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1. Introduction

The resultant of two binary forms F(X, Y)=aoX"+a, X" 'Y+ +a,Y" and
G(X,Y)=boX*+b,; X5 1Y +---+b,Y*® is defined by the determinant

ag - a, 0
aO ar
0 . .
R(F,G) = a, ‘- a,
by b, b, 0
0 . -
by by -+ by

where the first s rows consist of coefficients of F, and the last r rows of
coefficients of G. If

FX, V) =[] @X—BY), GX, Y)= n @,X —6,Y)

i=1

then

R(F, G) =T IT 6;—Biv). (L1)

i=1 j=1
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2 J. H. Evertse and K. Gyory

For a matrix U = (a b), put Fy(X,Y)=F(@aX +bY,cX+dY) and define G,
c

d
similarly. The following properties of resultants are well-known:

R(AF, uG)=A*t/'R(F, G); R(Fy, Gy)=(det U)*R(F, G);
R(F,F,, G)=R(F,, G)R(F,, G) for binary forms F,, F,, G;
R(G, F)=(—1)"R(F, G); (1.2)
R(F, G+ HF)=R(F, G) ifr <sand H is a binary form
with deg H=5s—r.

The discriminant of F(X, Y) = a, X"+ a, X" 'Y + - +a Y =
I, (¢, X — B;Y) is equal to

D(F) = H (“iﬂj—“jﬁi)z- (1.3)

1<i<js<r

D(F) is a homogeneous polynomial of degree 2r —2 in Z[a, . . ., a,]. From (1.3) it

follows that for every A # 0 and non-singular matrix U = (a Z)
c

D(AF)=*"2D(F),  D(Fy)=(det Uy"~VD(F). (1.4)

In this paper we derive, for binary forms F, Ge Z[ X, Y], lower bounds for
|R(F, G)| in terms of |D(F)| and |D(G)|. If F(X, Y) is a binary form with coefficients
in a field K, then the splitting field of F over K is the smallest extension of K over
which F can be factored into linear forms. We call F square-free if it is not
divisible by the square of a linear form over its splitting field. Hence F is square-
free if and only if it has non-zero discriminant. By Ci"*'(...) we denote positive
numbers, depending only on the parameters between the parentheses, which
cannot be computed effectively from our method of proof.

THEOREM 1. Let FeZ[ X, Y] be a binary form of degreer > 3 and Ge Z[ X, Y]
a binary form of degree s > 3 such that FG has splitting field L over Q, and FG is
square-free. Then for every ¢ >0 we have

IR(F, G)| = C™(r, 5, L, e)(D(F)| ~ V|D(G)|"~ V)17 ¢,

The exponent 1/17 is probably far from best possible. Since R(F, G) has degree
s in the coefficients of F and degree r in the coefficients of G, whereas D(F) has
degree 2r —2 in the coefficients of F and D(G) has degree 2s —2 in the coefficients
of G, 1/17 cannot be replaced by a number larger than 1/2. In case that both F
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and G are monic, i.e. F(1,0)=1, G(1,0)=1, we can obtain a better lower bound
for |R(F, G)|. Also, in this case the proof is easier.

THEOREM 2. Let Fe Z[ X, Y] be a binary form of degreer = 2 and Ge Z[ X, Y]
a binary form of degree s = 3 such that F -G has splitting field L over Q, FG is
square- free and F(1,0)=1, G(1,0)=1. Then for every ¢ > 0 we have

|R(F’ G)l > Ci2n°“(r, s, L, s){max(lD(F)ls“"”, |D(G)|r/(s—1))~}1/6—e_

In Section 2 we shall show that the dependence of C,, C, on the splitting field
L and the conditions concerning r and s in Theorems 1 and 2 are necessary.

We shall get Theorems 1 and 2 as special cases of more general results (cf.
Theorems 1A and 2A in Section 2) concerning binary forms with coefficients in
the ring of S-integers of an arbitrary algebraic number field. In Section 3 we state
and prove some applications of our main results. Namely, we derive a semi-
quantitative version (cf. Corollaries 3, 4) of a result of Evertse and Gyory ([4],
Theorem 2(i)) on Thue-Mahler equations. Further, we deduce some extensions
and generalizations (cf. Corollaries 1, 2) of a result of Gyory ([9], Theorem 7,
algebraic number field case) on resultant equations. We note that recently
Gydry [10] has obtained some other generalizations as well as a quantitative
version of our Corollary 2 on monic binary forms.

Our main results are proved in Sections 4 and 5. The main tools in our
arguments are some results (cf. Lemma 2) of Evertse [3] and Laurent [11] whose
proofs are based on Schlickewei’s p-adic generalization [12] of the Subspace
Theorem of Schmidt (see e.g. [14]). Therefore, our inequalities are not com-
pletely effective, but ‘semi-effective’, in the sense that they include ineffective
constants.

2. Main results

We now state our generalizations over number fields. We first introduce
normalized absolute values. Let K be an algebraic number field of degree d.

Denote by o64,...,0,, the embeddings K< R and by {0, +1,0, +1}5--->

{6,, +rp Oy, +r, 1 the pairs of complex conjugate embeddings K < C. If v is the
infinite place corresponding to o; (i=1,...,r;) then put

Ixl, = lo;(x)|'* for xeK;
if v is the infinite place corresponding to {6, 6;} (i=r, +1,...,r, +r,) then put

Ixl, = lo:(x)|** for xeK;
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and if v is the finite place corresponding to the prime ideal p of the ring of
integers (O of K then put

Ix|, = (N(p)) =™/ if x % 0; 0], =0,

where N(p) = #(Ok/p) is the norm of p and ord,(x) is the exponent of p in the
unique prime ideal decomposition of the ideal generated by x. Denote by M the
set of all infinite and finite places of K. The set of absolute values {|.|,:ve Mg}
just defined satisfies the Product Formula

[T Ixl,=1 for xeK*

veMyg

and the Extension Formulas

l_[ lew = INL/K(X)IéllL:K] fOI' X€ L1 H |x|w = |xlv for X € K’

wly wlv

where ve Mg, L is a finite extension of K, and w runs through the places on L
lying above v.

Each finite subset of M we consider contains by convention all infinite places
on K. Let S be such a finite set of places. Define the ring of S-integers and the
group of S-units by

OUs={xeK: |x|, <1 for all ve M\S}
and

0% ={xeK:|x|,=1 for all ve M\S},
respectively. For xe K we put

|x|S:= l—[ |x|u‘
vesS

Note that |x|s > 1if x € O5\{0} and |x|g = 1 if x € @¥. If L is a finite extension of K
and T is the set of places on L lying above those in S, then ¢y is the integral
closure of 0 in L. Further, | .| is defined similarly as |.|g and by the Extension
Formulas we have

x|z = [N x(x)Is"™X for xeL; x|z =|x|s for xeK. 2.1

We can now state the generalizations of Theorems 1 and 2.
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THEOREM 1A. Let F, Ge Os[ X, Y] be binary forms such that

deg F=r >3,deg G=5> 3,
FG has splitting field L over K, and FG is square-free. (2.2)

Then for every ¢ > 0 we have
IR(F, G)ls = C5*"(r, s, S, L, elID(F)Y" ~ID(G)Ye~ V)17 =, 23)
THEOREM 2A. Let F, Ge Os[ X, Y] be binary forms such that

deg F=r>2,deg G=s> 3, F(1,0)=1, G(1, 0)=1,
FG has splitting field L over K, and FG is square-free 2.4

Then for every ¢ > 0 we have
IR(F, G)ls = C3*(r, s, S, L, e){max((D(F)|§"~ Y, |D(G)[e~ )} /62,
Theorems 1 and 2 follow at once from Theorems 1A and 2A, respectively, by

taking K = Q, and for S the only infinite place on Q.

REMARK 1. The dependence on L of Cy, C,, C5 and C, is necessary. Indeed, let
F(X,Y)eZ[X, Y] be a monic binary form of degree r, suppose that s > r, and
put G(X, Y)=F(X, Y)X°* "+ Y*. We can choose F with |[D(F)| arbitrarily large
such that F- G is square-free. On the other hand, from (1.2) it follows that

R(F, G)=R(F, FX*" "+ Y®) = R(F, Y*) = R(F, Yy

=RX"+Y(.) YY=RX, Y)* =1

REMARK 2. The conditions r > 3, s > 3 in Theorems 1 and 1A are necessary.
For instance, take F(X, Y)=XY. Let 6 be an algebraic unit, put M = Q(6),
and denote by 6,,...,6, the conjugates of 6 over Q. Put G,(X,Y)=
(X —-0,Y)---(X—02Y) for ne Z. Thus, FG, is square-free and has splitting field
Q@,,...,0). Further,

IR(F, G,)| = IR(X, G,)R(Y, G,)|

=1G,(0, 1)G,(1, 0)] = INpy(O)" = 1

for ne Z. But it follows from Gyory ([7], Corollaire 1) that lim, _, ., |D(G,)| = c©
REMARK 3. The conditions r > 2, s > 3 in Theorems 2 and 2A are necessary.
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For instance, let d be a positive integer which is not a square. For all u, ve Z with
w?—dv?=1, define F,(X,Y)=X2—u?’Y? G, X,Y)=X?—dv*Y? Then
R(F,,G,)=(?—dv*?=1, F,G, is square-free, F,G, has splitting field Q(/d),
D(F,)=4u?, D(G,)=4dv?* and hence |D(F,)|, |D(G,)| can be arbitrarily large.

REMARK 4. For certain applications, the following technical variation on
Theorem 1A might be useful.

By an (s-ideal we mean a finitely generated (s-submodule of K and by an
integral (s-ideal, an COs-ideal contained in (5. The (-ideal generated by
X1,..., X is denoted by (x,,...,x)s. If PEK[X,...,X,,] then (P)g denotes the
Os-ideal generated by the coefficients of P. For x € K*, there is a unique 0g-ideal
a* composed of Ox-prime ideals outside S, such that (x)g=a*0s. Then we have
(see e.g. [4] or [5]) |x|s = |(x)s|s = N(a*)'/%. More generally, if a is an (s-ideal and
a* is the (O-ideal composed of prime ideals outside S such that a=a*0s, we put
lals=N(a*)'4. For a binary form FeK[X, Y] of degree r we define the
discriminant Og-ideal (cf. [5]) by

gs(F) = (D(F))s/(F)gr_ 2,

and for binary forms F, Ge K[X, Y] of degrees r, s, respectively, we define the
resultant Og-ideal by

As(F, G) = (R(F, G))s/(F)s(G)s.
Note that Z4(F), #s(F,G) are integral (s-ideals. Further, by (1.2), (1.4),

Ds(AF)=D4(F), Rs(AF,uG)=Rs(F,G) for A, peK* Now suppose that
F,GeK[X, Y] are binary forms satisfying (2.2). Then for all ¢ > 0,

|R5(F, G)ls > CE"(r, s, S, L, e)(|Zs(F)§" ™ |Zs(GIC™ )T 2.5)
This can be derived from (2.3) as follows. We can choose 4, ue K* with
Ae(F)st, 1Als < Ckl(F)s s
and
1e(G)st, |uls < Ckl(Gs s,
where Cy is some constant depending only on K (cf. [5], Lemma 4). Put F' = AF,
G =uG. Then F,G e04[X, Y]. Further, 1 <|(F)sls, [(G)sls < Cx (see [4],

Section 4). Therefore,

|Z5(F, G)ls = |#s(F', G')ls = Cx"*IR(F', G@')|s
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and
|Ds(F)ls = 12s(F)ls < |D(F)ls, 125(G)ls < |D(G)]s-

Together with (2.3), applied to F’, G', this implies (2.5). O

3. Applications

Let K be an algebraic number field and S a finite set of places on K. We consider
the resultant inequality

0 < |R(F, G)s < A (3.1)

in square-free binary forms F,Ge(s[X,Y] where A > 1 is fixed. For the
moment, we fix G and let only F vary. Note that if F is a solution of (3.1) then so
is ¢F for all ¢e Of. We need the following lemma to derive our corollaries from
Theorems 1A and 2A.

LEMMA 1. Let G be a fixed square- free binary form of degree s = 3 and L a fixed
finite normal extension of K containing the splitting field of G. Then up to
multiplication by S-units, there are only finitely many non-constant square-free
binary forms F € Os[ X, Y] with splitting field contained in L that satisfy (3.1).
Further, each of these binary forms F has degree at most Cq(L, S, A), where
Ce(L, S, A) is a number depending only on L, S and A.

Proof. Let H be the Hilbert class field of L/Q and T be the set of places on H
lying above those in S. Note that H, T depend only on L, S. Denote by O the
ring of T-integers in H. Let F e 5[ X, Y] be a non-constant square-free binary
form with splitting field contained in L that satisfies (3.1). Since H is the Hilbert
class field of L/Q, F and G can be factored as

FX, V)= [T @X—BY), GX, V)=]] G,X—6,)

i=1 Jj=1

with «;, B;, v}, 6;€ Or. Here the y;, §; are fixed, and the «;, f; unknowns. There are
non-zero elements ;€ H, j = 1,2, 3, such that

01(71X—=6,Y)+0(y,X—6,Y)+05(y3X—0;Y)=0.
Put A;j=o;6;—Biy; for 1 <i<r,1<j<s. Then

UIA“ + 02Ai2 + 03Ai3 =0 fori= 1, R & (32)
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Each number A;; divides R(F,G) in Op. From (2.1) and (3.1) it follows that
IR(F, G)|l; < A. Hence |A;jly < Afor 1<i<r, 1<j<s. There is a finite set %,
depending only on H, T and 4, hence only on L, S and 4, such that every xe Or
with |x|; < A can be expressed as an with ae €, and n € O0F (see e.g. Lemma 1 in
[4]). Therefore, we have Ay = ayny with a; e €, and 5, € OF. By (3.2), the pair
(1:1/M:3> Mi2/Mi3) 1s a solution of the unit equation

010;X+0,0;,y+03a;; =0 in x, ye O%.

By Theorem 1 of Evertse [2], the number of solutions of each such unit equation
is bounded above by a number N depending only on H and T. This implies that
there is a set %, of cardinality < N:-(#%,)® < C¢(L,S, A), such that
(A;1, Apz, Aj3) can be expressed as p;(x;, y;, z;) wWith p;e 0% and (x;, y;, z;) € €, for
i=1,...,r It follows now that there is a set €, of cardinality < Cg(L, S, A) such
thatfori=1,...,r we have («;, §;) = p;(u;, v;) with p; € 0% and (u;, v;) € €5. Since F
is square-free, the pairs («,, f,),...,(a,, B,) are pairwise non-proportional, and
hence r < C4(L, S, A). Further, it follows easily that up to multiplication by S-
units, there are only finitely many square-free binary forms FeOi[X, Y]
satisfying (3.1). dJ

REMARK 5. Now fix G, but not the splitting field of F. If
G(X, Y)=II;- {(y;X —4,Y), then R(F, G)=II;-, F(J;,7;) is a product of linear
forms in the coefficients of F, i.e. a decomposable form. Hence for fixed G, (3.1)is a
special case of a decomposable form inequality. Wirsing [15] proved that if
GeZ[X, Y] has degree s > 3 and is square-free and if

1 1
> b Py A -~ 1 9 .
r>1 2r(1+3+ +2r_1><s (3.3)

then there are only finitely many binary forms F € Z[ X, Y] of degree r satisfying
|R(F, G)| < A. Schmidt [13] proved the same result with r > 1, 2r < s instead of
(3.3), but under the additional condition that G is not divisible by a non-constant
binary form in Z[X, Y] of degree <r.

Gydry ([9], Theorem 7) was the first to consider (3.1) where both F, G are
unknowns. Call two pairs of binary forms (F, G), (F’, G’) S-equivalent if

F =¢Fy, G =nGy

. b
with some ¢, ne 0% and U eSL, (0y) <= {(j d): a,b,c,delg, ad—bc= 1})

(1.2) implies that if (F, G) is a solution of (3.1) then so is (F’, G') for every pair
(F', G') S-equivalent to F. Gydry [9] considered (3.1) for monic F, G. We extend
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his result to non-monic F, G. Fix a finite normal extension L of K and put

(F, G): F, G are binary forms of degree >3 in Os[X, Y],}

Vi(L):= . .
WD {F G is square-free, FG has splitting field L.

COROLLARY 1. Up to S-equivalence, (3.1) has only finitely many solutions
(F, G)e Vy(L).
Proof. C,,Cg will denote constants depending only on S,L and A. Let

(F, G)e Vy(L) be a pair satisfying (3.1). By Lemma 1 we have deg F =:r < C,,
deg G =:s < C,. Together with Theorem 1A and |R(F, G)|s < A this implies that

ID(G)ls < Cs. (34

By Theorem 3 of [5], there is a finite set ¥ of binary forms Gels[X, Y],
depending only on K, S and Cg and hence only on L, S and A, such that

G= 11G~U for some Ge%, ne O}, U € SL,(0s).

Theorem 3 of [5] was proved effectively but in its ineffective and qualitative form
that we need here, it is only a slight generalization of Theorem 2 of Birch and
Merriman [1]. Note that

0 < |R(Fy-1, G)s = IR(F, G)|s < A.

Together with Lemma 1 this implies that there is a finite set €’ of binary forms
Fe[X, Y], depending only on L, S and A, such that Fy-: = ¢F with Fe ¥/,
g€ O¢. This implies that F =¢Fy, G =Gy with Fe%’, Ge% which proves
Corollary 1. O

Gyory’s result in [9] was concerned with the set

(F, G): F, G are binary forms in Og[ X, Y] with degrees
at least 2 and at least 3, respectively, such

that F(1,0)=1, G(1,0)=1, FG is square-free,

FG has splitting field L.

Vo(L):=

It follows from Theorem 7 of [9] (which was established more generally over
arbitrary integrally closed and finitely generated domains over Z) that up to

. . 1 b
equivalence defined by (F, G) ~ (Fy,Gy) with U = < 0 1>, b e O, there are only

finitely many (F, G)e V,(L) with a given non-zero resultant. We call the pairs
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(F, G), (F', G) in V,(L) strongly S-equivalent if there are ¢ € O, ae O such that
F =¢ 98FF(ex+aY, Y), G =& 95GEx+aY,Y)

The next corollary is a consequence of Theorem 2A.

COROLLARY 2. Up to strong S-equivalence, (3.1) has only finitely many
solutions (F, G) € V,(L).

Corollary 2 has recently been generalized in [10] by the second author to the
case when the ground ring is an arbitrary finitely generated and integrally closed
ring with 1 in a finitely generated extension of Q.

Proof. C4, C,, will denote constants depending only on S,L and A. Let
(F,G)e V,(L) be a pair satisfying (3.1). Note that R(F, G)=R(F, G), where
F(X, Y)=F(X, Y)Y. By applying Lemma 1 to F, G, we infer that deg F =:r < C,,
deg G =:5s < Cy. Together with Theorem 2A and (3.1), this implies that
|ID(G)|s < C,,. Since G is monic, we have by Theorem 1 of [8] that there is a
finite set ¥ of monic binary forms Ge 0Os[X, Y], depending only on S, L and A4,
such that G = ¢~ 9%#%G(ex +aY, Y) for some G €%, e€ 0%, ac O5. Now the proof
of Corollary 2 is completed in the same way as that of Corollary 1. We have to
notice that in Lemma 1, a monic binary form that is determined up to
multiplication by an S-unit, is uniquely determined. O

We now consider the Thue-Mabhler inequality

0 < |F(x, y)ls <A inx, yeUs, (3.5)

where F(X, Y)e Os[ X, Y] is a square-free binary form of degree at least 3, and
A= 1. Two solutions (x;,y;), (x5, y,) of (3.5) are called proportional if
(x2, ¥2)=A(xy,y,) for some Ae K*. As a special case of Corollary 1 we get
Theorem 2(i) of [4].

COROLLARY 3. For every A = 1 and for any finite normal extension L of K,
there are only finitely many S-equivalence classes of square-free binary forms
FeUs[X, Y] of degree at least 3 and splitting field L over K for which (3.5) has
more than two pairwise non-proportional solutions.

Proof. Let F be an arbitrary but fixed binary form with the properties specified
in Corollary 3, and suppose that (3.5) has three pairwise non-proportional
solutions (x,, y,), (x5, y2), (x5, y3). Let

GX, Y) = X =%, Y)p X =%, Y)y3X —x3Y).
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Then
0 < [R(F, G)ls = |F(xy, y1)F(x3, y2)F(x3, y3)ls < 4%

Further, FG is square-free and has splitting field L. By applying now Corollary 1
to F and G we get that indeed there are only finitely many possibilities for F up
to S-equivalence. O

Using Theorem 1A, we can prove the following:

COROLLARY 4. Let A > 1, and let F € Os[ X, Y] be a square- free binary form of
degree r = 3 with splitting field L such that

ID(F)ls = CT{(r, L, S)A*®¢ ™Y, (3.6)

Then (3.5) has at most two pairwise non-proportional solutions.

By Theorem 3 of [5] there are only finitely many S-equivalence classes of
square-free binary forms FeO4[X, Y] for which |D(F)|s is bounded. Hence
Corollary 4 can be regarded as a “semi-quantitative” version of Corollary 3.

Proof. Suppose that (3.5) has three pairwise non-proportional solutions
(x15 Y1), (¢35 ¥2), (x3, y3)- Take G as in the proof of Corollary 3. Then by Theorem
1A we have

A® > |F(xy, y1)F(x5, y,)F(x3, y3)ls = IR(F, G)s
> Cinsi(, L, SXIDFIR 1)

which contradicts (3.6) for sufficiently large C,,. O

4. Proof of Theorem 2A

Let K be an algebraic number field of degree d, and S a finite set of places on K.
For x=(x,,...,x,) €K", put

|x|v = lea LR ,xnlv:= max(lxllv; DR} |xn|u) for vE MK’
and

Hs(x) = HS(xl’ ] X")Z= 11 max“xllw ey Ixn|v)' (41)

For ve My, put s(v)=1/d if v corresponds to an embedding ¢: K c R, put
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s(v)=2/d if v corresponds to a pair of complex conjugate embeddings
0,0:K @ C, and put s(v) =0 if v is finite. Thus X, ¢ s(v) =1, and

%y 4 -+ X, < 0°xy,...,x,l, for veMyg, x4,...,x,€K.
Therefore,

[x1 4 +x,ls < nHg(xy,...,x,) for x,,...,x,eK. 4.2)
The following lemma is our basic tool.

LEMMA 2. Let xq,...,x, be elements of O5 with

X1+"'+X,,=O, 4.3
X1 x; #0 for each proper non-empty subset I of {1,...,n}. “3)
Then for all ¢ > 0 we have
. n 1+e
Hg(xy,...,%,) < UK, S, ¢)|[] x: 4.4
i=1 S

Proof. This is Lemma 6 of Laurent [11]. Laurent was, in his paper [11], the
first to use results of this type to derive “semi-effective” estimates for certain
Diophantine problems. Laurent’s Lemma 6 is an easy consequence of Theorem
2 of Evertse [3], and the latter was derived from Schlickewei’s p-adic gen-
eralization of the Subspace Theorem [12]. The constant in (4.4) is ineffective
since the Subspace Theorem is ineffective.

We derive Theorem 2A from a result on pairs of monic quadratic forms. A
pair of monic quadratic forms

FX,Y)=X*+b,XY+c,Y?, GX,Y)=X?+b,XY+c,Y?
is said to be related if b, = b,, and unrelated if b, # b,.

LEMMA 3. Let FeOs[X, Y], Ge Os[ X, Y] be quadratic forms with

F(1, 0)=1, G(1,0)=1, 45)
FG is square-free, FG has splitting field K over K. ’
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Then for all € > 0 we have

ID(F)|s < Cs™(K, S, &)|R(F, G)3**® if F, G are unrelated, (4.6)
|D(F)|s < CPef(K, S, e)|R(F, G)sID(G)ls)**¢ if F, G are related. 4.7)

Proof. We may assume that

F(X, Y) = (X =B, Y)(X —B.Y),
G(X, Y) = (X—5,Y(X —35,Y),

where B,, B,, 0, 0, are distinct elements of (5. Take ¢ > 0. The constants
implied by « are ineffective and depend only on K, S and .

First assume that F, G are unrelated. Then f,+f,#d,+35,. We apply
Lemma 2 to

(By—61)—(By—062)—(B2—61)+(B2—0,)=0. (4.8)
Note that each sum formed from a proper non-empty subset of

{(B1—01), —(B1—62), —(B2—61), (B2—62)}
is different from 0. Further, by (1.3), (1.1), respectively, we have
D(F) = (B, —B,),
R(F, G) = (B, _51Xﬁ1 —52)(.32 _51)(ﬁ2 —d,).
Hence, by (4.2) and (4.4), applied to (4.8),
|D(F)|§/2 =B —Bals = |(ﬂ1 ‘51)_(ﬁ2_51)|s
< 2H5(By— 04, B2—01)

< 2Hs(By =01, —(B1—02), —(B2—94), B—6))
< |(B1—3:XB1—0,)(B>—0:1)(B,—d,)ls** =IR(F, G)ls**

which implies (4.6).
Now assume that F and G are related. Then §, + f, =0, + J,. Therefore,

Bi—Br=0,+0,—2B,=(6,—P2)+(6,—B>).
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We apply Lemma 2 to the identity

(61— B2)— (6, —B2)—(0,—0,)=0
and obtain, using again (4.2),

ID(F)l5'* = |B1 — Bals = (61— B2)+ (62— B2ls
< 2H (01— B2, 62— P3)
< 2Hg(6,— B2 —(6,—B2), —(6,—9))
< (01 = B0, —Bo)01 —2)l5 ™
= (16, = B2)(32 = Bo)lsID(G)ls')! **.

Similarly,
ID(F)l§"? < (161 —B1)02— BIsID(G)Is")! ™.
Thus we get

ID(F)ls < (181 —B1 )61 — B2)02— B1)(02— B)lsID(G)ls) **
= (IR(F, G)ls|D(G)ls)* **

which is just (4.7). O

Proof of Theorem 2A. Let F(X,Y), G[X,Y)eOs[X, Y] be binary forms of
degrees r > 2, s > 3, respectively, such that F(1,0)=G(1,0)=1, FG is square-
free, and FG has splitting field L over K. Denote by T the set of places on L lying
above those in S. Then

r s

FX, V)= [] X-BY), GX,Y)=]] (X-4;Y)

i=1 j=1

with f;,0;e Opfor1 <i<r,1<j<s Lete>0withe < 1/6 and put J = ¢/100.
The constants implied by « depend only on L, S and &. Finally, put

FooX, Y)=(X—-B,YX—B,Y) forp,qe{l,...,r},p<gq,
G(X, Y)=(X—8,Y)X —5,Y) fori,je{l,...,s}hi<j.

Pick p,qe{l,...,r} with p<gq. Let I be the collection of pairs (i,j) with
1 <i<j < ssuchthat G is related to F,,. Then I consists of the pairs (i, j) with
0;+6;=B,+ B, Since d,,...,0, are distinct, the pairs in I must be pairwise
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disjoint. Therefore, since s > 3,

s 1/(s
#1 < [5] <3 <2> 4.9)
By Lemma 3 (with L, T instead of K, S) we have
ID(F )l < |R(F g Gij)l3* 2 for (i, j)¢ 1. (4.10)
But, by (1.1) and (1.2) we have

[1 R(F,p» Gyj) = R(F,,, Gy . @.11)

1<i<jss
Together with (4.9) and (4.10) this implies

|D(qu)IT < < 1_[ IR(qu, th)l%‘

1<i<j<s

924

3(1+9/6)
< ( l—[ |R(qu’ Gij)'T)

1<i<jss

)(1 +ONE— #1)

= |R(F g, G)|§ 95, 4.12)

By Lemma 3, (4.10), (4.11) and (4.12) we get

ID(G)‘T= 1_[ |D(Gij)|T= 1_[ ID(Gij)!T'(H ID(Gij)lT

1<i<jss 1<i<j<s i,j)el
()¢l
) 1+46
<<< l_[ |R(qu9 Gij)IT l—[ ID(qu)lT
1<i<jss (i,))el

= (IR(F g G)3*~VID(F, )| +?
< (|R(F,,, G)3*~V-|R(F G)|(T#”'6/S)(1+5)’,

pq> pa>

which gives, together with (4.9),
ID(G)|1 < |R(F,q, )3~ DA+, 4.13)
Finally, from (4.12), (4.13), and the relations

[1 R(F,,G)=R(F, Gy

1<p<gqsr
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and
6(1+8) < 6(1+5)2 < (é - .e)‘l

it follows that

6(1 +9)/s
ID(F)|r = . [T ID(F,plr « (1 [ IR(F,, G)lr)

Sp<qsr <p<gq<r
= [R(F, G)§r~N1+3s « |R(F, G)|§~NV6-97"s

and

3(s—1N1+6)*/3)
|D(G)IT < < l_[ |R(qu= G)'T)

1<p<qs<r

= R(F, G~ X+ < R(F, G)fg~M6=070,

This implies Theorem 2A, since |x|; = |x|g for xe K.

5. Proof of Theorem 1A

Let again K be an algebraic number field and S a finite set of places on K. We

first prove a special case of Theorem 1A.
LEMMA 4. Let F, Ge Os5[ X, Y] be binary forms such that

FX, Y)=TI2_, (X —B;Y) witha;, B;elC fori=1,2,3,
G(X, Y)=TII3_, (y;x—08;Y) withy;, ;€05 for j=1,2,3,

F- G is square- free.

Then for all ¢ > 0 we have
IR(F, G)ls > CTE"(K, S, el(ID(F)D(G)|s)>>* .
Proof. We use an idea from [6]. Put

Ajy=0;0;—Biy; fori,j=123,

= aiﬁj—ajﬂi, BU = y,éj—yjél fOI’ i,j = 1, 2, 3, i #j.

ij
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It is easy to check that

All A12 A13
det A21 A22 A23 = 0
A31 A32 A33

or, by expanding the determinant,
Uy tu,+ust+us+us+ug =0, (5.3)
where

Uy =A1105,A33, u3=A1,0,3051, us=A13A5,4A3,,
Uy=—A11A23A5;, us=—A138;1A53, ug=—A1305A5,. (54)

Take i, j, k, 1€{1,2,3} with i#j, k#1 and choose h,m such that
{i,j,h}={k,I,m}={1,2,3}. Then from the product rule for determinants it
follows that

AijBkl = AikAjl ‘AuAﬂu

From (5.4) it follows that there are p,q with 1 < p < g < 6, p # g(mod 2) such
that Ay A Ay, = T up, AyAyAy,= Fu,. Hence

4By = t A, (uy+u,). (5.5)

Here h, m, p and q are uniquely determined by the sets {i, j}, {k, I} and vice versa.
Hence if {i, j}, {k, [} run through the subsets of {1,2,3} of cardinality 2, then
(h, m) runs through the ordered pairs from {1, 2, 3} and (p, q) runs through the
pairs with 1 < p < g < 6, p # q(mod 2). Hence, by taking the product over all
sets {i, j}, {k, I} and using the fact that

3 3
R(F, G) = L1l Ay, D(F) = (A124334;3)% D(G)= (B12B,3B,3)%, (5.6)
we get
(D(F)D(G))** = +R(F, G)~! ]_[ (up,+uy,). 5.7

1<p<q<6
p#q(mod 2)
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From (4.2) we infer that |u, 4 u,|s < 2Hg(u,, u,). By inserting this into (5.7) we get

ID(F)D(G)3? < 2°|R(F, G)ls*  []  Hs(u,, u,). (5.8)
1<p<q<6
p#4q(mod?2)

Put R:= R(F, G). Then R # 0. We recall that

Ui tu,tus+us+us+ug=0. (5.3)
Further, by (5.7),

u,+u, #0 for1 <p<qg<6 withp=#qg(mod?2). (5.9
Finally, by (5.4),

UUslUs = —UUslUg = R. (5.10)
Let U be the set of vectors u=(u, ..., us) € O¢ satisfying (5.3), (5.9) and (5.10).

Lemma 4 follows at once from (5.8) and

LEMMA 5. For every u = (uy,...,ug)€ U and every ¢ > 0 we have

[T Hslu, u) < CEHUK, S, IR (5.11)
1<p<q<6

p#q(mod2)

Proof. Put 6 = ¢/100. The constants implied by « depend only on K, S and e.
The idea is to consider all partitions of (5.3) into minimal vanishing subsums and
to apply Lemma 2 to these subsums. We can reduce the number of cases to be
considered by using (5.9) and the following symmetric property of U:

for every u=(u,,...,us)e U and each permutation ¢ of (1,...,6)
with 6(i)—o(j) = i — j(mod 2) for i,je{l,..., 6},
there is an ae {0, 1} with (—1)%(u,qq), . . ., Uye) € U. (5.12)

Take (u,,...,ug)e U and put

A= [l Hsu, u)

1<p<q<6
p#4(mod2)

Because of (5.9), (5.12), it suffices to derive the upper bound for 4 in each of the
four following cases:
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() uytu,+uz+u,+us+ug=0, X, ,u; #0 for each proper non-empty
subset I of {1,...,6}.
(i) uy +u3=0, u,+uy+us+ug=0, X;.;u; # 0 for each proper non-empty
subset I of {2,4,5,6}.
(iil) uy +u, +u3=0, uy+us+us =0.
@iv) uy+us+us=0, u,+u,+ueg=0.

We shall frequently use the following obvious properties of Hg:
Hg(Ax)=|A|sHg(x) for AeK, xeK";

Hs(xx,Vn- . -’xnyn) S HS(xl’” -7xn)HS(y17~ -'7yn) fOI' xls"'aynEK;
Hg(xT, ..., x7)={Hg(xy,...,x)}" for x,,...,x,eK, meN.

(5.13)

Case i. For p, ge{l,...,6} with p # g(mod 2) we have, by Lemma 2 and
(5.10),

Hy(up, ug) < Hy(uy, ..., ug) < [uy--ugls "°=|RIF* %,
whence
A< |R|38118% « |R|L8*e
Case ii. For (p, 9)=(2,5), (4,5), (5,6) we have, by Lemma 2 and (5.10),

Hg(up, uy) < Hs(uz, ug, us, ug) < |usugusugls ™°

< luy - uglit® « |RZT2 (5.19)
By (5.10) and u3; = —u,, we have
(U3, u3) = (uy/us)usus, usus).
By applying (5.13), Lemma 2 and (5.10) we get

Hg(uy, u2)2 < |(uz/us)lsHg(uy, uy)Hg(us, s)
< |(uz/us)|sHs(uz, uy, us, “6)2 < |(“2/“5)|s|“2u4'/15u6|§H‘5

< Jup f(uguzus)islu, “‘“6|§ t2 = |u2|s|R|§ T4 L |RI§+M-
Hence

Hg(u,, uy) < |R|§+26-
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Similarly, we obtain that also Hg(u,, u,) < |R|3*?° for (p, q) =(1,4), (1,6), (2,3),
(3,4), (3, 6). Together with (5.14) this implies

A« |R|}8+18% « |R|L8*e

Case iii. This is the most difficult case. For (p, ¢)=(1,2), (2, 3) we have, by
Lemma 2,

Hs(up, uq) < Hg(uy, uy, u3) < |“1u2“3|§+6-

Similarly, for (p, q)=(4, 5), (5, 6) we have Hg(u,, u,) < |ususugls *°. Together with
(5.10) this implies

Hg(uy, up)Hg(u,, us)Hg(uy, us)Hs(us, ug)

& uy - ugl2 T = |RET. (5.15)
By (5.10) we have
(uy, uy) = (uyuy/R)—uyug, Usls).
Together with (5.13), Lemma 2 and again (5.10), this implies

Hg(uy, uy) < |“1“4IS|R|3—1HS(“2a u3)Hg(ug, s)
< |uguyls|Rls IHS(ula Uy, u3)Hg(uy, us, ug)

1+6

< |“1“4|S|R|s_1|“1“2“3|§+6|“4“5“6|s = |u1“4|s|R|§+25-

By a similar argument, we get Hg(u,, u,) < |u,u,ls|R|s* 2 for (p, 9)=(1, 6), (3, 4),
(3, 6). Hence, by (5.10) we obtain

Hg(uy, ug)Hg(uy, ug)Hg(uz, uy)Hg(us, uq)

< Iu1u4 * u1u6 * u3u4 : u3“6|S|R|g+8‘s
<oy ug BRI = RIS, (16

Finally, by (5.10) we have

(uz, us) = R‘l(—u§u4u6, “1“3“%)-
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Together with (5.13), Lemma 2 and (5.10), this gives

Hg(u,, us) < |Rls 'Hg(uz, uy)Hg(uz, us)Hg(ug, us)Hg(us, us)
< |R|s_1Hs(“1a Us, “3)2Hs(“4, Us, u6)2

< |RIg luy-ugl§ T2 = [RIFT
By combining this with (5.15) and (5.16), we obtain
A « |R|L5*160 « |R|E8+,
Case iv. By (5.10) we have
(@3, u3) = (uyuz/RY—uiusue, ujusus).
Together with (5.13), |u,u,|s < |R|%, Lemma 2 and (5.10) this implies

Hg(uy, u2)3 < |ugu,R™ 1|sHs(ub u3)Hs(uy, us)Hg(uy, uy)Hg(ug, uy)
< |R|sHg(uy, us, us)*Hg(u,, uy, ug)

< |R|s(|uyusus|slusuguels)** 20 = |R3*¥.
Therefore,

Hs(uy, up) < [RI§ 472,

21

Similarly, we obtain that Hg(u,, u,)<|R|§**?* for all pairs (p,q) with

1<p<q<6,p#*qg(mod?2). Hence
A« |R|é5+126 &< |Rlé8+8-

This completes the proof of Lemma 5 and hence that of Lemma 4.

O

Proof of Theorem 1A. Let F,Ge Os[X, Y] be binary forms of degrees r > 3,
s = 3, respectively, such that FG is square-free, and FG has splitting field L over
K. Denote by H the Hilbert class field of L/Q and by T the set of places on H
lying above those in S. Note again that H and T depend only on L and S. Let

¢ > 0. The constants implied by > depend only onr, s, L, S and .
We have

FX, D = [T @X-gY). 60 1= [T 6X—6)



22 J. H. Evertse and K. Gyéry
with «;, B, y;, 6;€O0rfor 1 <i<r, 1 <j<s. Put

Fopg(X, Y)=(0,X — B, Y )0, X — B, YN, X —B,Y) forl<n<p<gq<r,
and

Giu(X, )= X=6;Y)y;X —6,Y)n X —6,Y) forl<i<j<k<s.

From Lemma 4 it follows with H, T instead of K, S that for ISn<p<g<r,
I<i<j<k<s,

IR(anq’ Gijk)IT > (lD(anq)D(Gijk)lT) 3/34- 38/2' (517)
Further,
R(F,

npq>
1Sn<p<gq<r 1<i<j<k<s

D(anq)=D(FrA27 1_[ D(Gijk)=D(G)s_2‘

1<n<p<g<r 1<i<j<k<s

Gi;) = R(F, G)(’E‘)(’E‘),

Hence, by (5.17), we have

102he2Y
IR(Fs G)lT = { I—[ H IR(anqa Gijk)lT}

1<n<p<q<r 1<i<j<k<s

> {< l_[ H |D(anq)'T>
1<i<j<k<s 1<n<p<gq<r
< H l_[ ID(Gijk)IT

1<n<p<q<r 1<i<j<k<s

}(3/34—3.9/2)/(';')(*3')

= {ID(F)l5— 29| D(G)f~ 20} ¢34 =34/2/C3X' 3"

= (ID(F)e~ VID(G)s )17,

Since x| = |x|g for x € K, this implies Theorem 1A.
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