Compositio Mathematica

J. H. Evertse
 K. GYÖRY
 Lower bounds for resultants, I

Compositio Mathematica, tome 88, $\mathrm{n}^{\circ} 1$ (1993), p. 1-23
http://www.numdam.org/item?id=CM_1993_88_1_1_0
© Foundation Compositio Mathematica, 1993, tous droits réservés.
L'accès aux archives de la revue «Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

Lower bounds for resultants, I

J. H. EVERTSE ${ }^{1}$ and K. GYÖRY ${ }^{2}$

To Professor P. Erdös on his 80th birthday
${ }^{1}$ Department of Mathematics and Computer Science, University of Leiden, P.O. Box 9512, 2300 RA Leiden, The Netherlands; ${ }^{2}$ Mathematical Institute, Kossuth Lajos University, 4010 Debrecen, Hungary

Received 3 August 1992; accepted 25 February 1993

1. Introduction

The resultant of two binary forms $F(X, Y)=a_{0} X^{r}+a_{1} X^{r-1} Y+\cdots+a_{r} Y^{r}$ and $G(X, Y)=b_{0} X^{s}+b_{1} X^{s-1} Y+\cdots+b_{s} Y^{s}$ is defined by the determinant

$$
R(F, G)=\left|\begin{array}{cccccc}
a_{0} & \cdots & a_{r} & & & \mathbf{0} \\
& a_{0} & \cdots & a_{r} & & \\
& & \ddots & & \ddots & \\
\mathbf{0} & & & a_{0} & \cdots & a_{r} \\
& & & a_{0} & & \\
b_{0} & b_{1} & \cdots & b_{s} & \mathbf{0} \\
\mathbf{0} & \ddots & & \ddots & \\
& & b_{0} & b_{1} & \cdots & b_{s} .
\end{array}\right|
$$

where the first s rows consist of coefficients of F, and the last r rows of coefficients of G. If

$$
F(X, Y)=\prod_{i=1}^{r}\left(\alpha_{i} X-\beta_{i} Y\right), \quad G(X, Y)=\prod_{j=1}^{s}\left(\gamma_{j} X-\delta_{j} Y\right)
$$

then

$$
\begin{equation*}
R(F, G)=\prod_{i=1}^{r} \prod_{j=1}^{s}\left(\alpha_{i} \delta_{j}-\beta_{i} \gamma_{j}\right) . \tag{1.1}
\end{equation*}
$$

[^0]For a matrix $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$, put $F_{U}(X, Y)=F(a X+b Y, c X+d Y)$ and define G_{U} similarly. The following properties of resultants are well-known:

$$
\left.\begin{array}{l}
R(\lambda F, \mu G)=\lambda^{s} \mu^{r} R(F, G) ; R\left(F_{U}, G_{U}\right)=(\operatorname{det} U)^{r s} R(F, G) ; \\
R\left(F_{1} F_{2}, G\right)=R\left(F_{1}, G\right) R\left(F_{2}, G\right) \text { for binary forms } F_{1}, F_{2}, G ; \\
\left.\begin{array}{ll}
R(G, F)=(-1)^{r s} R(F, G) ; & \\
R(F, G+H F)=R(F, G) & \text { if } r \leqslant s \text { and } H \text { is a binary form }
\end{array}\right\}, \text { with } \operatorname{deg} H=s-r .
\end{array}\right\}
$$

The discriminant of $F(X, Y)=a_{0} X^{r}+a_{1} X^{r-1} Y+\cdots+a_{r} Y^{r}=$ $\Pi_{i=1}^{r}\left(\alpha_{i} X-\beta_{i} Y\right)$ is equal to

$$
\begin{equation*}
D(F)=\prod_{1 \leqslant i<j \leqslant r}\left(\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}\right)^{2} \tag{1.3}
\end{equation*}
$$

$D(F)$ is a homogeneous polynomial of degree $2 r-2$ in $\mathbb{Z}\left[a_{0}, \ldots, a_{r}\right]$. From (1.3) it follows that for every $\lambda \neq 0$ and non-singular matrix $U=\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)$

$$
\begin{equation*}
D(\lambda F)=\lambda^{2 r-2} D(F), \quad D\left(F_{U}\right)=(\operatorname{det} U)^{r(r-1)} D(F) \tag{1.4}
\end{equation*}
$$

In this paper we derive, for binary forms $F, G \in \mathbb{Z}[X, Y]$, lower bounds for $|R(F, G)|$ in terms of $|D(F)|$ and $|D(G)|$. If $F(X, Y)$ is a binary form with coefficients in a field K, then the splitting field of F over K is the smallest extension of K over which F can be factored into linear forms. We call F square-free if it is not divisible by the square of a linear form over its splitting field. Hence F is squarefree if and only if it has non-zero discriminant. By $C_{i}^{\text {ineff }}(\ldots)$ we denote positive numbers, depending only on the parameters between the parentheses, which cannot be computed effectively from our method of proof.

THEOREM 1. Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $r \geqslant 3$ and $G \in \mathbb{Z}[X, Y]$ a binary form of degree $s \geqslant 3$ such that $F G$ has splitting field L over \mathbb{Q}, and $F G$ is square-free. Then for every $\varepsilon>0$ we have

$$
|R(F, G)| \geqslant C_{1}^{\text {ineff }}(r, s, L, \varepsilon)\left(|D(F)|^{s /(r-1)}|D(G)|^{r /(s-1)}\right)^{1 / 17-\varepsilon} .
$$

The exponent $1 / 17$ is probably far from best possible. Since $R(F, G)$ has degree s in the coefficients of F and degree r in the coefficients of G, whereas $D(F)$ has degree $2 r-2$ in the coefficients of F and $D(G)$ has degree $2 s-2$ in the coefficients of $G, 1 / 17$ cannot be replaced by a number larger than $1 / 2$. In case that both F
and G are monic, i.e. $F(1,0)=1, G(1,0)=1$, we can obtain a better lower bound for $|R(F, G)|$. Also, in this case the proof is easier.

THEOREM 2. Let $F \in \mathbb{Z}[X, Y]$ be a binary form of degree $r \geqslant 2$ and $G \in \mathbb{Z}[X, Y]$ a binary form of degree $s \geqslant 3$ such that $F \cdot G$ has splitting field L over $\mathbb{Q}, F G$ is square-free and $F(1,0)=1, G(1,0)=1$. Then for every $\varepsilon>0$ we have

$$
|R(F, G)| \geqslant C_{2}^{\text {ineff }}(r, s, L, \varepsilon)\left\{\max \left(|D(F)|^{s /(r-1)},|D(G)|^{r /(s-1)}\right)\right\}^{1 / 6-\varepsilon} .
$$

In Section 2 we shall show that the dependence of C_{1}, C_{2} on the splitting field L and the conditions concerning r and s in Theorems 1 and 2 are necessary.

We shall get Theorems 1 and 2 as special cases of more general results (cf. Theorems 1A and 2A in Section 2) concerning binary forms with coefficients in the ring of S-integers of an arbitrary algebraic number field. In Section 3 we state and prove some applications of our main results. Namely, we derive a semiquantitative version (cf. Corollaries 3, 4) of a result of Evertse and Győry ([4], Theorem 2(i)) on Thue-Mahler equations. Further, we deduce some extensions and generalizations (cf. Corollaries 1,2) of a result of Györy ([9], Theorem 7, algebraic number field case) on resultant equations. We note that recently Györy [10] has obtained some other generalizations as well as a quantitative version of our Corollary 2 on monic binary forms.

Our main results are proved in Sections 4 and 5. The main tools in our arguments are some results (cf. Lemma 2) of Evertse [3] and Laurent [11] whose proofs are based on Schlickewei's p-adic generalization [12] of the Subspace Theorem of Schmidt (see e.g. [14]). Therefore, our inequalities are not completely effective, but 'semi-effective', in the sense that they include ineffective constants.

2. Main results

We now state our generalizations over number fields. We first introduce normalized absolute values. Let K be an algebraic number field of degree d. Denote by $\sigma_{1}, \ldots, \sigma_{r_{1}}$ the embeddings $K \leftrightarrow \mathbb{R}$ and by $\left\{\sigma_{r_{1}+1}, \overline{\sigma_{r_{1}+1}}\right\}, \ldots$, $\left\{\sigma_{r_{1}+r_{2}}, \overline{\sigma_{r_{1}+r_{2}}}\right\}$ the pairs of complex conjugate embeddings $K \odot \mathbb{C}$. If v is the infinite place corresponding to $\sigma_{i}\left(i=1, \ldots, r_{1}\right)$ then put

$$
|x|_{v}=\left|\sigma_{i}(x)\right|^{1 / d} \quad \text { for } x \in K ;
$$

if v is the infinite place corresponding to $\left\{\sigma_{i}, \bar{\sigma}_{i}\right\}\left(i=r_{1}+1, \ldots, r_{1}+r_{2}\right)$ then put

$$
|x|_{v}=\left|\sigma_{i}(x)\right|^{2 / d} \quad \text { for } x \in K ;
$$

and if v is the finite place corresponding to the prime ideal \mathfrak{p} of the ring of integers \mathcal{O}_{K} of K then put

$$
|x|_{v}=(N(\mathfrak{p}))^{-\operatorname{ord}_{p}(x) / d} \quad \text { if } x \neq 0 ;|0|_{v}=0
$$

where $N(\mathfrak{p})=\#\left(\mathcal{O}_{K} / \mathfrak{p}\right)$ is the norm of \mathfrak{p} and $\operatorname{ord}_{\mathfrak{p}}(x)$ is the exponent of \mathfrak{p} in the unique prime ideal decomposition of the ideal generated by x. Denote by \mathbb{M}_{K} the set of all infinite and finite places of K. The set of absolute values $\left\{|\cdot|_{v}: v \in \mathbb{M}_{K}\right\}$ just defined satisfies the Product Formula

$$
\prod_{v \in \mathbb{M}_{K}}|x|_{v}=1 \quad \text { for } x \in K^{*}
$$

and the Extension Formulas

$$
\prod_{w \mid v}|x|_{w}=\left|N_{L / K}(x)\right|_{v}^{1 /[L: K]} \text { for } x \in L, \quad \prod_{w \mid v}|x|_{w}=|x|_{v} \text { for } x \in K,
$$

where $v \in \mathbb{M}_{K}, L$ is a finite extension of K, and w runs through the places on L lying above v.

Each finite subset of \mathbb{M}_{K} we consider contains by convention all infinite places on K. Let S be such a finite set of places. Define the ring of S-integers and the group of S-units by

$$
\mathcal{O}_{S}=\left\{x \in K:|x|_{v} \leqslant 1 \text { for all } v \in \mathbb{M}_{K} \backslash S\right\}
$$

and

$$
\mathcal{O}_{S}^{*}=\left\{x \in K:|x|_{v}=1 \text { for all } v \in \mathbb{M}_{K} \backslash S\right\},
$$

respectively. For $x \in K$ we put

$$
|x|_{S}:=\prod_{v \in S}|x|_{v} .
$$

Note that $|x|_{S} \geqslant 1$ if $x \in \mathcal{O}_{S} \backslash\{0\}$ and $|x|_{S}=1$ if $x \in \mathcal{O}_{S}^{*}$. If L is a finite extension of K and T is the set of places on L lying above those in S, then \mathcal{O}_{T} is the integral closure of \mathcal{O}_{S} in L. Further, $|\cdot|_{T}$ is defined similarly as $|\cdot|_{S}$ and by the Extension Formulas we have

$$
\begin{equation*}
|x|_{T}=\left|N_{L / K}(x)\right|_{S}^{1 /[L: K]} \quad \text { for } x \in L ; \quad|x|_{T}=|x|_{S} \quad \text { for } x \in K . \tag{2.1}
\end{equation*}
$$

We can now state the generalizations of Theorems 1 and 2.

THEOREM 1A. Let $F, G \in \mathcal{O}_{S}[X, Y]$ be binary forms such that

$$
\begin{align*}
& \operatorname{deg} F=r \geqslant 3, \operatorname{deg} G=s \geqslant 3 \\
& F G \text { has splitting field } L \text { over } K, \text { and } F G \text { is square-free. } \tag{2.2}
\end{align*}
$$

Then for every $\varepsilon>0$ we have

$$
\begin{equation*}
|R(F, G)|_{s} \geqslant C_{3}^{\text {ineff }}(r, s, S, L, \varepsilon)\left(|D(F)|_{s}^{s(r-1)}|D(G)|_{s}^{r(s-1)}\right)^{1 / 17-\varepsilon} . \tag{2.3}
\end{equation*}
$$

THEOREM 2A. Let $F, G \in \mathcal{O}_{S}[X, Y]$ be binary forms such that

$$
\operatorname{deg} F=r \geqslant 2, \operatorname{deg} G=s \geqslant 3, F(1,0)=1, G(1,0)=1
$$

$$
\begin{equation*}
F G \text { has splitting field } L \text { over } K \text {, and } F G \text { is square-free } \tag{2.4}
\end{equation*}
$$

Then for every $\varepsilon>0$ we have

$$
|R(F, G)|_{s} \geqslant C_{4}^{\text {ineff }}(r, s, S, L, \varepsilon)\left\{\max \left(|D(F)|_{s}^{s /(r-1)},|D(G)|_{s}^{r /(s-1)}\right)\right\}^{1 / 6-\varepsilon}
$$

Theorems 1 and 2 follow at once from Theorems 1A and 2A, respectively, by taking $K=\mathbb{Q}$, and for S the only infinite place on \mathbb{Q}.
REMARK 1. The dependence on L of C_{1}, C_{2}, C_{3} and C_{4} is necessary. Indeed, let $F(X, Y) \in \mathbb{Z}[X, Y]$ be a monic binary form of degree r, suppose that $s \geqslant r$, and put $G(X, Y)=F(X, Y) X^{s-r}+Y^{s}$. We can choose F with $|D(F)|$ arbitrarily large such that $F \cdot G$ is square-free. On the other hand, from (1.2) it follows that

$$
\begin{aligned}
R(F, G) & =R\left(F, F X^{s-r}+Y^{s}\right)=R\left(F, Y^{s}\right)=R(F, Y)^{s} \\
& =R\left(X^{r}+Y(\ldots), Y\right)^{s}=R(X, Y)^{r s}=1
\end{aligned}
$$

REMARK 2. The conditions $r \geqslant 3, s \geqslant 3$ in Theorems 1 and 1A are necessary. For instance, take $F(X, Y)=X Y$. Let θ be an algebraic unit, put $M=\mathbb{Q}(\theta)$, and denote by $\theta_{1}, \ldots, \theta_{s}$ the conjugates of θ over \mathbb{Q}. Put $G_{n}(X, Y)=$ $\left(X-\theta_{1}^{n} Y\right) \cdots\left(X-\theta_{s}^{n} Y\right)$ for $n \in \mathbb{Z}$. Thus, $F G_{n}$ is square-free and has splitting field $\mathbb{Q}\left(\theta_{1}, \ldots, \theta_{s}\right)$. Further,

$$
\begin{aligned}
\left|R\left(F, G_{n}\right)\right| & =\left|R\left(X, G_{n}\right) R\left(Y, G_{n}\right)\right| \\
& =\left|G_{n}(0,1) G_{n}(1,0)\right|=\left|N_{M / \mathbb{Q}}(\theta)\right|^{n}=1
\end{aligned}
$$

for $n \in \mathbb{Z}$. But it follows from Györy ([7], Corollaire 1) that $\lim _{n \rightarrow \infty}\left|D\left(G_{n}\right)\right|=\infty$.
REMARK 3. The conditions $r \geqslant 2, s \geqslant 3$ in Theorems 2 and 2A are necessary.

For instance, let d be a positive integer which is not a square. For all $u, v \in \mathbb{Z}$ with $u^{2}-d v^{2}=1, \quad$ define $\quad F_{u}(X, Y)=X^{2}-u^{2} Y^{2}, \quad G_{v}(X, Y)=X^{2}-d v^{2} Y^{2}$. Then $R\left(F_{u}, G_{v}\right)=\left(u^{2}-d v^{2}\right)^{2}=1, F_{u} G_{v}$ is square-free, $F_{u} G_{v}$ has splitting field $\mathbb{Q}(\sqrt{d})$, $D\left(F_{u}\right)=4 u^{2}, D\left(G_{v}\right)=4 d v^{2}$, and hence $\left|D\left(F_{u}\right)\right|,\left|D\left(G_{v}\right)\right|$ can be arbitrarily large.

REMARK 4. For certain applications, the following technical variation on Theorem 1A might be useful.

By an \mathcal{O}_{S}-ideal we mean a finitely generated \mathcal{O}_{S}-submodule of K and by an integral \mathcal{O}_{S}-ideal, an \mathcal{O}_{S}-ideal contained in \mathcal{O}_{S}. The \mathcal{O}_{S}-ideal generated by x_{1}, \ldots, x_{k} is denoted by $\left(x_{1}, \ldots, x_{k}\right)_{s}$. If $P \in K\left[X_{1}, \ldots, X_{m}\right]$ then $(P)_{S}$ denotes the \mathcal{O}_{S}-ideal generated by the coefficients of P. For $x \in K^{*}$, there is a unique \mathcal{O}_{K}-ideal \mathfrak{a}^{*} composed of \mathcal{O}_{K}-prime ideals outside S, such that $(x)_{S}=\mathfrak{a}^{*} \mathcal{O}_{S}$. Then we have (see e.g. [4] or [5]) $|x|_{S}=\left|(x)_{S}\right|_{S}=N\left(\mathfrak{a}^{*}\right)^{1 / d}$. More generally, if \mathfrak{a} is an \mathcal{O}_{S}-ideal and \mathfrak{a}^{*} is the $\mathcal{O}_{\boldsymbol{K}}$-ideal composed of prime ideals outside S such that $\mathfrak{a}=\mathfrak{a}^{*} \mathcal{O}_{S}$, we put $|\mathfrak{a}|_{s}=N\left(\mathfrak{a}^{*}\right)^{1 / d}$. For a binary form $F \in K[X, Y]$ of degree r we define the discriminant $\mathcal{O}_{\mathbf{S}}$-ideal (cf. [5]) by

$$
\mathscr{D}_{S}(F)=(D(F))_{S} /(F)_{S}^{2 r-2},
$$

and for binary forms $F, G \in K[X, Y]$ of degrees r, s, respectively, we define the resultant \mathcal{O}_{S}-ideal by

$$
\mathscr{R}_{S}(F, G)=(R(F, G))_{S} /(F)_{S}^{s}(G)_{S}^{r} .
$$

Note that $\mathscr{D}_{S}(F), \mathscr{R}_{S}(F, G)$ are integral \mathcal{O}_{S}-ideals. Further, by (1.2), (1.4), $\mathscr{D}_{S}(\lambda F)=\mathscr{D}_{S}(F), \quad \mathscr{R}_{S}(\lambda F, \mu G)=\mathscr{R}_{S}(F, G)$ for $\lambda, \mu \in K^{*}$. Now suppose that $F, G \in K[X, Y]$ are binary forms satisfying (2.2). Then for all $\varepsilon>0$,

$$
\begin{equation*}
\left|\mathscr{R}_{s}(F, G)\right|_{s} \geqslant C_{s}^{\text {ineff }}(r, s, S, L, \varepsilon)\left(\left|\mathscr{Q}_{s}(F)\right|_{s}^{s / r-1)} \cdot \mid \mathscr{Q}_{S}(G) r_{S}^{\mid(s-1)}\right)^{1 / 17-\varepsilon} . \tag{2.5}
\end{equation*}
$$

This can be derived from (2.3) as follows. We can choose $\lambda, \mu \in K^{*}$ with

$$
\lambda \in(F)_{S}^{-1}, \quad|\lambda|_{S} \leqslant C_{K}\left|(F)_{S}^{-1}\right|_{S}
$$

and

$$
\mu \in(G)_{S}^{-1}, \quad|\mu|_{S} \leqslant C_{K}\left|(G)_{S}^{-1}\right|_{S}
$$

where C_{K} is some constant depending only on K (cf. [5], Lemma 4). Put $F^{\prime}=\lambda F$, $G^{\prime}=\mu G$. Then $F^{\prime}, G^{\prime} \in \mathcal{O}_{S}[X, Y]$. Further, $1 \leqslant\left|\left(F^{\prime}\right)_{S}\right|_{s},\left|\left(G^{\prime}\right)_{S}\right|_{S} \leqslant C_{K}$ (see [4], Section 4). Therefore,

$$
\left|\mathscr{R}_{S}(F, G)\right|_{S}=\left|\mathscr{R}_{S}\left(F^{\prime}, G^{\prime}\right)\right|_{S} \geqslant C_{K}^{-r-s}\left|R\left(F^{\prime}, G^{\prime}\right)\right|_{S}
$$

and

$$
\left|\mathscr{D}_{S}(F)\right|_{S}=\left|\mathscr{D}_{S}\left(F^{\prime}\right)\right|_{S} \leqslant\left|D\left(F^{\prime}\right)\right|_{S},\left|\mathscr{D}_{S}(G)\right|_{S} \leqslant\left|D\left(G^{\prime}\right)\right|_{S} .
$$

Together with (2.3), applied to F^{\prime}, G^{\prime}, this implies (2.5).

3. Applications

Let K be an algebraic number field and S a finite set of places on K. We consider the resultant inequality

$$
\begin{equation*}
0<|R(F, G)|_{S} \leqslant A \tag{3.1}
\end{equation*}
$$

in square-free binary forms $F, G \in \mathcal{O}_{S}[X, Y]$ where $A \geqslant 1$ is fixed. For the moment, we fix G and let only F vary. Note that if F is a solution of (3.1) then so is εF for all $\varepsilon \in \mathcal{O}_{S}^{*}$. We need the following lemma to derive our corollaries from Theorems 1A and 2A.

LEMMA 1. Let G be a fixed square-free binary form of degree $s \geqslant 3$ and L a fixed finite normal extension of K containing the splitting field of G. Then up to multiplication by S-units, there are only finitely many non-constant square-free binary forms $F \in \mathcal{O}_{S}[X, Y]$ with splitting field contained in L that satisfy (3.1). Further, each of these binary forms F has degree at most $C_{6}(L, S, A)$, where $C_{6}(L, S, A)$ is a number depending only on L, S and A.

Proof. Let H be the Hilbert class field of L / \mathbb{Q} and T be the set of places on H lying above those in S. Note that H, T depend only on L, S. Denote by \mathcal{O}_{T} the ring of T-integers in H. Let $F \in \mathcal{O}_{S}[X, Y]$ be a non-constant square-free binary form with splitting field contained in L that satisfies (3.1). Since H is the Hilbert class field of $L / \mathbb{Q}, F$ and G can be factored as

$$
F(X, Y)=\prod_{i=1}^{r}\left(\alpha_{i} X-\beta_{i} Y\right), \quad G(X, Y)=\prod_{j=1}^{s}\left(\gamma_{j} X-\delta_{j} Y\right)
$$

with $\alpha_{i}, \beta_{i}, \gamma_{j}, \delta_{j} \in \mathcal{O}_{T}$. Here the γ_{j}, δ_{j} are fixed, and the α_{i}, β_{i} unknowns. There are non-zero elements $\sigma_{j} \in H, j=1,2,3$, such that

$$
\sigma_{1}\left(\gamma_{1} X-\delta_{1} Y\right)+\sigma_{2}\left(\gamma_{2} X-\delta_{2} Y\right)+\sigma_{3}\left(\gamma_{3} X-\delta_{3} Y\right)=0
$$

Put $\Delta_{i j}=\alpha_{i} \delta_{j}-\beta_{i} \gamma_{j}$ for $1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s$. Then

$$
\begin{equation*}
\sigma_{1} \Delta_{i 1}+\sigma_{2} \Delta_{i 2}+\sigma_{3} \Delta_{i 3}=0 \quad \text { for } i=1, \ldots, r \tag{3.2}
\end{equation*}
$$

Each number $\Delta_{i j}$ divides $R(F, G)$ in \mathcal{O}_{T}. From (2.1) and (3.1) it follows that $|R(F, G)|_{T} \leqslant A$. Hence $\left|\Delta_{i j}\right|_{T} \leqslant A$ for $1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s$. There is a finite set \mathscr{C}_{1}, depending only on H, T and A, hence only on L, S and A, such that every $x \in \mathcal{O}_{T}$ with $|x|_{T} \leqslant A$ can be expressed as $a \eta$ with $a \in \mathscr{C}_{1}$ and $\eta \in \mathcal{O}_{T}^{*}$ (see e.g. Lemma 1 in [4]). Therefore, we have $\Delta_{i k}=a_{i k} \eta_{i k}$ with $a_{i k} \in \mathscr{C}_{1}$ and $\eta_{i k} \in \mathcal{O}_{T}^{*}$. By (3.2), the pair $\left(\eta_{i 1} / \eta_{i 3}, \eta_{i 2} / \eta_{i 3}\right)$ is a solution of the unit equation

$$
\sigma_{1} a_{i 1} x+\sigma_{2} a_{i 2} y+\sigma_{3} a_{i 3}=0 \quad \text { in } x, y \in \mathcal{O}_{T}^{*}
$$

By Theorem 1 of Evertse [2], the number of solutions of each such unit equation is bounded above by a number N depending only on H and T. This implies that there is a set \mathscr{C}_{2} of cardinality $\leqslant N \cdot\left(\# \mathscr{C}_{1}\right)^{3} \leqslant C_{6}(L, S, A)$, such that $\left(\Delta_{i 1}, \Delta_{i 2}, \Delta_{i 3}\right)$ can be expressed as $\rho_{i}\left(x_{i}, y_{i}, z_{i}\right)$ with $\rho_{i} \in \mathcal{O}_{T}^{*}$ and $\left(x_{i}, y_{i}, z_{i}\right) \in \mathscr{C}_{2}$ for $i=1, \ldots, r$. It follows now that there is a set \mathscr{C}_{3} of cardinality $\leqslant C_{6}(L, S, A)$ such that for $i=1, \ldots, r$ we have $\left(\alpha_{i}, \beta_{i}\right)=\rho_{i}\left(u_{i}, v_{i}\right)$ with $\rho_{i} \in \mathcal{O}_{T}^{*}$ and $\left(u_{i}, v_{i}\right) \in \mathscr{C}_{3}$. Since F is square-free, the pairs $\left(\alpha_{1}, \beta_{1}\right), \ldots,\left(\alpha_{r}, \beta_{r}\right)$ are pairwise non-proportional, and hence $r \leqslant C_{6}(L, S, A)$. Further, it follows easily that up to multiplication by S units, there are only finitely many square-free binary forms $F \in \mathcal{O}_{S}[X, Y]$ satisfying (3.1).

REMARK 5. Now fix G, but not the splitting field of F. If $G(X, Y)=\Pi_{j=1}^{s}\left(\gamma_{j} X-\delta_{j} Y\right)$, then $R(F, G)=\Pi_{j=1}^{s} F\left(\delta_{j}, \gamma_{j}\right)$ is a product of linear forms in the coefficients of F, i.e. a decomposable form. Hence for fixed $G,(3.1)$ is a special case of a decomposable form inequality. Wirsing [15] proved that if $G \in \mathbb{Z}[X, Y]$ has degree $s \geqslant 3$ and is square-free and if

$$
\begin{equation*}
r \geqslant 1, \quad 2 r\left(1+\frac{1}{3}+\cdots+\frac{1}{2 r-1}\right)<s \tag{3.3}
\end{equation*}
$$

then there are only finitely many binary forms $F \in \mathbb{Z}[X, Y]$ of degree r satisfying $|R(F, G)| \leqslant A$. Schmidt [13] proved the same result with $r \geqslant 1,2 r<s$ instead of (3.3), but under the additional condition that G is not divisible by a non-constant binary form in $\mathbb{Z}[X, Y]$ of degree $\leqslant r$.

Győry ([9], Theorem 7) was the first to consider (3.1) where both F, G are unknowns. Call two pairs of binary forms $(F, G),\left(F^{\prime}, G^{\prime}\right) S$-equivalent if

$$
F^{\prime}=\varepsilon F_{U}, \quad G^{\prime}=\eta G_{U}
$$

with some $\varepsilon, \eta \in \mathcal{O}_{S}^{*}$ and $U \in S L_{2}\left(\mathcal{O}_{S}\right)\left(=\left\{\left(\begin{array}{ll}a & b \\ c & d\end{array}\right): a, b, c, d \in \mathcal{O}_{S}, a d-b c=1\right\}\right)$. (1.2) implies that if (F, G) is a solution of (3.1) then so is $\left(F^{\prime}, G^{\prime}\right)$ for every pair ($\left.F^{\prime}, G^{\prime}\right) S$-equivalent to F. Györy [9] considered (3.1) for monic F, G. We extend
his result to non-monic F, G. Fix a finite normal extension L of K and put

$$
V_{1}(L):=\left\{\begin{array}{l}
(F, G): F, G \text { are binary forms of degree } \geqslant 3 \text { in } \mathcal{O}_{S}[X, Y], \\
F G \text { is square-free, } F G \text { has splitting field } L .
\end{array}\right\} .
$$

COROLLARY 1. Up to S-equivalence, (3.1) has only finitely many solutions $(F, G) \in V_{1}(L)$.

Proof. C_{7}, C_{8} will denote constants depending only on S, L and A. Let $(F, G) \in V_{1}(L)$ be a pair satisfying (3.1). By Lemma 1 we have $\operatorname{deg} F=: r \leqslant C_{7}$, $\operatorname{deg} G=: s \leqslant C_{7}$. Together with Theorem 1A and $|R(F, G)|_{s} \leqslant A$ this implies that

$$
\begin{equation*}
|D(G)|_{s} \leqslant C_{8} \tag{3.4}
\end{equation*}
$$

By Theorem 3 of [5], there is a finite set \mathscr{C} of binary forms $\tilde{G} \in \mathcal{O}_{S}[X, Y]$, depending only on K, S and C_{8} and hence only on L, S and A, such that

$$
G=\eta \tilde{G}_{U} \quad \text { for some } \tilde{G} \in \mathscr{C}, \eta \in \mathcal{O}_{S}^{*}, U \in S L_{2}\left(\mathcal{O}_{S}\right) .
$$

Theorem 3 of [5] was proved effectively but in its ineffective and qualitative form that we need here, it is only a slight generalization of Theorem 2 of Birch and Merriman [1]. Note that

$$
0<\left|R\left(F_{U^{-1}}, \tilde{G}\right)\right|_{S}=|R(F, G)|_{S} \leqslant A
$$

Together with Lemma 1 this implies that there is a finite set \mathscr{C} ' of binary forms $\tilde{F} \in \mathcal{O}_{S}[X, Y]$, depending only on L, S and A, such that $F_{U^{-1}}=\varepsilon \tilde{F}$ with $\tilde{F} \in \mathscr{C}^{\prime}$, $\varepsilon \in \mathcal{O}_{S}^{*}$. This implies that $F=\varepsilon \tilde{F}_{U}, G=\eta \widetilde{G}_{U}$ with $\tilde{F} \in \mathscr{C} \mathscr{C}^{\prime}, \tilde{G} \in \mathscr{C}$ which proves Corollary 1.

Györy's result in [9] was concerned with the set
$V_{2}(L):=\left\{\begin{array}{l}(F, G): F, G \text { are binary forms in } \mathcal{O}_{S}[X, Y] \text { with degrees } \\ \text { at least } 2 \text { and at least } 3, \text { respectively, such } \\ \text { that } F(1,0)=1, G(1,0)=1, F G \text { is square-free, } \\ F G \text { has splitting field } L .\end{array}\right\}$
It follows from Theorem 7 of [9] (which was established more generally over arbitrary integrally closed and finitely generated domains over \mathbb{Z}) that up to equivalence defined by $(F, G) \sim\left(F_{U}, G_{U}\right)$ with $U=\left(\begin{array}{ll}1 & b \\ 0 & 1\end{array}\right), b \in \mathcal{O}_{S}$, there are only finitely many $(F, G) \in V_{2}(L)$ with a given non-zero resultant. We call the pairs
$(F, G),\left(F^{\prime}, G^{\prime}\right)$ in $V_{2}(L)$ strongly S-equivalent if there are $\varepsilon \in \mathcal{O}_{S}^{*}, a \in \mathcal{O}_{S}$ such that

$$
F^{\prime}=\varepsilon^{-\operatorname{deg} F} F(\varepsilon x+a Y, Y), \quad G^{\prime}=\varepsilon^{-\operatorname{deg} G} G(\varepsilon x+a Y, Y)
$$

The next corollary is a consequence of Theorem 2A.

COROLLARY 2. Up to strong S-equivalence, (3.1) has only finitely many solutions $(F, G) \in V_{2}(L)$.

Corollary 2 has recently been generalized in [10] by the second author to the case when the ground ring is an arbitrary finitely generated and integrally closed ring with 1 in a finitely generated extension of \mathbb{Q}.

Proof. C_{9}, C_{10} will denote constants depending only on S, L and A. Let $(F, G) \in V_{2}(L)$ be a pair satisfying (3.1). Note that $R(\hat{F}, G)=R(F, G)$, where $\hat{F}(X, Y)=F(X, Y) Y$. By applying Lemma 1 to \hat{F}, G, we infer that $\operatorname{deg} F=: r \leqslant C_{9}$, $\operatorname{deg} G=: s \leqslant C_{9}$. Together with Theorem 2 A and (3.1), this implies that $|D(G)|_{s} \leqslant C_{10}$. Since G is monic, we have by Theorem 1 of [8] that there is a finite set \mathscr{C} of monic binary forms $\tilde{G} \in \mathcal{O}_{S}[X, Y]$, depending only on S, L and A, such that $G=\varepsilon^{-\operatorname{deg} G} \tilde{G}(\varepsilon x+a Y, Y)$ for some $\tilde{G} \in \mathscr{C}, \varepsilon \in \mathcal{O}_{S}^{*}, a \in \mathcal{O}_{S}$. Now the proof of Corollary 2 is completed in the same way as that of Corollary 1 . We have to notice that in Lemma 1, a monic binary form that is determined up to multiplication by an S-unit, is uniquely determined.

We now consider the Thue-Mahler inequality

$$
\begin{equation*}
0<|F(x, y)|_{S} \leqslant A \quad \text { in } x, y \in \mathcal{O}_{S} \tag{3.5}
\end{equation*}
$$

where $F(X, Y) \in \mathcal{O}_{S}[X, Y]$ is a square-free binary form of degree at least 3 , and $A \geqslant 1$. Two solutions $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right)$ of (3.5) are called proportional if $\left(x_{2}, y_{2}\right)=\lambda\left(x_{1}, y_{1}\right)$ for some $\lambda \in K^{*}$. As a special case of Corollary 1 we get Theorem 2(i) of [4].

COROLLARY 3. For every $A \geqslant 1$ and for any finite normal extension L of K, there are only finitely many S-equivalence classes of square-free binary forms $F \in \mathcal{O}_{S}[X, Y]$ of degree at least 3 and splitting field L over K for which (3.5) has more than two pairwise non-proportional solutions.

Proof. Let F be an arbitrary but fixed binary form with the properties specified in Corollary 3, and suppose that (3.5) has three pairwise non-proportional solutions $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$. Let

$$
G(X, Y)=\left(y_{1} X-x_{1} Y\right)\left(y_{2} X-x_{2} Y\right)\left(y_{3} X-x_{3} Y\right)
$$

Then

$$
0<|R(F, G)|_{S}=\left|F\left(x_{1}, y_{1}\right) F\left(x_{2}, y_{2}\right) F\left(x_{3}, y_{3}\right)\right|_{S} \leqslant A^{3}
$$

Further, $F G$ is square-free and has splitting field L. By applying now Corollary 1 to F and G we get that indeed there are only finitely many possibilities for F up to S-equivalence.

Using Theorem 1 A , we can prove the following:
COROLLARY 4. Let $A \geqslant 1$, and let $F \in \mathcal{O}_{S}[X, Y]$ be a square-free binary form of degree $r \geqslant 3$ with splitting field L such that

$$
\begin{equation*}
|D(F)|_{S} \geqslant C_{11}^{\mathrm{ineff}}(r, L, S) A^{18(r-1)} \tag{3.6}
\end{equation*}
$$

Then (3.5) has at most two pairwise non-proportional solutions.
By Theorem 3 of [5] there are only finitely many S-equivalence classes of square-free binary forms $F \in \mathcal{O}_{S}[X, Y]$ for which $|D(F)|_{S}$ is bounded. Hence Corollary 4 can be regarded as a "semi-quantitative" version of Corollary 3.

Proof. Suppose that (3.5) has three pairwise non-proportional solutions $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right)$. Take G as in the proof of Corollary 3. Then by Theorem 1A we have

$$
\begin{aligned}
A^{3} & \geqslant\left|F\left(x_{1}, y_{1}\right) F\left(x_{2}, y_{2}\right) F\left(x_{3}, y_{3}\right)\right|_{S}=|R(F, G)|_{S} \\
& \geqslant C_{12}^{\text {ineff }}(r, L, S)\left(|D(F)|_{S}^{3 /(r-1)}\right)^{1 / 18}
\end{aligned}
$$

which contradicts (3.6) for sufficiently large C_{11}.

4. Proof of Theorem 2A

Let K be an algebraic number field of degree d, and S a finite set of places on K. For $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right) \in K^{n}$, put

$$
|\mathbf{x}|_{v}=\left|x_{1}, \ldots, x_{n}\right|_{v}:=\max \left(\left|x_{1}\right|_{v}, \ldots,\left|x_{n}\right|_{v}\right) \text { for } v \in \mathbb{M}_{K}
$$

and

$$
\begin{equation*}
H_{S}(\mathbf{x})=H_{S}\left(x_{1}, \ldots, x_{n}\right):=\prod_{v \in S} \max \left(\left|x_{1}\right|_{v}, \ldots,\left|x_{n}\right|_{v}\right) . \tag{4.1}
\end{equation*}
$$

For $v \in \mathbb{M}_{K}$, put $s(v)=1 / d$ if v corresponds to an embedding $\sigma: K \odot \mathbb{R}$, put
$s(v)=2 / d$ if v corresponds to a pair of complex conjugate embeddings $\sigma, \bar{\sigma}: K \curvearrowright \mathbb{C}$, and put $s(v)=0$ if v is finite. Thus $\Sigma_{v \in S} s(v)=1$, and

$$
\left|x_{1}+\cdots+x_{n}\right|_{v} \leqslant n^{s(v)}\left|x_{1}, \ldots, x_{n}\right|_{v} \text { for } v \in \mathbb{M}_{K}, x_{1}, \ldots, x_{n} \in K
$$

Therefore,

$$
\begin{equation*}
\left|x_{1}+\cdots+x_{n}\right|_{s} \leqslant n H_{S}\left(x_{1}, \ldots, x_{n}\right) \text { for } x_{1}, \ldots, x_{n} \in K . \tag{4.2}
\end{equation*}
$$

The following lemma is our basic tool.

LEMMA 2. Let x_{1}, \ldots, x_{n} be elements of \mathcal{O}_{S} with

$$
\left\{\begin{array}{l}
x_{1}+\cdots+x_{n}=0 \tag{4.3}\\
\Sigma_{i \in I} x_{i} \neq 0 \text { for each proper non-empty subset } I \text { of }\{1, \ldots, n\} .
\end{array}\right.
$$

Then for all $\varepsilon>0$ we have

$$
\begin{equation*}
H_{S}\left(x_{1}, \ldots, x_{n}\right) \leqslant C_{13}^{\mathrm{ineff}}(K, S, \varepsilon)\left|\prod_{i=1}^{n} x_{i}\right|_{S}^{1+\varepsilon} \tag{4.4}
\end{equation*}
$$

Proof. This is Lemma 6 of Laurent [11]. Laurent was, in his paper [11], the first to use results of this type to derive "semi-effective" estimates for certain Diophantine problems. Laurent's Lemma 6 is an easy consequence of Theorem 2 of Evertse [3], and the latter was derived from Schlickewei's p-adic generalization of the Subspace Theorem [12]. The constant in (4.4) is ineffective since the Subspace Theorem is ineffective.

We derive Theorem 2A from a result on pairs of monic quadratic forms. A pair of monic quadratic forms

$$
F(X, Y)=X^{2}+b_{1} X Y+c_{1} Y^{2}, \quad G(X, Y)=X^{2}+b_{2} X Y+c_{2} Y^{2}
$$

is said to be related if $b_{1}=b_{2}$, and unrelated if $b_{1} \neq b_{2}$.

LEMMA 3. Let $F \in \mathcal{O}_{S}[X, Y], G \in \mathcal{O}_{S}[X, Y]$ be quadratic forms with

$$
\left\{\begin{array}{l}
F(1,0)=1, G(1,0)=1 \tag{4.5}\\
F G \text { is square-free, } F G \text { has splitting field } K \text { over } K .
\end{array}\right.
$$

Then for all $\varepsilon>0$ we have

$$
\begin{align*}
& |D(F)|_{s} \leqslant C_{14}^{\text {ineff }}(K, S, \varepsilon)|R(F, G)|_{s}^{2(1+\varepsilon)} \quad \text { if } F, G \text { are unrelated, } \tag{4.6}\\
& |D(F)|_{s} \leqslant C_{15}^{\text {ineff }}(K, S, \varepsilon)\left(|R(F, G)|_{S}|D(G)|_{S}\right)^{1+\varepsilon} \quad \text { if } F, G \text { are related. } \tag{4.7}
\end{align*}
$$

Proof. We may assume that

$$
\begin{aligned}
& F(X, Y)=\left(X-\beta_{1} Y\right)\left(X-\beta_{2} Y\right), \\
& G(X, Y)=\left(X-\delta_{1} Y\right)\left(X-\delta_{2} Y\right),
\end{aligned}
$$

where $\beta_{1}, \beta_{2}, \delta_{1}, \delta_{2}$ are distinct elements of \mathcal{O}_{S}. Take $\varepsilon>0$. The constants implied by << are ineffective and depend only on K, S and ε.

First assume that F, G are unrelated. Then $\beta_{1}+\beta_{2} \neq \delta_{1}+\delta_{2}$. We apply Lemma 2 to

$$
\begin{equation*}
\left(\beta_{1}-\delta_{1}\right)-\left(\beta_{1}-\delta_{2}\right)-\left(\beta_{2}-\delta_{1}\right)+\left(\beta_{2}-\delta_{2}\right)=0 \tag{4.8}
\end{equation*}
$$

Note that each sum formed from a proper non-empty subset of

$$
\left\{\left(\beta_{1}-\delta_{1}\right),-\left(\beta_{1}-\delta_{2}\right),-\left(\beta_{2}-\delta_{1}\right),\left(\beta_{2}-\delta_{2}\right)\right\}
$$

is different from 0 . Further, by (1.3), (1.1), respectively, we have

$$
\begin{aligned}
& D(F)=\left(\beta_{1}-\beta_{2}\right)^{2} \\
& R(F, G)=\left(\beta_{1}-\delta_{1}\right)\left(\beta_{1}-\delta_{2}\right)\left(\beta_{2}-\delta_{1}\right)\left(\beta_{2}-\delta_{2}\right) .
\end{aligned}
$$

Hence, by (4.2) and (4.4), applied to (4.8),

$$
\begin{aligned}
|D(F)| S^{1 / 2} & =\left|\beta_{1}-\beta_{2}\right|_{S}=\left|\left(\beta_{1}-\delta_{1}\right)-\left(\beta_{2}-\delta_{1}\right)\right|_{S} \\
& \leqslant 2 H_{S}\left(\beta_{1}-\delta_{1}, \beta_{2}-\delta_{1}\right) \\
& \leqslant 2 H_{S}\left(\beta_{1}-\delta_{1},-\left(\beta_{1}-\delta_{2}\right),-\left(\beta_{2}-\delta_{1}\right), \beta_{2}-\delta_{2}\right) \\
& \ll\left|\left(\beta_{1}-\delta_{1}\right)\left(\beta_{1}-\delta_{2}\right)\left(\beta_{2}-\delta_{1}\right)\left(\beta_{2}-\delta_{2}\right)\right|_{S}^{1+\varepsilon}=|R(F, G)|_{S}^{1+\varepsilon}
\end{aligned}
$$

which implies (4.6).
Now assume that F and G are related. Then $\beta_{1}+\beta_{2}=\delta_{1}+\delta_{2}$. Therefore,

$$
\beta_{1}-\beta_{2}=\delta_{1}+\delta_{2}-2 \beta_{2}=\left(\delta_{1}-\beta_{2}\right)+\left(\delta_{2}-\beta_{2}\right) .
$$

We apply Lemma 2 to the identity

$$
\left(\delta_{1}-\beta_{2}\right)-\left(\delta_{2}-\beta_{2}\right)-\left(\delta_{1}-\delta_{2}\right)=0
$$

and obtain, using again (4.2),

$$
\begin{aligned}
|D(F)|_{S}^{1 / 2} & =\left|\beta_{1}-\beta_{2}\right|_{S}=\left|\left(\delta_{1}-\beta_{2}\right)+\left(\delta_{2}-\beta_{2}\right)\right|_{S} \\
& \leqslant 2 H_{S}\left(\delta_{1}-\beta_{2}, \delta_{2}-\beta_{2}\right) \\
& \leqslant 2 H_{S}\left(\delta_{1}-\beta_{2},-\left(\delta_{2}-\beta_{2}\right),-\left(\delta_{1}-\delta_{2}\right)\right) \\
& <\left|\left(\delta_{1}-\beta_{2}\right)\left(\delta_{2}-\beta_{2}\right)\left(\delta_{1}-\delta_{2}\right)\right|_{S}^{1+\varepsilon} \\
& =\left(\left|\left(\delta_{1}-\beta_{2}\right)\left(\delta_{2}-\beta_{2}\right)\right|_{S}|D(G)|_{S}^{1 / 2}\right)^{1+\varepsilon}
\end{aligned}
$$

Similarly,

$$
|D(F)|_{S}^{1 / 2} \ll\left(\left|\left(\delta_{1}-\beta_{1}\right)\left(\delta_{2}-\beta_{1}\right)\right|_{S}|D(G)|_{S}^{1 / 2}\right)^{1+\varepsilon} .
$$

Thus we get

$$
\begin{aligned}
|D(F)|_{S} & \ll\left(\left|\left(\delta_{1}-\beta_{1}\right)\left(\delta_{1}-\beta_{2}\right)\left(\delta_{2}-\beta_{1}\right)\left(\delta_{2}-\beta_{2}\right)\right|_{S}|D(G)|_{S}\right)^{1+\varepsilon} \\
& =\left(|R(F, G)|_{S}|D(G)|_{S}\right)^{1+\varepsilon}
\end{aligned}
$$

which is just (4.7).
Proof of Theorem $2 A$. Let $F(X, Y), G[X, Y) \in \mathcal{O}_{S}[X, Y]$ be binary forms of degrees $r \geqslant 2, s \geqslant 3$, respectively, such that $F(1,0)=G(1,0)=1, F G$ is squarefree, and $F G$ has splitting field L over K. Denote by T the set of places on L lying above those in S. Then

$$
F(X, Y)=\prod_{i=1}^{r}\left(X-\beta_{i} Y\right), \quad G(X, Y)=\prod_{j=1}^{s}\left(X-\delta_{j} Y\right)
$$

with $\beta_{i}, \delta_{j} \in \mathcal{O}_{T}$ for $1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s$. Let $\varepsilon>0$ with $\varepsilon<1 / 6$ and put $\delta=\varepsilon / 100$. The constants implied by <<depend only on L, S and ε. Finally, put

$$
\begin{aligned}
& F_{p q}(X, Y)=\left(X-\beta_{p} Y\right)\left(X-\beta_{q} Y\right) \text { for } p, q \in\{1, \ldots, r\}, p<q, \\
& G_{i j}(X, Y)=\left(X-\delta_{i} Y\right)\left(X-\delta_{j} Y\right) \text { for } i, j \in\{1, \ldots, s\}, i<j
\end{aligned}
$$

Pick $p, q \in\{1, \ldots, r\}$ with $p<q$. Let I be the collection of pairs (i, j) with $1 \leqslant i<j \leqslant s$ such that $G_{i j}$ is related to $F_{p q}$. Then I consists of the pairs (i, j) with $\delta_{i}+\delta_{j}=\beta_{p}+\beta_{q}$. Since $\delta_{1}, \ldots, \delta_{s}$ are distinct, the pairs in I must be pairwise
disjoint. Therefore, since $s \geqslant 3$,
$\# I \leqslant\left[\frac{s}{2}\right] \leqslant \frac{1}{3}\binom{s}{2}$.
By Lemma 3 (with L, T instead of K, S) we have
$\left|D\left(F_{p q}\right)\right|_{T} \ll\left|R\left(F_{p q}, G_{i j}\right)\right|_{T}^{2(1+\delta)} \quad$ for $(i, j) \notin I$.
But, by (1.1) and (1.2) we have

$$
\begin{equation*}
\prod_{1 \leqslant i<j \leqslant s} R\left(F_{p q}, G_{i j}\right)=R\left(F_{p q}, G\right)^{s-1} . \tag{4.11}
\end{equation*}
$$

Together with (4.9) and (4.10) this implies

$$
\begin{align*}
\left|D\left(F_{p q}\right)\right|_{T} & \ll\left(\prod_{\substack{1 \leqslant i<j \leqslant s \\
(i, j) \neq I}}\left|R\left(F_{p q}, G_{i j}\right)\right|_{T}^{2}\right)^{(1+\delta) /((\xi)-\# I)} \\
& \leqslant\left(\prod_{1 \leqslant i<j \leqslant s}\left|R\left(F_{p q}, G_{i j}\right)\right|_{T}\right)^{3(1+\delta) /(5)} \\
& =\left|R\left(F_{p q}, G\right)\right|_{T}^{6(1+\delta) / s} . \tag{4.12}
\end{align*}
$$

By Lemma 3, (4.10), (4.11) and (4.12) we get

$$
\begin{aligned}
|D(G)|_{T} & =\prod_{1 \leqslant i<j \leqslant s}\left|D\left(G_{i j}\right)\right|_{T}=\prod_{\substack{1 \leqslant i<j \leqslant s \\
(i, j) \neq I}}\left|D\left(G_{i j}\right)\right|_{T} \cdot \prod_{(i, j) \in I}\left|D\left(G_{i j}\right)\right|_{T} \\
& \ll\left(\prod_{1 \leqslant i<j \leqslant s}\left|R\left(F_{p q}, G_{i j}\right)\right|_{T}^{2} \prod_{(i, j) \in I}\left|D\left(F_{p q}\right)\right|_{T}\right)^{1+\delta} \\
& =\left(\left|R\left(F_{p q}, G\right)\right|_{T}^{2(s-1)}\left|D\left(F_{p q}\right)\right|_{T}^{\# I}\right)^{1+\delta} \\
& \leqslant\left(\left|R\left(F_{p q}, G\right)\right|_{T}^{2(s-1)} \cdot\left|R\left(F_{p q}, G\right)\right|_{T}^{(\# I) \cdot 6 / s}\right)^{(1+\delta)^{2}}
\end{aligned}
$$

which gives, together with (4.9),

$$
\begin{equation*}
|D(G)|_{T} \ll\left|R\left(F_{p q}, G\right)\right|_{T}^{3(s-1)(1+\delta)^{2}} . \tag{4.13}
\end{equation*}
$$

Finally, from (4.12), (4.13), and the relations

$$
\prod_{1 \leqslant p<q \leqslant r} R\left(F_{p q}, G\right)=R(F, G)^{r-1}
$$

and

$$
6(1+\delta)<6(1+\delta)^{2}<\left(\frac{1}{6}-\varepsilon\right)^{-1}
$$

it follows that

$$
\begin{aligned}
|D(F)|_{T} & =\prod_{1 \leqslant p<q \leqslant r} \mid D\left(F_{p q}| |_{T} \ll\left(\prod_{1 \leqslant p<q \leqslant r}\left|R\left(F_{p q}, G\right)\right|_{T}\right)^{6(1+\delta) / s}\right. \\
& \left.=|R(F, G)|_{T}^{(r-1)}(1+\delta)|s \ll| R(F, G)\right)_{T}^{(r-1)(1 / 6-\varepsilon)^{-1 / s}}
\end{aligned}
$$

and

$$
\begin{aligned}
|D(G)|_{T} & \ll\left(\prod_{1 \leqslant p<q \leqslant r}\left|R\left(F_{p q}, G\right)\right|_{T}\right)^{3(s-1)(1+\delta)^{2} /(\xi)} \\
& =|R(F, G)|_{T}^{(s-1) \times 1+\delta)^{2} / r} \ll|R(F, G)|_{T}^{(S-1)(1 / 6-\varepsilon)^{-1} / r} .
\end{aligned}
$$

This implies Theorem 2A, since $|x|_{T}=|x|_{S}$ for $x \in K$.

5. Proof of Theorem 1A

Let again K be an algebraic number field and S a finite set of places on K. We first prove a special case of Theorem 1A.

LEMMA 4. Let $F, G \in \mathcal{O}_{S}[X, Y]$ be binary forms such that

$$
\begin{array}{ll}
F(X, Y)=\Pi_{i=1}^{3}\left(\alpha_{i} X-\beta_{i} Y\right) & \text { with } \alpha_{i}, \beta_{i} \in \mathcal{O}_{S} \text { for } i=1,2,3, \\
G(X, Y)=\Pi_{j=1}^{3}\left(\gamma_{j} x-\delta_{j} Y\right) & \text { with } \gamma_{j}, \delta_{j} \in \mathcal{O}_{S} \text { for } j=1,2,3, \tag{5.1}\\
F \cdot G \text { is square-free. } &
\end{array}
$$

Then for all $\varepsilon>0$ we have

$$
\begin{equation*}
|R(F, G)|_{S} \geqslant C_{16}^{\text {ineff }}(K, S, \varepsilon)\left(|D(F) D(G)|_{S}\right)^{3 / 34-\varepsilon} . \tag{5.2}
\end{equation*}
$$

Proof. We use an idea from [6]. Put

$$
\begin{aligned}
& \Delta_{i j}=\alpha_{i} \delta_{j}-\beta_{i} \gamma_{j} \text { for } i, j=1,2,3, \\
& A_{i j}=\alpha_{i} \beta_{j}-\alpha_{j} \beta_{i}, B_{i j}=\gamma_{i} \delta_{j}-\gamma_{j} \delta_{i} \quad \text { for } i, j=1,2,3, i \neq j .
\end{aligned}
$$

It is easy to check that

$$
\operatorname{det}\left(\begin{array}{lll}
\Delta_{11} & \Delta_{12} & \Delta_{13} \\
\Delta_{21} & \Delta_{22} & \Delta_{23} \\
\Delta_{31} & \Delta_{32} & \Delta_{33}
\end{array}\right)=0
$$

or, by expanding the determinant,

$$
\begin{equation*}
u_{1}+u_{2}+u_{3}+u_{4}+u_{5}+u_{6}=0 \tag{5.3}
\end{equation*}
$$

where

$$
\begin{align*}
& u_{1}=\Delta_{11} \Delta_{22} \Delta_{33}, \quad u_{3}=\Delta_{12} \Delta_{23} \Delta_{31}, \quad u_{5}=\Delta_{13} \Delta_{21} \Delta_{32}, \\
& u_{2}=-\Delta_{11} \Delta_{23} \Delta_{32}, \quad u_{4}=-\Delta_{12} \Delta_{21} \Delta_{33}, \quad u_{6}=-\Delta_{13} \Delta_{22} \Delta_{31} . \tag{5.4}
\end{align*}
$$

Take $i, j, k, \quad l \in\{1,2,3\}$ with $i \neq j, k \neq l$ and choose h, m such that $\{i, j, h\}=\{k, l, m\}=\{1,2,3\}$. Then from the product rule for determinants it follows that

$$
A_{i j} B_{k l}=\Delta_{i k} \Delta_{j l}-\Delta_{i l} \Delta_{j k}
$$

From (5.4) it follows that there are p, q with $1 \leqslant p<q \leqslant 6, p \not \equiv q(\bmod 2)$ such that $\Delta_{i k} \Delta_{j l} \Delta_{h m}= \pm u_{p}, \Delta_{i l} \Delta_{j k} \Delta_{h m}=\mp u_{q}$. Hence

$$
\begin{equation*}
A_{i j} B_{k l}= \pm \Delta_{h m}^{-1}\left(u_{p}+u_{q}\right) \tag{5.5}
\end{equation*}
$$

Here h, m, p and q are uniquely determined by the sets $\{i, j\},\{k, l\}$ and vice versa. Hence if $\{i, j\},\{k, l\}$ run through the subsets of $\{1,2,3\}$ of cardinality 2 , then (h, m) runs through the ordered pairs from $\{1,2,3\}$ and (p, q) runs through the pairs with $1 \leqslant p<q \leqslant 6, p \not \equiv q(\bmod 2)$. Hence, by taking the product over all sets $\{i, j\},\{k, l\}$ and using the fact that

$$
\begin{equation*}
R(F, G)=\prod_{i=1}^{3} \prod_{j=1}^{3} \Delta_{i j}, D(F)=\left(A_{12} A_{23} A_{13}\right)^{2}, D(G)=\left(B_{12} B_{23} B_{13}\right)^{2} \tag{5.6}
\end{equation*}
$$

we get

$$
\begin{equation*}
(D(F) D(G))^{3 / 2}= \pm R(F, G)^{-1} \prod_{\substack{1 \leqslant p<q \leqslant 6 \\ p \neq q(\bmod 2)}}\left(u_{p}+u_{q}\right) . \tag{5.7}
\end{equation*}
$$

From (4.2) we infer that $\left|u_{p}+u_{q}\right|_{S} \leqslant 2 H_{S}\left(u_{p}, u_{q}\right)$. By inserting this into (5.7) we get

$$
\begin{equation*}
|D(F) D(G)|_{s^{3}}^{3 / 2} \leqslant 2^{9}|R(F, G)|_{s}^{-1} \prod_{\substack{1 \leqslant p<q \leqslant 6 \\ p \neq q(\bmod 2)}} H_{S}\left(u_{p}, u_{q}\right) . \tag{5.8}
\end{equation*}
$$

Put $R:=R(F, G)$. Then $R \neq 0$. We recall that

$$
\begin{equation*}
u_{1}+u_{2}+u_{3}+u_{4}+u_{5}+u_{6}=0 \tag{5.3}
\end{equation*}
$$

Further, by (5.7),

$$
\begin{equation*}
u_{p}+u_{q} \neq 0 \text { for } 1 \leqslant p<q \leqslant 6 \text { with } p \not \equiv q(\bmod 2) . \tag{5.9}
\end{equation*}
$$

Finally, by (5.4),

$$
\begin{equation*}
u_{1} u_{3} u_{5}=-u_{2} u_{4} u_{6}=R \tag{5.10}
\end{equation*}
$$

Let U be the set of vectors $\mathbf{u}=\left(u_{1}, \ldots, u_{6}\right) \in \mathcal{O}_{S}^{6}$ satisfying (5.3), (5.9) and (5.10). Lemma 4 follows at once from (5.8) and

LEMMA 5. For every $\mathbf{u}=\left(u_{1}, \ldots, u_{6}\right) \in U$ and every $\varepsilon>0$ we have

$$
\begin{equation*}
\prod_{\substack{1 \leqslant p<q \leqslant 6 \\ p \neq q(\bmod 2)}} H_{S}\left(u_{p}, u_{q}\right) \leqslant C_{17}^{\mathrm{ineff}}(K, S, \varepsilon)|R|_{S}^{18+\varepsilon} . \tag{5.11}
\end{equation*}
$$

Proof. Put $\delta=\varepsilon / 100$. The constants implied by << depend only on K, S and ε. The idea is to consider all partitions of (5.3) into minimal vanishing subsums and to apply Lemma 2 to these subsums. We can reduce the number of cases to be considered by using (5.9) and the following symmetric property of U :

$$
\left\{\begin{array}{l}
\text { for every } \mathbf{u}=\left(u_{1}, \ldots, u_{6}\right) \in U \text { and each permutation } \sigma \text { of }(1, \ldots, 6) \tag{5.12}\\
\text { with } \sigma(i)-\sigma(j) \equiv i-j(\bmod 2) \text { for } i, j \in\{1, \ldots, 6\} \\
\text { there is an } a \in\{0,1\} \text { with }(-1)^{a}\left(u_{\sigma(1)}, \ldots, u_{\sigma(6)}\right) \in U .
\end{array}\right.
$$

Take $\left(u_{1}, \ldots, u_{6}\right) \in U$ and put

$$
A=\prod_{\substack{1 \leqslant p<q \leqslant 6 \\ p \neq q(\bmod 2)}} H_{S}\left(u_{p}, u_{q}\right) .
$$

Because of (5.9), (5.12), it suffices to derive the upper bound for A in each of the four following cases:
(i) $u_{1}+u_{2}+u_{3}+u_{4}+u_{5}+u_{6}=0, \Sigma_{i \in I} u_{i} \neq 0$ for each proper non-empty subset I of $\{1, \ldots, 6\}$.
(ii) $u_{1}+u_{3}=0, u_{2}+u_{4}+u_{5}+u_{6}=0, \Sigma_{i \in I} u_{i} \neq 0$ for each proper non-empty subset I of $\{2,4,5,6\}$.
(iii) $u_{1}+u_{2}+u_{3}=0, u_{4}+u_{5}+u_{6}=0$.
(iv) $u_{1}+u_{3}+u_{5}=0, u_{2}+u_{4}+u_{6}=0$.

We shall frequently use the following obvious properties of H_{s} :

$$
\left\{\begin{array}{l}
H_{S}(\lambda \mathbf{x})=|\lambda|_{S} H_{S}(\mathbf{x}) \text { for } \lambda \in K, \mathbf{x} \in K^{n} ; \tag{5.13}\\
H_{S}\left(x_{1} y_{1}, \ldots, x_{n} y_{n}\right) \leqslant H_{S}\left(x_{1}, \ldots, x_{n}\right) H_{S}\left(y_{1}, \ldots, y_{n}\right) \text { for } x_{1}, \ldots, y_{n} \in K \\
H_{S}\left(x_{1}^{m}, \ldots, x_{n}^{m}\right)=\left\{H_{S}\left(x_{1}, \ldots, x_{n}\right)\right\}^{m} \text { for } x_{1}, \ldots, x_{n} \in K, m \in \mathbb{N}
\end{array}\right.
$$

Case i. For $p, q \in\{1, \ldots, 6\}$ with $p \not \equiv q(\bmod 2)$ we have, by Lemma 2 and (5.10),

$$
H_{S}\left(u_{p}, u_{q}\right) \leqslant H_{S}\left(u_{1}, \ldots, u_{6}\right) \ll\left|u_{1} \cdots u_{6}\right|_{S}^{1+\delta}=|R|_{S}^{2+2 \delta}
$$

whence

$$
A \ll|R|_{S}^{18+18 \delta} \ll|R|_{S}^{18+\varepsilon} .
$$

Case ii. For $(p, q)=(2,5),(4,5),(5,6)$ we have, by Lemma 2 and (5.10),

$$
\begin{align*}
H_{S}\left(u_{p}, u_{q}\right) & \leqslant H_{S}\left(u_{2}, u_{4}, u_{5}, u_{6}\right) \ll\left|u_{2} u_{4} u_{5} u_{6}\right|_{S}^{1+\delta} \\
& \leqslant\left|u_{1} \cdots u_{6}\right|_{S}^{1+\delta} \ll|R|_{S}^{2+2 \delta} . \tag{5.14}
\end{align*}
$$

By (5.10) and $u_{3}=-u_{1}$, we have

$$
\left(u_{1}^{2}, u_{2}^{2}\right)=\left(u_{2} / u_{5}\right)\left(u_{4} u_{6}, u_{2} u_{5}\right)
$$

By applying (5.13), Lemma 2 and (5.10) we get

$$
\begin{aligned}
H_{S}\left(u_{1}, u_{2}\right)^{2} & \leqslant\left|\left(u_{2} / u_{5}\right)\right|_{S} H_{S}\left(u_{4}, u_{2}\right) H_{S}\left(u_{6}, u_{5}\right) \\
& \leqslant\left|\left(u_{2} / u_{5}\right)\right|_{S} H_{S}\left(u_{2}, u_{4}, u_{5}, u_{6}\right)^{2} \ll\left|\left(u_{2} / u_{5}\right)\right|_{S}\left|u_{2} u_{4} u_{5} u_{6}\right|_{S}^{2+2 \delta} \\
& \leqslant\left|u_{2} /\left(u_{1} u_{3} u_{5}\right)\right|_{S}\left|u_{1} \cdots u_{6}\right|_{S}^{2+2 \delta}=\left.\left|u_{2}\right|_{S}\right|_{S} ^{3+4 \delta} \leqslant|R|_{S}^{4+4 \delta}
\end{aligned}
$$

Hence

$$
H_{S}\left(u_{1}, u_{2}\right) \ll|R|_{S}^{2+2 \delta} .
$$

Similarly, we obtain that also $H_{S}\left(u_{p}, u_{q}\right) \ll|R|_{S}^{2+2 \delta}$ for $(p, q)=(1,4),(1,6),(2,3)$, $(3,4),(3,6)$. Together with (5.14) this implies

$$
A \ll|R|_{S}^{18+18 \delta} \ll|R|_{S}^{18+\varepsilon} .
$$

Case iii. This is the most difficult case. For $(p, q)=(1,2),(2,3)$ we have, by Lemma 2,

$$
H_{S}\left(u_{p}, u_{q}\right) \leqslant H_{S}\left(u_{1}, u_{2}, u_{3}\right) \ll\left|u_{1} u_{2} u_{3}\right|_{S}^{1+\delta} .
$$

Similarly, for $(p, q)=(4,5),(5,6)$ we have $H_{S}\left(u_{p}, u_{q}\right) \ll\left|u_{4} u_{5} u_{6}\right|_{S}^{1+\delta}$. Together with (5.10) this implies

$$
\begin{align*}
& H_{S}\left(u_{1}, u_{2}\right) H_{S}\left(u_{2}, u_{3}\right) H_{S}\left(u_{4}, u_{5}\right) H_{5}\left(u_{5}, u_{6}\right) \\
& \quad \ll\left|u_{1} \cdots u_{6}\right|_{S}^{2+2 \delta}=|R|_{S}^{4+4 \delta} . \tag{5.15}
\end{align*}
$$

By (5.10) we have

$$
\left(u_{1}, u_{4}\right)=\left(u_{1} u_{4} / R\right)\left(-u_{2} u_{6}, u_{3} u_{5}\right) .
$$

Together with (5.13), Lemma 2 and again (5.10), this implies

$$
\begin{aligned}
H_{S}\left(u_{1}, u_{4}\right) & \leqslant\left|u_{1} u_{4}\right| s|R| S^{-1} H_{S}\left(u_{2}, u_{3}\right) H_{S}\left(u_{6}, u_{5}\right) \\
& \leqslant\left|u_{1} u_{4}\right| S|R|_{S}^{-1} H_{S}\left(u_{1}, u_{2}, u_{3}\right) H_{S}\left(u_{4}, u_{5}, u_{6}\right) \\
& \ll\left|u_{1} u_{4}\right| S|R|_{S}^{-1}\left|u_{1} u_{2} u_{3}\right|_{S}^{1+\delta}\left|u_{4} u_{5} u_{6}\right|_{S}^{1+\delta}=\left|u_{1} u_{4}\right| S|R|_{S}^{1+2 \delta} .
\end{aligned}
$$

By a similar argument, we get $H_{S}\left(u_{p}, u_{q}\right) \ll\left|u_{p} u_{q}\right| S|R|_{S}^{1+2 \delta}$ for $(p, q)=(1,6),(3,4)$, $(3,6)$. Hence, by (5.10) we obtain

$$
\begin{align*}
& H_{S}\left(u_{1}, u_{4}\right) H_{S}\left(u_{1}, u_{6}\right) H_{S}\left(u_{3}, u_{4}\right) H_{S}\left(u_{3}, u_{6}\right) \\
& \quad \ll\left|u_{1} u_{4} \cdot u_{1} u_{6} \cdot u_{3} u_{4} \cdot u_{3} u_{6}\right|_{S}|R|_{S}^{4+8 \delta} \\
& \quad \leqslant\left|u_{1} \cdots u_{6}\right|_{S}^{2}|R|_{S}^{4+8 \delta}=|R|_{S}^{8+8 \delta} \tag{5.16}
\end{align*}
$$

Finally, by (5.10) we have

$$
\left(u_{2}, u_{5}\right)=R^{-1}\left(-u_{2}^{2} u_{4} u_{6}, u_{1} u_{3} u_{5}^{2}\right)
$$

Together with (5.13), Lemma 2 and (5.10), this gives

$$
\begin{aligned}
H_{S}\left(u_{2}, u_{5}\right) & \leqslant|R|_{S}^{-1} H_{S}\left(u_{2}, u_{1}\right) H_{S}\left(u_{2}, u_{3}\right) H_{S}\left(u_{4}, u_{5}\right) H_{S}\left(u_{6}, u_{5}\right) \\
& \leqslant|R|_{S}^{-1} H_{S}\left(u_{1}, u_{2}, u_{3}\right)^{2} H_{S}\left(u_{4}, u_{5}, u_{6}\right)^{2} \\
& \ll|R|_{S}^{-1}\left|u_{1} \cdots u_{6}\right|_{S}^{2+2 \delta}=|R|_{S}^{3+4 \delta}
\end{aligned}
$$

By combining this with (5.15) and (5.16), we obtain

$$
A \ll|R|_{S}^{15+16 \delta} \ll|R|_{S}^{18+\varepsilon} .
$$

Case iv. By (5.10) we have

$$
\left(u_{1}^{3}, u_{2}^{3}\right)=\left(u_{1} u_{2} / R\right)\left(-u_{1}^{2} u_{4} u_{6}, u_{2}^{2} u_{3} u_{5}\right) .
$$

Together with (5.13), $\left|u_{1} u_{2}\right|_{S} \leqslant|R|_{S}^{2}$, Lemma 2 and (5.10) this implies

$$
\begin{aligned}
H_{S}\left(u_{1}, u_{2}\right)^{3} & \leqslant\left|u_{1} u_{2} R^{-1}\right|_{S} H_{S}\left(u_{1}, u_{3}\right) H_{S}\left(u_{1}, u_{5}\right) H_{S}\left(u_{4}, u_{2}\right) H_{S}\left(u_{6}, u_{2}\right) \\
& \leqslant|R|_{S} H_{S}\left(u_{1}, u_{3}, u_{5}\right)^{2} H_{S}\left(u_{2}, u_{4}, u_{6}\right)^{2} \\
& \ll|R|_{S}\left(\left|u_{1} u_{3} u_{5}\right|_{S}\left|u_{2} u_{4} u_{6}\right| S\right)^{2+2 \delta}=|R|_{S}^{5+4 \delta}
\end{aligned}
$$

Therefore,

$$
H_{S}\left(u_{1}, u_{2}\right) \ll|R|_{S}^{(5+4 \delta) / 3} .
$$

Similarly, we obtain that $H_{S}\left(u_{p}, u_{q}\right) \ll|R|_{S}^{(5+4 \delta) / 3}$ for all pairs (p, q) with $1 \leqslant p<q \leqslant 6, p \not \equiv q(\bmod 2)$. Hence

$$
A \ll|R|_{S}^{15+12 \delta} \ll|R|_{S}^{18+\varepsilon} .
$$

This completes the proof of Lemma 5 and hence that of Lemma 4.
Proof of Theorem $1 A$. Let $F, G \in \mathcal{O}_{S}[X, Y]$ be binary forms of degrees $r \geqslant 3$, $s \geqslant 3$, respectively, such that $F G$ is square-free, and $F G$ has splitting field L over K. Denote by H the Hilbert class field of L / \mathbb{Q} and by T the set of places on H lying above those in S. Note again that H and T depend only on L and S. Let $\varepsilon>0$. The constants implied by > depend only on r, s, L, S and ε.

We have

$$
F(X, Y)=\prod_{i=1}^{r}\left(\alpha_{i} X-\beta_{i} Y\right), \quad G(X, Y)=\prod_{j=1}^{s}\left(\gamma_{j} X-\delta_{j} Y\right)
$$

with $\alpha_{i}, \beta_{i}, \gamma_{j}, \delta_{j} \in \mathcal{O}_{T}$ for $1 \leqslant i \leqslant r, 1 \leqslant j \leqslant s$. Put

$$
F_{n p q}(X, Y)=\left(\alpha_{n} X-\beta_{n} Y\right)\left(\alpha_{p} X-\beta_{p} Y\right)\left(\alpha_{q} X-\beta_{q} Y\right) \quad \text { for } 1 \leqslant n<p<q \leqslant r
$$

and

$$
G_{i j k}(X, Y)=\left(\gamma_{i} X-\delta_{i} Y\right)\left(\gamma_{j} X-\delta_{j} Y\right)\left(\gamma_{k} X-\delta_{k} Y\right) \quad \text { for } 1 \leqslant i<j<k \leqslant s
$$

From Lemma 4 it follows with H, T instead of K, S that for $1 \leqslant n<p<q \leqslant r$, $1 \leqslant i<j<k \leqslant s$,

$$
\begin{equation*}
\left|R\left(F_{n p q}, G_{i j k}\right)\right|_{T} \gg\left(\left|D\left(F_{n p q}\right) D\left(G_{i j k}\right)\right|_{T}\right)^{3 / 34-3 \varepsilon / 2} \tag{5.17}
\end{equation*}
$$

Further,

$$
\begin{aligned}
& \left.\prod_{1 \leqslant n<p<q \leqslant r} \prod_{1 \leqslant i<j<k \leqslant s} R\left(F_{n p q}, G_{i j k}\right)=R(F, G)^{(r-1)}\right)^{(s-1)}, \\
& \prod_{1 \leqslant n<p<q \leqslant r} D\left(F_{n p q}\right)=D(F)^{r-2}, \prod_{1 \leqslant i<j<k \leqslant s} D\left(G_{i j k}\right)=D(G)^{s-2} .
\end{aligned}
$$

Hence, by (5.17), we have

$$
\begin{aligned}
& |R(F, G)|_{T}=\left\{\prod_{1 \leqslant n<p<q \leqslant r} \prod_{1 \leqslant i<j<k \leqslant s}\left|R\left(F_{n p q}, G_{i j k}\right)\right|_{T}\right\}^{\left.1 /\left(r^{-1}\right)()^{(s-1}\right)} \\
& \gg\left\{\left(\prod_{1 \leqslant i<j<k \leqslant s} \prod_{1 \leqslant n<p<q \leqslant r}\left|D\left(F_{n p q}\right)\right|_{T}\right)\right. \\
& \cdot\left(\prod_{1 \leqslant n<p<q \leqslant r} \prod_{1 \leqslant i<j<k \leqslant s}\left|D\left(G_{i j k}\right)\right|_{T}\right\}^{(3 / 34-3 \varepsilon / 2) /\left(r_{2}^{-1}\right)\left(s_{2}^{-1}\right)} \\
& =\left\{|D(F)|_{T}^{(r-2)\left({ }_{3}^{(3)}\right)}|D(G)|_{T}^{(s-2)\left(3_{3}^{(}\right)}\right\}^{(3 / 34-3 \varepsilon / 2) /\left(r_{2}^{-1}\right)\left(e_{2}^{s-1}\right)} \\
& =\left(|D(F)|_{T}^{S(r-1)}|D(G)|_{T}^{r /(s-1)}\right)^{1 / 17-\varepsilon} .
\end{aligned}
$$

Since $|x|_{T}=|x|_{S}$ for $x \in K$, this implies Theorem 1A.

Acknowledgements

The authors are indebted to the referee for his helpful criticism.

References

[1] B. J. Birch and J. R. Merriman, Finiteness theorems for binary forms with given discriminant, Proc. London Math. Soc. 25 (1972) 385-394.
[2] J. H. Evertse, On equations in S-units and the Thue-Mahler equation, Invent. Math. 75 (1984), 561-584.
[3] J. H. Evertse, On sums of S-units and linear recurrences, Compositio Math. 53 (1984) 225-244.
[4] J. H. Evertse and K. Györy, Thue-Mahler equations with a small number of solutions, J. Reine Angew. Math. 399 (1989) 60-80.
[5] J. H. Evertse and K. Győry, Effective finiteness results for binary forms with given discriminant, Compositio Math. 79 (1991) 169-204.
[6] J. H. Evertse, K. Győry, C. L. Stewart and R. Tijdeman, On S-unit equations in two unknowns, Invent. Math. 92 (1988), 461-477.
[7] K. Győry, Sur les polynômes à coefficients entiers et de discriminant donné, Acta Arith. 23 (1973) 419-426.
[8] K. Győry, On polynomials with integer coefficients and given discriminant, V, p-adic generalizations, Acta Math. Acad. Sci. Hungar. 32 (1978), 175-190.
[9] K. Győry, On arithmetic graphs associated with integral domains, in: A Tribute to Paul Erdős (eds. A. Baker, B. Bollobás, A. Hajnal), pp. 207-222. Cambridge University Press, 1990.
[10] K. Györy, On the number of pairs of polynomials with given resultant or given semi-resultant, to appear.
[11] M. Laurent, Equations diophantiennes exponentielles, Invent. Math. 78 (1984) 299-327.
[12] H. P. Schlickewei, The p-adic Thue-Siegel-Roth-Schmidt theorem, Archiv der Math. 29 (1977) 267-270.
[13] W. M. Schmidt, Inequalities for resultants and for decomposable forms, in: Diophantine Approximation and its Applications (ed. C. F. Osgood), pp. 235-253, Academic Press, New York, 1973.
[14] W. M. Schmidt, Diophantine Approximation, Lecture Notes in Math. 785, Springer-Verlag, 1980.
[15] E. Wirsing, On approximations of algebraic numbers by algebraic numbers of bounded degree, in: Proc. Symp. Pure Math. 20 (1969 Number Theory Institute; ed. D. J. Lewis), pp. 213-247, Amer. Math. Soc., Providence, 1971.

[^0]: ${ }^{1}$ Research made possible by a fellowship of the Royal Netherlands Academy of Arts and Sciences (K.N.A.W.).
 ${ }^{2}$ Research supported in part by Grant 1641 from the Hungarian National Foundation for Scientific Research.

