COMPOSITIO MATHEMATICA

J. H. EVERTSE K. GYÖRY Lower bounds for resultants, I

Compositio Mathematica, tome 88, nº 1 (1993), p. 1-23 <http://www.numdam.org/item?id=CM_1993__88_1_1_0>

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

\mathcal{N} umdam

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/ Compositio Mathematica 88: 1–23, 1993. © 1993 Kluwer Academic Publishers, Printed in the Netherlands.

Lower bounds for resultants, I

J. H. EVERTSE¹ and K. GYÖRY²

To Professor P. Erdős on his 80th birthday

¹Department of Mathematics and Computer Science, University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands; ²Mathematical Institute, Kossuth Lajos University, 4010 Debrecen, Hungary

Received 3 August 1992; accepted 25 February 1993

1. Introduction

The resultant of two binary forms $F(X, Y) = a_0 X^r + a_1 X^{r-1} Y + \dots + a_r Y^r$ and $G(X, Y) = b_0 X^s + b_1 X^{s-1} Y + \dots + b_s Y^s$ is defined by the determinant

$$R(F,G) = \begin{vmatrix} a_0 & \cdots & a_r & \mathbf{0} \\ a_0 & \cdots & a_r \\ \mathbf{0} & \ddots & \ddots \\ & & a_0 & \cdots & a_r \\ b_0 & b_1 & \cdots & b_s & \mathbf{0} \\ \mathbf{0} & \ddots & & \ddots \\ & & & b_0 & b_1 & \cdots & b_s \\ & & & & b_0 & b_1 & \cdots & b_s \\ \end{vmatrix}$$

where the first s rows consist of coefficients of F, and the last r rows of coefficients of G. If

$$F(X, Y) = \prod_{i=1}^{r} (\alpha_i X - \beta_i Y), \qquad G(X, Y) = \prod_{j=1}^{s} (\gamma_j X - \delta_j Y)$$

then

$$R(F, G) = \prod_{i=1}^{r} \prod_{j=1}^{s} (\alpha_i \delta_j - \beta_i \gamma_j).$$
(1.1)

¹Research made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences (K.N.A.W.).

²Research supported in part by Grant 1641 from the Hungarian National Foundation for Scientific Research.

For a matrix $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$, put $F_U(X, Y) = F(aX + bY, cX + dY)$ and define G_U similarly. The following properties of resultants are well-known:

$$R(\lambda F, \mu G) = \lambda^{s} \mu' R(F, G); R(F_{U}, G_{U}) = (\det U)^{rs} R(F, G);$$

$$R(F_{1}F_{2}, G) = R(F_{1}, G)R(F_{2}, G) \text{ for binary forms } F_{1}, F_{2}, G;$$

$$R(G, F) = (-1)^{rs} R(F, G);$$

$$R(F, G + HF) = R(F, G) \text{ if } r \leq s \text{ and } H \text{ is a binary form}$$

with deg $H = s - r$.
(1.2)

The discriminant of $F(X, Y) = a_0 X^r + a_1 X^{r-1} Y + \dots + a_r Y^r = \prod_{i=1}^r (\alpha_i X - \beta_i Y)$ is equal to

$$D(F) = \prod_{1 \le i < j \le r} (\alpha_i \beta_j - \alpha_j \beta_i)^2.$$
(1.3)

D(F) is a homogeneous polynomial of degree 2r - 2 in $\mathbb{Z}[a_0, \ldots, a_r]$. From (1.3) it follows that for every $\lambda \neq 0$ and non-singular matrix $U = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$

$$D(\lambda F) = \lambda^{2r-2} D(F), \qquad D(F_U) = (\det U)^{r(r-1)} D(F).$$
 (1.4)

In this paper we derive, for binary forms $F, G \in \mathbb{Z}[X, Y]$, lower bounds for |R(F, G)| in terms of |D(F)| and |D(G)|. If F(X, Y) is a binary form with coefficients in a field K, then the splitting field of F over K is the smallest extension of K over which F can be factored into linear forms. We call F square-free if it is not divisible by the square of a linear form over its splitting field. Hence F is square-free if and only if it has non-zero discriminant. By $C_i^{\text{ineff}}(\ldots)$ we denote positive numbers, depending only on the parameters between the parentheses, which cannot be computed effectively from our method of proof.

THEOREM 1. Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $r \ge 3$ and $G \in \mathbb{Z}[X, Y]$ a binary form of degree $s \ge 3$ such that FG has splitting field L over \mathbb{Q} , and FG is square-free. Then for every $\varepsilon > 0$ we have

 $|R(F, G)| \ge C_1^{\text{ineff}}(r, s, L, \varepsilon)(|D(F)|^{s/(r-1)}|D(G)|^{r/(s-1)})^{1/17-\varepsilon}.$

The exponent 1/17 is probably far from best possible. Since R(F, G) has degree s in the coefficients of F and degree r in the coefficients of G, whereas D(F) has degree 2r-2 in the coefficients of F and D(G) has degree 2s-2 in the coefficients of G, 1/17 cannot be replaced by a number larger than 1/2. In case that both F

and G are monic, i.e. F(1,0) = 1, G(1,0) = 1, we can obtain a better lower bound for |R(F, G)|. Also, in this case the proof is easier.

THEOREM 2. Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $r \ge 2$ and $G \in \mathbb{Z}[X, Y]$ a binary form of degree $s \ge 3$ such that $F \cdot G$ has splitting field L over \mathbb{Q} , FG is square-free and F(1, 0) = 1, G(1, 0) = 1. Then for every $\varepsilon > 0$ we have

 $|R(F, G)| \ge C_2^{\text{ineff}}(r, s, L, \varepsilon) \{ \max(|D(F)|^{s/(r-1)}, |D(G)|^{r/(s-1)}) \}^{1/6-\varepsilon}$

In Section 2 we shall show that the dependence of C_1 , C_2 on the splitting field L and the conditions concerning r and s in Theorems 1 and 2 are necessary.

We shall get Theorems 1 and 2 as special cases of more general results (cf. Theorems 1A and 2A in Section 2) concerning binary forms with coefficients in the ring of S-integers of an arbitrary algebraic number field. In Section 3 we state and prove some applications of our main results. Namely, we derive a semiquantitative version (cf. Corollaries 3, 4) of a result of Evertse and Győry ([4], Theorem 2(i)) on Thue-Mahler equations. Further, we deduce some extensions and generalizations (cf. Corollaries 1, 2) of a result of Győry ([9], Theorem 7, algebraic number field case) on resultant equations. We note that recently Győry [10] has obtained some other generalizations as well as a quantitative version of our Corollary 2 on monic binary forms.

Our main results are proved in Sections 4 and 5. The main tools in our arguments are some results (cf. Lemma 2) of Evertse [3] and Laurent [11] whose proofs are based on Schlickewei's *p*-adic generalization [12] of the Subspace Theorem of Schmidt (see e.g. [14]). Therefore, our inequalities are not completely effective, but 'semi-effective', in the sense that they include ineffective constants.

2. Main results

We now state our generalizations over number fields. We first introduce normalized absolute values. Let K be an algebraic number field of degree d. Denote by $\sigma_1, \ldots, \sigma_{r_1}$ the embeddings $K \Leftrightarrow \mathbb{R}$ and by $\{\sigma_{r_1+1}, \overline{\sigma_{r_1+1}}\}, \ldots, \{\sigma_{r_1+r_2}, \overline{\sigma_{r_1+r_2}}\}$ the pairs of complex conjugate embeddings $K \Leftrightarrow \mathbb{C}$. If v is the infinite place corresponding to σ_i $(i = 1, \ldots, r_1)$ then put

 $|x|_v = |\sigma_i(x)|^{1/d}$ for $x \in K$;

if v is the infinite place corresponding to $\{\sigma_i, \bar{\sigma}_i\}$ $(i = r_1 + 1, \dots, r_1 + r_2)$ then put

$$|x|_v = |\sigma_i(x)|^{2/d}$$
 for $x \in K$;

and if v is the finite place corresponding to the prime ideal p of the ring of integers \mathcal{O}_K of K then put

$$|x|_{v} = (N(p))^{-\operatorname{ord}_{p}(x)/d}$$
 if $x \neq 0$; $|0|_{v} = 0$,

where $N(\mathfrak{p}) = \#(\mathcal{O}_K/\mathfrak{p})$ is the norm of \mathfrak{p} and $\operatorname{ord}_{\mathfrak{p}}(x)$ is the exponent of \mathfrak{p} in the unique prime ideal decomposition of the ideal generated by x. Denote by \mathbb{M}_K the set of all infinite and finite places of K. The set of absolute values $\{|.|_v : v \in \mathbb{M}_K\}$ just defined satisfies the *Product Formula*

 $\prod_{v \in M_K} |x|_v = 1 \quad \text{for } x \in K^*$

and the Extension Formulas

$$\prod_{w|v} |x|_w = |N_{L/K}(x)|_v^{1/[L:K]} \text{ for } x \in L, \quad \prod_{w|v} |x|_w = |x|_v \text{ for } x \in K,$$

where $v \in M_K$, L is a finite extension of K, and w runs through the places on L lying above v.

Each finite subset of M_K we consider contains by convention all infinite places on K. Let S be such a finite set of places. Define the ring of S-integers and the group of S-units by

$$\mathcal{O}_{S} = \{ x \in K \colon |x|_{v} \leq 1 \text{ for all } v \in M_{K} \setminus S \}$$

and

$$\mathcal{O}_{S}^{*} = \{ x \in K : |x|_{v} = 1 \text{ for all } v \in \mathbb{M}_{K} \setminus S \},\$$

respectively. For $x \in K$ we put

$$|x|_S := \prod_{v \in S} |x|_v.$$

Note that $|x|_{S} \ge 1$ if $x \in \mathcal{O}_{S} \setminus \{0\}$ and $|x|_{S} = 1$ if $x \in \mathcal{O}_{S}^{*}$. If L is a finite extension of K and T is the set of places on L lying above those in S, then \mathcal{O}_{T} is the integral closure of \mathcal{O}_{S} in L. Further, $|.|_{T}$ is defined similarly as $|.|_{S}$ and by the Extension Formulas we have

$$|x|_{T} = |N_{L/K}(x)|_{S}^{1/[L:K]} \text{ for } x \in L; \qquad |x|_{T} = |x|_{S} \text{ for } x \in K.$$
(2.1)

We can now state the generalizations of Theorems 1 and 2.

THEOREM 1A. Let F, $G \in \mathcal{O}_{S}[X, Y]$ be binary forms such that

deg $F = r \ge 3$, deg $G = s \ge 3$, FG has splitting field L over K, and FG is square-free. (2.2)

Then for every $\varepsilon > 0$ we have

$$|R(F, G)|_{S} \ge C_{3}^{\text{ineff}}(r, s, S, L, \varepsilon)(|D(F)|_{S}^{s/(r-1)}|D(G)|_{S}^{r/(s-1)})^{1/17-\varepsilon}.$$
(2.3)

THEOREM 2A. Let F, $G \in \mathcal{O}_{S}[X, Y]$ be binary forms such that

deg $F = r \ge 2$, deg $G = s \ge 3$, F(1, 0) = 1, G(1, 0) = 1, FG has splitting field L over K, and FG is square-free (2.4)

Then for every $\varepsilon > 0$ we have

 $|R(F, G)|_{S} \ge C_{4}^{\text{ineff}}(r, s, S, L, \varepsilon) \{ \max(|D(F)|_{S}^{s/(r-1)}, |D(G)|_{S}^{r/(s-1)}) \}^{1/6-\varepsilon}.$

Theorems 1 and 2 follow at once from Theorems 1A and 2A, respectively, by taking $K = \mathbb{Q}$, and for S the only infinite place on \mathbb{Q} .

REMARK 1. The dependence on L of C_1 , C_2 , C_3 and C_4 is necessary. Indeed, let $F(X, Y) \in \mathbb{Z}[X, Y]$ be a monic binary form of degree r, suppose that $s \ge r$, and put $G(X, Y) = F(X, Y)X^{s-r} + Y^s$. We can choose F with |D(F)| arbitrarily large such that $F \cdot G$ is square-free. On the other hand, from (1.2) it follows that

$$R(F, G) = R(F, FX^{s-r} + Y^s) = R(F, Y^s) = R(F, Y)^s$$
$$= R(X^r + Y(...), Y)^s = R(X, Y)^{rs} = 1.$$

REMARK 2. The conditions $r \ge 3$, $s \ge 3$ in Theorems 1 and 1A are necessary. For instance, take F(X, Y) = XY. Let θ be an algebraic unit, put $M = \mathbb{Q}(\theta)$, and denote by $\theta_1, \ldots, \theta_s$ the conjugates of θ over \mathbb{Q} . Put $G_n(X, Y) = (X - \theta_1^n Y) \cdots (X - \theta_s^n Y)$ for $n \in \mathbb{Z}$. Thus, FG_n is square-free and has splitting field $\mathbb{Q}(\theta_1, \ldots, \theta_s)$. Further,

$$|R(F, G_n)| = |R(X, G_n)R(Y, G_n)|$$

= $|G_n(0, 1)G_n(1, 0)| = |N_{M/Q}(\theta)|^n = 1$

for $n \in \mathbb{Z}$. But it follows from Győry ([7], Corollaire 1) that $\lim_{n \to \infty} |D(G_n)| = \infty$. REMARK 3. The conditions $r \ge 2$, $s \ge 3$ in Theorems 2 and 2A are necessary. For instance, let d be a positive integer which is not a square. For all $u, v \in \mathbb{Z}$ with $u^2 - dv^2 = 1$, define $F_u(X, Y) = X^2 - u^2 Y^2$, $G_v(X, Y) = X^2 - dv^2 Y^2$. Then $R(F_u, G_v) = (u^2 - dv^2)^2 = 1$, $F_u G_v$ is square-free, $F_u G_v$ has splitting field $\mathbb{Q}(\sqrt{d})$, $D(F_u) = 4u^2$, $D(G_v) = 4dv^2$, and hence $|D(F_u)|$, $|D(G_v)|$ can be arbitrarily large.

REMARK 4. For certain applications, the following technical variation on Theorem 1A might be useful.

By an \mathcal{O}_S -ideal we mean a finitely generated \mathcal{O}_S -submodule of K and by an integral \mathcal{O}_S -ideal, an \mathcal{O}_S -ideal contained in \mathcal{O}_S . The \mathcal{O}_S -ideal generated by x_1, \ldots, x_k is denoted by $(x_1, \ldots, x_k)_S$. If $P \in K[X_1, \ldots, X_m]$ then $(P)_S$ denotes the \mathcal{O}_S -ideal generated by the coefficients of P. For $x \in K^*$, there is a unique \mathcal{O}_K -ideal a* composed of \mathcal{O}_K -prime ideals outside S, such that $(x)_S = \mathfrak{a}^* \mathcal{O}_S$. Then we have (see e.g. [4] or [5]) $|x|_S = |(x)_S|_S = N(\mathfrak{a}^*)^{1/d}$. More generally, if \mathfrak{a} is an \mathcal{O}_S -ideal and \mathfrak{a}^* is the \mathcal{O}_K -ideal composed of prime ideals outside S such that $\mathfrak{a} = \mathfrak{a}^* \mathcal{O}_S$, we put $|\mathfrak{a}|_S = N(\mathfrak{a}^*)^{1/d}$. For a binary form $F \in K[X, Y]$ of degree r we define the discriminant \mathcal{O}_S -ideal (cf. [5]) by

$$\mathscr{D}_{\mathcal{S}}(F) = (D(F))_{\mathcal{S}}/(F)_{\mathcal{S}}^{2r-2},$$

and for binary forms $F, G \in K[X, Y]$ of degrees r, s, respectively, we define the resultant \mathcal{O}_s -ideal by

$$\mathscr{R}_{\mathcal{S}}(F, G) = (R(F, G))_{\mathcal{S}}/(F)_{\mathcal{S}}^{s}(G)_{\mathcal{S}}^{r}$$

Note that $\mathscr{D}_{S}(F)$, $\mathscr{R}_{S}(F, G)$ are integral \mathscr{O}_{S} -ideals. Further, by (1.2), (1.4), $\mathscr{D}_{S}(\lambda F) = \mathscr{D}_{S}(F)$, $\mathscr{R}_{S}(\lambda F, \mu G) = \mathscr{R}_{S}(F, G)$ for λ , $\mu \in K^{*}$. Now suppose that $F, G \in K[X, Y]$ are binary forms satisfying (2.2). Then for all $\varepsilon > 0$,

$$|\mathscr{R}_{S}(F, G)|_{S} \ge C_{5}^{\text{ineff}}(r, s, S, L, \varepsilon)(|\mathscr{D}_{S}(F)|_{S}^{s/(r-1)} \cdot |\mathscr{D}_{S}(G)|_{S}^{r/(s-1)})^{1/17-\varepsilon}.$$
(2.5)

This can be derived from (2.3) as follows. We can choose $\lambda, \mu \in K^*$ with

$$\lambda \in (F)_S^{-1}, \quad |\lambda|_S \leqslant C_K |(F)_S^{-1}|_S$$

and

$$\mu \in (G)_{S}^{-1}, \quad |\mu|_{S} \leq C_{K} |(G)_{S}^{-1}|_{S},$$

where C_K is some constant depending only on K (cf. [5], Lemma 4). Put $F' = \lambda F$, $G' = \mu G$. Then $F', G' \in \mathcal{O}_S[X, Y]$. Further, $1 \leq |(F')_S|_S$, $|(G')_S|_S \leq C_K$ (see [4], Section 4). Therefore,

$$|\mathscr{R}_{\mathcal{S}}(F, G)|_{\mathcal{S}} = |\mathscr{R}_{\mathcal{S}}(F', G')|_{\mathcal{S}} \ge C_{K}^{-r-s}|R(F', G')|_{\mathcal{S}}$$

Π

and

$$|\mathscr{D}_{S}(F)|_{S} = |\mathscr{D}_{S}(F')|_{S} \leq |D(F')|_{S}, |\mathscr{D}_{S}(G)|_{S} \leq |D(G')|_{S}.$$

Together with (2.3), applied to F', G', this implies (2.5).

3. Applications

Let K be an algebraic number field and S a finite set of places on K. We consider the *resultant inequality*

$$0 < |R(F, G)|_{\mathcal{S}} \le A \tag{3.1}$$

in square-free binary forms $F, G \in \mathcal{O}_S[X, Y]$ where $A \ge 1$ is fixed. For the moment, we fix G and let only F vary. Note that if F is a solution of (3.1) then so is εF for all $\varepsilon \in \mathcal{O}_S^*$. We need the following lemma to derive our corollaries from Theorems 1A and 2A.

LEMMA 1. Let G be a fixed square-free binary form of degree $s \ge 3$ and L a fixed finite normal extension of K containing the splitting field of G. Then up to multiplication by S-units, there are only finitely many non-constant square-free binary forms $F \in \mathcal{O}_S[X, Y]$ with splitting field contained in L that satisfy (3.1). Further, each of these binary forms F has degree at most $C_6(L, S, A)$, where $C_6(L, S, A)$ is a number depending only on L, S and A.

Proof. Let H be the Hilbert class field of L/\mathbb{Q} and T be the set of places on H lying above those in S. Note that H, T depend only on L, S. Denote by \mathcal{O}_T the ring of T-integers in H. Let $F \in \mathcal{O}_S[X, Y]$ be a non-constant square-free binary form with splitting field contained in L that satisfies (3.1). Since H is the Hilbert class field of L/\mathbb{Q} , F and G can be factored as

$$F(X, Y) = \prod_{i=1}^{r} (\alpha_i X - \beta_i Y), \quad G(X, Y) = \prod_{j=1}^{s} (\gamma_j X - \delta_j Y)$$

with α_i , β_i , γ_j , $\delta_j \in \mathcal{O}_T$. Here the γ_j , δ_j are fixed, and the α_i , β_i unknowns. There are non-zero elements $\sigma_j \in H$, j = 1, 2, 3, such that

$$\sigma_1(\gamma_1 X - \delta_1 Y) + \sigma_2(\gamma_2 X - \delta_2 Y) + \sigma_3(\gamma_3 X - \delta_3 Y) = 0.$$

Put $\Delta_{ij} = \alpha_i \delta_j - \beta_i \gamma_j$ for $1 \le i \le r$, $1 \le j \le s$. Then

$$\sigma_1 \Delta_{i1} + \sigma_2 \Delta_{i2} + \sigma_3 \Delta_{i3} = 0 \quad \text{for } i = 1, \dots, r.$$
(3.2)

8 J. H. Evertse and K. Győry

Each number Δ_{ij} divides R(F, G) in \mathcal{O}_T . From (2.1) and (3.1) it follows that $|R(F, G)|_T \leq A$. Hence $|\Delta_{ij}|_T \leq A$ for $1 \leq i \leq r$, $1 \leq j \leq s$. There is a finite set \mathscr{C}_1 , depending only on H, T and A, hence only on L, S and A, such that every $x \in \mathcal{O}_T$ with $|x|_T \leq A$ can be expressed as $a\eta$ with $a \in \mathscr{C}_1$ and $\eta \in \mathcal{O}_T^*$ (see e.g. Lemma 1 in [4]). Therefore, we have $\Delta_{ik} = a_{ik}\eta_{ik}$ with $a_{ik} \in \mathscr{C}_1$ and $\eta_{ik} \in \mathcal{O}_T^*$. By (3.2), the pair $(\eta_{i1}/\eta_{i3}, \eta_{i2}/\eta_{i3})$ is a solution of the unit equation

$$\sigma_1 a_{i1} x + \sigma_2 a_{i2} y + \sigma_3 a_{i3} = 0 \quad \text{in } x, y \in \mathcal{O}_T^*.$$

By Theorem 1 of Evertse [2], the number of solutions of each such unit equation is bounded above by a number N depending only on H and T. This implies that there is a set \mathscr{C}_2 of cardinality $\leq N \cdot (\#\mathscr{C}_1)^3 \leq C_6(L, S, A)$, such that $(\Delta_{i1}, \Delta_{i2}, \Delta_{i3})$ can be expressed as $\rho_i(x_i, y_i, z_i)$ with $\rho_i \in \mathscr{O}_T^*$ and $(x_i, y_i, z_i) \in \mathscr{C}_2$ for $i = 1, \ldots, r$. It follows now that there is a set \mathscr{C}_3 of cardinality $\leq C_6(L, S, A)$ such that for $i = 1, \ldots, r$ we have $(\alpha_i, \beta_i) = \rho_i(u_i, v_i)$ with $\rho_i \in \mathscr{O}_T^*$ and $(u_i, v_i) \in \mathscr{C}_3$. Since F is square-free, the pairs $(\alpha_1, \beta_1), \ldots, (\alpha_r, \beta_r)$ are pairwise non-proportional, and hence $r \leq C_6(L, S, A)$. Further, it follows easily that up to multiplication by Sunits, there are only finitely many square-free binary forms $F \in \mathscr{O}_S[X, Y]$ satisfying (3.1).

REMARK 5. Now fix G, but not the splitting field of F. If $G(X, Y) = \prod_{j=1}^{s} (\gamma_j X - \delta_j Y)$, then $R(F, G) = \prod_{j=1}^{s} F(\delta_j, \gamma_j)$ is a product of linear forms in the coefficients of F, i.e. a *decomposable form*. Hence for fixed G, (3.1) is a special case of a decomposable form inequality. Wirsing [15] proved that if $G \in \mathbb{Z}[X, Y]$ has degree $s \ge 3$ and is square-free and if

$$r \ge 1, \quad 2r\left(1 + \frac{1}{3} + \dots + \frac{1}{2r - 1}\right) < s,$$
(3.3)

then there are only finitely many binary forms $F \in \mathbb{Z}[X, Y]$ of degree r satisfying $|R(F, G)| \leq A$. Schmidt [13] proved the same result with $r \geq 1$, 2r < s instead of (3.3), but under the additional condition that G is not divisible by a non-constant binary form in $\mathbb{Z}[X, Y]$ of degree $\leq r$.

Győry ([9], Theorem 7) was the first to consider (3.1) where both F, G are unknowns. Call two pairs of binary forms (F, G), (F', G') S-equivalent if

$$F' = \varepsilon F_U, \quad G' = \eta G_U$$

with some ε , $\eta \in \mathcal{O}_{S}^{*}$ and $U \in SL_{2}(\mathcal{O}_{S}) \left(= \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} : a, b, c, d \in \mathcal{O}_{S}, ad - bc = 1 \right\} \right)$. (1.2) implies that if (F, G) is a solution of (3.1) then so is (F', G') for every pair (F', G') S-equivalent to F. Győry [9] considered (3.1) for monic F, G. We extend his result to non-monic F, G. Fix a finite normal extension L of K and put

$$V_1(L) := \begin{cases} (F, G): F, G \text{ are binary forms of degree } \ge 3 \text{ in } \mathcal{O}_S[X, Y], \\ FG \text{ is square-free, } FG \text{ has splitting field } L. \end{cases}$$

COROLLARY 1. Up to S-equivalence, (3.1) has only finitely many solutions $(F, G) \in V_1(L)$.

Proof. C_7 , C_8 will denote constants depending only on S, L and A. Let $(F, G) \in V_1(L)$ be a pair satisfying (3.1). By Lemma 1 we have deg $F =: r \leq C_7$, deg $G =: s \leq C_7$. Together with Theorem 1A and $|R(F, G)|_S \leq A$ this implies that

$$|D(G)|_{\mathcal{S}} \leqslant C_{\mathcal{B}}.\tag{3.4}$$

By Theorem 3 of [5], there is a finite set \mathscr{C} of binary forms $\tilde{G} \in \mathcal{O}_S[X, Y]$, depending only on K, S and C_8 and hence only on L, S and A, such that

$$G = \eta \tilde{G}_U$$
 for some $\tilde{G} \in \mathscr{C}, \eta \in \mathscr{O}_S^*, U \in SL_2(\mathscr{O}_S)$.

Theorem 3 of [5] was proved effectively but in its ineffective and qualitative form that we need here, it is only a slight generalization of Theorem 2 of Birch and Merriman [1]. Note that

$$0 < |R(F_{U^{-1}}, \tilde{G})|_{S} = |R(F, G)|_{S} \leq A.$$

Together with Lemma 1 this implies that there is a finite set \mathscr{C}' of binary forms $\tilde{F} \in \mathcal{O}_S[X, Y]$, depending only on L, S and A, such that $F_{U^{-1}} = \varepsilon \tilde{F}$ with $\tilde{F} \in \mathscr{C}'$, $\varepsilon \in \mathcal{O}_S^*$. This implies that $F = \varepsilon \tilde{F}_U$, $G = \eta \tilde{G}_U$ with $\tilde{F} \in \mathscr{C}'$, $\tilde{G} \in \mathscr{C}$ which proves Corollary 1.

Győry's result in [9] was concerned with the set

 $V_2(L) := \begin{cases} (F, G): F, G \text{ are binary forms in } \mathcal{O}_S[X, Y] \text{ with degrees} \\ \text{at least 2 and at least 3, respectively, such} \\ \text{that } F(1, 0) = 1, G(1, 0) = 1, FG \text{ is square-free,} \\ FG \text{ has splitting field } L. \end{cases}$

It follows from Theorem 7 of [9] (which was established more generally over arbitrary integrally closed and finitely generated domains over \mathbb{Z}) that up to equivalence defined by $(F, G) \sim (F_U, G_U)$ with $U = \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, $b \in \mathcal{O}_S$, there are only finitely many $(F, G) \in V_2(L)$ with a given non-zero resultant. We call the pairs

(F, G), (F', G') in $V_2(L)$ strongly S-equivalent if there are $\varepsilon \in \mathcal{O}_S^*$, $a \in \mathcal{O}_S$ such that

$$F' = \varepsilon^{-\deg F} F(\varepsilon x + aY, Y), \quad G' = \varepsilon^{-\deg G} G(\varepsilon x + aY, Y).$$

The next corollary is a consequence of Theorem 2A.

COROLLARY 2. Up to strong S-equivalence, (3.1) has only finitely many solutions $(F, G) \in V_2(L)$.

Corollary 2 has recently been generalized in [10] by the second author to the case when the ground ring is an arbitrary finitely generated and integrally closed ring with 1 in a finitely generated extension of \mathbb{Q} .

Proof. C_9 , C_{10} will denote constants depending only on S, L and A. Let $(F, G) \in V_2(L)$ be a pair satisfying (3.1). Note that $R(\hat{F}, G) = R(F, G)$, where $\hat{F}(X, Y) = F(X, Y)Y$. By applying Lemma 1 to \hat{F} , G, we infer that deg $F =: r \leq C_9$, deg $G =: s \leq C_9$. Together with Theorem 2A and (3.1), this implies that $|D(G)|_S \leq C_{10}$. Since G is monic, we have by Theorem 1 of [8] that there is a finite set \mathscr{C} of monic binary forms $\tilde{G} \in \mathcal{O}_S[X, Y]$, depending only on S, L and A, such that $G = \varepsilon^{-\deg G} \tilde{G}(\varepsilon x + aY, Y)$ for some $\tilde{G} \in \mathscr{C}, \varepsilon \in \mathcal{O}_S^*, a \in \mathcal{O}_S$. Now the proof of Corollary 2 is completed in the same way as that of Corollary 1. We have to notice that in Lemma 1, a monic binary form that is determined up to multiplication by an S-unit, is uniquely determined.

We now consider the Thue-Mahler inequality

$$0 < |F(x, y)|_{\mathcal{S}} \le A \quad \text{in } x, y \in \mathcal{O}_{\mathcal{S}}, \tag{3.5}$$

where $F(X, Y) \in \mathcal{O}_{S}[X, Y]$ is a square-free binary form of degree at least 3, and $A \ge 1$. Two solutions (x_1, y_1) , (x_2, y_2) of (3.5) are called *proportional* if $(x_2, y_2) = \lambda(x_1, y_1)$ for some $\lambda \in K^*$. As a special case of Corollary 1 we get Theorem 2(i) of [4].

COROLLARY 3. For every $A \ge 1$ and for any finite normal extension L of K, there are only finitely many S-equivalence classes of square-free binary forms $F \in \mathcal{O}_S[X, Y]$ of degree at least 3 and splitting field L over K for which (3.5) has more than two pairwise non-proportional solutions.

Proof. Let F be an arbitrary but fixed binary form with the properties specified in Corollary 3, and suppose that (3.5) has three pairwise non-proportional solutions $(x_1, y_1), (x_2, y_2), (x_3, y_3)$. Let

$$G(X, Y) = (y_1 X - x_1 Y)(y_2 X - x_2 Y)(y_3 X - x_3 Y).$$

Then

$$0 < |R(F, G)|_{S} = |F(x_{1}, y_{1})F(x_{2}, y_{2})F(x_{3}, y_{3})|_{S} \leq A^{3}.$$

Further, FG is square-free and has splitting field L. By applying now Corollary 1 to F and G we get that indeed there are only finitely many possibilities for F up to S-equivalence.

Using Theorem 1A, we can prove the following:

COROLLARY 4. Let $A \ge 1$, and let $F \in \mathcal{O}_S[X, Y]$ be a square-free binary form of degree $r \ge 3$ with splitting field L such that

$$|D(F)|_{S} \ge C_{11}^{\text{ineff}}(r, L, S)A^{18(r-1)}.$$
(3.6)

Then (3.5) has at most two pairwise non-proportional solutions.

By Theorem 3 of [5] there are only finitely many S-equivalence classes of square-free binary forms $F \in \mathcal{O}_S[X, Y]$ for which $|D(F)|_S$ is bounded. Hence Corollary 4 can be regarded as a "semi-quantitative" version of Corollary 3.

Proof. Suppose that (3.5) has three pairwise non-proportional solutions $(x_1, y_1), (x_2, y_2), (x_3, y_3)$. Take G as in the proof of Corollary 3. Then by Theorem 1A we have

$$A^{3} \ge |F(x_{1}, y_{1})F(x_{2}, y_{2})F(x_{3}, y_{3})|_{S} = |R(F, G)|_{S}$$
$$\ge C_{12}^{\text{ineff}}(r, L, S)(|D(F)|_{S}^{3/(r-1)})^{1/18}$$

which contradicts (3.6) for sufficiently large C_{11} .

4. Proof of Theorem 2A

Let K be an algebraic number field of degree d, and S a finite set of places on K. For $\mathbf{x} = (x_1, \dots, x_n) \in K^n$, put

$$|\mathbf{x}|_{v} = |x_{1}, \dots, x_{n}|_{v} := \max(|x_{1}|_{v}, \dots, |x_{n}|_{v}) \quad \text{for } v \in \mathbb{M}_{K},$$

and

$$H_{S}(\mathbf{x}) = H_{S}(x_{1}, \dots, x_{n}) := \prod_{v \in S} \max(|x_{1}|_{v}, \dots, |x_{n}|_{v}).$$
(4.1)

For $v \in M_K$, put s(v) = 1/d if v corresponds to an embedding $\sigma: K \Leftrightarrow \mathbb{R}$, put

s(v) = 2/d if v corresponds to a pair of complex conjugate embeddings $\sigma, \overline{\sigma}: K \hookrightarrow \mathbb{C}$, and put s(v) = 0 if v is finite. Thus $\Sigma_{v \in S} s(v) = 1$, and

$$|x_1 + \dots + x_n|_v \leq n^{s(v)} |x_1, \dots, x_n|_v \quad \text{for } v \in \mathbb{M}_K, x_1, \dots, x_n \in K.$$

Therefore,

$$|x_1 + \dots + x_n|_S \leq nH_S(x_1, \dots, x_n) \quad \text{for } x_1, \dots, x_n \in K.$$

$$(4.2)$$

The following lemma is our basic tool.

LEMMA 2. Let x_1, \ldots, x_n be elements of \mathcal{O}_S with

$$\begin{cases} x_1 + \dots + x_n = 0, \\ \sum_{i \in I} x_i \neq 0 \text{ for each proper non-empty subset I of } \{1, \dots, n\}. \end{cases}$$

$$(4.3)$$

Then for all $\varepsilon > 0$ we have

$$H_{S}(x_{1},\ldots,x_{n}) \leq C_{13}^{\text{ineff}}(K, S, \varepsilon) \left| \prod_{i=1}^{n} x_{i} \right|_{S}^{1+\varepsilon}.$$

$$(4.4)$$

Proof. This is Lemma 6 of Laurent [11]. Laurent was, in his paper [11], the first to use results of this type to derive "semi-effective" estimates for certain Diophantine problems. Laurent's Lemma 6 is an easy consequence of Theorem 2 of Evertse [3], and the latter was derived from Schlickewei's *p*-adic generalization of the Subspace Theorem [12]. The constant in (4.4) is ineffective since the Subspace Theorem is ineffective.

We derive Theorem 2A from a result on pairs of monic quadratic forms. A pair of monic quadratic forms

$$F(X, Y) = X^{2} + b_{1}XY + c_{1}Y^{2}, \qquad G(X, Y) = X^{2} + b_{2}XY + c_{2}Y^{2}$$

is said to be related if $b_1 = b_2$, and unrelated if $b_1 \neq b_2$.

LEMMA 3. Let $F \in \mathcal{O}_S[X, Y]$, $G \in \mathcal{O}_S[X, Y]$ be quadratic forms with

$$\begin{cases} F(1, 0) = 1, G(1, 0) = 1, \\ FG \text{ is square-free, } FG \text{ has splitting field } K \text{ over } K. \end{cases}$$

$$(4.5)$$

Then for all $\varepsilon > 0$ we have

$$|D(F)|_{S} \leq C_{14}^{\text{ineff}}(K, S, \varepsilon)|R(F, G)|_{S}^{2(1+\varepsilon)} \quad \text{if } F, G \text{ are unrelated},$$

$$(4.6)$$

$$|D(F)|_{S} \leq C_{15}^{\text{ineff}}(K, S, \varepsilon)(|R(F, G)|_{S}|D(G)|_{S})^{1+\varepsilon} \quad \text{if } F, G \text{ are related.}$$
(4.7)

Proof. We may assume that

$$F(X, Y) = (X - \beta_1 Y)(X - \beta_2 Y),$$

$$G(X, Y) = (X - \delta_1 Y)(X - \delta_2 Y),$$

where β_1 , β_2 , δ_1 , δ_2 are distinct elements of \mathcal{O}_S . Take $\varepsilon > 0$. The constants implied by \ll are ineffective and depend only on K, S and ε .

First assume that F, G are unrelated. Then $\beta_1 + \beta_2 \neq \delta_1 + \delta_2$. We apply Lemma 2 to

$$(\beta_1 - \delta_1) - (\beta_1 - \delta_2) - (\beta_2 - \delta_1) + (\beta_2 - \delta_2) = 0.$$
(4.8)

Note that each sum formed from a proper non-empty subset of

$$\{(\beta_1 - \delta_1), -(\beta_1 - \delta_2), -(\beta_2 - \delta_1), (\beta_2 - \delta_2)\}$$

is different from 0. Further, by (1.3), (1.1), respectively, we have

$$D(F) = (\beta_1 - \beta_2)^2,$$

$$R(F, G) = (\beta_1 - \delta_1)(\beta_1 - \delta_2)(\beta_2 - \delta_1)(\beta_2 - \delta_2).$$

Hence, by (4.2) and (4.4), applied to (4.8),

$$\begin{split} |D(F)|_{S}^{1/2} &= |\beta_{1} - \beta_{2}|_{S} = |(\beta_{1} - \delta_{1}) - (\beta_{2} - \delta_{1})|_{S} \\ &\leq 2H_{S}(\beta_{1} - \delta_{1}, \beta_{2} - \delta_{1}) \\ &\leq 2H_{S}(\beta_{1} - \delta_{1}, -(\beta_{1} - \delta_{2}), -(\beta_{2} - \delta_{1}), \beta_{2} - \delta_{2}) \\ &\ll |(\beta_{1} - \delta_{1})(\beta_{1} - \delta_{2})(\beta_{2} - \delta_{1})(\beta_{2} - \delta_{2})|_{S}^{1+\varepsilon} = |R(F, G)|_{S}^{1+\varepsilon} \end{split}$$

which implies (4.6).

Now assume that F and G are related. Then $\beta_1 + \beta_2 = \delta_1 + \delta_2$. Therefore,

$$\beta_1 - \beta_2 = \delta_1 + \delta_2 - 2\beta_2 = (\delta_1 - \beta_2) + (\delta_2 - \beta_2).$$

We apply Lemma 2 to the identity

$$(\delta_1 - \beta_2) - (\delta_2 - \beta_2) - (\delta_1 - \delta_2) = 0$$

and obtain, using again (4.2),

$$\begin{split} |D(F)|_{S}^{1/2} &= |\beta_{1} - \beta_{2}|_{S} = |(\delta_{1} - \beta_{2}) + (\delta_{2} - \beta_{2})|_{S} \\ &\leq 2H_{S}(\delta_{1} - \beta_{2}, \, \delta_{2} - \beta_{2}) \\ &\leq 2H_{S}(\delta_{1} - \beta_{2}, \, -(\delta_{2} - \beta_{2}), \, -(\delta_{1} - \delta_{2})) \\ &\ll |(\delta_{1} - \beta_{2})(\delta_{2} - \beta_{2})(\delta_{1} - \delta_{2})|_{S}^{1 + \varepsilon} \\ &= (|(\delta_{1} - \beta_{2})(\delta_{2} - \beta_{2})|_{S}|D(G)|_{S}^{1/2})^{1 + \varepsilon}. \end{split}$$

Similarly,

$$|D(F)|_{S}^{1/2} \ll (|(\delta_{1} - \beta_{1})(\delta_{2} - \beta_{1})|_{S}|D(G)|_{S}^{1/2})^{1+\varepsilon}.$$

Thus we get

$$\begin{aligned} |D(F)|_{S} \ll (|(\delta_{1} - \beta_{1})(\delta_{1} - \beta_{2})(\delta_{2} - \beta_{1})(\delta_{2} - \beta_{2})|_{S}|D(G)|_{S})^{1 + \varepsilon} \\ &= (|R(F, G)|_{S}|D(G)|_{S})^{1 + \varepsilon} \end{aligned}$$

which is just (4.7).

Proof of Theorem 2A. Let F(X, Y), $G[X, Y) \in \mathcal{O}_S[X, Y]$ be binary forms of degrees $r \ge 2$, $s \ge 3$, respectively, such that F(1, 0) = G(1, 0) = 1, FG is square-free, and FG has splitting field L over K. Denote by T the set of places on L lying above those in S. Then

$$F(X, Y) = \prod_{i=1}^{r} (X - \beta_i Y), \qquad G(X, Y) = \prod_{j=1}^{s} (X - \delta_j Y)$$

with $\beta_i, \delta_j \in \mathcal{O}_T$ for $1 \le i \le r, 1 \le j \le s$. Let $\varepsilon > 0$ with $\varepsilon < 1/6$ and put $\delta = \varepsilon/100$. The constants implied by \ll depend only on *L*, *S* and ε . Finally, put

$$F_{pq}(X, Y) = (X - \beta_p Y)(X - \beta_q Y) \text{ for } p, q \in \{1, ..., r\}, p < q,$$

$$G_{ij}(X, Y) = (X - \delta_i Y)(X - \delta_j Y) \text{ for } i, j \in \{1, ..., s\}, i < j.$$

Pick $p, q \in \{1, ..., r\}$ with p < q. Let *I* be the collection of pairs (i, j) with $1 \le i < j \le s$ such that G_{ij} is related to F_{pq} . Then *I* consists of the pairs (i, j) with $\delta_i + \delta_j = \beta_p + \beta_q$. Since $\delta_1, ..., \delta_s$ are distinct, the pairs in *I* must be pairwise

disjoint. Therefore, since $s \ge 3$,

$$\#I \leqslant \left[\frac{s}{2}\right] \leqslant \frac{1}{3} \binom{s}{2}.$$
(4.9)

By Lemma 3 (with L, T instead of K, S) we have

$$|D(F_{pq})|_T \ll |R(F_{pq}, G_{ij})|_T^{2(1+\delta)} \quad \text{for } (i, j) \notin I.$$
(4.10)

But, by (1.1) and (1.2) we have

$$\prod_{1 \le i < j \le s} R(F_{pq}, G_{ij}) = R(F_{pq}, G)^{s-1}.$$
(4.11)

Together with (4.9) and (4.10) this implies

$$\begin{split} |D(F_{pq})|_{T} \ll & \left(\prod_{\substack{1 \le i < j \le s \\ (i,j) \notin I}} |R(F_{pq}, G_{ij})|_{T}^{2}\right)^{(1+\delta)/(\frac{5}{2}) - \#I)} \\ \leqslant & \left(\prod_{\substack{1 \le i < j \le s \\ 1 \le i < j \le s}} |R(F_{pq}, G_{ij})|_{T}\right)^{3(1+\delta)/(\frac{5}{2})} \\ & = |R(F_{pq}, G)|_{T}^{6(1+\delta)/s}. \end{split}$$
(4.12)

By Lemma 3, (4.10), (4.11) and (4.12) we get

$$\begin{split} |D(G)|_{T} &= \prod_{1 \leq i < j \leq s} |D(G_{ij})|_{T} = \prod_{\substack{1 \leq i < j \leq s \\ (i,j) \notin I}} |D(G_{ij})|_{T} \cdot \prod_{(i,j) \in I} |D(G_{ij})|_{T} \\ &\ll \left(\prod_{1 \leq i < j \leq s} |R(F_{pq}, G_{ij})|_{T}^{2} \prod_{(i,j) \in I} |D(F_{pq})|_{T} \right)^{1+\delta} \\ &= (|R(F_{pq}, G)|_{T}^{2(s-1)} |D(F_{pq})|_{T}^{\#I})^{1+\delta} \\ &\leq (|R(F_{pq}, G)|_{T}^{2(s-1)} \cdot |R(F_{pq}, G)|_{T}^{(\#I) \cdot \delta/s})^{(1+\delta)^{2}}, \end{split}$$

which gives, together with (4.9),

$$|D(G)|_T \ll |R(F_{pq}, G)|_T^{3(s-1)(1+\delta)^2}.$$
(4.13)

Finally, from (4.12), (4.13), and the relations

$$\prod_{1 \leq p < q \leq r} R(F_{pq}, G) = R(F, G)^{r-1}$$

and

$$6(1+\delta) < 6(1+\delta)^2 < \left(\frac{1}{6} - \varepsilon\right)^{-1}$$

it follows that

$$|D(F)|_{T} = \prod_{1 \le p \le q \le r} |D(F_{pq})|_{T} \ll \left(\prod_{1 \le p \le q \le r} |R(F_{pq}, G)|_{T}\right)^{6(1+\delta)/s}$$
$$= |R(F, G)|_{T}^{6(r-1)(1+\delta)/s} \ll |R(F, G)|_{T}^{(r-1)(1/6-\varepsilon)^{-1/s}}$$

and

$$\begin{split} |D(G)|_T \ll & \left(\prod_{1 \le p < q \le r} |R(F_{pq}, G)|_T\right)^{3(s-1)(1+\delta)^2/\binom{r}{2}} \\ &= |R(F, G)|_T^{6(s-1)(1+\delta)^2/r} \ll |R(F, G)|_T^{(s-1)(1/6-\varepsilon)^{-1}/r}. \end{split}$$

This implies Theorem 2A, since $|x|_T = |x|_S$ for $x \in K$.

5. Proof of Theorem 1A

Let again K be an algebraic number field and S a finite set of places on K. We first prove a special case of Theorem 1A.

LEMMA 4. Let F, $G \in \mathcal{O}_{S}[X, Y]$ be binary forms such that

$$F(X, Y) = \prod_{i=1}^{3} (\alpha_i X - \beta_i Y) \quad \text{with } \alpha_i, \ \beta_i \in \mathcal{O}_S \text{ for } i = 1, 2, 3,$$

$$G(X, Y) = \prod_{j=1}^{3} (\gamma_j x - \delta_j Y) \quad \text{with } \gamma_j, \ \delta_j \in \mathcal{O}_S \text{ for } j = 1, 2, 3,$$

$$F \cdot G \text{ is square-free.}$$
(5.1)

Then for all $\varepsilon > 0$ we have

$$|R(F, G)|_{S} \ge C_{16}^{\text{ineff}}(K, S, \varepsilon)(|D(F)D(G)|_{S})^{3/34-\varepsilon}.$$
(5.2)

Proof. We use an idea from [6]. Put

$$\Delta_{ij} = \alpha_i \delta_j - \beta_i \gamma_j \quad \text{for } i, j = 1, 2, 3,$$

$$A_{ij} = \alpha_i \beta_j - \alpha_j \beta_i, B_{ij} = \gamma_i \delta_j - \gamma_j \delta_i \quad \text{for } i, j = 1, 2, 3, i \neq j.$$

It is easy to check that

$$\det \begin{pmatrix} \Delta_{11} & \Delta_{12} & \Delta_{13} \\ \Delta_{21} & \Delta_{22} & \Delta_{23} \\ \Delta_{31} & \Delta_{32} & \Delta_{33} \end{pmatrix} = 0$$

or, by expanding the determinant,

$$u_1 + u_2 + u_3 + u_4 + u_5 + u_6 = 0, (5.3)$$

where

$$u_{1} = \Delta_{11} \Delta_{22} \Delta_{33}, \quad u_{3} = \Delta_{12} \Delta_{23} \Delta_{31}, \quad u_{5} = \Delta_{13} \Delta_{21} \Delta_{32},$$

$$u_{2} = -\Delta_{11} \Delta_{23} \Delta_{32}, \quad u_{4} = -\Delta_{12} \Delta_{21} \Delta_{33}, \quad u_{6} = -\Delta_{13} \Delta_{22} \Delta_{31}.$$
 (5.4)

Take *i*, *j*, *k*, $l \in \{1, 2, 3\}$ with $i \neq j$, $k \neq l$ and choose *h*, *m* such that $\{i, j, h\} = \{k, l, m\} = \{1, 2, 3\}$. Then from the product rule for determinants it follows that

$$A_{ij}B_{kl} = \Delta_{ik}\Delta_{jl} - \Delta_{il}\Delta_{jk}.$$

From (5.4) it follows that there are p, q with $1 \le p < q \le 6$, $p \ne q \pmod{2}$ such that $\Delta_{ik}\Delta_{jl}\Delta_{hm} = \pm u_p$, $\Delta_{il}\Delta_{jk}\Delta_{hm} = \mp u_q$. Hence

$$A_{ij}B_{kl} = \pm \Delta_{hm}^{-1}(u_p + u_q).$$
(5.5)

Here h, m, p and q are uniquely determined by the sets $\{i, j\}$, $\{k, l\}$ and vice versa. Hence if $\{i, j\}$, $\{k, l\}$ run through the subsets of $\{1, 2, 3\}$ of cardinality 2, then (h, m) runs through the ordered pairs from $\{1, 2, 3\}$ and (p, q) runs through the pairs with $1 \le p < q \le 6$, $p \ne q \pmod{2}$. Hence, by taking the product over all sets $\{i, j\}$, $\{k, l\}$ and using the fact that

$$R(F, G) = \prod_{i=1}^{3} \prod_{j=1}^{3} \Delta_{ij}, D(F) = (A_{12}A_{23}A_{13})^{2}, D(G) = (B_{12}B_{23}B_{13})^{2},$$
(5.6)

we get

$$(D(F)D(G))^{3/2} = \pm R(F, G)^{-1} \prod_{\substack{1 \le p < q \le 6\\ p \ne q \pmod{2}}} (u_p + u_q).$$
(5.7)

From (4.2) we infer that $|u_p + u_q|_S \leq 2H_S(u_p, u_q)$. By inserting this into (5.7) we get

$$|D(F)D(G)|_{S}^{3/2} \leq 2^{9} |R(F, G)|_{S}^{-1} \prod_{\substack{1 \leq p < q \leq 6\\ p \neq q \pmod{2}}} H_{S}(u_{p}, u_{q}).$$
(5.8)

Put R := R(F, G). Then $R \neq 0$. We recall that

$$u_1 + u_2 + u_3 + u_4 + u_5 + u_6 = 0. (5.3)$$

Further, by (5.7),

$$u_p + u_q \neq 0$$
 for $1 \leq p < q \leq 6$ with $p \neq q \pmod{2}$. (5.9)

Finally, by (5.4),

$$u_1 u_3 u_5 = -u_2 u_4 u_6 = R. (5.10)$$

Let U be the set of vectors $\mathbf{u} = (u_1, \dots, u_6) \in \mathcal{O}_S^6$ satisfying (5.3), (5.9) and (5.10). Lemma 4 follows at once from (5.8) and

LEMMA 5. For every $\mathbf{u} = (u_1, \dots, u_6) \in U$ and every $\varepsilon > 0$ we have

$$\prod_{\substack{1 \le p < q \le 6\\ p \ne q \pmod{2}}} H_S(u_p, u_q) \le C_{17}^{\text{ineff}}(K, S, \varepsilon) |R|_S^{18+\varepsilon}.$$
(5.11)

Proof. Put $\delta = \varepsilon/100$. The constants implied by \ll depend only on K, S and ε . The idea is to consider all partitions of (5.3) into minimal vanishing subsums and to apply Lemma 2 to these subsums. We can reduce the number of cases to be considered by using (5.9) and the following symmetric property of U:

 $\begin{cases} \text{for every } \mathbf{u} = (u_1, \dots, u_6) \in U \text{ and each permutation } \sigma \text{ of } (1, \dots, 6) \\ \text{with } \sigma(i) - \sigma(j) \equiv i - j \pmod{2} \text{ for } i, j \in \{1, \dots, 6\}, \\ \text{there is an } a \in \{0, 1\} \text{ with } (-1)^a (u_{\sigma(1)}, \dots, u_{\sigma(6)}) \in U. \end{cases}$ (5.12)

Take $(u_1, \ldots, u_6) \in U$ and put

$$A = \prod_{\substack{1 \le p < q \le 6\\ p \ne q \pmod{2}}} H_{\mathcal{S}}(u_p, u_q).$$

Because of (5.9), (5.12), it suffices to derive the upper bound for A in each of the four following cases:

- (i) $u_1 + u_2 + u_3 + u_4 + u_5 + u_6 = 0$, $\sum_{i \in I} u_i \neq 0$ for each proper non-empty subset I of $\{1, \ldots, 6\}$.
- (ii) $u_1 + u_3 = 0$, $u_2 + u_4 + u_5 + u_6 = 0$, $\sum_{i \in I} u_i \neq 0$ for each proper non-empty subset I of $\{2, 4, 5, 6\}$.
- (iii) $u_1 + u_2 + u_3 = 0$, $u_4 + u_5 + u_6 = 0$.
- (iv) $u_1 + u_3 + u_5 = 0$, $u_2 + u_4 + u_6 = 0$.

We shall frequently use the following obvious properties of H_s :

$$\begin{cases} H_S(\lambda \mathbf{x}) = |\lambda|_S H_S(\mathbf{x}) & \text{for } \lambda \in K, \mathbf{x} \in K^n; \\ H_S(x_1y_1, \dots, x_ny_n) \leqslant H_S(x_1, \dots, x_n) H_S(y_1, \dots, y_n) & \text{for } x_1, \dots, y_n \in K; \\ H_S(x_1^m, \dots, x_n^m) = \{H_S(x_1, \dots, x_n)\}^m & \text{for } x_1, \dots, x_n \in K, m \in \mathbb{N}. \end{cases}$$

$$(5.13)$$

Case i. For $p, q \in \{1, ..., 6\}$ with $p \not\equiv q \pmod{2}$ we have, by Lemma 2 and (5.10),

$$H_{S}(u_{p}, u_{q}) \leq H_{S}(u_{1}, \ldots, u_{6}) \ll |u_{1} \cdots u_{6}|_{S}^{1+\delta} = |R|_{S}^{2+2\delta}$$

whence

$$A \ll |R|_S^{18+18\delta} \ll |R|_S^{18+\varepsilon}$$

Case ii. For (p, q) = (2, 5), (4, 5), (5, 6) we have, by Lemma 2 and (5.10),

$$H_{S}(u_{p}, u_{q}) \leq H_{S}(u_{2}, u_{4}, u_{5}, u_{6}) \ll |u_{2}u_{4}u_{5}u_{6}|_{S}^{1+\delta} \leq |u_{1}\cdots u_{6}|_{S}^{1+\delta} \ll |R|_{S}^{2+2\delta}.$$
(5.14)

By (5.10) and $u_3 = -u_1$, we have

$$(u_1^2, u_2^2) = (u_2/u_5)(u_4u_6, u_2u_5).$$

By applying (5.13), Lemma 2 and (5.10) we get

$$\begin{aligned} H_{S}(u_{1}, u_{2})^{2} &\leq |(u_{2}/u_{5})|_{S}H_{S}(u_{4}, u_{2})H_{S}(u_{6}, u_{5}) \\ &\leq |(u_{2}/u_{5})|_{S}H_{S}(u_{2}, u_{4}, u_{5}, u_{6})^{2} \ll |(u_{2}/u_{5})|_{S}|u_{2}u_{4}u_{5}u_{6}|_{S}^{2+2\delta} \\ &\leq |u_{2}/(u_{1}u_{3}u_{5})|_{S}|u_{1}\cdots u_{6}|_{S}^{2+2\delta} = |u_{2}|_{S}|R|_{S}^{3+4\delta} \leqslant |R|_{S}^{4+4\delta}. \end{aligned}$$

Hence

$$H_{S}(u_{1}, u_{2}) \ll |R|_{S}^{2+2\delta}$$

Similarly, we obtain that also $H_S(u_p, u_q) \ll |R|_S^{2+2\delta}$ for (p, q) = (1, 4), (1, 6), (2, 3), (3, 4), (3, 6). Together with (5.14) this implies

$$A \ll |R|_S^{18+18\delta} \ll |R|_S^{18+\varepsilon}.$$

Case iii. This is the most difficult case. For (p, q) = (1, 2), (2, 3) we have, by Lemma 2,

$$H_{S}(u_{p}, u_{q}) \leq H_{S}(u_{1}, u_{2}, u_{3}) \ll |u_{1}u_{2}u_{3}|_{S}^{1+\delta}.$$

Similarly, for (p, q) = (4, 5), (5, 6) we have $H_S(u_p, u_q) \ll |u_4 u_5 u_6|_S^{1+\delta}$. Together with (5.10) this implies

$$H_{S}(u_{1}, u_{2})H_{S}(u_{2}, u_{3})H_{S}(u_{4}, u_{5})H_{5}(u_{5}, u_{6})$$

$$\ll |u_{1}\cdots u_{6}|_{S}^{2+2\delta} = |R|_{S}^{4+4\delta}.$$
(5.15)

By (5.10) we have

$$(u_1, u_4) = (u_1 u_4 / R)(-u_2 u_6, u_3 u_5)$$

Together with (5.13), Lemma 2 and again (5.10), this implies

$$\begin{aligned} H_{S}(u_{1}, u_{4}) &\leq |u_{1}u_{4}|_{S}|R|_{S}^{-1}H_{S}(u_{2}, u_{3})H_{S}(u_{6}, u_{5}) \\ &\leq |u_{1}u_{4}|_{S}|R|_{S}^{-1}H_{S}(u_{1}, u_{2}, u_{3})H_{S}(u_{4}, u_{5}, u_{6}) \\ &\ll |u_{1}u_{4}|_{S}|R|_{S}^{-1}|u_{1}u_{2}u_{3}|_{S}^{1+\delta}|u_{4}u_{5}u_{6}|_{S}^{1+\delta} = |u_{1}u_{4}|_{S}|R|_{S}^{1+2\delta}. \end{aligned}$$

By a similar argument, we get $H_S(u_p, u_q) \ll |u_p u_q|_S |R|_S^{1+2\delta}$ for (p, q) = (1, 6), (3, 4), (3, 6). Hence, by (5.10) we obtain

$$H_{S}(u_{1}, u_{4})H_{S}(u_{1}, u_{6})H_{S}(u_{3}, u_{4})H_{S}(u_{3}, u_{6})$$

$$\ll |u_{1}u_{4} \cdot u_{1}u_{6} \cdot u_{3}u_{4} \cdot u_{3}u_{6}|_{S}|R|_{S}^{4+8\delta}$$

$$\leqslant |u_{1} \cdots u_{6}|_{S}^{2}|R|_{S}^{4+8\delta} = |R|_{S}^{8+8\delta}.$$
(5.16)

Finally, by (5.10) we have

 $(u_2, u_5) = R^{-1}(-u_2^2 u_4 u_6, u_1 u_3 u_5^2).$

Together with (5.13), Lemma 2 and (5.10), this gives

$$H_{S}(u_{2}, u_{5}) \leq |R|_{S}^{-1} H_{S}(u_{2}, u_{1}) H_{S}(u_{2}, u_{3}) H_{S}(u_{4}, u_{5}) H_{S}(u_{6}, u_{5})$$
$$\leq |R|_{S}^{-1} H_{S}(u_{1}, u_{2}, u_{3})^{2} H_{S}(u_{4}, u_{5}, u_{6})^{2}$$
$$\ll |R|_{S}^{-1} |u_{1} \cdots u_{6}|_{S}^{2+2\delta} = |R|_{S}^{3+4\delta}.$$

By combining this with (5.15) and (5.16), we obtain

$$A \ll |R|_S^{15+16\delta} \ll |R|_S^{18+\varepsilon}.$$

Case iv. By (5.10) we have

$$(u_1^3, u_2^3) = (u_1 u_2 / R)(-u_1^2 u_4 u_6, u_2^2 u_3 u_5).$$

Together with (5.13), $|u_1u_2|_S \leq |R|_S^2$, Lemma 2 and (5.10) this implies

$$H_{S}(u_{1}, u_{2})^{3} \leq |u_{1}u_{2}R^{-1}|_{S}H_{S}(u_{1}, u_{3})H_{S}(u_{1}, u_{5})H_{S}(u_{4}, u_{2})H_{S}(u_{6}, u_{2})$$
$$\leq |R|_{S}H_{S}(u_{1}, u_{3}, u_{5})^{2}H_{S}(u_{2}, u_{4}, u_{6})^{2}$$
$$\ll |R|_{S}(|u_{1}u_{3}u_{5}|_{S}|u_{2}u_{4}u_{6}|_{S})^{2+2\delta} = |R|_{S}^{5+4\delta}.$$

Therefore,

$$H_S(u_1, u_2) \ll |R|_S^{(5+4\delta)/3}.$$

Similarly, we obtain that $H_S(u_p, u_q) \ll |R|_S^{(5+4\delta)/3}$ for all pairs (p, q) with $1 \le p < q \le 6, p \ne q \pmod{2}$. Hence

 $A \ll |\mathbf{R}|_{S}^{15+12\delta} \ll |\mathbf{R}|_{S}^{18+\varepsilon}.$

This completes the proof of Lemma 5 and hence that of Lemma 4. \Box

Proof of Theorem 1A. Let $F, G \in \mathcal{O}_S[X, Y]$ be binary forms of degrees $r \ge 3$, $s \ge 3$, respectively, such that FG is square-free, and FG has splitting field L over K. Denote by H the Hilbert class field of L/\mathbb{Q} and by T the set of places on H lying above those in S. Note again that H and T depend only on L and S. Let $\varepsilon > 0$. The constants implied by \gg depend only on r, s, L, S and ε .

We have

$$F(X, Y) = \prod_{i=1}^{r} (\alpha_i X - \beta_i Y), \qquad G(X, Y) = \prod_{j=1}^{s} (\gamma_j X - \delta_j Y)$$

with α_i , β_i , γ_j , $\delta_j \in \mathcal{O}_T$ for $1 \leq i \leq r$, $1 \leq j \leq s$. Put

$$F_{npq}(X, Y) = (\alpha_n X - \beta_n Y)(\alpha_p X - \beta_p Y)(\alpha_q X - \beta_q Y) \quad \text{for } 1 \le n$$

and

$$G_{ijk}(X, Y) = (\gamma_i X - \delta_i Y)(\gamma_j X - \delta_j Y)(\gamma_k X - \delta_k Y) \quad \text{for } 1 \le i < j < k \le s.$$

From Lemma 4 it follows with H, T instead of K, S that for $1 \le n , <math>1 \le i < j < k \le s$,

$$|R(F_{npq}, G_{ijk})|_T \gg (|D(F_{npq})D(G_{ijk})|_T)^{3/34 - 3\varepsilon/2}.$$
(5.17)

Further,

$$\prod_{1 \le n
$$\prod_{1 \le n$$$$

Hence, by (5.17), we have

$$\begin{split} |R(F,G)|_{T} &= \left\{ \prod_{1 \leq n$$

Since $|x|_T = |x|_S$ for $x \in K$, this implies Theorem 1A.

Acknowledgements

The authors are indebted to the referee for his helpful criticism.

References

- [1] B. J. Birch and J. R. Merriman, Finiteness theorems for binary forms with given discriminant, *Proc. London Math. Soc.* 25 (1972) 385-394.
- [2] J. H. Evertse, On equations in S-units and the Thue-Mahler equation, *Invent. Math.* 75 (1984), 561-584.
- [3] J. H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53 (1984) 225-244.
- [4] J. H. Evertse and K. Győry, Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math. 399 (1989) 60-80.
- [5] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991) 169-204.
- [6] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, On S-unit equations in two unknowns, Invent. Math. 92 (1988), 461-477.
- [7] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973) 419-426.
- [8] K. Győry, On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175–190.
- [9] K. Győry, On arithmetic graphs associated with integral domains, in: A Tribute to Paul Erdős (eds. A. Baker, B. Bollobás, A. Hajnal), pp. 207–222. Cambridge University Press, 1990.
- [10] K. Győry, On the number of pairs of polynomials with given resultant or given semi-resultant, to appear.
- [11] M. Laurent, Equations diophantiennes exponentielles, Invent. Math. 78 (1984) 299-327.
- [12] H. P. Schlickewei, The p-adic Thue-Siegel-Roth-Schmidt theorem, Archiv der Math. 29 (1977) 267-270.
- [13] W. M. Schmidt, Inequalities for resultants and for decomposable forms, in: Diophantine Approximation and its Applications (ed. C. F. Osgood), pp. 235–253, Academic Press, New York, 1973.
- [14] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer-Verlag, 1980.
- [15] E. Wirsing, On approximations of algebraic numbers by algebraic numbers of bounded degree, in: Proc. Symp. Pure Math. 20 (1969 Number Theory Institute; ed. D. J. Lewis), pp. 213-247, Amer. Math. Soc., Providence, 1971.