where 03BE is a character of F . It

asserts that the irreducible admissible unitarizable G = GL(n, F)-modules n which
admit a non-zero linear form which transforms under H via 03BE must be 03BE(det), or of
the shape I(03BE x r; G, P), normalizedly induced from the parabolic of type (n - 2, 2)
where 03BE is viewed here as a character of GL(n - 2, F), and -c is an irreducible
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unitarizable infinite dimensional representation of the 2 x 2 factor of the Levi
subgroup. The proof of Proposition 0 is based on the Gelfand-Kazhdan [GK]
and Bernstein-Zelvinski theory [BZ2] concerning the restriction of a represen-
tation of GL(n, F) to the subgroup Pn of [BZ2], Section 3. We show in

Proposition 0.1 in the Appendix that these I(03BE  03C4; G, P) do have a form which
transforms under H via 03BE. Consequently if an irreducible unitary automorphic
infinite dimensional representation 03C0 of G = G(A) admits a non-zero form
which transforms under H = H(A) according to 03BE(h) = 03BE(det h), where now 03BE is a
character of A /F , then 03C0 is of the form 1 (ç x 03C4; G, P), normalizedly induced
from the parabolic of type (n - 2, 2), where 03BE is the associated character of

GL(n - 2, A) and r is an automorphic unitary representation of GL(2, A) with
no one dimensional components.
The restriction of an irreducible representation of GL(n) over a finite field Fq

to the subgroup GL(n -1, q) was considered by Thoma [Th], and by Zelevinsky
[Z2], Corollary 13.8, p. 148. Their results ("branching rule") in the finite field
case are analogous to those of Proposition 0, in the p-adic case. The case of the
compact pair U(n, R), U(n - 1, R), and that of the analytic finite-dimensional
representations of GL(n, C) (and GL(n -1, C)), is also reviewed in the Appendix,
following the proof of Proposition 0.1, using the "Gelfand-Cetlin" basis

technique of [Zh].
Our main interest in this paper is in the purely global, or automorphic, notion

of G-modules with a form transforming under 0-fl via 03BE, or more precisely in the
bilinear form B on rc ~ 03BE-1. This B would be the linear form on 03C0 of the shape

It was noted above that this form is identically zero if n is cuspidal. If n is not
cuspidal then it can be realized in the space of automorphic forms by means of
Eisenstein series 4J(g) = E(g, 03A6, p, 03BB), when n rr 1 (p, 03BB), where p is a discrete series
representation of a (standard, not necessarily proper) parabolic subgroup P of G
(p is trivial on the unipotent radical N of P), 03BB E iU*P where %* is some real space,
and (D lies in the G-module I (p, 03BB) normalizedly induced from the data p Q e03BB,H&#x3E;
on P.

The problem raised by this realization is that the Eisenstein series is slowly
increasing (in a Siegel domain) and is no longer rapidly decreasing. Consequent-
ly the integral which should have defined B(~) does not converge. To overcome
this problem it is natural to apply B to the truncation ATE of the Eisenstein
series, where the truncation operator AT, for T in U+0, is the one introduced by
Arthur [A2] to develop the trace formula. Since E is slowly increasing, TE (for
a sufficiently regular T) is rapidly decreasing, and the integral which defines
B(AT E) converges (absolutely).
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We computed B(ATE) in two important cases. The first is when P = P(n-2,2)
and 03C1 = 03C11  03C12, where p 1 is a character of A /F , or of GL(n-2,A)/
GL(n - 2, F) via the determinant map, and P2 is a cuspidal GL(2, A)-module.
Then 03BB lies in the one dimensional (over R) space ïU*P ~ iR, and the result of the
computation is (a linear combination of) the product of a slowly increasing
function in Â, and t03BB/03BB, where t is the projection of T to a line in the positive
chamber. The multiple is zero unless pl = 03BE, and then it is the value at (n-1)/2 of
an L-function of 03C12 ~ 03BE-1, depending on 0. In any case the result is supported
on the line I(03C11v03BB/(n-2)  03C12v-03BB/2) of representations (here v(x) = |x|, x ~ A ), and
not only at 03BB = 0 as Proposition 0, Appendix, which is the non-archimedean
analogue of [DP], would suggest.
The second case is when 03C1 = 03C11  03C12  03C13 is a character of the minimal

parabolic subgroup P = B of G = PGL(3). The result of a lengthy computation
shows that B(TE) is a linear combination of terms of the form: Product of a nice
function in 03BB, depending on 03A6, and a factor of the form tl(03BB)/l(03BB) or

tl2(03BB)1tl2(03BB)2/l1(03BB)l2(03BB), where t, ti are components of T and the l, li are linear forms in
the components of 03BB. Here 03BB lies in the two dimensional (over R) space
iU*B(~iR2), and not in a one-dimensional subspace as could have been

predicted by Proposition 0, Appendix, and [DP]. Some of the forms li are not
homogeneous. But the kernels of the homogeneous forms li, 1 do define the
representations 03C0 ~ I(p, 03BB) which are permitted by Proposition 0, Appendix, and
[DP], to have H = GL(2, A)-invariant forms.
To explain this phenomenon note that the representation I(p, Â) occurs in a

series of representations. As 03BB varies over the space i9l*, and p through a set of
representatives for the set of orbits p (D e03BB,H&#x3E; of discrete series representations of
the various parabolic subgroups (more precisely, their Levi components), all
automorphic representations are obtained. In particular, for any test function
f E C~c(G(A)), the convolution operator r( f ) on the space of automorphic forms
is an integral operator:

whose kernel has the spectral decomposition

see Arthur [Al]; the orthonormal bases 03A6i of 1(p, 03BB) have standard finiteness

properties. The matrix coefficient (I( g p, 03BB)03A61, (D2) is rapidly decreasing in

03BB E iU*P as JÂJ - oo, being the Mellin transform of a Schwartz function. Hence the

integrals and sums here are absolutely convergent.
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Our strategy is then to apply the truncation operator AT to the second
variable, h, in K f(g, h), multiply by 03BE(h) and integrate over HBH. Changing the
order of integration over h and 03BB we obtain an integral over À e iolg of an
integrand which has the factor B(ATE(h, 03A61, p, À)). Also we multiply this kernel
by a character 03C8(g) of the compact group NBN, where N is the upper triangular
subgroup of G, and integrate over g ~ NBN. Another factor in the integrand is
then the Fourier coefficient E03C8(03A62, p, À) of E(g, 03A62, p, À). By virtue of the

computation of B(TE), the rapid decay of the matrix coefficient, and the
elementary Lemma 10, asserting that limt~~ ~iR f(03BB)(t03BB/03BB) dÀ = f(0) if f is a
Schwartz function on iR, the limit of

(T sufficiently regular) can be taken, and the I(p, Â) which contribute to this limit
are precisely those which are permitted by Proposition 0, Appendix, and [DP],
to have a non-zero H = H(A) invariant form.
On the other hand the integral (*) ~NBN ~HBH K f(x, h)03BE(h)03C8(x) dh dx converges

absolutely, and so is equal to limT~~ SI ATK f(x, h)03C8(x)03BE(h) dh dx. Indeed, the
kernel Kf(g, h) of r( f ) has the simpler "geometric" expansion LYEG f(g-103B3h), and
an elementary computation shows that (*) is integrable, equal to zero unless g/
has index at most two, and can be expressed as a sum of a certain new type of
orbital integrals, the orbit being U(A)gH(A) for some subgroup U of N, when
03C8 has index two. Note that in general, given 03C8 and a non-trivial character
t/J of A mod F, there is oc = (03B11, ..., 03B1n-1) E Fn such that 03C8 = 03C803B1, where

03C803B1(x) = 03C8(03A31in03B1ixi,i+1) on x ~ NBN. The index of 03C8 = t/Ja. is the number of
non-zero entries in a. In dealing with this "geometric" side, it is more convenient
to work with another embedding of GL(n -1) as H in G = GL(n); see the
Statement of Result, or Geometric Side, below.
Our Fourier summation formula is the resulting identity of a sum of orbital

integrals on one hand, and a sum of distributions supported on the variety of
representations of the form I(p, x P2; G, P), where P is the parabolic of type
(n - 2, 2), p2 is an automorphic generic representation of GL(2, A), and p 1 is a

character of A /F  and so also of GL(n-2,AB)/GL(n-2,F), via the

determinant.

It is called "Fourier" since it involves the Fourier coefficient E03C8(03A62, p, î), and
the character ip occurs also in the orbital integral. It would be misleading to call
our formula a "trace formula", as we did in an analogous context in [F2], since
no traces feature in the formula. It is a summation formula, comparing a sum of
integrals with a sum (possibly continuous) of distributions parametrized by
representations. Our original question concerns the identification of the represen-
tations which occur in this parametrizing set.
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The proof of the summation formula is complete only in the case of n = 3.
Indeed, the computation of ~HBH 03BE-1(h)TE(h, 03A6, p, À) dh is carried out for all
parabolic subgroups P only in the case of G = GL(3). For n  4 it is merely
shown that if ~03BE-1TE has the expected form, then comparison with the
geometric side implies that only n = I(p, 03BB) with index two (in the obvious sense)
occur, and these are of the form I(03C11 x p2; G, P(n-2,2)) as above, or induced from
a character of a parabolic of type (nl, n2, n3). It would be natural to conjecture
that at least two of the nl, n2, n3 are equal to 1 if rc is in the support of the
summation formula, but we did not go beyond computing J ç - 1 A TE when ni = 1
(i = 1, 2, 3), that is, n = 3. To obtain the formula in the n  4 case we used a
consequence of the theory of the Bernstein center (see [BD] or [B]) which
permits choosing a component fv of f such that nv(fv) is zero unless nv is a
constituent of an induced Iv(03BC1  ... x 03BCn-2 x p2), where P2 is supercuspidal on
GL(2, FJ and Mi are characters of Fv .
The case of n = 2 is also studied in full, mainly as an example to shed light on

the general case. This is similar to a case treated by Jacquet [J2] - although his
truncation seems to be slightly different than the one we use (see the com-
putations of [JI], p. 211, on which [J2], p. 127, is based) - to reprove

Waldspurger’s beautiful theorem [W] about a cuspidal PGL(2, A)-module n,
that there is a character 1 of A x /F " with 112 = 1 and L(2, rc Q ~) ~ 0, if and only
if 03C0 has square integrable components or E(2, 03C0) = 1 if not.

In the case of n = 2, a similar summation formula is compared in [J2] with an
analogous formula which is obtained on integrating the kernel k(x, y) of a
convolution operator () on L2(B), against a character 03C8(x-1y), on x,

y ~ NBN, where now N = (10 * . In [J2] the group G is taken to be the two-
fold covering group of SL(2). For n  3 the group G with which our summation
formula should be compared is GL(2). In the case of n = 3 the required identities
of Fourier orbital integrals are proven in [F4] for general and spherical
functions (see Propositions 7 and 16 there). This is the case of a place which
splits in the quadratic extension of [F4]. These identities permit a comparison of
our formula with the summation formula of [F2] on GL(2, A) obtained there on
integrating the kernel K f(x, y) multiplied by 03C8(x-1y), on x, y E N(F)BN(A). Once
executed, such a comparison would show that the support of our Fourier
summation formula for GL(3) consists of all I(03BE x r), where T is a cuspidal
representation of GL(2, A) or one induced from a unitary character of the upper
triangular subgroup of GL(2, A). It will be interesting to carry out the transfer of
orbital integrals for such a comparison also for n &#x3E; 3, but we have not done this.
As the present paper is already sufficiently long, and the comparison of our
formula with that for GL(2, A) is similar to the comparisons of [F2] and [F4],
this will not be done here.
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It is interesting to note the occurrence of the factor of the form

in the term in the summation formula which is parametrized by

where p, is a cuspidal GL(2, A)-module and p a character (necessarily 03BE), and
n  2 (n = 2 included). Trying to approximate between the case of a form B on
n ~ 03BE-1, 03BE a character of HB H, which underlies our summation formula, and
that of B on n Q p, where n and p are cuspidal on G and H as mentioned at the
beginning of this Introduction, one may wish to deal with the question in the
general context of 03C0 ~ , where n is an automorphic G-module, and p is a

discrete-series (irreducible) representation of H. Moeglin and Waldspurger
[MW1] have shown that each such p is the unique subrepresentation of the G-
module I(Pmv(k-l)/2 x PmV(k- 3)/2 x ... x 03C1mv-(k-1)/2) which is normalizedly in-

duced from the indicated representation of the (Levi factor of the) parabolic
subgroup of type (m,..., m), where mk = n -1, p. is a cuspidal GL(m,A)-
module, and v(x) = |x| (x e A’).

It is tempting to ask whether it is true that if n Q fi admits a non-zero form
which is automorphic (such as B, or in the sense of occurring in the support of a
suitable global summation formula as here), then (at least the least degenerate,
or unitarizable) 7r is of the form I(03C01 x 03C0m+1), induced from the parabolic of type
(n - m - 1, m + 1), where 03C01 is a character and 03C0m+1 is a generic automorphic
GL(m + 1, A)-module, and the standard L-function L(s, 1Cm+ 1 ~ Pm) does not
vanish at k/2. The extreme cases where m = n -1, k = 1, and m = 1, k = n - 1, are
those elaborated on in this Introduction. The second condition is non-trivial

only when k = 1, since by Jacquet-Shalika [JS1], [JS2], and Shahidi [Shl], the
L-function L(s, 1Cm+ 1 ~ m) does not vanish on Re(s)  1. We have no further
evidence to answer the question affirmatively or otherwise. But it is important to
understand that the occurrence of the factor L(03C12 ~ 03BE-1’, (n -1)/2) in our
formula suggests that the condition that L(s, n x p) does not vanish at s = 1/2
occurs only when p is cuspidal, as in the example discussed above for

GL(n) x GL(n -1), in Waldspurger [W] for SO(3) x SO(2), and in Harris-Kudla
[HK] for SO(4) x SO(3). In the case U(3) x U(2) of [F4] this L-function

condition does not appear since p is taken there to be a character, namely a non-
cuspidal discrete series representation of U(2, A).
Our techniques are likely to be applicable with other pairs, such as SO(n),

SO(n -1), and U(n), U(n-1), but only when p is a character. This is indeed done
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in [F4] in the case of U(3), U(2), where global and local applications concerning
representations of U(3) with a U(2)-invariant linear form, are deduced. It would
be interesting to apply these techniques in the other situations too.

Local L functions

The Whittaker function computation alluded to above is a minor variation on
that given in [F1], p. 305. In the notations of [Fl] we consider the integral

where W = lS§° is the normalized unramified 03C8-Whittaker function of the
unramified G = GL(r, F)-module p with Hecke parameters Yl,..., y,, and

Wn = W0n is the normalized unramified 03C8-Whittaker function of the unramified
GL(n, F)-module 03C0 with Hecke parameters xl, ... , xn; n &#x3E; r. We take 03C8 which is
trivial on the ring R of integers in the non-archimedean field F, but not on n-1R,
where is a uniformizer.

The normalized unramified Whittaker function has been computed by
Shintani [Sh]. His result is recorded in the Lemma of [F1], p. 305. Using this
lemma, in the notations of [F1], our integral takes the form

where the sum ranges over = (03BB1, ... , 03BBr) E Zr, 03BB1  03BB2  ···  03BBr  0, we put
(03BB, 0) for (03BB1, ... , Àr, 0, ... , 0) E ?Ln, and emphasize the dependence of the modular
function ô of [FI], p. 305, on GL(m), by the index m(=r or n). Again by the
Shintani lemma this sum is

But

Hence the sum is

by virtue of homogeneity properties of the Schur function s À ((3.1), p. 24 of
Macdonald [M]), of the homomorphism Pm,n of [M], p. 24, between (3.2) and
(3.3), and the identity (4.3) of [M], p. 33, which was used already in [FI], p. 305.
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The last product is equal to the local L-function

attached to 03C0 Q p, at s + (n - r)/2. This is the required result as mentioned above
when r = n - 1 and s is replaced by s - 1/2.

B. Statement of result

To simplify the notations we work with G = PGL(n). The summation formula is
an equality of two sums of distributions on G(A), A = ring of adeles of a global
field F of characteristic ~ 2, namely complex valued linear functions in

f E C’(G(A». These distributions depend on a (unitary, complex valued)
character 03BE (to simplify the notations we take 03BE of order dividing n) of the idele
class group A /F , and on an additive character ’" =1 1 of A mod F into C .

The "geometric" side of the summation formula - see Proposition 1 - is

Here 03B4i,n is 1 if i = n, and 0 if i ~ n. For b ~ F  we put
gb = diag(1, ... , 1, b) E G(F). Also

To introduce 03A8, note that the centralizer

of the n x n matrix Xo (which has four non-zero entries, at the corners; also, p, q
are row vectors of length n - 2, and z is an (n - 2) x (n - 2) matrix) in G, is

isomorphic to GL(n -1) when n  2. Denote by i : H - GL(n -1), this isomor-
phism. In the case of n = 2 it is given by
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Put 03BE(h) = 03BE(det i(h))( = 03BE(det h) since ; n = 1); it is a character of H(A)/H(F) in
C . Also denote by U the group of n x n matrices of the form

where 7 is the identity (n - 2) x (n - 2) matrix, and put 03C8(u) = 03C8(p1 + qn-2) where
p = (p1,...,pn-2), q = (q1,...,qn-2). Then 03C8 is a non-trivial character of

U(A)/U(F) in C x. Denoting by du and dh Haar measures on U(A) and H(A), the
"geometric" distributions are

The spectral side of the summation formula is more difficult to express, and to
obtain. In any case we now write H for the subgroup

and write the spectral side in three different cases, when n = 2, when n  3 for a
special f, and for n = 3 with a (more) general f

In the case of G = PGL(2) the spectral side is the sum of the following terms.
The main term - see (2)1 below - is

The first sum ranges over all cuspidal irreducible G(/)-modules rc, and the

second over an orthonormal basis (O) of smooth functions in the automorphic
realization of 7r c L20(G(F)BG(A)). Here

is the 03C8-Whittaker functional on the space of automorphic forms, and
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is the L-function of n ~ 03BE-1 which is associated with 03A6, at t.

The other terms are

and

The sums over y are taken over a set of representatives of unitary characters fi of
A " /F ", up to multiplication by vi03BB, 03BB E R, v(x) = |x|, x ~ A /F . Then (D ranges
over an orthonormal basis - consisting of smooth functions - in the space of the

normalizedly induced PGL(2, A)-module I(03BC, 03BB) thus (D satisfies

We put

is the standard intertwining operator. Also 03B4(03BC/03BEi) (i = 1, -1) is 0 if 03BC ~ 03BEi and 1
if on A 0 = {x ~ A ; |x| = 1}. If li = 03BEi on A0 we may - and do - choose the
representative Jl to satisfy li = 03BEi on A .

In applications, the continuous sum over 1 (Jl, 03BB), 03BB E i R, is of little or no

importance, and so are the contributions associated with 1 (Jl, + 1/2) (since no
cuspidal representation has a component of the form I(03BCv, ± 1/2)).
Next we describe the spectral side in the general n  3 case, for a test function

f E C’(G(A» of the form f = f ufu, such that the component fu at some non-
archimedean place u of F has the following property. Fix a supercuspidal
PGL(2, Fu)-module p2u, and write I(03C12u, 03BB), 03BB = 03BBn-2, 03BBn) for the Gn-
module normalizedly induced from the representation
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of the (Levi subgroup of the) parabolic subgroup of type (1, 1, ... , 1, 2). Here
vu(x) = |x|u and 03BB1 + ··· + 03BBn-2 + 203BBn = 0. Then: fu has the property that 03C0u(fu) is 0
unless nu is a constituent of I (p2u, À) for some À.
The theory of the Bernstein center has the corollary, recorded as Proposition

12 below, that there exist plenty of non-zero functions fu E C~c(Gu) with this
property. We need such fu to dispose of continuous sums of representations
which contribute to the summation formula, whose computation is beyond the
scope of this paper. Also we emphasize that our computation in the n &#x3E; 3 case is

only sketched, and as such it is incomplete.
Then the spectral side is

Here p2 ranges over all cuspidal representations of GL(2, A) (with the supercus-
pidal component p2u at u) whose central character is 03BE2-n; p is the represen-
tation 03BE x p2 of GL(n - 2, A) x GL(2, A), extended trivially to P(A), P being the
parabolic of type (n - 2, 2); 03A6 ranges over an orthonormal smooth basis for the

G(A)-module I(p, 0) normalizedly induced from p on P(A). The L-functions are
associated to the indicated functions - for whose definition see Propositions 9
and 11 - in the spaces of the cuspidal GL(2, A)-modules p, ~ 03BE-1 and p2 S) 03BE.
They are evaluated at (n -1)/2, in the domain of absolute convergence when
n  4, and on the edge of the critical strip when n = 3.
The upshot of this is that (up to the minor local assumption at u) the support

of the summation formula consists of the G(A)-modules I(p) normalizedly
induced from the standard parabolic with Levi factor GL(n - 2, A) x GL(2, A),
and the representation p = 03BE Q P2 on it, where P2 is an automorphic GL(2, A)-
module with central character 03BE2-n.
When n = 3, thus G = PGL(3), our computation of the spectral side in the

summation formula is complete, for a function f = fufu where fu is no longer
required to have the property with respect to the supercuspidal p2u. The function
fu is nevertheless restricted to be spherical and have the following property.
Denote by Iu(03BB1,03BB2, Â3) the Gu-module normalizedly induced from the character

(bij)~03A01i3|bi|03BBu of the upper triangular subgroup. Here

Then fu is taken as follows. lu satisfies tr nu(lu) = 0 if nu = Iu(03BB1, Â2, Â3) and

(1) 03BBi - 03BBj = ±1 for some i =1= j, or (2) Âl = 03BB2 = 03BB3.
The requirement (1) will not affect any possible applicability of the summation

formula, since no representation of G(A) of the form I(03BE x p2), where 02 is a
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cuspidal GL(2, A)-module with the central character 03BE-1, has a component
which is the unramified constituent of the induced representation of the form
Iu(03BB1, À2, Â3), with 03BBi - 03BBj = + 1 for some i ~ j. The requirement (2) will not affect
applicability either, since if I(03BE x 03C12) has the component Iv(03BCv, 03BCv, Jlv) for almost
all places v of F, where is a character of Fv of order 3 (or 1), then 03BE3 = 1, and
03C12v ~ Iv(1) x for almost all v. But there is no cuspidal representation 03C12 ~ 03BE2
of PGL(2, A) whose component is the same as that of the principal series

representation I(l) at almost all places (I(1) is the PGL(2, A)-module norma-

lizedly induced from the trivial representation of 0 Thus the

requirement here on the component fu is put to simplify the computations, and
is not important. An analogous requirement in the case of PGL(2) would
annihilate the terms associated with I(03BC, ± 1/2), which - as noted in the

discussion of the case of PGL(2) above - are not important.
For f = fufu with such a component fu, the spectral side is the sum of the

terms parametrized by 1(ç x 03C12), cuspidal P2 on GL(2, A), as described above for
n  3, and terms parametrized by a line of representations, of the form

I(03C11vi03BB x 03C12v-i03BB  p 3), i03BB ~ i R. As explained at the end of this paper, these new
terms are integrals over i R, with integrand containing E03C8(I(f, p, 03BB)03A6, p, À), and
the expressions labeled ((3)i, j); i = 4, 5; j = 1, 2, 3, 4; and ((3)6. j), 1  j  5.
The term corresponding to ((3)4.1) take the form

Here 03BB = (03BB1/2, -03BB1/2,0), and 03C1 = 03C11  03C12  03C13 is a character of (A /F )3 with
PIP2P3 = 1, namely I(03C1, À) = I(03C11v03BB1/2 X P2V - Â2/2 x P3), (D ranges over an or-
thonormal smooth basis for (the trivialized vector bundle) I(03C1, À), M is some

intertwining operator and LM03A6(03C1i/03C1j) is an L-function, attached to the character
03C1i/03C1j.
The other (twelve) terms have a similar shape. It will be too long to write out

all these terms, although this can be easily derived from our computations. This
description, and convergence properties of the integrals and sums, lend

themselves to separation arguments used to derive applications from such
summation formulae (see, e.g. [FK], Theorem 2).
The main conclusion from our computations is however the following:

THEOREM. The support of the summation formula is concentrated only on those
automorphic (unitary) PGL(3, A)-modules of the form I(03BE x P2), normalizedly
induced from a maximal parabolic subgroup, where P2 is an automorphic (unitary)
generic GL(2, A)-module (with central character 03BE-1).
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Appendix. Representations with one dimensional quotient

As suggested in the Introduction, we shall consider now irreducible represen-
tations 03C0 of Gn = GL(n, F), where F is a local field, which admit a linear form
which transforms under Gn-1 according to a character 03BE. Here Gn-1 is

embedded in Gn via ~ (g 00 1). The following propositions are not used in this
paper, but they shed light on our global theory, being local analogues. In
Proposition 0, whose proof was suggested to us by J. Bernstein, we consider only
unitarizable représentations, since every component of an automorphic repre-
sentation is such. The description is completed in Proposition 0.1, following
communication from D. Prasad [P3], who worked out the case of G3 in general.

Put v(x)=lxl, xEFx. Denote by I(n-2,2)(03BE  03C12) the representation of Gn

normalizedly induced from the representation a b H a c of the

standard parabolic subgroup of type (n - 2, 2). Here p2 is a representation of G2,
and 03BE(a) = 03BE(det a), for a in Gn-2. Similarly we introduce I(n-1,1)(03BE1 x Ç2)’ where
03BEi are characters of F " . Let Pn denote the group of matrices in Gn whose bottom
row is (0, ... , 0, 1).

0. PROPOSITION. Let n be a unitarizable irreducible admissible representation
of Gn, such that HOMIN - 1 (nl 03BE) ~ {0}, where 03BE is a unitary character of F x. Then
n = 03BE or there is an irreducible admissible unitarizable representation P2 of G2 such
that 71 = I(n - 2,2)( ç x 03C12).

Proof. The proof is based on the analysis - developed in Bernstein-Zelevinsky
[BZ2], Section 3 - of the restriction r of a representation of Gn to its subgroup
P = Pn . According to [BZ2], (3.5), p. 452, there exists a natural filtration

T = 03C41 =3 03C42 ~ ··· ~ 03C4n ~ 0, such that 03C4k/03C4k+1 = 03A6k- 103A8(03C4(k)), where L(k) is the kth
derivative of i - see [BZ2], (3.5). This is a representation of Gn-k. The functors
’Y = 03A8+ = iV,1: Alg Gn-1 ~ Alg Pn and 03A6 = 03A6+ = iv,o : Alg Pn-1 ~ Pn are defined
in [BZ2], (3.2), where V is the unipotent radical of the parabolic of type (n -1, 1),
and 0 indicates a non-trivial (additive) character of F, and also of V, via

03B8((vij)) = 03B8(vn-1,n). The induction i is normalized - on [BZ2], p. 444 - by the
character modV2(m) = Idet m|1/2 of m ~ P.

It is also useful to recall - from [BZ2], (4.4) and (4.5), pp. 454-5 - that if 03C0 is a
supercuspidal Gn-module then its kth derivative n (k) is 0 (0  k  n), and 03C0(n) = 1
when 03C0 is also irreducible. Further, the composition series of I(Pl x P2)(k)
consists of I (p00FF) x 03C1(k-i)2), and if 03BE is a one dimensional representation of Gn then
03BE(k) is 0 unless k = 1, where the character V-l/2ç of Gn-1 is obtained.
Now if HomGn-1(03C4, 03BE) ~ 0, then HomGn-1(03C4k/03C4k+1, 03BE) ~ 0, for some k  1.
If k = 1 then 03C41/03C43=03A8(03C4(1)), and the restriction 03A8(03C4(1))|Gn-1 is 03C4(1)v1/2. Hence
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precisely when v1/203C4(1) has 03BE as a quotient. If 03C0|P = 03C4, and n is a quotient of
I(03C11  ···  03C1r), where pi are irreducible supercuspidal not necessarily uni-

tarizable representations of Gji, then the composition series of I(03C11 x ... x 03C1r)(1)
consists of

The hat over pi indicates that Pi is omitted. Such a composition factor may have
the quotient çv - 1/2 only if it is of the form

(by Zelevinsky [Z]), namely 03C0 is a quotient of

where y is a character. However, by [Z] and Tadic [T], the only unitarizable
quotient of I is 03BE, obtained when p = vn-1/2.

REMARK. If Jl e v[n-(2k+1)]/2 (1  k  n), then (by [Z]) 1 has the unique
irreducible quotient

and the composition series of

consists of

We have HomGn-1(03C0, 03BE) ~ {0} precisely when çV-l/2 is a quotient, not a sub, in
this composition series. But we have not investigated HomGn-1(03C0, 03BE) for these 03C0,

nor for the quotients 03C0 of 7 when y = v[n-(2k+1)]/2 (1  k  n).
If k  2 the quotient ik/ik + 1 is of the form 03A6(03B2n-2), where 03B2n-2 is a

representation of Pn-1. Note that

since Pn/Pn-1Vn = Gn-1/Pn-1. Here ind indicates unnormalized induction. By
Frobenius reciprocity ([BZ1], (2.29)) we then have
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This is 0 unless 03B2n-2 is 1 on Vn, and if 03B2n-2 is 1 on Vn we obtain

HomGn-2(v-l/2Pn-2IGn-2, ç). In particular HomGn-1(03C4k/03C4k+1, 03BE) = 0 if k a 3.
If k = 2 then Pn-2IG,,-2 = 03A8(03C4(2))|Gn-2 = 03C4(2)v1/2, and HomGn-1(03C42/03C43, 03BE) ~ 0 if

and only if HomGn-2(03C4(2), 03BE) ~ 0, namely 03BE is a quotient of -r(2). As in the case of
k = 1 we represent 03C0 as a quotient of an induced I = I(03C11  ··· 03C1r) from
supercuspidals pi of Gji. The second derivative I(2) is glued - in the terminology
of [BZ2] - from I(03C11 x ... xbix ... x p,), where pi is a representation of G2, and
from I(p, x ... X Pl x ... x bj x ... x pr), where pl and pj are characters (of Gl). By
[Z] these can have 03BE as a quotient only when the non-deleted pi x P2  ··· are of

the form

In the first case, where pi E Alg G2 it is not linked - in the terminology of [BZ2]
and [Z] - to the other characters, our 03C0 must be equivalent - by the

irreducibility criterion of [BZ2] - to the irreducible I(n-2,2)(03BE  p2), and then 03C0(2)
is 03BE. In the second case, where pi, pj are characters, if they are not linked to the
03BEv*, the same conclusion is obtained (again by [BZ2]). If they are it is easy to
conclude from [T] that the only unitarizable quotient of

n &#x3E; 3 can be 03BE, or 03BE ~ I(n-2,2)(1  12), or 03BE ~ I(n-2,1,1)(1  1 x 1 ).
Let 03C0 be irreducible on G3 with HomG2(n, 03BE) ~ {0}. Then

HomG2(v1/203C0(1), 03BE) ~ {0} or HomG1(03C0(2), 03BE) ~ {0}. Noting that the Steinberg
representations sp of G2 and st of G3 satisfy sp(1) = Vl/2, st(1) = Vl/2 sp, and
st(2) = v, computing the derivatives we conclude that rc is 03BE, or I(1,2)(03BE  p), or
I(1,2)(03BC  03BEv±1/2) (but neither I(2,llçv-l/2  03BEv)/03BE, nor its contragredient
I(1,2)(03BEv-1  çvl/2)/ç; neither 03C0 = I(1,2)(03BC x 03BEv-1/2sp)(03BC ~ 03BE) nor 7c = çV-lst have
HomG2(03C0,03BE) ~ {0}, since both have HomG2(,03BE-1) = {0}, and HomG2(03C0,03BE) ~
HomG2(ir, 03BE-1) by [GK]: 03C0(g) = 03C0(tg-1)), or 7t = I(1,2)(03BE x 03BEv-3/2sp)/03BEv-1st or its
contragredient I(2,1)(03BEv3/2sp x 03BE)/03BEvst. (That each of these, except I(1,2lç x p),
with dim p = 1, 03C1 ~ 03BEv±1/2, has HomG2(rc, 03BE) ~ {0}, is shown next.) The pro-
position follows.

0.1 PROPOSITION. An irreducible Gn-module n of the form I(n-1,1)(03BEv±1/2 x Il),
or I(n - 2,2)(03BE x 03BE03C1), where Il is a character and p is infinite dimensional or the
character v ± (n - 2)/2 has HomGn-1(03C0, 03BE) ~ {0}. If dim p = 1 but 03C1 ~ v±(n-2)/2,
then HomGn-1(n, 03BE) = {0}, where n = I(n-2,2)(03BE  03BE03C1). The irreducible G3-modules
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n with HomG2(03C0, 03BE) ~ {0} are the irreducible n = ç, I(1,2lç x p) (dim p &#x3E; 1),
I(1,2)(03BC x 03BEv±1/2), I(1,2)(ç x 03BEv-3/2sp)03BEv-1st and its contragredient
I(2,1)(03BEv3/2sp x ç)/çvst.

Proof. Since HomGn-1(03C0,03BE)=HomGn-1(03C003BE-1,1), we assume that 03BE = 1. Using
the map ~~~|Gn-1 ( = restriction to Gn-1), "Mackey’s theory" (see [BZ1],
(1.8)) implies that I(n-1,1)(v-1/2 x 03BC)| Gn-l has trivial quotient. By [GK] 03C0 has a

Gn- 1-invariant form iff its contragredient fc does. Hence

The same map and reference imply that I(n-2,2)(1  03C1)|Gn-1 has the quotient
I(n-2,1)(v1/2 X p’), where p’(a) = p(diag(a, 1)). Now I(n-2,1)(v1/2 x J1) has a trivial
quotient precisely when J1 = v-(n-2)/2 (by [Z]). Hence HomGn-1(03C0,1) ~ {0} for
the irreducible 03C0 = I(n-2,2)(1  v -(n-2)/2), and its contragredient
I(n- 2,2)(1 x v (n - 2)/2). Moreover, for any infinite dimensional G2-module p, and
any character 03BC, we have HomG1(03C1,03BC) ~ {0}, by [Wl], Propositions 9, 10, or
[W3], Lemmas 8, 9, pp. 219-220. Hence HomG1(p’, v-(n-2)/2) ~ {0}, and
HomGn-1(I(n-2,2)(1  03C1), 1) ~ {0} for infinite dimensional p. The first assertion
follows.

If dim p = 1, consider also the kernel of the map ~~~|Gn-1, from
03C0 = I(n-2,2)(03BC  P) to I(n-2,1)(03BCv1/2 x p). By Corollary 5.1 below, Gn is the disjoint
union of PGn-1 (P=P(n-2,2)), Pr(n-2,n)Gn-1, and P03BAGn-1. Hence Mackey’s
theory ([BZ1], (1.8)) implies that there are two constituents in this kernel, as
follows. The set of {g H ç(r(n - 2, n)g); 9 ~ 03C0} is easily seen to be the space of
I(n-3,2)(03BC  03C1v-1/2); this Gn - 1-module has the trivial quotient only when J1 = v
and p = v-(n-4)/2. The set of {g~~(03BAg); ç e n) is the space of the unnormalized-
ly compactly induced Gn-1-module 03C4 = ind«J1v x 1 x 03C1v-(m- 2)/2); Gn-1, Q), where
Q is the group of matrices in the standard parabolic subgroup of Gn - 1 of type
(n - 3,1,1), whose (n - 2, n - 2)-entry is 1, and the indicated representation of Q is
trivial on the unipotent radical. Now Frobenius reciprocity ([BZ1], (2.29))
implies that

this is non-zero only when y = v and p = v-(n-2)/2. This proves the second
assertion.

By Proposition 13 below, G3 is the disjoint union of P = P3, Pr(23)G2, and

Pr(23)uG2. Here r(23) is the matrix with entry 1 at (1, 1), (2, 3), (3, 2), and 0
elsewhere; u has 1 along the diagonal, -1 at (2, 3), and 0 elsewhere. It follows
from the proof of Proposition 0 that 03C0 is not supercuspidal; hence rc is a

constituent of I(2,llp x y). The map 9 ~~|G2 takes I(2,1)(03C1  y) onto pVl/2. The
map 9 ~ f, where f(g) = g(r(2 3)g), takes I(2,1)(03C1 x y) to I(1,1)(03C1’ x 03BCv-1/2). The set
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of {g ~ ~(r(23)ug); ~ E I(2,llp x 03BC)}, is the space of ind(v1/203C1|P2; G2, P2) (un-
normalized compact induction). The cosets P and Pr(23)G2 are closed and
disjoint, while Pr(23)uG2 is open. Hence [BZ1], (1.8), asserts that we have the
exact sequence (*):

The quotient in this sequence has a trivial quotient when p = v - 1/2, or p = 1
and p = v1/2, or 03BC = 1 and dim p &#x3E; 1 (since then HomG1(p, v1/2) ~ {0}). Hence
HomG2(rc, 1) e {0} for irreducible 03C0 of the form I(2,llp x 1), dim p &#x3E; 1,

I(2,1)(vIl/2 x 03BC), and I(2,1)(V3/2Sp x 1)/vst (since HomG2(I(2,1)(v3/2sp x 1), 1) ~ {0} as
we have just seen, and HomG2(vst, 1) = {0} as noted at the end of the proof of
Proposition 0).

Finally, if I(2,1)(p x y) admits a G2-invariant form which does not factorize
through the quotient in the exact sequence (*), then

the last equality is Frobenius reciprocity of [BZ1], (2.29). Since

Homp2(v -1/2 P, 1) = HomG1(03C1N, 1), where pN is the normalized module of coinva-
riants of p ([BZ2], p. 444), we conclude that p must be Vl/2, or v-1/2sp (as
1N = v-1/2 and spN = v1/2), or induced I(1,1)(03BC1 x 03BC2), with 03BC1 = 1 or M2 = 1. But it
has already been shown above that HomG2(I(2,1)(03C1  03BC), 1) ~ {0} for these p,
except for p = v-1/2sp, where HomG2(I(2,1)(03C1  03BC), 1) = {0} by the end of the proof
of Proposition 0. The proposition follows.

Finite groups

We shall very briefly note now that the analogue of Proposition 0 - in the case of
the finite group Gn = GL(n, q) over the field with q elements - follows from the
"branching rule", i.e. Corollary 13.8 of [Z2], p. 148, whose proof shares much
with the proof of Proposition 0 above. We shall use the notations of [Z2]. The
irreducible representations of Gn are parametrized by partition valued functions
qJ E Sn( C, P) ([Z2], (4.19), pp. 68-9) on the set C of irreducible cuspidal represen-
tations p in R(q) = ~n0 R(Gn), with deg(~) = LPEC deg(03C1)|~(03C1)| equals n. Corre-
sponding to such 9: C ~ P, deg(p) = n, we have then a representation (ç) in the
set 03A9(Gn) = Irr(Gn). Corollary 13.8 of [Z2], p. 148, asserts, for qJn E Sn(C, P) and
~n-1 ~ Sn-1(C, P), that the multiplicity of {~n-1} in the restriction of {~n} to
Gn-1 is equal to the number of 9" E S(C, P) with ~"(03C1) d ~n(03C1) and ~"(03C1) d ~n- 1 (P)
for all p E C. The notation 03BC ~ 03BB means (see [Z2], (4.3), p. 50), that 11 is obtained by
removing at most one point from each row of the Young diagram of 03BB.

The case studied in this paper is that of ~n-1 parametrizing the one

dimensional representation Çn-l 1 of Gn - 1 . We denote by 03BE the associated
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irreducible necessarily cuspidal representation of G 1. Then ~n-1(03BE) =
(n-1)EPn-l’ and ~n-1(03C1)=(0) for all p E C, 03C1 ~ 03BE. If ~"(03C1) ~ ~n-1(03C1) (for all
p E C) then ç"(§) = (n - 2) or (n - 1), and ~"(03C1) = (0) for all pin C. If also
qJ"(p) ~ (p.(p) (for all p E C), then there are 6 possibilities.

(1) ~n(03BE) = (n - 2), ~n(03C12) = (1) for some p2 E C(G2), in which case

{~n} = I(n-2,2)(çn-2 x P2), where P2 is an irreducible cuspidal representation
of G2.

(2) ~n(§) = (n-2), ~n(~i) = (1) for two distinct characters ~i ~ 03BE, where

{~n} = I(n-2,1,1)(Çn-2 x ~1  112)’
(3) ~n(03BE) = (n - 2, 1), ~n(~) = (1) for some ~ ~ 03BE, is the unique

irreducible constituent of I(n-2,1,1)(03BEn-2  03BE  ~) (whose length is 2 by [Z2],
(c), p. 46) specified by [Z2], (4.1), (9.4-5), as lying also in

where s(03BE)2 indicates the generic ( = non-degenerate) constituent

of I(1,1) (03BE  03BE)~R(G2).
(4) ~n(03BE) = (n -1 ), ~n(~) = (1) for some ~ ~ 03BE, and then (~n} = I(n-1,1)(03BEn-1  ~).
(5) ~n(03BE) = (n -1, 1), where {~n} is the irreducible constituent of

I(n-1,1)(03BEn-1  03BE) specified by [Z2] as lying also in

I(2,1,...,1)(s(03BE)2  03BE  ...  03BE).
(6) ~n(03BE) = (n), where {~n} is the one dimensional representation Çn = 03BE(det) of

Gn.

The analogy with the p-adic case is apparent.

Real compact groups

As noted in the Introduction, the irreducible unitary representations of SL(n, R)
with a non-zero GL(n -1, R)-invariant linear form are determined in [DP]. We
shall observe here that the answer to the analogous question in the context of
the compact groups U(n, R) and U(n - 1, R) is classical.
We first note that there is a natural bijection between the set of irreducible

representations of the unitary group U(n, R), and the set of irreducible analytic
representations of the group GL(n, C), given by analytic continuation, or Weyl’s
"Unitarian trick" (see [Zh], Section 41, Theorem 1, p. 111, Section 42, Theorem
2, p. 113, and Section 44, p. 118).

Second, one knows that every such representation is uniquely determined by a
sequence (m1, ..., Mn) of n integers with mi  mi+1 (1  i  n) ("highest weight"),
and is denoted here by Rn(m1, ..., mn); see [Zh], Section 48, Theorem 3, p. 132,
and Section 49, Theorem 4, p. 133.

Third, the restriction of Rn(m1, ..., mn) to U(n -1, R) is completely reducible,
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and it contains Rn-1(k1, ..., kn-1), necessarily with multiplicity one, precisely
when mi  ki  mi+1 for all i(1  i  n); see [Zh], Section 66, Theorem 2, p. 186.
Now the character 03BE(z) = zk defines the character 03BE = Rn-1 (k, ... , k) of

U(n-1,R), and it is unitary when k ~ Z is 0. Clearly the restriction of

03C0 = Rn(m1, ..., mn) to U(n-1,R) contains a copy of 03BE precisely when

m2 = ... = mn -1 = k, and then 03C0 = 03BE ~ Rn (m1 - k, 0, ... , 0, mn - k). The represen-
tations Rn(l1, 0, ..., 0, ln), l1  0  ln, are in bijection with the representations
P2 = R2(ll, In) of U(2, R). When 03BE is taken to be unitary (03BE = 1, k = 0) and rc is

taken to have a unitary (namely trivial) central character, then P2 ranges
through all of the unitary irreducible representations of the complexification of
U(2, R). Of course 03C0 can be viewed as an analytic irreducible unitary represen-
tation of GL(n, C), and P2 as an analytic irreducible unitary representation of
GL(2, C).

This case then agrees with our p-adic result, that the irreducible admissible
unitarizable non-trivial 7c on GL(n, F) with a non-zero linear form which

transforms under GL(n -1, F) via the unitary character ç, is of the form

03C0 = 03BE ~ I(n-2,2)(1  03C12), where p2 is an irreducible admissible unitarizable

representation of GL(2, F).

C. Geometric side

Put G = PGL(n), n  2, and consider L = L2(G(F)BG(A)), where F is a global
field (char F ~ 2) and A denotes its ring of adeles. Then G(A) acts on L by
(r(g)03A6)(h) = 03A6(hg), g, h E G(A), 03A6 E L. For any f in the space C~c(G(A)) of smooth
compactly supported complex valued functions on G(A), the convolution

operator r(f) is defined by

where dh is a fixed Haar measure on G(A). Clearly

Define
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to be an n x n matrix whose entries are 0 except at (1, 1), (1, n), (n, 1), (n, n) where
the entry is 1. The centralizer H = {g ~ G; gx0g-1 = x0} of xo in G consists of
matrices of the form

where a, b are scalars; p, q are row vectors of length n - 2, tq indicates the
transpose of q ; and z an (n - 2) x (n - 2) matrix. This H is isomorphic to

GL(n -1), since w = I - x0 is conjugate in G to diag(l, ... , 1, 1, -1) E G. Note

that when n = 2 this w is conjugate to diag(-1, 1) by (1 11 -1), and the
isomorphism is (a bb a)~(a+b)/(a-b).
Denote by U the group of n x n matrices of the form

where here I is the identity (n - 2) x (n - 2) matrix. A complex valued character
’" =1= 1 of A/F defines a character 03C8 ~ 1 of U(A)/U(F) by 03C8(u) = W(PI +qn-2),
where p = (pi, ... , pn-2) and q = (ql, ... , qn - 2). Denote by 03BE a unitary character
of the idele class group A x IF x and put 03BE(h) = 03BE(det i(h)) for h ~ H(A); det means
"determinant", and i the isomorphism from H to GL(n-1). Note that

03BE(det i(h)) = 03BE(det h) since ; n = 1. We shall integrate the product of Kf(u, h), 03BE(h)
and 03C8(u) over u E U(F)BU(A) and h E H(F)BH(A), and obtain

1. PROPOSITION. We have

Here
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and gb = diag(l,..., 1, b) E G(F), if b ~ 0, and

Note that U ~ g Hg -1 = {I} for g = gb(b ~ 0) or g 0 ±, but it is

This is the geometric half of our summation formula. It is to be compared
below with the integral over U(F)BU(A) x H(F)BH(A) of the product by 03C8(u) and
03BE(h) of the spectral expression for the kernel Kf(u, h) of the convolution operator
r(f) on L.
To prove the proposition it suffices to show that if ’P(g; f ; 03BE, 03C8) ~ 0 for g in

G(F) then g lies in U(F)gbH(F) for some b in F, and this follows from the local
analogue, asserting that if IF(g; fv; 03BE; 03C8v) ~ 0 for g in G v then g lies in U vgbH v for
some b in Fv. Here v denotes any place of F and F v is the associated completion
of F; we put Gv = G(Fv), Hv=H(Fv), Uv=U(Fv); 03C8v(u)=03C8v(p1+qn-2) is a
character of U" defined using a character "’v =1= 1 of Fv; and fv lies in the space
C~c(Gv) of smooth compactly supported complex valued functions on Gv. The
local integral is defined in analogy with the global integral:

Note that

2. LEMMA. If IV(g; fv; 03BEv; 03C8v) ~ 0 then g E U,gbH, for some bEFv.
Proof. To simplify the notations the index v is omitted in the course of the

proof, and so is the reference to 03C8, 03BE. The integral 03A8(g; f) satisfies

’¥(gh; f) = 03BE-1(h)03A8(g; f)(h E H), hence its support depends only on the image of
g in G/H. The homogeneous space G/H is isomorphic to the space X of n x n
matrices (over F) of rank 1 and trace 2 via the map g ~ gx0g-1. Note that
x0 = t03B503B5, where e = (1, 0, ... , 0,1). The integral 03A8(g; f) is then viewed as a

function 8(x) on X which satisfies 8(uxu - 1) = 03C8(u)039E(x). The image of the double
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coset U g bH, b =1= 0, in X is the set of the matrices

namely the matrices in X whose (n, 1) entry is b ~ 0. To prove the lemma it
suffices to show that for any matrix x in X whose (n, 1) entry xn,1 is 0 there exists
ME U with uxu-1 = x and 03C8(u) ~ 1. Indeed, if g ~ G has the image x, namely
gxog-l = x, there would exist h E H (with det h = 1) such that ugh = g. Then
03A8(ugh; f) = 03C8(u)03A8(g; f) is necessarily zero.
A matrix x in X whose last non-zero row is the l th, and its first non-zero

column is the f th, is of the form x = tvw, where v = (v1, ... , vi , 0,..., 0), Vi =1= 0,
and w = (0,..., 0, w f, ... , wn), wf ~ 0. If l  3 and f &#x3E; 1 then uxu-1 = x, where
u has q = 0, and top row (1, yvi, 0,..., 0, - yv2, 0, ...), with the entry - YV2 at the
l th place. If f  n - 2 and l  n then uxu -1 = x, where u has p = 0 and its last
column is t(0, ... , 0, - ywn-1, 0,..., 0, yw f, 1), with the entry - ywn-1 at the f th
place. If l  2 and f  n-1, then n = 2 or n = 3, since tr x = 2. If n = 3 then
1 = 2 = f, and U acts by conjugation transitively on the orbit of

with stabilizer Un gohgo 1 as stated in the proposition. If n = 2 then U acts
simply transitively on the orbit of

and on the orbit of

This completes the proof of the lemma and Proposition 1.

REMARK. Choosing the character 03C8 to be of the form 03C8(u) = W(P 1 + q 1), a
similar lemma is obtained but with a term indexed by a suitable go is present for
all n &#x3E; 2.

Denote by U’ the group of unipotent upper triangular matrices in G whose
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top row is (1, 0,..., 0) and last column is t(0,..., 0, 1 ). Then U’ consists of the
identity matrix only, unless n  4 as we now assume. For any y ~ Gv, denote by
yfv the function Yfv(g) = f,(yg). Clearly 03A8(g; Yfv; 03BEv; 03C8v) is independent of y if

y E Uv, since this integral is non-zero only if 9 E UvgbHv for some b E F v. Any
character of U’(F)BU’(A) is of the form

for some a = (03B12, ... , 03B1n-2) ~ F(n-3). The unipotent upper triangular subgroup
No of G is equal to UU’ = U’U. Put 03C803B1(uu’) = 03C8(u)03C8’03B1(u’); it is a character of

N0(F)BN0(A), and we have that

is 0 unless a = (0,..., 0), in which case 03A8(g; f ; ç; 03C8) is obtained. Consequently

3. COROLLARY. The integral

is 0 unless a = (0, ... , 0), in which case it is equal to

The sum over b E F ’ is finite.

Only the last assertion remains to be proven. Thus consider f (uyh), with

If this f (uyh) makes a non-zero contribution to K f(u, h) then 03B3x003B3-1 lies in the
discrete subset X(F) of the set X(A), and also is in a compact which depends on
the support of f and on the compact U(A)/U(F). Hence the image of y e G(F) in
G(F)/H(F) lies in a finite set {03B3iH(F)} of cosets (and h E H(A) ranges over the
compact

as required.
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D. The case of PGL(2)

Let us consider separately, and briefly, the well-known spectral expression for
the kernel K f(g, h) in the case where G = PGL(2). This is recorded here to

motivate the discussion for n  3 below. We shall truncate this spectral
expression with respect to the second variable h, integrate over

after multiplying by 03C8(g) = 03A8(x), where B)1 i= 1 is a character of A mod F, and

integrate over

A being the diagonal group in PGL(2), after multiplying by 03BE(a), 03BE being a
character of order 1 or 2 of A /F  in C . The Eisenstein series E(g, 03A6, /1, 03BB), the
truncation operator AT, and the spectral expression for the kernel are defined
below in the case of a general n. Hence the standard definitions will not be

recalled here separately in the case of n = 2. We obtain (the first figure 2 in ((2)1)
below refers to n = 2, as we now deal with PGL(2))

Here the first sum ranges over all cuspidal irreducible representations 03C0 of

PGL(2, A), and (D ranges over an orthonormal basis - consisting of smooth
functions - for the space of 03C0 c L20(G(F)BG(A)). The Whittaker functional is
defined by

and

is the L-function of 03C0 ~ 03BE-1 at t which is associated with 03A6. Since 03A6 is a cusp
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form, its Fourier expansion with respect to

and so

At each non-archimedean place v where 03BEv is unramified and W03C8(03C0(g)03A6) is

right Kv = PGL(2, Rv) invariant, the local factor at v of this global integral is

easily computed (as in the Remark - which is based on [F1], p. 305 - following
the Introduction above) to be the local L-factor Lv(t, rc" Q ç; 1) attached to
nv Q9 03BE-1v1. The infinite product converges for a sufficiently large t, and it has
analytic continuation to the entire complex plane. The local factors have no

zeroes, and no poles on the half plane Re(t) 1 2.
Note that the discrete spectrum of L 2(G(F)BG(A» consists in addition to the

cuspidal 03C0 also of the one dimensional representations x : g ~ x (det g), where x is
a character of A /F  of order two (or one). But (~(f)03A6(u) is independent of
u ~ N(F)BN(N) for 0 c- ~(= {03A6: G(F)BG(A) ~ C; 03A6(g) = ~(g)03A6(1)}), and so

W03C8(03C0(f)03A6) = 0 for such 03A6. Hence such n = X do not contribute to our summation
formula.

The sum over y ranges over a set of representatives for the set of connected
components of unitary characters x ~ 03BC(x) of A /F , a connected component
consisting of 03BCvi03BB, v(x) = Ixl, 2 E R. In the connected component of 03BC = 03BE we take
03BC = 03BE to be the representative. For 03A6 ~ I(03BC, 03BB), thus

we have

The sum over (D in ((2)2) ranges over an orthonormal basis for 1 (Il, 03BB) consisting
of K-finite functions 03A6; this basis is independent of 03BB as 03A6 is determined by its
restriction to K.

The T is a sufficiently large positive number, and AT E(h, 03A6, Il, 03BB) is described
below for a general n in Proposition 14, for 03BB ~ C with Re(03BB) &#x3E; 1/2, to be:
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Note that 03A6(g) = 03A6(g, -1/2). The characteristic function of the domain specified
by the condition X is denoted by 03BB(X). For g = (g,) ~ PGL(2, A) we put

H(g) = 03A3v Hv(gv), with Hv(gv) = |av|v if gv ~ N (Fv) a, 0 Kv. In the higher rank
case below an additive form of H will be used.

We shall integrate TE(h 03BB)03BE(a) on h =  ) over a E A /F . It is useful to

note the simple

(2)3. LEMMA. We have BBG = I ~ w ~ w (1 10 1) A.
This follows at once from the Bruhat decomposition G = B u BwN.
Note that

Further, |av|v/~(1, a,)11’ is lavlv if lavlv  1 and lavl: 1 if lavlv  1 (in the non-
archimedean case; in the archimedean case it is |av|/(1 + lavI2)), in any case it is
 1, and in particular ((2)4)  T if T &#x3E; 1, as we assume.

(2)5. LEMMA. The integral

is the sum of 5 terms (or 6, where the 6th is zero):

where, for a character X of A /F , ô(X) is 1 if X is 1 on A0 = {a ~ A ; lai = 1}, and
ô(X) = 0 otherwise,
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where ka E K depends on a and is easily computable from:

The third term ranges over the a ~ A  with |a|/~(1, a)~2  T, namely over A ,
while the sixth ranges over the a ~ A  with lal//I(l, a)/I 2 &#x3E; T, namely over the
empty set, hence it is 0 and we did not write it out. To compute the term ((2)5.3)
note that for almost all v the function (D is invariant under Kv = PGL(2, Rv), the
characters ,u" and 03BEv are unramified, and the corresponding local factor is

Denote by 03C0v a local uniformizer of Fv, and write çvl J1v for (03BEv/03BCv)(03C0v), and 03BEv03BCv
for (03BEv03BCv)(03C0v) in the following computation. Recall that l1tvl = q-1v, where qv is the
cardinality of the residue field Rv/(03C0v) of R,. Then the integral is equal to:

Analogous computation can be carried out at the ramified places too, and a
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multiple - by a function holomorphic in 03BB E i R of polynomial growth in 03BB E i R as
JÂJ - 00 - of the same product of local L-factors, as defined e.g. in [JSP] in the
non-archimedean, and in [JS2] in the archimedean cases, is obtained. We

denote these local L-factors, which depend on 03A6v, by L03A6v. Note that Lv = L03A6v
when (D, is the normalized (by Of(1) = 1) Kv-invariant function Of in I(03BCv, 03BB).
The product over all v of the L03A6v is denoted by L03A6. We then obtain

(2)6. LEMMA. The term ((2)5.3) of the Lemma (2)5 is equal to

This product of L-functions is holomorphic on 03BB ~ i R, since L(1 + 2î, 03BC2) has
no zeroes on Re(03BB)  0 (see, e.g. [JS1]), and is of polynomial growth in À E i R as
|03BB| ~ oc. Of course, L03A6(03BB + 1/2, X) is holomorphic on 03BB ~ i R for any unitary
character x of A /F .
Next we have to substitute the five terms of Lemma (2)5 in ((2)2), integrate

over E i R, and take the limit as T ~ oc (in this order!). For any choice of a test
function f, the sums over y and (D in ((2)2) are finite. We fix then J1 and 03A6, and
treat each of the 5 terms of Lemma (2)5 separately. Before we do that, note that
for each 03A6, 03A61 ~ I (03BC, 03BB), the matrix coefficient

being the Mellin transform of a Schwartz function f, is rapidly decreasing (as
|03BB| ~ oo) in any vertical strip a  Re(03BB)  b, and so is the finite sum

We shall use this observation with the vertical strip -1 2 - 03B5  Re(03BB)  1 2 + 03B5, for
some small e &#x3E; 0.

Note also that it is not the integral of Lemma (2)5 which appears in (2)2, but
rather its complex conjugate. For 03BB ~ iR, note that 2 is - 03BB. We then replace
T03BB+1/2/(03BB + 1/2) by T-03BB+1/2/(-03BB+1/2) in ((2)5.1), ((2)5.2), and vice versa in
((2)5.4), ((2)5.5).

Substituting ((2)5.1 ) in place of J ç - 1 A TE in ((2)2), we may change the line of
integration from 03BB ~ iR to 03BB + 1 2 + 03B5, 03BB ~ iR. By Cauchy’s theorem the residue at
03BB = 1 2 will be picked up. The corresponding contribution to ((2)5.1) is
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As T ~ oo the integral over iR here is absolutely convergent to zero.
The case of ((2)5.2), when placed in ((2)2), is treated in the same way, the limit

as T - oo is equal to

Next we substitute the expression obtained in Lemma (2)6 for ((2)5.3) instead
of ~ 03BE-1 E in ((2)2). We obtain, noting that 03BE = 03BE-1, 03BC = 03BC-1, and 03BB = -03BB for
03BB ~ iR,

The integrand is integrable on i R being (the product of a slowly increasing and)
a rapidly decreasing function in À, as JÂJ ~ oc. It is independent of T.
The discussion of the terms ((2)5.4) and ((2)5.5) is similar to that of ((2)5.1) and

((2)5.2), except that the line of integration will be moved from ÀeiR to

03BB-1/2-03B5,03BB~iR. Before carrying this out we need to specify the dependence of
(M(w,03BC-1,-03BB)03A6) on 03BB. The operator M(w,03BC-1,-03BB) is not unitary in general,
but it can be expressed (see [Sh2], p. 272) in the form

where R(03BCv 1, - 03BB): I(03BCv 1, - Â) ~ I(03BCv, 03BB) is a unitary operator for all J1v, 03BB, which

maps 03A60v E I(03BC-1v, - Â) to 03A60v E I(03BCv, Â) whenever J1v is unramified (and v nonarchi-
medean), and (R(03BCv 1, - 03BB)03A6v)(g) is holomorphic and slowly increasing in 03BB in

any vertical band a  Re(03BB)  b, for any 03A6v ~ I(03BC-1v, - À) and g ~ Gv. Moreover,
the scalar valued function

is holomorphic on -1  Re(03BB)  0(L(1-03BB, 03BC- 2) in the denominator has no
zeroes in Re(03BB)  0, see, e.g. [JS1]) except possibly for a simple pole on Re(03BB) = 0
if f12 factorizes through v(x) = |x|. In this last case we may choose f1 in its

connected component to have f12 = 1. Then L(1+03BB) in the numerator would
have a pole at 03BB = 0 in the number field case, and at any 03BB ~ i Z/log q in the
function field case. But L(1- À) would also have a pole there, canceling the pole
of the numerator, and m(03BC, 03BB) would take the value -1 at 03BB = 0. In conclusion,
M(f1-1, - 03BB) is holomorphic in - 3/4  Re 03BB  0 and of slow increase as JÂJ ~ oo.
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With this knowledge we replace ~ 03BE-1 TE in ((2)2) by the right side of ((2)5.4),
move the line of integration from Â E i R to 03BB-1/2 - e, Â E i R, pick the residue at
Â = -1/2, and obtain

The integrand is holomorphic and rapidly decreasing in 03BB as JÂJ ~ 00. The

integral is absolutely convergent to zero as T ~ 00.
The case of ((2)5.5) is similarly treated, to yield, as T - oo, the limit

The spectral side in our summation formula is then the sum of ((2)1) and the
sum over J1 and 03A6 of ((2)6.1) + ... + ((2)6.5).

E. On the general case

We now resume the discussion of the case of a general n  2. Thus we note that
there is another expression for the kernel Kf(g, h), which we now recall from
Arthur [Al], p. 935. It is based on Langlands’ theory [L] of Eisenstein series
(and Morris [M] in the function field case); see the recent clearer exposition of
Moeglin-Waldspurger [MW2]. Thus let P denote a standard F-parabolic
subgroup of G, one which contains the upper triangular subgroup Po, let N be
its unipotent radical, and M its Levi subgroup which contains the diagonal
subgroup A. Let TI (M(A)) be the set of equivalence classes of irreducible unitary
discrete series representations of M(A). Put

for the Lie algebra of M, and U*P = X (M) Q R for its dual space. For m = (mv) in
M(A) define the vector HM(m) in UP by

Extend HM to a function on G(A) = N(A)M(A)K by HM (nmk) = HM (m),
where K = TIvKv and Kv is the standard maximal compact subgroup in Gv. If
M(A)’ is the kernel of HM on M(A), and AM is the center of M, then HM is an
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isomorphism from

to 9tp. For any 03BB ~ U*C = U*P ~RC consider the character g~e03BB,HM(g)&#x3E; on
G(A), and denote its tensor product with p e TI(M(A)) by 03C103BB. If 03BB e iU*P then 03C103BB is

unitary, and the group iU*P acts freely on TI(M(A)), making 03A0(M(A)) a

differential manifold whose connected components are the orbits of iU*P.
For 03C1 ~ 03A0(M(A)) denote by Hp(p) the Hilbert space completion of the space

H0P(03C1) of smooth functions 03A6: N(A)M(F)BG(A) ~ C which are K-finite, have the
property that

is finite, and that for every g e G(A) the function m 1-+ 03A6(mg) on M(A) is a matrix
coefficient of p. Let pP be the vector in Wp such that the modular function
l5p(p) = idet(Ad(p)19)1 on P(A) is equal to e203C1PHM(p)&#x3E;; here 9 is the Lie algebra of
N. For

put

and denote by I(p, l) the right representation, (I(h, p, 03BB)03A6)(g, l) = 03A6(gh, î), of
(h~)G(A). The G(/)-module I (p, î) is unitary for 03BB ~ iU*P.

Denote by Ap the set of simple roots of AM in P. These are elements of
X (M) c U*P. The set Ao = Ap. is a base for a root system, and there is a coroot 03B1
in 21p,) for every root a E OP. If P1 c P2 are parabolic subgroups, then the group
MP2 ~ P1 is a parabolic subgroup of Mp, with unipotent radical

NP2P1 = Npl n MP2. The set AP2 of simple roots of AM1 in Mp2 n P1 is a subset of
Ap, which spans a subspace (WP2)* of U*P1. We have U*P1 = (WP2)* E9 U*P2. Define

and

Then 03C1P ~ (U*P)+.
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Identify UP2 with the subspace {H ~ UP1; (a, H) = 0, 03B1 ~ 0394P2P1}, and denote by
UP2P1 the subspace of UP1 which is annihilated by U*P2. Then UP1 = UP2P1 0 9Ïp,
Denote by P2P1 = {03B1; 03B1 ~ 0394P2P1} the basis for (UP2P1)* dual to the basis {03B1; 03B1 ~ 0394P2P1}
of UP2P1. Note that any root a e 0394P2P1 is the restriction to (UP2P1)* of a unique root
03B2 ~ 0394P2P0; 03B1 is defined to be the projection to UP2P1 of the vector 03B2 in UP2P0. Let P2P1
be the characteristic function on 91o of the H ~ U0 with , H&#x3E; &#x3E; 0 for ail

 ~ P2P1. Put îp = GP. Note that Te = 1.
If Q is also a standard F-parabolic subgroup, denote by W(UP, UQ) the set of

elements s in the Weyl group W with sUP = UQ. Denote by ws a representative
in G(F) for the element s of W For p e 03A0(M(A)) and 03A6 e H0P(03C1), and À e U*P,C with
real part Re 03BB ~ 03C1P + (U*P)+, define the Eisenstein series

and intertwining operator

The functions E(g, 03A6, p, Â) and M(s, p, 03BB)03A6 can be continued as meromorphic
functions in 03BB to U*C. If 03BB e 1 8lg then E(g, 03A6, p, Â) is smooth and slowly increasing
in g, and M(s, p, Â) is a unitary operator from HP(03C103BB) to HQ(sps;.). Denote by n(P)
the number of chambers of U, namely the connected components of the
complement to the union of the hyperplanes orthogonal to the roots in Ap.
The representation theoretic expression for the kernel Kf(g, h) is

Here p ranges over a set of representatives for the connected components (iU*P-
orbits) of n(M(A)), and (D over an orthonormal basis (chosen to have the
finiteness properties of [Al], p. 926, l. - 12) for the space H p (p); I(f,p,2) is the
convolution operator. By [Al], Lemma 4.4, p. 929, the sums over p and 03A6 and
the integral over iolg are absolutely convergent. Note that (I(f, p, 03BB)03A6, 03A6’) is a
rapidly decreasing function in JÂJ ~ oo, where (·,·) indicates the inner product on
HP(03C1).
Our summation formula is obtained on integrating K f(n, h)03BE(h)03C803B1(n) over n in

No(F)BNo(A) and h in H(F)BH(A), using the spectral decomposition of the
kernel, and comparing with the result of Corollary 3. Put
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for a continuous function 0 on G(F)BG(A). Following [A2], p. 89, for a suitably
regular point T in U+0 introduce

here P ranges over the standard F-parabolic subgroups in G.
Denote by TKf(g, h) the image of the function h~Kf(g, h) under the

operator AT. Since h ~ Kf(g, h) is slowly increasing, it follows from [A2],
Lemma 1.4, that TKf(g, h) is rapidly decreasing as a function of h E G(F)BG(A).
Since Kf(g, h) is integrable over h ~ H(F)BH(A) and AT K f (g, h) - K f (g, h) as
T ~ oo, and N0(F)BN0(A) is compact, we conclude that

The function E(g, (D, p, À) is slowly increasing in g ~ G(F)BG(A), hence

TE(g, C, p, 03BB) is rapidly decreasing, and the expression

is convergent and equal to ATK f(g, h). The integral over

of its product with 03BE(h)03C8(g) is equal to

where

We shall sketch a proof of the following. Suppose that n  3 (the case of n = 3
being trivial, we shall concentrate on n  4 in the sketch of the proof below).
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4. PROPOSITION. The only possible non-zero contributions to (3.3) are

parametrized by:

(a) P of type (nl, n2, n3) and unitary, one dimensional 03C1 = 03C11 X P2 X,03 with

pn1103C1n2203C1n33 = 1;
(b) P of type (n - 2, 2) and p = p, X P 2 where pl is unitary one dimensional and P 2

is a cuspidal GL(2, A)-module whose central character OJP2 is equal to pi -n;
(c) P = G, n = 3 and p is a cuspidal PGL(3, A)-module, or n = 4 and p is the

discrete-series representation of PGL(4, A) which is equivalent to the unique
subrepresentation of I((03C11 x 03C11)03B4-1/2P1), where P1 is the parabolic of type (2, 2)
and plis a cuspidal representation of GL(2, A).

Sketch of proof. (This is only a sketch since although a few cases of the
assertion made in the following sentence are explicitly computed below, the
assertion is not proven below in full generality. The assertion is the following).
As a function in T the integral ~H(F)BH(A) AT E(h, (D, P, 03BB)03BE-1(h) dh converges to

a linear combination of exponentials in linear forms in À and T divided by such
linear forms, in Â. Examples are computed explicitly below, see e.g. Propositions
9 and 11 for a general n, and the complete discussion in the cases of n = 2 and
n = 3. In particular the limit over T cannot be taken inside the integral over iU*P.
Instead, the elementary Lemma 10 below implies that the limit of (3.3) as T goes
to infinity is equal to

where (U*P)’ are the hyperplanes defined by the linear forms in À in the

denominator, and F(03A6, p, À, 03BE) are the residues of the

on these hyperplanes. By virtue of a standard argument of "generalized linear
independence of characters (see, e.g. [FK], Theorem 2), using the absolute
convergence of the integrals, the ample supply of the f, unitarity estimates and
the Stone-Weierstrass theorem, Corollary 3 would imply, when n  4, that the
coefficient E03C803B1(03A6, p, À) is 0 for every character 03C803B1, 03B1 ~ Fn-2, unless a = (0,..., 0),
for every pair (p, 03BB) which occurs non-trivially in (3.3), and every 03A6 E H0P(03C1).

If (n, V) is an irreducible representation of G(A) and 03C8 a character of

N0(F)BN0(A), in analogy with [BZ] introduce the A0(A)-modules of coinva-
riants
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Any such character t/1 is of the form

for some fi = (/31, ... , 03B2n-1)~Fn-1; here u = (uij) ~ N0(A). The largest number of
non-zero components of fi such that V03C803B2 ~ 0 is an invariant of the representation
n, which we call here the index of n. A G (A)-module with (maximal) index n - 1
is called generic, or non-degenerate, and it is said to have a Whittaker model. A
discrete-series G(A)-module whose index is 0 is one dimensional.

Moeglin and Waldspurger [MW1] have shown that if n is an irreducible
discrete series G(A)-module then there are positive integers m and k with n = mk
and a cuspidal GL(m, A)-module p, such that n is the unique submodule of the
G(A)-module I((03C1 x ... x p)ôp 1/2) which is normalizedly induced from the G(A)-
module indicated, where P = MN is the standard parabolic of type (m,..., m),
and ôp is its modular function. The index of this 03C0 is j = (m-1)k. If

M 1 = 03A01ir GL(ni) is the Levi subgroup of a standard parabolic, and the
GL(ni, A)-module pi has index ji, then the induced G(A)-module
I((03C11 x ... x p,) e03BB,HP1&#x3E;) has the index (03A31ir ji) + r -1, for any À E U*P1,C.
The Eisenstein series E(u, 03A6, p, 03BB) which occurs in (3.3) is an element in the

space of the G(A)-module 03C0 = I(p Q e03BB,HP&#x3E;), whose index is 2. On the other

hand, if P is of type (n 1, ... , nr), and p is a discrete series M(A)-module, then
ni = miki, and the index of 03C0 is r - 1 + 03A31 ir (mi-1)ki. Since the ki, mi and r are
positive integers, we conclude that either r = 3 and mi = 1(1  i  3), or r = 2 and
m1 = 1, m2 = 2 and k2 =1, or r =1, in which case m1 = 3 and k1 = 1 or m1= k1= 2.

This completes our sketch of the proof of the proposition.

REMARK. Note that in case (b) P2 may not be taken to be one dimensional, as
then the index of 7r = I(03C1 0 e03BB,H&#x3E;) be one. In case (c), when n = 3 the p cannot be
one dimensional (the index would then be zero). When n = 4 the p cannot be
cuspidal (index 3) or one dimensional (index 0), nor can 03C11 be one dimensional,
as then the index of 03C0 would be 1.

We shall need below several decompositions.

5. PROPOSITION. Denote by Px a parabolic subgroup of type x of G, by I the
identity (n - 2) x (n - 2) matrix, and by r(i, j) the matrix whose entries are 0 except
for a single 1 on each row and column, which represents the reflection (i, j). Then
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where

Moreover,

Proof. The map g H (0, ... , 0, I)g is an isomorphism from p(n - 1,1)BG to the
projective n-space pn, which decomposes as the disjoint union of three orbits,
namely (0,..., 0, 1 )H, (0,..., 0, 1, 0)H, and (0,..., 0, 1, 1 )H. The first decom-

position follows.
Denote by U, the group of matrices (Ui) in G with uü = 1 (1  i  n), and uij = 0

if i ~ j unless i = 1 and i  j  n. Also put Uj for the group of (uij) in G with
uii = 1 (1  i  n) and uij = 0 if i ~ j unless (i, j) = (1, n). The Bruhat decom-
position, with P1 =P(n-1,1) and P(1,1) = P(n-2,1,1), asserts

Hence

Then
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Note that

for any i(1  i  n - 2). The last double cosets in the two last displayed lines are
equal, since

lies in the bottom right 3 x 3 corner of P(n-2,2). Taking i = n - 2 the second
decomposition follows.
To obtain the last decomposition apply to the previous one the automorph-

ism u(g) = Jtg-1 J, where J = (aij), ai,n+ 1- i =1 and aij = 0 if i + j * n + 1. Then

UP(n - 2,2) = P(2,n- 2), and aH = r(l, n)Hr(l, n). Since G = Gr(l, n), the last decom-
position follows, as required.

REMARK. Let l’ be the identity (n - 3) x (n - 3) matrix and put

Then

Put H - = r(1, n)Hr(1, n). In the following PHX denotes a standard parabolic
subgroup of H of type x. By A we indicate an (n - 3) x (n - 3) matrix, and B, C
will be row vectors of length n - 3; a, c, d are scalars. Proposition 5 has the
following

COROLLARY. We have the disjoint coset decompositions
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and

REMARK. Proposition 5 implies that the structure of HBG/H is independent of
n  3. It would be interesting to pursue a comparison theory between Gn(A)-
modules with a Hn(A)-invariant form and G3(A)-modules with a H3(A)-
invariant form (for n &#x3E; 3) on developing and then comparing the (non-Fourier)
bi-period summation formulae associated with such double cosets.

6. PROPOSITION. If n a 3, no discrete-series representation occurs in (3.3).
Proof We need to show that the terms described by Proposition 4(c) do not

occur in (3.3). We give a complete proof in the case of n = 3, and a sketch in the
case of n = 4. Suppose first that n = 3 and p is a cuspidal PGL(3, A)-module. If
Cep then T 03A6 = 03A6, since ON = 0 for all P ~ G by definition of cuspidality.
The Fourier expansion of the cusp form O is

where

and
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The integral of Oj over H(F)BH(A) is equal then to

The inner integral here is 0 since tf¡ is non-trivial on NH(F)BNH(A) and

W03A6,03C8(nh) = 03C8(n)W03A6,03C8(h).
Now the terms associated with the cuspidal p in the spectral expression for the

kernel have P = G, n(P) = 1, U*P = {0}, and these terms are

The integral of the product of this with tf¡(u)ç(h) over No(F)BNo(A) x H(F)BH(A)
vanishes since ~H(F)BH(A)03A6(h)03BE(h)dh = 0 for all 03A6 ~ 03C1, as required.
Of course this proof generalizes to show that when n  3 no cuspidal

representation (03C0=)03C1 of G(A) would contribute a non-zero term to (3.3).
In order to deal with the remaining case of Proposition 4(c) suppose that

n = 4 and p is the discrete series PGL(4, A)-module which is equivalent to the
unique irreducible subrepresentation of 1((pl x 03C11)03B4-1/2P(2,2)), where pl is a cuspidal
GL(2, A)-module, and P(2,2) is the standard parabolic of type (2,2). Note that
the space of this p is spanned by residues of some Eisenstein series, which are
automorphic functions; the spectral expression for the kernel does not use the
realization of p as a subrepresentation of I((pl x P @)ô - 1/2) . The coefficient 03A6N of
03A6 ~ 03C1 is 0 if N is the unipotent radical of a parabolic subgroup of type (1, 3) or
(3, 1), since the GL(2, A)-module pi is cuspidal. Indeed, the integral over
N(F)BN(A), of the Eisenstein series whose residue is 03A6, vanishes, since

wNw -1 n M(2,2) is non-trivial for every element w of the Weyl group. Hence

note that the dimension of the center of the Levi subgroup M(2,2) of P(2,2) is 1.

We need to show that ~H(F)BH(A)T03A6(h)03BE-1(h)dh is zero, where H ~ GL(3)
embeds in G = PGL(4) as H = {(g 00 1); g ~ GL(3)}. To compute this integral
we need to rewrite T03A6(g). Since 03A6N(3,1) is zero if N(31) is the unipotent radical of
the parabolic of type (3, 1), the Fourier expansion of (D along N(3,1) is

where
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and

To continue we need a special case of the Corollary to Proposition 5, namely
the decomposition

where

Here K is as defined above (5.1); P(2,1) and P(1,2) are the parabolic subgroups of
H of types (2, 1), (1, 2); r(2, 4) is an elementary matrix in G(F) representing the
reflection (2,4). The sum over ô in P(2,1)(F)BH(F) is expressed compatibly with
the sum representing 03A6(g), as follows.
The Fourier expansion of 03A6N(2,2) along N(3,1) n M(2,2) is

Hence
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The integral of the product of this by 03BE-1(g) over g E H(F)BH(A) is equal to

since PH(A) = M(2,1)(A)(N(2,2) n H)(A) and H(A) = P,(A)(K n H(A)). This in-
tegral factorizes through N(1,3)(F)BN(1,3)(A), namely through 03A6N(1,3), which is
zero as observed above. Hence the integral over H(F)BH(A) is zero.
The second coset, r(2,4)’P(i 2)BH, in P(2,2)BG, parametrizes the terms in the

sum in T03A6(g), which - multiplied by 03BE-1(g) and integrated over H(F)BH(A)-
yield

Note that r(2, 4) , and the product of this

with N(2,2) contains N(3,1). Hence this last integral factorizes through 03A6N(3,1),
which is zero. 

The last coset, xBHBH, in P(2,2) B G, after multiplication by 03BE-1(g) and
integration over H(F)BH(A), yields

Since 03BA and the product of this with

N(2,2) contains N(1,3), the integral factorizes through 03A6N(1,3), and this is zero.
It follows that the integral of (T03A6)(h)03BE-1(h) over h in H(F)BH(A) is zero. This

completes the (sketch of) proof of Proposition 5. Of course to complete the proof
it has to be shown that each of the three terms associated with the three cosets is

integrable, not only factorizes through an integral which vanishes.

Denote by Pi the parabolic subgroup of type (n - 2, 2), by p, a cuspidal
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representation of GL(2, A) with central character úJ P2’ by p l a unitary character
of A’/F’ with 03C12-n1 = 03C903C12 and also the character 03C11(g) = 03C11(det g) of

GL(n - 2, A). Let p = pl x p, be the P1(A)-module defined by pl and P2 on the
Levi factor, and extended trivially across the unipotent radical. For any 03BB e C
put Pz = p 1 ~v03BB/(n-2) 03C12 ~v-03BB/2, where v(x) = |x|, XE A x. Denote by rÂ the
vector in the one dimensional space U*1 = U*P1 with 03C103BB = p Q e03C403BB,H&#x3E;.
As in [Al], p. 917, for any F-parabolic subgroup P2 let W(U1, U2) U2 = UP2,

denote the set of (distinct) isomorphisms from Ni to U2 obtained by restricting
to U1 elements of the Weyl group W Note that when n ~ 4, the set W(U1, U2) is
empty unless P2 = P1 or P(2,n - 2), in which case it consists of s = identity or of

s = s where s2 = (0 I2In-2 0), respectively. If n = 4, W(U1, U2) is empty unless
P2 = Pi, and then it consists of s = 1 and s = s2.
As in [A2], p. 113, for any F-parabolic subgroup P define W(U1; P) to be the

union over all U2 of the s E W(U1, U2) such that s8li = U2 contains U = 8lp,
and s-103B1 &#x3E; 0 for all a E 02. Then W(U1; P) is empty unless P = G, when it

consists of the identity, or P = Pi, when it consists of the identity if n ~ 4 and of
the identity and s2 if n = 4, or P = P(2,n-2), n ~ 4, when it consists of s2.
We shall use the following analogue of the formula (4.1) of [A2], p. 113.

7. PROPOSITION. We have

where

Proof. The equality is a tautology for P = G, so we assume that P ~ G. This
identity is asserted in (4.1), [A2], p. 113, when p is a cuspidal representation (of
the Levi factor of an F-parabolic). But the p in the proposition is not cuspidal.
The trivial representation t of GL(n - 2, A) is obtained as the residue at

(n-3 2, n-5 2,...,3-n 2) of the Eisenstein series on GL(n - 2, A) induced from
the upper triangular subgroup and the parameter 03C4’ = (03BB1,...,03BBn-2),
03A31in-103BBi=0, in cn - 2. The Eisenstein series in the proposition is also

obtained as a residue. Denote by P3 the F-parabolic of type (1,...,1,2). The
space U3 is (n - l)-dimensional, represented by i + 7:;., i = (03BB1,..., 03BBn-2, 0, 0)

with 03BB1 + ··· +Â,,-2=0, and 03C403BB = 
Â 

..., 

Â Â - Â Denote b
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P3 = Pl X ... x 03C11 x 02 the representation of M3(A), where pi x ... x p 1 is a

character of (A )n-2. For (D3C-P3, consider the Eisenstein series E(g, 03A63, 03C13,
T + 03C403BB) on (g~)G(A). The series E(g, 03A6, p, rj is obtained as the highest residue (of
degree n - 3), for some Cg (which is in fact the restriction of 03A6 to M3(A)), namely

Since p3 is cuspidal, (4.1) of [A2], p. 113, applies:

Any of the Eisenstein series on the right can have a pole of (the maximal) order
n - 3 only when P(~ G) is of type (n - 2, 2) or (2, n - 2), and such a pole is

attained only at 03C40 = 2’ 2’ ... , 2’ 0,0 ), precisely when ST = 03C40 or

s03C40 = (0, 0, n-3 n-5 3-n namely when s is the identity or

S2 = (0 12), respectively. Multiplying by 03A01in-2(03BBi - 03BBi-1) and taking
the n - 3 limits as Ài - Âi - 1 --+ 1, we obtain 0 unless P(~ G) is Pl or P(2n-2), in
which cases we obtain

respectively, if n ~ 4, and their sum if n = 4. This is the expression asserted in the
proposition.

In [A2], the identity (4.1) is used in the proof [A2], Lemma 4.1, on p. 115, e. 2.
The proof of that Lemma then applies without a change in our situation too, to
yield

8. PROPOSITION. For a sufficiently large À (i.e., Re(03BB)  1), the truncated

Eisenstein series TE(g, 03C1, 03C403BB) is equal to

with the sum over y converging absolutely.
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Recall that E2(A), for  ~ U*0. is defined in [Al], p. 940, to be 1 if the set of

(X E A2 with ,03B1&#x3E;  0 is even, and -1 otherwise. The function ~2(, H) on

(A, H) e U*0 x U0 takes the values 0 and 1. It is equal to 1 precisely when for every
03B1 ~ 03942, we have , 03B1)  0 and 03B1, H&#x3E; &#x3E; 0 or , 03B1) &#x3E;0 and 03B1, H&#x3E;  0.
As noted in Proposition 7, P2 ranges over the set

and s = 1 or S2. It is clear that 03B51(03C403BB) = 1 and 03B52(s203C403BB) = -1. When s = 1, the
characteristic function ~1(03C403BB, H0(g) - T) can be expressed as X(bPl(g)1/2  t1),
the characteristic function of the g such that 03B4P1(g)1/2  t1, where t1(&#x3E;0)
depends linearly on T ~ U+0 and t ~ oo as T ~ oo. When s = s2 the character-
istic function ~2(s203C403BB, Ho(g) - T) can be written as ~(03B4P2(g)1/2  t2), the charac-
teristic function of the g such that 03B4P2(g)1/2  t2, where t2(&#x3E; 0) depends linearly
on T and t2 ~ ~ as T - 00. Further, the exponential e03C403BB+03C11,H0(g)&#x3E; is equal to

03B4P1(g)(03BB+1)/2, while es203C403BB+03C12,H0(g)&#x3E; is equal to 03B4P2(g)(03BB-1)/2. in summary, the

identity of Proposition 8 can be rewritten as follows:

COROLLARY. The truncated Eisenstein series AT E(h, (D, p, 03C403BB) is equal to the

difference between

and

We use this Corollary to prove, with p = pi x Pb the following

9. PROPOSITION. The integral of the product of (8.1) and 03BE-1(h) over h in
H(F)BH(A) is equal to 03B4(03C11/03BE)L03A6K,03BE(03C12 ~ 03BE-1, (n - 1)/2)t11 À.
As usual, if x is a character of A x /F " we put 03B4(~) = 1 if x is 1 on every a E A x

with Jal = 1, and 03B4(~) = 0 if not. The L-function is the one associated in [JPS] to

the cusp form 03A6K,03BE(A) = ~KH03A6((1 00 A)k)03BE-1(k)dk, A ~ GL(2, A), in P2, twisted
by 03BE-1.

Proof We use the Corollary to Proposition 5 to express the integral of (8.1) as
a sum of three integrals, corresponding to the three cosets in (5.1). Correspond-
ing to the second coset in (5.1), we obtain the integral
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where r = r(n - 2, n). By the Iwasawa decomposition H(A) = PH(n-3,2)(A)KH we
write h = mnk, and note that rmr-1 ranges over L(F)BL(A), where L is the Levi
subgroup of type (n - 3, 1, 2) of G. Note that GL(2, F)BGL(2, A) can be
expressed in the form N(F)BN(A) ’ S for some Siegel domain S, where N de-
notes here the upper triangular unipotent subgroup of GL(2). But

(Dg (a) = (D ( 1 0 is a cusp form on GL(2, A), for any g in G(A). Conse-
quently the integral factorizes through an integral over u e N(F)BN(A) of the
cusp form 03A6g, and this inner integral is zero, as is (8.1.2).

Corresponding to the third coset in (5.1) we obtain the integral

using the Iwasawa decomposition H(A) = PH(n-3,1,1)(A)KH it is clear that the
integral (8.1.3) factorizes through the integral over tN(F)BtN(A), where ’N is the
lower triangular unipotent subgroup of GL(2), of the cusp form

a = 03A6 ((I 0 g) on GL(2, A). This inner integral is zero, and so is -

consequently - (8.1.3).
Corresponding to the first coset on the right side of (8.1) we obtain

By the Iwasawa decomposition H(A) = N(n-2,1)(A)M(n-2,1)(A)KH we may write
h = nmk, and m = diag(a, b, c), where a is in GL(n - 2), and b, c in GL( 1 ).
Note that bl(h) = |det(a)2/(bc)n-2|, and the modular function ô with respect to
N(n-2,1), which occurs in the integration formula dh = 03B4-1(m)dndmdk, is

03B4(h) = |det(a)/bn-2|. Note also that
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where 03A6k(A) = 03A6((I 00 A k is a cusp form in p, ( A in GL(2, A)). Denote by
A the integral over k ~ K" of 03A6((I 00 A) k)03BE- 1(k). It is again a cusp form

in p2. on GL(2, A).
Consequently (8.1.1) is equal to the product by the volume

of the integral

Here a, b, c range over the quotient of (A /F )3 by the equivalence relation
(zn-2, z, z) ~ (1, 1, 1). Since 03C12 has the central character 03C903C12 = 03C12-n1, we have

03A6K,03BE ((b 00 c)) = 03C11 (c2-n)03A6K,03BE ((b/c 00 1)). The integral ranges over the

domain |a2/(bc)n-2|1/2  t1. Write u = blc and v = albn-2. Then the range of
integration is Ivllul(n - 2)/2 = |a/bn- 2~b/c|(n-2)/2  tl. The integral takes the form

(note that u, v range over A /F ).
Integrating out v, and noting that Re(03BB) &#x3E; 0, we obtain

Since 03A6K,03BE is a cusp form, it is rapidly decreasing, and the last integral converges.
It is a "Tate integral" for the L-function of P2. Namely for any 03A62 ~ 03C12, the
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integral

coincides - up to a finite number of factors - with the Euler product which
defines the L-function of P2 ~ 03BE-1; for further details we refer to [JPS]. The
Proposition follows.

Before we proceed to integrate (8.2) over H(F)BH(A), note that the result of
Proposition 9, and 11 below, will be used in conjunction with the following
consequence of the Fourier inversion formula.

10. LEMMA. Let f be a Schwartz (smooth, rapidly decreasing as |03BC| --+ 00)
function on i R, and signify by ~iR the principal value integral lim03B5~0(~~03B5 + 1
Then limt~~ ~iR f(03BC)03BC-1 exp( ± 03BCt)d03BC = f(O).
To complement Proposition 9, we have

11. PROPOSITION. The integral over g in H(F)BH(A) of the product of 03BE-1(g)
and (8.2) is equal to

Proof. The coset decomposition (5.2) will be used, and as in the discussion of
(8.1) using (5.1), we express the integral of (8.2) as a sum of three integrals,
corresponding to the three cosets on the right of (5.2), beginning with the second
coset. Since r(l, n)H(A)r(l, n) = H-(A), the integral over H(F)BH(A) of the
summands in (8.2) parametrized by the second coset in (8.2) is equal to

We shall abbreviate here and below and write M03A6 for M(s2, 03C12, 03BB)03A6; note that

(M(D),(A) = (M03A6) ((A 00 I) g) is a cusp form in 03C12 on A ~ GL(2, A) for ever(M03A6)g(A) = (M03A6)(0 I)g) is a cusp form in 03C12 on A ~ GL(2, A) for every
g ~ G(A). The Iwasawa decomposition H(A) = PH(2,n-3)(A)KH can be used to
show that the integral factorizes through h = mnk, with m = MlM2, and

Ml = (A 1 with A in GL(2,F)BGL(2,A). Writing A as A1A2, with A,
ranging over N(F)BN(A), N being the upper triangular unipotent subgroup of
GL(2), and A2 over a suitable Siegel domain, since (03BE-103B42)(h) is independent of
A 1 we conclude that the integral factorizes through ~(M03A6)g(A1A2)dA1,
Ai ~ N(F)BN(A), and this is zero since (M03A6)g is a cusp form.
The integral over H(F)BH(A) of the terms in (8.2) parametrized by the third
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coset in (5.2) is equal to

where

c d B 0
and h ranges over (F)BH(A). Applying again the Iwasawa

decomposition, and noting that r commutes with x = c 1 0 , and that

03BE-103B42(xrh) = (03BE-103B42)(rh), it follows that the integral factorizes through the
integral

which is zero since (M03A6)rh is a cusp form in p2.
There remains the first coset in (5.2). The integral over H(F)BH(A), of the

terms in (8.2) parametrized by this first coset, is equal to

r

Here r = r(1, n), and we used the fact that rHr = H - . The Iwasawa decom-
position H-(A) = NH-(1,n-2)(A)MH-(1,n-2)KH- can be used to write h as nmk, and
we use the change of variables formula dh = 03B4(m)-1 dndmdk, with

03B4(m) = |bn-2/det(c)| if m = ( 0 b 0 ; a, b in A , c in GL(n - 2, A). Note that
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and the function A ~ (M03A6) ((A 00 c)g) = 03C11(det c)(M03A6)((A 0 g for any
c E GL(n - 2, A) and g E G(A), is a cusp form in A E GL(2, A) in the space of the
cuspidal representation P2 of GL(2, A). Put

Since b2(hr) = |(ab)n-2/det(c)2|, our integral takes the form

a 0 0

It ranges over the 0 b 0 in M(1,1,n-2)(F)BM(1,1,n-2)(A), with

0 0 c

|(ab)n-2/det(c)2/1/2  t2. Integrating over c in SL(n - 2, F)BSL(n - 2, A) we earn
a volume factor which is equal to 1, and we may assume that c lies in A /F ,
as do a, b, and (a, b, c) are taken modulo the equivalence relation

(z, z, zn-2) ~ (1, 1, 1). Write u = alb and v = bn - 2/c. Then the integral ranges
over |v||u|(n-2)/2  t2, and it takes the form

Integrating out v we obtain

where L(M03A6)K,03BE (03C12 Q 03BEn-1, n- 1 is the value at ( n - 1)/2 of the L-function of
03C12 ~n-1 associated with the cusp form 03BEn-1(M03A6)K,03BE in 03C12 ~ 03BEn-1. This

completes the proof of our proposition.
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Bernstein’s center

It remains to compute the contribution to the spectral side of the summation
formula of the terms parameterized by the data of Proposition 4(a). It might be
true that for a general n  3 the only terms described by Proposition 4(a) which
contribute to the summation formula are associated with a parabolic subgroup
of type (nl, n2, n3) where at least two of the nl, n2, n3 are equal to 1, but we do not
pursue this question here. In fact we shall discuss below the contributions of the
terms of Proposition 4(a) only in the special case where n = 3 (and
nl = n2 = n3 = 1). Before embarking on this computation for n = 3 we shall
complete a special form of the summation formula for a general n  3, which
does not involve the terms of Proposition 4(a). This spécial case, for a general
n  3, depends on a choice of the test function f.

Let v be a non-archimedean place of F. A cuspidal pair in G, is a pair (Mv, pj
consisting of a (standard) Levi subgroup Mv and a supercuspidal (irreducible)
Mv-module 03C1v. The pairs (M", 03C1v), (Mi, Pv) are equivalent if there is g in Gv with
M’v = g-1 Mvg and pv equivalent to m ~H 03C1’v (g-1 mg). An equivalence class is

called an infinitesimal character (of Gv). For every irreducible Gv-module 03C0v there
exists a cuspidal pair (M v’ Pv) such that rcv is a constituent of the composition
series of the Gv-module I(pv; Gv, Pv) normalizedly (= "unitarily") induced from
the PU-module extended from pv on Mv by 1 on the unipotent radical of the
(standard) parabolic P" = MvNv defined by Mv. The infinitesimal character ~(03C0v)
of 03C0v is defined to be the infinitesimal character of (Mv, pv); it is uniquely
determined (see [BZ]).
The set 8(Gv) of infinitesimal characters has the structure of a complex

algebraic variety. Indeed, the group X(Mv) of unramified characters p : Mv ~ cC "
of Mv acts on the set Irr Mv of irreducible Mv-modules by 03BC: 03C1v ~ J1Pv. For any
cuspidal pair (M v’ Pv), the image of the map X(Mv) ~ 0398(Gv), 03BC ~ (Mv, 03BC03C1v), is

called a connected component of O(Gv). This component has the natural structure
of an affine complex algebraic variety as a quotient of X(Mv) (~C d for some
d = d(Mv)  0), by a finite group. The 0398(Gv) is a complex algebraic variety equal
to the disjoint union of infinitely many connected components 0.
As a consequence of the theory of the Bernstein center (see [BD] for a

preliminary draft, and the forthcoming work [B]), one has the following

12. PROPOSITION. Let O be a connected component in 8(Gv). Then for any
fv ~ C~c(Gv) there exists fv, 0398 ~ C~c(Gv) such that for any 03C0v ~ Irr Gv we have

03C0v(fv,0398) = 0 J ~(03C0v) ~ 8, and 03C0v(fv,0398) = 03C0v(fv) J ~(03C0v) E 8.

We use this Proposition 12 as follows. Fix a non-archimedean place u of F, a
unitary character p°u of Ff and a supercuspidal (irreducible) representation po
of GL(2, Fu) with central character cv°n = (pOu)2 -no Denote by Mu the standard
Levi subgroup of type (1, ... , 1, 2), and by pf the supercuspidal representation
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03C101u ··· 03C101n 03C102n of Mu. Denote by ef the connected component of the
infinitesimal character of puo.
We shall derive the summation formula for a function f which is a (finite linear

combination of) product(s) over all places v of F of the form ~ fv, where
fv ~ C~c(Gv) for all v, fv = f0v is the quotient by vol(Kv) of the characteristic
function of K" in G, for almost all v, and fu has the property that fu =fu, u For
any such f we have that n(f) = 0 for every representation 03C0 of G(A) of the form
I(p ; G(A), P(A)), normalizedly induced from a pair (P, p) described in Proposi-
tion 4(a).
For such f, the summation formula is obtained from (3.3), where the sums over

P and p range over the connected components of pairs (P, p) (up to conjugation)
as listed in Proposition 4(b). The factor ~03BE-1 TE in (3.3) is equal - by virtue of
the Propositions 9 and 11- to the difference

since 03BEn-1 = 03C1n-11 = 03C9-1203BE if pi = 03BE, and 03C12 , the contragredient of P2, is

equivalent to 03C12 Q Cù2, where Cù2 is the central character of P2. More precisely we
need the complex conjugate of this. Of course on 03BB ~ iR we have 03BB = -03BB. The
factor is then

For the given smooth function f, the sum over 03A6 in (3.3) is finite, and the
function E03C8(I(g,03C1,03BB)03A6,03C1,03BB) is holomorphic and rapidly decreasing in

03BB~iU P(~iR) as |03BB| ~ ~.
By virtue of Lemma 10 we may take the limit as tl ~ oo (and so t2 ~ oo) to

obtain the required result, namely that when T - oo the limit of (3.3) is

F. The case of PGL(3)

It remains to compute the contributions to the summation formula from the
terms parametrized by the data described by Proposition 4(a). We shall do this
only in the case where n = 3, and then P = B is the upper triangular subgroup of
G = PGL(3), and p = pl x p2 x P3 is a character of B(A)/B(F), which is trivial on

N(A)/N(F), N being the unipotent radical of B.



93

Assume then that n = 3, and put Pi = P(2.1)’ To integrate the automorphic
function ATE(g, 03A6, p, 03BB) over g E H(F)BH(A), we note that we may - as we will -
integrate instead over H0(F)BH0(A), where

Indeed, AT E(r’gr, 03A6) = AT E(g, 03A6r) with 03A6r(g) = 03A6(gr) if r’ E G(F), since TE is
automorphic, and we may replace the orthonormal basis {03A6} by {03A6r}. We need a
coset decomposition analogous to that of Proposition 5, with HO replacing H,
and with respect to B. Put

13. PROPOSITION. If G = GL(3) and Pi = P(2,1), then we have the disjoint
union

Consequently, if

then we have the disjoint coset decomposition
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DEFINITION. Below we refer to the six cosets in the last decomposition as "the
first coset", ... , "the sixth coset".

Proof. The homogeneous space P1BG is isomorphic to the projective 3-space
via the isomorphism g H (0, 0, I)g. The orbit (0, 0, I)H’ consists of the vectors
(a, b, c) with b = 0, that of r(23)HO consists of (a, b, c) with a = c = 0, and the

1 0 0

orbit (0,0,1) 0 1 0 r(23)H° consists of (a, b, c) with b ~ 0, and a ~ 0 or

c ~ 0. When the first decomposition.
To deduce from it the second decomposition, recall the Bruhat decomposition

where A is the diagonal subgroup and

Then

Moreover

since r(23)r(12)r(23) ~ H0 and

Finally

since

To obtain the coset decomposition it suffices to note that
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The proposition follows.

REMARK. (1) Since

we have that B03B53r(23)H0 = Be3r(12)Ho. (2) It is easy to see that

BEIr(12)H° - B03B51H0, and that Be2r(23)HO = Be28°.
Since the character 03C1 = 03C11  03C12  03C13 is a cuspidal representation of the

diagonal subgroup A(A) = B(A)/N(A), Lemma 4.1 of [A2], p. 114, applies. It
asserts, in our case, the following.

14. PROPOSITION. The truncated Eisenstein series AT E(h, 03A6, p, À), where
03BB E U*0,C has real part Re(03BB) in po + (U*0)+, and T is sufficiently large in the positive.
Weyl chamber U0, is equal to

We may identify the two dimensional spaces U0 and U*0 with the space of
the vectors (x1, x2, x3) in R3 with x1 + x2 + x3 = 0. The simple roots are

03B11 = (1, -1, 0) and a2 = (0, 1, -1), and a dual basis is given by 03BC1 = (2/3, -1/3,
-1/3), 03BC2 = (1/3, 1/3, - 2/3) (03B1i, 03BCj&#x3E; = c5i). If a = diag(a1, a2, a3)
then 03B11(a) = |a1/a2| = e03B11,H(a)&#x3E; and 03B12(a) = |a2/a3| = e03B12,H(a)&#x3E;, thus H(a) =
ln |a1/a2|03BC1 + ln |a2/a3|03BC3. Hence if a = diag(x1, x2/x1, x-12), then H(a) =
In |x1|03B11 + In |x2|03B12. We shall also write À = 03BB03BC1 + À2JL2, and note that 03BB ~ (U*0)+
if 03BB1 &#x3E; 0 and À2 &#x3E; 0. Recall that 8o(A) is defined for A e U*0 in [A1], p. 940, to be
1 if (A, 03B1 v &#x3E;  0 for an even number of a e 03940 = {03B11, 03B12}, and it is -1 otherwise.
The function 03A60(A, H) on (A, h) ~ U*0  U0 is defined there to be equal to 1 if

,03B1i&#x3E;  0 and 03BCi, H&#x3E; &#x3E; 0, or A, 03B1i&#x3E; &#x3E; 0 and 03BCi, H&#x3E;  0, for both

i = 1, 2; it is 0 otherwise.

First Coset

We are to consider the integral over HO(F)BHO(A) of the product by 03BE-1(h)
a 0 b

(=03BE-1((ad - bc)/e2) if h = 0 e 0 ~ H0(A)) of the expression displayed in
c 0 d
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Proposition 14. Using the coset decomposition of Proposition 13, we consider
first the coset B0(F)BH0(F). Applying the Iwasawa decomposition

and noting the change of variables formula dh = 03B4-1(a)dn da dk, where

ô(a) = e03C10,H(a)&#x3E;(=|a1/a3| if a = (lll, a2, a3), 00 = 03B11 + OC2 = 03BC1 + P2), our intégral
takes the form

where 03BE(diag(a, b, c)) = 03BE(ac/b2). Write T = In t, - al + In t2 · OC2. Note that

(M(s, p, 03BB)03A6)K0,03BE(a) = fG(o(M(s, p, 03BB)03A6(ak)03BE-1(k)dk is zero unless ’p = çep(a) =
p(s(a))) on A(A) n K°. We may choose p in its connected component with Sp = 03BE
on A(A) ifsp = 03BE on A(A) n K°. Then (M(s, p, 03BB)03A6)K0,03BE(a)03BE-1(a) is independent of
a E A(A), and is equal to its value at a = 1. Also we write 03B4(03C1/03BE) = 1 if p = 03BE on
A(A) n K°, and 03B4(03C1/03BE) = 0 otherwise.
The following table lists the various functions in the integral.

We shall label below by ((3)i) the various terms in the integral ~03BE-1 TE to be
substituted in (3.3), in our present case of PGL(3), where n = 3, and the character
p of the minimal parabolic subgroup.

Since

our integral is equal to
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Second Coset

Next we consider the coset r(12) · B0(F)BH0(F), and again integrate over

H°(F)/H°(A) the corresponding partial sum of (14.1), multiplied by 03BE-1(h).
Applying the Iwasawa decomposition H0(A) = N0(A)A(A)K0, noting that

r(12)N0(A)r(12) consists of upper triangular unipotent matrices, and that

dh = e-03C10,H0(a)&#x3E;dn da dk, and making the change a ~ r(12)ar(12) of variables on
A(A), we obtain the integral

The argument used in the case of (13.2) implies that (M(s, p,

03BB)03A6K0,03BE(ar(12))03BE-1(r(12)ar(12)) is zero unless Sp = r(12)03BE on A(A) n K’, but then
we may choose p in its connected component to satisfy Sp = r(12)03BE on A(A), and
our function is independent of a. If H(a) = ln |x1|03B11 + ln |~2|03B12, since

po - r(12)po = (1, 0, -1) - (0, 1, - 1) = (1, -1, 0), the new factor in the

integrand of (14.3) (as compared with that of (14.2)) is IXl12/1x21.
The corresponding table for (14.3) is the same as for (14.2), except that the 6

entries in the last column are multiplied by |x1|2/|x2|. Consequently (14.3) is

equal to (put r = r(12), s = r(23), for brevity)



98

Third Coset

The subsum parametrized by r(23) · B0(F)BH0(F) in (14.1), or rather its integral
over H0(F))H0(A), can be treated analogously. Applying again the Iwasawa
decomposition and making the change a H r(23)ar(23) of variables on A(A), an
integral analogous to (14.2) and (14.3) is obtained, namely r(12) has to be
replaced by r(23) in (14.3). Note that po - r(23)po = (1, 0, -1) - (1, -1, 0) = (0,
1, -1), and e03C10-r(23)03C10,H(a)&#x3E; = |x22/x1|. Hence the last column in the table for
(14.2) has to be multiplied by |x22/x1| to obtain the analogous table, for the coset
r(23) · B0(F)BH0(F). Integrating we obtain (put r = r(23), s = r(12), in the

following expression)

Fourth Coset

The next coset of B(F)BG(F) to be considered is

The integral over H0(F)BH0(A) of the product by 03BE-1(h) of the subsum
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parameterized by this coset in (14.1) is the sum over SE W of the integral over
u = bis E A  and w = c/b E A /F , of the product with eo(sâ) of

where

As usual, the Iwasawa decomposition was used, and it was noted that el

commutes with

Note that (M03A6)(h) is zero unless Sp3(W) = ’p(diag(l, 1, w)) is equal to

03BE(w) = 03BE(diag(1, 1, w)) on all w E A x with 1 wl = 1. We may choose p in its

connected component, when 03B4(s03C13/03BE) = 1, such that ’P3 = 03BE on A . With this

choice, (M03A6)(h)03BE-1(w) is independent of w. The integrand can therefore be
expressed in the form

Note that if g = (gv) ~ G(A) where g, = nvavkv ~ G(Fv), the H(g) = Lv Hv(gv),
where H,(g,) is defined to be H,(a,), and Inlx(av)1 = ~, Hv(av)&#x3E; for any

x E X(A) = Hom(A, GL(1)). For x = (x,), y = (yv) in A , put Ixl = 1-1, lx,l,, and
~(x,y)II - 03A0v~(xv,yv)~v, where ~(xv,yv)~v is max(|xv|v,|yv|v) in the non-

archimedean case and (|xv|2v + |yv|2v)1/2 in the archimedean case. Also we write
(x, y) for an element in A x with 1 (x, y)| = 11 (x, y)|. Then
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IV (1). We shall consider each of the summands indexed by SE W When s = 1,
the characteristic function ~0(03BB, H - T) is non-zero when

and

Note that

is always non-positive, and consequently so is

which is therefore less than ln(t21/t2) if we choose tl and t2 with t2  ti (later we
also require that t  t2). It follows that B &#x3E; A, namely the integral ranges, when
s = 1, over the UEA x and w ~ A /F  with |w|-1  t3/22|u|1/2.
On the domain of integration, the integrand is the product of

and
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Integrating with respect to w ~ A /F  on |w|-1  |u|1/2t3/22, we obtain

We need to integrate this over u = (uv) in A . Note that o, is unramified and

that (M03A6)(g) is right-GL(3, RJ and left-A(F,) invariant, for almost all v. When

multiple of Spv (u") = s03C1v(diag(1, 1/uv, 1))03BEv(uv) = s03C1v(diag(1, 1/uv, u,,» if |uv|v  1,
and of s03C1v(uv) = s03C1v(diag(1/uv, 1,1))03BEv(uv) = spv(diag(1/uv, 1, uv)) if |uv|v  1, for
almost ail v. Note that in the non-archimedean case we have

Hence the integral of the local factor over Fv against d  Uv is equal - in the non-
archimedean case - to

At almost all v we put x = s03C1v-(03C0v) and y = spv+(03C0v), where 03C0v is a uniformizing
parameter in Fv. We obtain

At the remaining finite number of places we obtain a multiple of this product of
L-factors by a polynomial in q03BB1/2v, or a holomorphic function in 03BB1 in the
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archimedean case. Denote the product over v by

This quotient has a simple pole on the line 03BB1 ~ iR if Sp - (or Sp +) factorizes
through v(x) = |x|; it is holomorphic, of polynomial grown as 03BB1 ~ iR, |03BB1| ~ oo.
When the pole exists we may choose p in its connected component to satisfy
s03C1- = 1 (or sp+ = 1). In this case the pole occurs at 03BB1 = 0 (in the number field
case, and at 03BB1 E iZ/log q in the function field case). The result of our com-
putation is of course the product of ((3)4.1) with t03BB22 + 03BB1/2/((203BB2 + 03BB1)/3).

IV(5). The next summand is that of s = r(12), when s03BB = -03BB103BC1 + (03BB1 + 03BB2)03BC2.
The characteristic funetion ~0(s03BB, H - T) is 0 unless In |w|  A and In |w|  B.
But B &#x3E; A hence the integrand is always zero.

IV(6). Similarly, when s = r(12)r(23), so s03BB = -(03BB1 + 03BB2)03BC1 + ,1lf.12, the charac-
teristic function vanishes unless ln |w|  A  B  ln 1 wl, and the integrand is

always zero.
The remaining three cases of s are analogously treated. To simplify the

notations we consider only the case where p = 1 and 03BE = 1. The key ingredients
of the computations would then be seen, and the general case can be treated as in
the case of s = 1 above, with additional notational effort only.

IV(2). When s = r(23), then s03BB = (03BB1 + ,12)f.11 - ,12f.12, and the characteristic

function is zero unless In |w|  A and In |w|  B, namely the integral ranges over
the u, w with

Since

the integral over w E A /F  in the designed domain of the product of this with
|uw| is

The integral of this over u in A  with respect to d ’ u is
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the computation is carried out as in the case where s = 1.

IV(3). When s = r(23)r(12) and SÂ = À2111 - (03BB1 + 03BB2)03BC2, the characteristic

function specifies the same domain of Iwl as in the previous case of s = r(23), and

Multiplying this by luwl, and integrating over w E A /F  in the domain specified
by the non-vanishing of the characteristic function, we obtain

The integral of this over u ~ A  against d x u is equal to

IV(4). When s = r(13) and s03BB = -03BB203BC1 - 03BB103BC2, the characteristic function

0,(sÂ, H - T) vanishes unless ln |w|  A and ln |w|  B; but A  B, hence the

support is specified by

Also

The integral over w ~ A  /F " (on the specified domain) of the product of this
with luwl is equal to
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The integral of this on u E A x, by d x u, is

Fifth Coset

The coset E2r(23). 0 b 0 (F)BH0(F) is treated analogously. Carrying out
0 0 b

the computation we would obtain terms «3)5.i), 1  i  4, analogous to ((3)4.1).

Sixth Coset

The remaining subsum of (14.1) to be considered ranges over the coset

The integral over H’(F)BH’(A) can be expressed - on using the Iwasawa

decomposition H’(A) = N0(/E)A(/E)K0 - as the sum over SE W of the product
with 03B50(s03BB) of the integral of

where

over

For u = (u,) E A, z = (z,) E A, we let I(l, z,, uv)lv be max(l, |zv|v, |uv|v) if v is non-
archimedean, and (1 + IZvIv + |uv|2v)1/2 otherwise, put 11(1, z, u)11 for Ilv ~(1, Izvlv,
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|uv|v)~, and put (1, z,, u,) for an element of Fv with absolute value 1(1, z,, uv)|v, and

(1, z, u) for (( 1, z", uv)) ~ A . Then

where K = 1-1,K,, and Kv is the standard maximal compact subgroup of G,.
Changing variables z H z/u, noting that G is a projective group, H becomes

VI(1). We shall consider separately each of the six terms indexed by s ~ W, with
s = 1 treated now. As 03BB = 03BB1/03BC1 + Â2J.l2 with 03BBi &#x3E; 0, the characteristic function

~0(03BB, H - T) is supported on the set determined by H - T, 03BCi&#x3E;  0 (i = 1, 2),
namely on the u, v, z with

or equivalently

The integrand is the product by

where k(u, z) E K is independent of v, of (recall that cla = v/u, and that the change
z H z/v added a factor |v|-1)
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The integral of this product over v in A0/F , A0 = {a ~ U ; lai = 1}, is a

multiple of 03B4(s03C12/03BE), where Sp2(v) = sp(diag(l, v, 1)). If Sp2 = 03BE on A0 we may
choose p in its connected component to have sp2 = 03BE on A x. Then (*) is

independent of v.
Integrating against d  v over v in A /F  we obtain

This is

Each term in this difference, multiplied by

has to be integrated over z in A (against dz) and over u in A , against d ’ u. These
global integrals are products of local integrals. We shall now compute these
local integrals for almost all v, where (M03A6)v is Kv-invariant (and ov is unramified
and v is non-archimedean). We first integrate the first summand against dz, to
obtain

where p(z) = Sp(diag(1, 1/z, z)), since
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and

Put ,ul(u) = Sp(diag(u, 1/u, 1)) and x = 03BC1(03C0v), and y = ,u(1tv). The integration over
u ~ F v of the product by pi(u) if |u|v  1 and by ,u(u) of |u|v &#x3E; 1, of

|u|03BB1v~(1,u)~-1-203BB1vd u, has been carried out above as part of the discussion of
other cosets in B(F)BG(F). Thus integrating over u we obtain

The computation of the remaining finite number of ramified factors is similarly
u 0 0

yielding such factors, which depend however on (M03A6)v (( 0 u 0 . The

product over all v of these factors is equal to

This product of L-functions is holomorphic on 03BB1 ~ iR, unless y or 03BC1

factorizes through u jul. In this case we may choose p in its connected

component to have y = 1 or pi = 1. Then the product of the L-function has a
simple pole at 03BB1 = 0 (03BB1 ~ iZ/log q in the function field case), and has a
polynomial growth in 03BB1 as |03BB1| ~ oo . The integration of the term subtracted in
the difference is identical, except that 03BB1 and 03BB2 have to be interchanged.

Since the presence of the characters p and 03BE considerably complicates the
notations, and the general case of any p and 03BE has just been treated in the case of
s = 1, to simplify the notations in the remaining cases of s ~ 1 we restrict our
attention only to the case of p = 1 = ç. Clearly the general case similarly
follows.

VI(2). Next we consider s = r(12) in W Then s03BB = -03BB103BC1 + (03BB1 + 03BB2)03BC2, the
characteristic function QJo(s2, H - T) is 1 when
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but this last inequality is implied by the first inequality), and

The integral of the product of this by d v over v ~ A /F  in the specified
domain is

The integral of this over z E A and u ~ A  is the same as in the previous case
where s = 1, with Â, (there) replaced by 03BB1 + 03BB2 (here). We then obtain

VI(3). When s = r(23), then s,1 = (03BB1 + 03BB2)03BC1 - 03BB2/03BC2, we have

and

Integrating against d’v on A /F , obtained is t-03BB1-203BB22((03BB1 + 203BB2)/3) times

This factor, and its integral over z e A and u e A , is identical to the correspond-
ing factor and its integral in the previous case when s = r(12). The result of this
computation will take the label ((3)6.3).

VI(4). When s = r(23)r(12), s03BB = À2/11 - (21 + 03BB2)03BC2, and CPo(s2, H - T) ~ 0 on
Ivl  t32|u|-1~(1,u,z)~3. The integrand contains the term
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The integral of this (times d  v) over v E A /F  is t 2 (1- , + 2,h) 1«Âl + 203BB2)/3) times

The expression (and its integral over z ~ A, u ~ A ) has already appeared in the
subtracted term in the difference associated with s = 1. In any case, the result of

this computation would be labeled ((3)6.4).

VI(5). When s = r(12)r(23), we have

The integral over v ~ A /F  of the product of this with d  v is

t-203BB1-03BB21/((203BB1 + /L2)/3) times

This expression is equal to that appearing in the first term in the difference
associated to s = 1. The label in this case would be ((3)6.5).

VI(6). Finally, when s = r(13), s03BB = - 03BB203BC1 - 03BB103BC2, and ~0(s03BB, H - T) ~ 0 only
when

But this domain is empty.
This completes our evaluation of the integral over HO(F)BHO(A) of the

product by 03BE-1(h) of the truncated Eisenstein series TE(h, 03A6, 03C1, 03BB) of (14.1),
when G = PGL(3) and p is a character of the diagonal subgroup. Namely the
result is the sum of (3(1)), ((3)2), ((3)3), ((3)4.i) and ((3)5.(i)) (1  1 5 4) and ((3)6.j)
(1  j  5).

G. Conclusion for PGL(3)

To obtain the terms of our summation formula in the continuous series, namely
those which are parametrized in (3.3) by the minimal parabolic subgroup P = B
and a character p of B(A)/B(F) (note that n(B) = 1/6 in (3.3)), we need to replace
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~TE·03BE in (3.3) by the complex conjugate of the sum of «3)i), 1  i  3, ((3)i j),
i = 4, 5, 1  j  4, and ((3)6.i), 1  i  5. Then we need to carry out the

integration over 03BB in the two dimensional (over R) space 18lg , namely over 03BB1
and Â2 in R. Finally we shall take the limit as T ~ oo in the positive Weyl
chamber, namely as t 1 ~ oo and t2 - oJ. Note that for Â in iU*B the complex
conjugate 03BB is -03BB. Then the function f 03BETE is analytic in 03BB on iU*B, and each of
the expressions «3)ij) has analytic continuation in 03BB to U*B,C. As functions in 03BB,
the ((3)i j) are slowly increasing in every band ai  Re(Ài) 5 bi, 03BBi = 03BB, 03B1i&#x3E;, i = 1,
2, while the other factor, E",(1(f, p, 03BB)03A6, p, 03BB), in (3.3), is rapidly decreasing there.
For any f, the sums over p and 4) are finite. With these comments out of the way,
we now point out the main features of the computations of the various terms.

I. In the case of (3(1)), as in the case of GL(2) we note (see [Sh2], p. 272) that the
intertwining operators M(s, p, Â) are a product of (i) a scalar valued function,
m(s, p, î), which is a quotient of products of L-functions in the components of p,
and is holomorphic on 03BB1, Â2 E iR, and of (ii) a normalized intertwining operator
R(s, p, Â) = Q9v R(s, Pv, 03BB), with properties as listed in the case of GL(2). In
particular Lemma 10 applies to each of the six terms listed in ((3)1), and the limit
of the integral over 03BB E iU*B as T ~ oc would be the value of the integrand at
03BB1 = 03BB2 = 0 (after the factor of type T03BB/03BB is removed). Namely, the limit as
T - ~ of (3.3) with ((3)1) replacing ~03BE-1TE, is the sum over p, C of:

with i(s) = 1 if s = 1 or s = r(13), and i(s) = -1 otherwise.
It will be useful to recall the functional equation ([Al], (iii), p. 927)

for any s1, s2 E W. The same functional equation holds for the normalized
operator R(s, p, 2), and the scalar valued function m(s, p, 03BB). Thus it suffices to
recall the definition of m(s, p, 2) (from [Sh2], p. 272), when s is a simple reflection,
and it is

where s, = r(12), S2 = r(23), p = Pi x P2 X P3 and i = 1, 2, and by the functional
equation L(t, J1) = 03B5(t, 03BC)L( 1 - t, 03BC-1) it is

The value of this factor at Ài = 0 is 1 if 03C1i/03C1i+1 is non-trivial, and - 1 if it is.

Recall that we choose p in its connected component to have that 03C1i/03C1i+1 is 1 if it
factorizes through the absolute value x H Ixl.
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II. Next we consider the contribution corresponding to ((3)2). In order to leave
((3(2)) as it is, we consider instead the complex conjugate of (3.3). Thus

E03C8(I(f,03C1, 03BB)03A6, p, 03BB) in (3.3) will be replaced by E03C8(I(f,03C1-1, -03BB)03A6, P -1, - À); this
is an analytic function in 03BB E iU*B (note that = -03BB there), which has analytic
continuation in 03BB on U*B,C. The analytic continuation of E03C8 (..., À) is in fact
holomorphic in 03BB. Indeed, the residue of the Eisenstein series at a value of 03BB

where it has a pole, lies in a space of a representation without a Whittaker
model, hence the Fourier coefficient E03C8(..., 03BB) has no pole there. Moreover, as a
function in 03BB this E03C8 is rapidly decreasing as |03BB| ~ oo in any vertical strip
ai  Re(03BBi)  bi (i = 1, 2).
We shall substitute each of the six terms of ((3)2) in (the complex conjugate of)

(3.3) in place of ~(03BE-1 TE)(h)dh. In each of the six cases we shall move the line of
integration 03BBj ~ iR to a parallel line. In doing this, we need to watch out for poles
of the integrand; these will contribute to the integral, by Cauchy’s formula.

II(1). In the case of s =1 we move 03BB1 ~ iR to 03B5-2 + 03BB1, 03BB1 ~ iR, small e &#x3E; 0. As the

integrand is holomorphic between these two lines, no residue would turn up.
The monomial t11+2t12-1 would then become t11+£t12-1. When tl - oo and
t2 ~ ~ (in the domain tf/2  t2  tf) the absolute value t03B51/t2 has the

limit 0, and so the corresponding contribution to the limit of (3.3) as T - oo is 0.

11(2). In the case of s = r(12) in ((3)2) inserted in (3.3), note that the only
singularity of the integrand may be obtained from the normalizing factor

which depends only on 03BB1, and is holomorphic on 03BB1 ~ iR. Moving the line of
integration in 03BB2 from i R to 03B5 - 4 + i R, the monomial t2-03BB11t03BB1+03BB2-12 would
become t2-03BB11t03BB1+03BB2+03B5-52. The limit as T - oo in the specified domain of T’s is
zero, and again no non-zero contribution to the limit of (3.3) as T ~ oo is

obtained.

11(3). In the case of s = r(23), analogous change of 03BB1 from iR to - 2 + iR,
would yield the same conclusion. This change is permitted since m(r(23), p, À)
depends only on 03BB2.

11(4). In the next case of s = r(23)r(12), the normalizing factor is
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The g-factors have neither zeroes nor poles. Changing variables 03BB2 ~ 03BB2 - 03BB1 the
main part (i.e. up to a holomorphic, slowly increasing in vertical strips, function
in 03BB) of the integrand is the product of the Fourier coefficient

where

with

We shall move the line of integration of 03BB1 from iR to 2 + iR. The resulting
expression is holomorphic and of rapid decay in 03BB1 as |03BB1| ~ oo, and in 03BB2, and
the absolute value of t03BB2-03BB11t-1-03BB22, namely t-12, goes to 0 as T ~ oo. The only
pole encountered as 03BB1 moves from iR to 2 + iR is of L(03BB1, 03C11/03C12), when 03C11/03C12
(factorizes through the absolute value and so) is 1 (by our normalization). This
pole would occur at 03BB1 = 1 (note that the pole at 03BB1 = 0 is canceled by that of
L(l + 03BB1, 03C11/03C12) in the denominator. We could take the residue at

03BB1 = 03BB’,03B11&#x3E; = 1, but this would make our formula longer than necessary for
any possible practical applications. Instead, we shall introduce a zero at 03BB1 = 1,
and explain why it would not restrict the applicability of the summation
formula.

To introduce a zero at Ài = 1, fix a place u of F, and letf = fufu be a product
of a function f u on G(Au), Au is the ring of adeles without a component at u, and
a function fu on Gu. We take fu to be spherical, namely Ku-invariant. Then the
trace tr 03C0u(fu) is zero for any irreducible Gu-module 03C0u, unless nu is unramified,
namely has a non-zero Ku-fixed vector. In the latter case rcu is the unique
unramified subquotient of a Gu-module of the form Iu(03BB), normalizedly induced
from the unramified character an ~ À(a) = eH(a),03BB&#x3E; of the upper triangular
subgroup Bu = AuNu of Gu. Moreover, tr 03C0u(fu) = tr Iu( fu, À) is denoted by f û (À),
and named the Satake transform of fu, at 03BB(~U*B,C). Now

I(f, 03C1-1, -03BB’) = I(fu, (03C1u)-1, -03BB’)I(fu,03C1-1u, - 03BB’), and I(fu, 03C1-1u, -03BB’) acts as 0
unless pu is unramified, in which case it is the product by the scalar

tr I( fu, P; 1, - Â’) of the projection on the unique Ku-fixed vector in l(p; 1, - Â’).
Our assumption on fu will be that fu(03BB) = 0 at À with Â = 03BB, 03B11&#x3E; equals (1

or) -1).
Now if L(03BB1, pllp2) of ((4)2) has a pole, then pl = P2 (by our normalization),

and I(03C1u-1, -03BB’) = I(-03BB’ + ÀuJ12) for some îu which depends on pu, and
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is zero when -03BB’ + 03BBu03BC2, 03B11&#x3E; = -03BB1 equals -1. Hence ((4( 1 ), which is equal to

vanishes at 03BB1 = 1, and cancels the pole, necessarily simple, of L(03BB1, Pli P2)’ The
fourth term of ((3)2) will consequently make no non-zero contribution to the
summation formula, under our assumption that fu(03BB) = 0 at 2 with

03BB1 = 03BB, 03B11&#x3E; = - 1.

REMARK. This assumption on fu (and f ) does not restrict the applicability of
the summation formula. Indeed, the representations n of G(A) which occur in
the space L’(G(F)BG(A» are unitary, and so are their components. Almost all
local components n,, of rc = ~03C0v are unramified, and we choose u (for a given 03C0)
such that rcu is unramified. Then nu = Iu(03BB), and it is unitary only for 2 with
|Re03BB, 03B1&#x3E;|  1 (all roots a). Then our assumptions on fu implies that tr 1u(fu, 2)
vanishes only at 03C0u = 1u(2) which do not occur in the automorphic (unitary)
spectrum, and so no information could be obtained about such 03C0u from the
summation formula even if the assumption was not made. In any case, no
information is lost.

We shall have to deal with various other terms, in analogous fashion, and will
need the vanishing assumption at 03BB, a) = 1 for all roots a.

VANISHING ASSUMPTION. The component of f at u is a spherical function
fu whose Satake transform fu V is zero at any 2 = 21/11 + Â2/À2 with 03BB, a) = 1 for
some root a of A in G (in other words, at 2 with 03BB1, Â2 or 21 + Â2 equals 1 or

-1).

11(5). The next, fifth, summand, in ((3)2), and its contribution to (3.3), is similarly
treated. The normalizing factor m(r(12), r(23)p, r(23)03BB)m(r(23), p, 2) is the quotient
of

by the holomorphic never-zero e-factors. Changing variables 03BB1 ~ 03BB1 - Â2, the
product of these L-function with the monomial in T in ((3)2) becomes

Moving the line of integration in 03BB2 from iR to 4 + 03BB2, 03BB2 E iR, we obtain the
monomial with absolute value t21t-52, whose limit is 0 as T - oo in t1  t2. The
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integrand may have a pole in 0  Re(03BB2)  4 only when p2/p3 (factorizes
through the absolute value and so by our normalization) is equal to 1, at 03BB2 = 1.
But this pole is canceled by the zero offuV(À) at À with 03BB, 03B12&#x3E; = -1. No non-
zero contribution is then made to the summation formula.

11(6). The last term in ((3)2), parametrized by s = r(13), is the most difficult to
handle. The normalizing constant m(r(13), p, À) is the quotient of

by a product of e-factors. This has to be multiplied by

It suffices to move the line of integration in Â2 from iR to 2 - e + 03BB2, ,12 E R, as
then the monomial in T has absolute value te til, and its limit as T ~ oo in the
specified domain would be 0. The possible poles of the integrand on

0  Re(03BB2)  2 - 03B5 are obtained from L(03BB2, P2/ P3) when P2/ P3 = 1, at 03BB2 = 1,
but this pole is compensated by a zero of fu(03BB) at 03BB2 = 03BB, 03B12&#x3E; = -1, or from
L(,1l + 03BB2, 03C11/03C13) when pl/p3 = 1 at 03BB1 + 03BB2 = 1, but this pole is canceled by the
zero of f û (î) at 03BB1 + 03BB2 = 03BB, 03B1&#x3E; = -1, where a is the root al + a2.
To summarize, the six terms of ((3)2), when substituted in (3.3), would give an

expression whose limit as T ~ oo is 0. Then there is no non-zero contribution to
the summation formula from the second coset.

III. The analysis of ((3)3) and the limit as T - oc of its contribution to (3.3) is
carried out analogously to that of ((3)2). In fact ((3)3) is obtained from ((3)2) on
interchanging (t¡, ,11’ r(12)) with (t2, ,12’ r(23)).
To study the contribution of the remaining three cosets of BBG to the

summation formula we make the next

VANISHING ASSUMPTION II (VA II). The component fu of f at some place
u is a spherical function whose Satake transform fu is zero at

03BB(=03BB103BC1 + Â2ti2) = 0 (i.e. when 03BB1 = 03BB2 = 0).
The place u here may be different than that used in the first Vanishing

Assumption. Using a function f with such a component implies that tr 03C0(f) = 0
for 03C0 whose component at u is unramified and of the form xu Q Iu(1), where Iu(1)
is the unramified irreducible Gu-module normalizedly induced from the trivial
representation of B", and xu is any unramified character of Fû or order 3. Since
we can choose u at will, the 03C0 affected are those whose components are almost all
of the form 03C0u = xu Q 1u(1). The n which occur discretely in our summation
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formula are those of the form I(03BE x p,), where p, is a cuspidal G(2, A)-module
with central character 03BE-1. If I(03BE x 03C12) has the component xu O Iu(1) for almost
all places u of F, then 03BE3 = 1, and the component of p2 ~ 03BE2 coincides with that
of the induced PGL(2, A)-module I(1) (from the trivial representation of

0 )}) at almost all palces of F. But no such cuspidal P2 exists, hence the
VA II does not restrict the applicability of the summation formula.
The VA II is used to cancel singularities in the integrand of (3.3) introduced by

the L-function of the various ((3)i.j); i = 4, 5, 6. We deal with each term

separately, and cancel its singularity. However it is possible that adding up this
terms their singularities would cancel each other, and then the integral over
03BB E iU*B would be taken with no need to introduce zeroes using f But we have
not pursued this line of investigation.

IV(1). Replacing ~03BETE in (3.3) by the complex conjugate of the product of
((3)4.1) and (3/2)t22 + ).1/2 I(Â2 + Îl/2), we first change variables Â2 H 03BB2 - Âl/2,
then apply Lemma 10 to take the limit as t2 ~ oc of the integral over Â2 E iR. The
result is the value of the integrand at Â2 = 0, or if we do not change variables in
03BB2, the value of the integrand at Â2 = - Âl/2 is obtained. The remaining
integrand is a function in Â 1, and its part described in «3)4. 1) will have a pole at
03BB1 = 0 if at least two of the components 03C11, 03C12, 03C13 of p are equal. However, the
VA II guarantees that the other factor in the integrand of (3.3), namely
E03C8(I(f, p, 03BB)03A6, p, À), would vanish on À2 = - 03BB1/2 at 03BB1 = 0. Hence the integrand
is holomorphic and rapidly decreasing as |03BB1| - oo, and the corresponding
contribution to the summation formula takes the form

(((3)4.1) depends on 03A6, p and 03BB1), where 03BB=03BB103BC1 + 03BB203BC2 = 03BB1(03BC1 - 1 203BC2) = 1 203BB103B11. In
other words, the integral is supported on the line of representations of the form
l(p, 03BB) = I(03C11v03BB1/2 x 03C12v-03BB1/2 X P3)-

IV(2). In this case ((3)4.2), or rather its complex conjugate, is put in (3.3) instead

of 1 çA TE. Lemma 10, applied separately to each term in the difference of ((3)4.2),
permits taking the limit as T ~ ~ of the integral over Àl - À2 E iR. The limit is
the value of the integrand at 03BB1 = 03BB2, and VA II implies that E03C8(I(f, p, 03BB)03A6, p, À) is
0 at 03BB1 = 03BB2 = 0, where the products of the L-functions of ((3)4.2) may have their
poles. The integral thus obtained as T ~ ~ is supported on the

l(p, À) = I(03C11v03BB1 X P2 X P3V-Âl), as
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IV(3). In this case analogous discussion shows that the limit as T - o0 of the
corresponding part of (3.3) is supported on the I(p, î) with Î2 = -203BB1, thus
2 = 03BB1(03BC1 - 203BC2) = -03BB103B12 and I(p,2) = I(Pi  03C12v-03BB1 X 03C13v03BB1).

IV(4). Here the support of the integrand of (3.3) as T ~ oo is as in the previous
case of IV(3).

V. This case is entirely analogous to IV, the same results are obtained, except
that 03BB1 and 03BB2 may be interchanged.

VI. Entirely analogous discussion can be carried out in the case of the five non
zero terms of the sixth coset. The limit of the contribution to (3.3) as T ~ oo from
the term (1) is supported on 21 = 22, in case (2) the support is on 22 = -203BB1, in
case (3) on 03BB1 = -203BB2, in case (4) on 21 = -203BB2, and in case (5) on 03BB2 = - 221,

This completes our derivation of the summation formula for the symmetric
space PGL(3)/GL(2).
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