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1. Introduction

The resultant of two binary forms F(X, Y) = a0Xr + a1Xr-1 Y + ... + arYr and
G(X, Y) = boX S + b1Xs-1 Y + ... + bs Ys is defined by the determinant

where the first s rows consist of coefficients of F, and the last r rows of

coefficients of G. If

then
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For a matrix U c d , put FU(X, Y) = F(aX + b Y, cX + dY) and define u
similarly. The following properties of resultants are well-known:

The discriminant of F(X, Y) = a0Xr + a1Xr-1 Y + ··· + arYr =
TIi= 1 (aiX - Pi Y) is equal to

D(F) is a homogeneous polynomial of degree 2r - 2 in Z[a0, ..., a,]. From (1.3) it

follows that for every 03BB~0 and non-singular matrix U - a b 

In this paper we derive, for binary forms F, G ~ Z[X Y], lower bounds for
IR(F, G)j in terms of ID(F)I and ID(G)I. If F(X, Y) is a binary form with coefficients
in a field K, then the splitting field of F over K is the smallest extension of K over
which F can be factored into linear forms. We call F square-free if it is not
divisible by the square of a linear form over its splitting field. Hence F is square-
free if and only if it has non-zero discriminant. By Cineffi(...) we denote positive
numbers, depending only on the parameters between the parentheses, which
cannot be computed effectively from our method of proof.

THEOREM 1. Let F ~ Z[X, Y] be a binary form of degree r  3 and G E Z[X, Y]
a binary form of degree s  3 such that FG has splitting field L over Q, and FG is
square-free. Then for every e &#x3E; 0 we have

The exponent 1/17 is probably far from best possible. Since R(F, G) has degree
s in the coefficients of F and degree r in the coefficients of G, whereas D(F) has
degree 2r - 2 in the coefficients of F and D(G) has degree 2s - 2 in the coefficients
of G, 1/17 cannot be replaced by a number larger than 1/2. In case that both F
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and G are monic, i.e. F(l, 0) = 1, G(l, 0) = 1, we can obtain a better lower bound
for IR(F, G)I. Also, in this case the proof is easier.

THEOREM 2. Let F ~ Z[X, Y] be a binary form of degree r  2 and G ~ Z[X, Y]
a binary form of degree s  3 such that F. G has splitting field L over Q, FG is
square- free and F(1, 0) = 1, G(1, 0) = 1. Then for every e &#x3E; 0 we have

In Section 2 we shall show that the dependence of C1, C2 on the splitting field
L and the conditions concerning r and s in Theorems 1 and 2 are necessary.
We shall get Theorems 1 and 2 as special cases of more general results (cf.

Theorems 1 A and 2A in Section 2) concerning binary forms with coefficients in
the ring of S-integers of an arbitrary algebraic number field. In Section 3 we state
and prove some applications of our main results. Namely, we derive a semi-
quantitative version (cf. Corollaries 3, 4) of a result of Evertse and Gyôry ([4],
Theorem 2(i)) on Thue-Mahler equations. Further, we deduce some extensions
and generalizations (cf. Corollaries 1, 2) of a result of Gyôry ([9], Theorem 7,
algebraic number field case) on resultant equations. We note that recently
Gyôry [10] has obtained some other generalizations as well as a quantitative
version of our Corollary 2 on monic binary forms.
Our main results are proved in Sections 4 and 5. The main tools in our

arguments are some results (cf. Lemma 2) of Evertse [3] and Laurent [11] whose
proofs are based on Schlickewei’s p-adic generalization [12] of the Subspace
Theorem of Schmidt (see e.g. [14]). Therefore, our inequalities are not com-
pletely effective, but ’semi-effective’, in the sense that they include ineffective
constants.

2. Main results

We now state our generalizations over number fields. We first introduce

normalized absolute values. Let K be an algebraic number field of degree d.
Denote by al’...’ art the embeddings K  R and by {03C3r1 +1, art + 1}, ...,
{03C3r1 +r2’ art +r2} the pairs of complex conjugate embeddings K c+ C. If v is the
infinite place corresponding to ai (i = 1, ... , r1) then put

if v is the infinite place corresponding to {03C3i, 03C3i} (i = rl + 1, ... , rl + r2) then put
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and if v is the finite place corresponding to the prime ideal p of the ring of
integers (!)K of K then put

where N(p) = # (OK/p) is the norm of p and ordp(x) is the exponent of p in the
unique prime ideal decomposition of the ideal generated by x. Denote by MK the
set of all infinite and finite places of K. The set of absolute values {|.|v,: v E MK}
just defined satisfies the Product Formula

and the Extension Formulas

where v E MK, L is a finite extension of K, and w runs through the places on L
lying above v.
Each finite subset of MK we consider contains by convention all infinite places

on K. Let S be such a finite set of places. Define the ring of S-integers and the
group of S-units by

and

respectively. For x ~ K we put

Note that lxls  1 if x ~ OsB{0} and lxls = 1 if x ~ O*s. If L is a finite extension of K
and T is the set of places on L lying above those in S, then (9T is the integral
closure of (9s in L. Further, 1 - IT is defined similarly as |. Is and by the Extension
Formulas we have

We can now state the generalizations of Theorems 1 and 2.
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THEOREM lA. Let F, G E (!)s[X, Y] be binary forms such that

FG has splitting field L over K, and FG is square-free.

Then for every e &#x3E; 0 we have

THEOREM 2A. Let F, G E Os [X, Y] be binary forms such that

Then for every e &#x3E; 0 we have

Theorems 1 and 2 follow at once from Theorems 1 A and 2A, respectively, by
taking K = Q, and for S the only infinite place on Q.

REMARK 1. The dependence on L of Cl, C2, C3 and C4 is necessary. Indeed, let
F(X, Y) ~ Z[X, Y] be a monic binary form of degree r, suppose that s  r, and
put G(X, Y) = F(X, Y)Xs-r + Ys. We can choose F with 1 D(F) arbitrarily large
such that F · G is square-free. On the other hand, from (1.2) it follows that

REMARK 2. The conditions r  3, s  3 in Theorems 1 and lA are necessary.
For instance, take F(X, Y) = X Y. Let 03B8 be an algebraic unit, put M = Q(03B8),
and denote by 03B81,...,03B8s the conjugates of 0 over Q. Put Gn(X, Y) =
(X-03B8n1Y)...(X-03B8nsY) for nEZ. Thus, FGn is square-free and has splitting field
Q(01, ... , Os). Further,

for neZ. But it follows from Gydry ([7], Corollaire 1) that limn~~ |D(Gn)| = oo.

REMARK 3. The conditions r  2, s  3 in Theorems 2 and 2A are necessary.
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For instance, let d be a positive integer which is not a square. For all u, v E Z with
u2 - dv2 = 1, define Fu(X, Y) = X2 - u2Y2, G"(X, Y) = X2 - dv2Y2. Then

R(Fu, Gv) = (u2 - dv2)2 = 1, F. G, is square-free, FuGv has splitting field Q(d),
D(Fu) = 4u2, D(Gv)=4dv2, and hence ID(Fu)l, ID(Gv)1 can be arbitrarily large.
REMARK 4. For certain applications, the following technical variation on
Theorem 1 A might be useful.
By an (9,-ideal we mean a finitely generated Os-submodule of K and by an

integral (9s-ideal, an (9s-ideal contained in (9s. The (9s-ideal generated by
Xl, - - -, xk is denoted by (xl, ... , xk)s. If P E K [X1, ..., Xm] then (P)s denotes the
(9s-ideal generated by the coefficients of P. For x ~ K*, there is a unique (9,-ideal
a* composed of (9K-prime ideals outside S, such that (x)s = a*Os. Then we have
(see e.g. [4] or [5]) lxls = 1(x)sls = N(a*)1/d. More generally, if a is an (9s-ideal and
a* is the (9,-ideal composed of prime ideals outside S such that a = a*(9s, we put
1 als = N(a*)’I’. For a binary form F E K[X, Y] of degree r we define the

discriminant (9s-ideal (cf. [5]) by

and for binary forms F, G E K [X, Y] of degrees r, s, respectively, we define the
resultant Os-ideal by

Note that -9s(F), Plis(F, G) are integral Os-ideals. Further, by (1.2), (1.4),
Ds(03BBF)=Ds(F), Rs(03BBF,03BCG)=Rs(F,G) for À, 03BC ~ K*. Now suppose that

F, G E K [X, Y] are binary forms satisfying (2.2). Then for all E &#x3E; 0,

This can be derived from (2.3) as follows. We can choose 03BB, 03BC ~ K* with

and

where CK is some constant depending only on K (cf. [5], Lemma 4). Put F’ = ÀF,
G’ = 03BCG. Then F’, G’c- (9s[X, Y]. Further, 1  I(F’)sls, I(G’)sls  CK (see [4],
Section 4). Therefore,
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and

Together with (2.3), applied to F’, G’, this implies (2.5). D

3. Applications

Let K be an algebraic number field and S a finite set of places on K. We consider
the resultant inequality

in square-free binary forms F, G ~ (9s [X, Y] where A  1 is fixed. For the

moment, we fix G and let only F vary. Note that if F is a solution of (3.1) then so
is eF for all e E O*s. We need the following lemma to derive our corollaries from
Theorems 1 A and 2A.

LEMMA 1. Let G be a fixed square-free binary form of degree s  3 and L a fixed
finite normal extension of K containing the splitting field of G. Then up to

multiplication by S-units, there are only finitely many non-constant square-free
binary forms F ~ (9s [X, Y] with splitting field contained in L that satisfy (3.1).
Further, each of these binary forms F has degree at most C6(L, S, A), where
C6(L, S, A) is a number depending only on L, S and A.

Proof. Let H be the Hilbert class field of LIQ and T be the set of places on H
lying above those in S. Note that H, T depend only on L, S. Denote by OT the
ring of T-integers in H. Let F E (!)s[X, Y] be a non-constant square-free binary
form with splitting field contained in L that satisfies (3.1). Since H is the Hilbert
class field of L/0, F and G can be factored as

with ai, 03B2i, yj, 03B4j~ (9,. Here the 03B3j, 03B4j are fixed, and the ai, 03B2i unknowns. There are
non-zero elements 03C3j ~ H, j = 1, 2, 3, such that
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Each number 0394ij divides R(F, G) in OT. From (2.1) and (3.1) it follows that

|R(F, G)|T  A. Hence |0394ij|T  A for 1  i  r, 1  j  s. There is a finite set F1,
depending only on H, T and A, hence only on L, S and A, such that every x ~ UT
with |x|T  A can be expressed as ari with a E F1 and il E (!)1 (see e.g. Lemma 1 in
[4]). Therefore, we have 0394ik = aik~ik with aik ~ F1 and ~ik ~ O*T. By (3.2), the pair
(~i1/~i3, ~i2/~i3) is a solution of the unit equation

By Theorem 1 of Evertse [2], the number of solutions of each such unit equation
is bounded above by a number N depending only on H and T. This implies that
there is a set F2 of cardinality  N · (#F1)3  C6(L, S, A), such that

(0394i1, 0394i2, 0394i3) can be expressed as 03C1i(xi, yi, zi) with Pi e UT and (Xi’ yi, zi) ~ F2 for
i = 1,..., r. It follows now that there is a set W3 of cardinality  C6(L, S, A) such
that for i = 1, ... , r we have (03B1i, 03B2i) = 03C1i(ui, Vi) with pi E O*T and (ui, vi) E F3. Since F
is square-free, the pairs (al, 03B21),..., (ar, 03B2r) are pairwise non-proportional, and
hence r  C6(L, S, A). Further, it follows easily that up to multiplication by S-
units, there are only finitely many square-free binary forms F ~ Os[X, Y]
satisfying (3.1). D

REMARK 5. Now fix G, but not the splitting field of F. If

G(X, Y) = 03A0sj=1(03B3jX-03B4jY), then R(F,G)=03A0sj=1F(03B4j,03B3j) is a product of linear
forms in the coefficients of F, i.e. a decomposable form. Hence for fixed G, (3.1) is a
special case of a decomposable form inequality. Wirsing [15] proved that if
G ~ Z[X, Y] has degree s  3 and is square-free and if

then there are only finitely many binary forms F ~ Z[X, Y] of degree r satisfying
|R(F, G)|  A. Schmidt [13] proved the same result with r  1, 2r  s instead of
(3.3), but under the additional condition that G is not divisible by a non-constant
binary form in Z[X, Y] of degree  r.
Gyôry ([9], Theorem 7) was the first to consider (3.1) where both F, G are

unknowns. Call two pairs of binary forms (F, G), (F’, G’) S-equivalent if

with some 03B5, ~ E O*s and U E SL2 ((9s) ( = t(c ): a, b, e, d E Os, ad - bc 1)
(1.2) implies that if (F, G) is a solution of (3.1) then so is (F’, G’) for every pair
(F’, G’) S-equivalent to F. Gyôry [9] considered (3.1) for monic F, G. We extend
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his result to non-monic F, G. Fix a finite normal extension L of K and put

COROLLARY 1. Up to S-equivalence, (3.1) has only finitely many solutions
(F, G) E V1(L).

Proof. C7, Cs will denote constants depending only on S, L and A. Let
(F, G) E Yl(L) be a pair satisfying (3.1). By Lemma 1 we have deg F =: r  C,,
deg G =: s  C7. Together with Theorem lA and IR(F, G)|s  A this implies that

By Theorem 3 of [5], there is a finite set 16 of binary forms G ~ Os[X, Y],
depending only on K, S and Cg and hence only on L, S and A, such that

Theorem 3 of [5] was proved effectively but in its ineffective and qualitative form
that we need here, it is only a slight generalization of Theorem 2 of Birch and
Merriman [1]. Note that

Together with Lemma 1 this implies that there is a finite set F’ of binary forms
 ~ Os[X, Y], depending only on L, S and A, such that Fu- = eF with  ~ F’,
03B5 ~ O*s. This implies that F = 03B5U, G = ~GU with F ~ F’, G ~ F which proves
Corollary 1. D

Gyôry’s result in [9] was concerned with the set

It follows from Theorem 7 of [9] (which was established more generally over
arbitrary integrally closed and finitely generated domains over Z) that up to

équivalence defined by (F, G) - (FU,GU) with U = (0 1) b E (9s, there are only
finitely many (F, G) E Y2(L) with a given non-zero resultant. We call the pairs
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(F, G), (F’, G’) in Y2(L) strongly S-equivalent if there are E E (9s*, a E OS such that

The next corollary is a consequence of Theorem 2A.

COROLLARY 2. Up to strong S-equivalence, (3.1) has only finitely many
solutions (F, G) E V2(L).

Corollary 2 has recently been generalized in [10] by the second author to the
case when the ground ring is an arbitrary finitely generated and integrally closed
ring with 1 in a finitely generated extension of Q.

Proof. C9, C10 will denote constants depending only on S, L and A. Let
(F, G) E V2(L) be a pair satisfying (3.1). Note that R(Ê, G) = R(F, G), where
F(X, Y) = F(X, Y)Y. By applying Lemma 1 to F, G, we infer that deg F = : r  C9,
deg G =: s  C,,. Together with Theorem 2A and (3.1), this implies that

|D(G)|S  Clo. Since G is monic, we have by Theorem 1 of [8] that there is a
finite set W of monic binary forms  ~ OS[X, Y], depending only on S, L and A,
such that G = 03B5-deg G(03B5x+aY, Y) for some ~F, 03B5 ~ O*S, a ~ OS. Now the proof
of Corollary 2 is completed in the same way as that of Corollary 1. We have to
notice that in Lemma 1, a monic binary form that is determined up to

multiplication by an S-unit, is uniquely determined. D

We now consider the Thue-Mahler inequality

where F(X, Y) E (!)s[X, Y] is a square-free binary form of degree at least 3, and
A  1. Two solutions (Xl’ Yl)’ (X2, Y2) of (3.5) are called proportional if

(X2, y2) = 03BB(x1, Yl) for some À E K*. As a special case of Corollary 1 we get
Theorem 2(i) of [4].

COROLLARY 3. For every A  1 and for any finite normal extension L of K,
there are only finitely many S-equivalence classes of square-free binary forms
F ~ OS[X, Y] of degree at least 3 and splitting field L over K for which (3.5) has
more than two pairwise non-proportional solutions.

Proof. Let F be an arbitrary but fixed binary form with the properties specified
in Corollary 3, and suppose that (3.5) has three pairwise non-proportional
solutions (XI, Yl), (X2, Y2), (X3, Y3). Let
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Then

Further, FG is square-free and has splitting field L. By applying now Corollary 1
to F and G we get that indeed there are only finitely many possibilities for F up
to S-equivalence. D

Using Theorem 1A, we can prove the following:

COROLLARY 4. Let A  1, and let F E (!)s[X, Y] be a square-free binary form of
degree r  3 with splitting field L such that

Then (3.5) has at most two pairwise non-proportional solutions.

By Theorem 3 of [5] there are only finitely many S-equivalence classes of
square-free binary forms F ~ OS[X, Y] for which |D(F)|S is bounded. Hence

Corollary 4 can be regarded as a "semi-quantitative" version of Corollary 3.
Proof. Suppose that (3.5) has three pairwise non-proportional solutions

(x1, y1), (x2, Y2), (XI, y3). Take G as in the proof of Corollary 3. Then by Theorem
1 A we have

which contradicts (3.6) for sufficiently large C 11. D

4. Proof of Theorem 2A

Let K be an algebraic number field of degree d, and S a finite set of places on K.
For x = (x1, ... , xn) ~ Kn, put

and

For v ~ MK, put s(v) = Ild if v corresponds to an embedding u: K c+ R, put
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s(v) = 21d if v corresponds to a pair of complex conjugate embeddings
03C3, 03C3: K  C, and put s(v) = 0 if v is finite. Thus 03A3v~S s(v) = 1, and

Therefore,

The following lemma is our basic tool.

LEMMA 2. Let xl, ... , Xn be elements of OS with

Then for all e &#x3E; 0 we have

Proof. This is Lemma 6 of Laurent [11]. Laurent was, in his paper [11], the
first to use results of this type to derive "semi-effective" estimates for certain

Diophantine problems. Laurent’s Lemma 6 is an easy consequence of Theorem
2 of Evertse [3], and the latter was derived from Schlickewei’s p-adic gen-
eralization of the Subspace Theorem [12]. The constant in (4.4) is ineffective
since the Subspace Theorem is ineffective.

We derive Theorem 2A from a result on pairs of monic quadratic forms. A
pair of monic quadratic forms

is said to be related if bl = b2, and unrelated if b1 ~ b2.

LEMMA 3. Let F E (9, [X, Y], G E (!)s[X, Y] be quadratic forms with
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Then for all e &#x3E; 0 we have

Proof. We may assume that

where 03B21, 03B22, 03B41, 03B42 are distinct elements of (9,. Take E &#x3E; 0. The constants

implied by « are ineffective and depend only on K, S and E.
First assume that F, G are unrelated. Then 03B21 + 03B22 ~ 03B41 + 03B42. We apply

Lemma 2 to

Note that each sum formed from a proper non-empty subset of

is different from 0. Further, by (1.3), (1.1), respectively, we have

Hence, by (4.2) and (4.4), applied to (4.8),

which implies (4.6).
Now assume that F and G are related. Then 03B21 + 03B22 = 03B41 + 03B42. Therefore,
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We apply Lemma 2 to the identity

and obtain, using again (4.2),

Similarly,

Thus we get

which is just (4.7). D

Proof of Theorem 2A. Let F(X, Y), G[X, Y) ~ OS[X, Y] be binary forms of

degrees r  2, s  3, respectively, such that F(1, 0) = G(1, 0) = 1, FG is square-
free, and FG has splitting field L over K. Denote by T the set of places on L lying
above those in S. Then

with Pi’ ôj e (!)T for 1  i  r, 1  j  s. Let E &#x3E; 0 with e  1/6 and put ô = E/100.
The constants implied by « depend only on L, S and E. Finally, put

Pick p, q ~ {1, ..., r} with p  q. Let 7 be the collection of pairs (i, j) with
1  i  j  s such that Gij is related to Fpq. Then I consists of the pairs (i, j) with
03B4i + 03B4j = 03B2p + 03B2q. Since 03B41, ..., ô, are distinct, the pairs in 1 must be pairwise
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disjoint. Therefore, since s  3,

By Lemma 3 (with L, T instead of K, S) we have

But, by (1.1) and (1.2) we have

Together with (4.9) and (4.10) this implies

By Lemma 3, (4.10), (4.11) and (4.12) we get

which gives, together with (4.9),

Finally, from (4.12), (4.13), and the relations
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and

it follows that

and

This implies Theorem 2A, since |x|T = Ixls for x E K. D

5. Proof of Theorem 1 A

Let again K be an algebraic number field and S a finite set of places on K. We
first prove a special case of Theorem 1 A.

LEMMA 4. Let F, G ~ OS[X, Y] be binary forms such that

Then for all e &#x3E; 0 we have

Proof. We use an idea from [6]. Put
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It is easy to check that

or, by expanding the determinant,

where

Take i, j, k, l ~ {1, 2, 3} with i ~ j, k ~ 1 and choose h, m such that

{i,j,h} = {k,l,m} = {1,2,3}. Then from the product rule for determinants it

follows that

From (5.4) it follows that there are p, q with 1  p  q  6, p ~ q (mod 2) such
that 0394ik0394jl0394hm = ± up, 0394il0394jk0394hm = T- uq . Hence

Here h, m, p and q are uniquely determined by the sets {i, j}, {k, Il and vice versa.
Hence if {i,j}, {k, Il run through the subsets of {1, 2, 3} of cardinality 2, then
(h, m) runs through the ordered pairs from {1,2, 3} and (p, q) runs through the
pairs with 1  p  q  6, p ~ q (mod 2). Hence, by taking the product over all
sets {i, j}, {k, 1) and using the fact that

we get
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From (4.2) we infer that |up + uq|s  2Hs(up, u«). By inserting this into (5.7) we get

Put R : = R(F, G). Then R ~ 0. We recall that

Further, by (5.7),

Finally, by (5.4),

Let U be the set of vectors u = (u1, ..., U6) e O6S satisfying (5.3), (5.9) and (5.10).
Lemma 4 follows at once from (5.8) and

LEMMA 5. For every u = (u1, ..., u6) E U and every E &#x3E; 0 we have

Proof. Put ô = 03B5/100. The constants implied by « depend only on K, S and E.
The idea is to consider all partitions of (5.3) into minimal vanishing subsums and
to apply Lemma 2 to these subsums. We can reduce the number of cases to be
considered by using (5.9) and the following symmetric property of U :

Take (Ul, ..., u6) E U and put

Because of (5.9), (5.12), it suffices to derive the upper bound for A in each of the
four following cases:
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We shall frequently use the following obvious properties of Hs:

Case i. For p, q ~ {1, ..., 6} with p ~ q (mod 2) we have, by Lemma 2 and
(5.10),

whence

By (5.10) and u3 = - ul, we have

By applying (5.13), Lemma 2 and (5.10) we get

Hence
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Similarly, we obtain that also HS(up, uq) « |R|2+203B4S for (p, q) = (1, 4), (1, 6), (2, 3),
(3, 4), (3, 6). Together with (5.14) this implies

Case iii. This is the most difficult case. For (p, q) = (1, 2), (2, 3) we have, by
Lemma 2,

Similarly, for (p, q) = (4, 5), (5, 6) we have HS(up, Uq)« |u4u5u6|1+03B4S. Together with
(5.10) this implies

By (5.10) we have

Together with (5.13), Lemma 2 and again (5.10), this implies

By a similar argument, we get HS(up, uq) « |upuq|S|R|1S +203B4 for (p, q) = (1, 6), (3, 4),
(3, 6). Hence, by (5.10) we obtain

Finally, by (5.10) we have
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Together with (5.13), Lemma 2 and (5.10), this gives

By combining this with (5.15) and (5.16), we obtain

Together with (5.13), |u1u2|S  IR12 , Lemma 2 and (5.10) this implies

Therefore,

Similarly, we obtain that HS(up,uq)«|R|(5+403B4)/3S for ail pairs (p, q) with

1  p  q  6, p ~ q (mod 2). Hence

This completes the proof of Lemma 5 and hence that of Lemma 4. D

Proof of Theorem 1 A. Let F, G E (!)s[X, Y] be binary forms of degrees r  3,
s  3, respectively, such that FG is square-free, and FG has splitting field L over
K. Denote by H the Hilbert class field of LIQ and by T the set of places on H
lying above those in S. Note again that H and T depend only on L and S. Let
03B5 &#x3E; 0. The constants implied by » depend only on r, s, L, S and e.
We have
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with ai, 03B2i, Yj, bjE(!)T for 1  i  r, 1  j  s. Put

and

From Lemma 4 it follows with H, T instead of K, S that for 1  n  p  q  r,
1  i  j  k  s,

Further,

Hence, by (5.17), we have

Since IxlT = Ixls for x E K, this implies Theorem lA.
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