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List of notations

W(Fq): The ring of Witt vectors of the field of q elements Fq where q = p’.
rco: The category whose objects are complete Artinian local rings with residue
field Fq and whose morphisms are local homomorphisms that are the identity on
the residue field.

K : A finite extension of Q, with ring of integers A.
G : Gal(KIK).
p : A residual representation, p : G ~ GLn(Fq).
REMARKS. All homomorphisms, including p above, are assumed continuous.
We take p &#x3E; 2 throughout this paper. All group schemes are commutative.

Introduction

Let R be in rcO and mR be the maximal ideal of R. Let 0393n(R) be the kernel of the
reduction map GLn(R) ~ GL"(Fq). Let p: G ~ GLn(R) be a homomorphism such
that 7c°p = p where 03C0 is the canonical projection R ~ RIMR = Fq.

We call p 1 and p2 strictly equivalent if pi = YP2 y-l for some Y in 0393n(R). A
strict equivalence class of lifts of p to R is called a deformation of p to R.

DEFINITION. Let p be given. For R in rcO we define Mazur’s functor
F: W° - Sets by F(R) = {the set of deformations of p to RI. Note that F is a
functor.

*The author held NSF graduate and Department of Education fellowships while this research was
conducted.

Compositio Mathematica 87: 269-286, 1993.
:0 1993 Kluwer Academic Publishers. Printed in the Netherlands.



270

Mazur has shown that F satisfies the first three Schlessinger criteria given
below. He has also shown that when p is absolutely irreducible, F satisfies the
fourth of these criteria. In fact, one needs only that the endomorphism ring of the
galois module associated to p be Fq to ensure that F satisfies the fourth criterion.
The argument used in [B] works with this weaker hypothesis. We let C(p)
denote this endomorphism ring. Schlessinger showed that a functor satisfying
these four criteria is pro-representable. Thus for such p there exists a universal
deformation ring, R(p). For more on these topics see [B], [Ml] and [Sch].
We want to define a modified version of Mazur’s functor. We restrict our

attention to those elements of F(R) such that the galois modules determined by
the deformation to R are the generic fibers of finite flat group schemes over A.
The aim of this paper is to do this functorially and in some cases compute the
(uni)versal flat deformation rings, Rfi(p). Mazur has considered in [Ml] a
restriction that is similar in the ordinary case. The results here apply in the
supersingular case. We find that if K = Qp, C(p) = Fq and p comes from the
generic fibre of finite flat group scheme over Zp then Rfl(03C1) = W(Fq)[[Ti, T2]].

Section 1

We let X be a property for finite W(Fq)[G]-modules such that the set of finite
W(Fq)[G]-modules with property X is closed under direct sums, subobjects and
quotients. We define a subfunctor Fx of F.

DEFINITION. We define Fx(R) to be those p in F(R) such that when viewed as
an W(Fq)[G]-module, p has property X. Note that R has finite cardinality and
we assume that p has property X.

PROPOSITION 1.1. Fx is a functor.
Proof. Let R and S be objects in 0 and q5: R ~ S a morphism in 0. Then it

suffices to show that 03C1 ~ FX(R) implies ~  03C1 ~ FX(S)

Let B = R" and D = S" as rings with G-actions. The map 0 induces a map
0": B ~ D of G-rings. As D is a finite ring, it is finitely generated as a B-module.
Let Xl, x2,..., xm generate D over B. Then we have a surjection of W(Fq)[G]-
modules 03A8: Bm ~ D given by 03A8(ei) = xi, where the ei are canonical basis

elements of Bm. As property X is closed under direct sums, Bm has property X.
As it is closed under quotients, D has property X, the desired result. Note that
for 0 - p to have property X we do not need R and S to be in rco. All we really
require is a homomorphism R ~ S of finite rings. This will come up in Section 4.
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DEFINITION. Let E:  ~ Sets be a functor such that E(Fq) is a point. Let R°,
RI, and R2 ~ 0 with morphisms Ri ~ Ro for i = 1, 2. We have the map:

The Schlessinger criteria are:

Hl. R2 ~ Ro small implies (*) is surjective.
H2. Ro = Fq, R2 = Fq [81 implies (*) is bijective.
H3. dim tE = dim(E(Fq[81»  oo.

H4. Ri = R2, R2 ~ Ro small implies (*) is bijective.

A map R - S is small if it is surjective and has kernel a principal ideal
annihilated by the maximal ideal of R. The dual numbers Fq [91 of Fq is the ring
with elements a + b03B5 where a and b are in Fq and g2 = 0. Schlessinger shows that
tE is a vector space over Fq . 

THEOREM 1.1. The functor F x satisfies the first three Schlessinger criteria. If
C(p) = Fq then FX also satisfies the fourth criterion.

Proof. We make use of the fact that Mazur’s functor, F, satisfies the criteria.
We first note that if we have Hl for FX then the rest follow.

H2. As Fq[03B5] ~ Fq is small, (*) is surjective for FX by Hl for FX. We know (*) is
bijective for F so (*) must be injective for FX.

H3. From Lemma 2.10 of [Sch] we know tF x and tF are Fq spaces. We have
tFX ~ tF which is finite dimensional and we are done.

H4. Here we suppose C(p) = Fq. By Hl for FX, (*) is surjective for FX. By H4 for
F, (*) is bijective for F. Thus (*) is bijective for FX.

Thus we only need verify Hl for FX. Let Ro, R1, and R2 be as in Hl and put
R3 = R1  R0 R2. Let 03C11  03C10 03C12 ~ FX(R1)  FX(R0) FX(R2). By Hl for F we can
choose p E F(R3) such that p - pi  03C10 03C12 under the map:

We show p has property X. We easily see that the map R3 ~ R1 x R2 is injective
so the map

is an injective map of W(Fq)[G]-modules. As the W(Fq)[G]-modules determined
by pl and P2 have property X and the W(Fq)[G]-module determined by p is a
submodule of their direct sum we are done.

PROPOSITION 1.2. Let p have property X and suppose C(p) = Fq. Let R(p) and
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Rx(p) be the pro-representing objects of F and FX respectively. Then the map
R(03C1) ~ Rx(p) is surjective, i.e. FX is a closed subfunctor of F.

Proof. Let S be the image of R(p) in Rx(p). Then the universal property X
deformation to Rx(p) factors through S. As S is a subring of Rx(p) this

deformation to S lies in lim FX(S/mlS). Thus by universality there is a unique map
RX(03C1) ~ S. Composing this with the injection S - Rx(p) we recover the

deformation to Rx(p). By universality this composed map is the identity so the
map S - Rx(p) is surjective and we have S = RX(03C1) the desired result.

Section 2

We now provide two examples of property X which are closed under direct
sums, subobjects and quotients. Recall that K is a finite extension of Q p with ring
of integers A. We need the following lemma.

LEMMA 2.1. Let 0 ~ T ~ U - V ~ 0 be an exact sequence of G-modules.

Suppose U is the generic fibre of a finite flat group scheme U over A. Then there
are unique finite fiat group schemes f7 and 1/ over A such that the above sequence
is the generic fibre of the exact sequence

of finite flat group schemes over A.
Proof. The idea is to take for f7 the schematic closure of T in U. One then

takes 0/11f7 for "1/. See [S] and [R] for details.

DEFINITION. Let Ffl be the subfunctor of F consisting of those p E F(R) such
that the galois module determined by p is the generic fiber of a finite flat group
scheme over A.

From the above lemma and the fact that a direct sum of finite flat group
schemes over A is again a finite flat group scheme over A we see that Ffl is a
functor satisfying the Schlessinger criteria. Thus when C(p) = Fq we have that
Ffl is pro-representable. Note that there is no assumption on the ramification of
A.

For the second example of property X we need to review the modules of
[FoLa]. We are only concerned with a special case of their modules and we
assume, in their notation, that -9 = Zp throughout. Here we insist that K be
unramified over Qp. Let 6 be the absolute Frobenius.
A filtered Dieudonné A-module is an A-module furnished with a decreasing,

exhaustive, separated filtration (M’)icz of sub-A-modules such that for each
integer i, we have a 6-semi-linear map ~i: Mi ~ M. Furthermore it is required
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that for x ~ Mi+1, ~i+1(x) = p~i(x). These filtered modules form a Zp-linear
additive category, MF.
We denote by MFt f the full subcategory of MF whose objects M have

underlying spaces that are A-modules of finite length and satisfy 1 Im ~i = M.
The category MF f j is a full subcategory of MFfor whose objects satisfy M° = M
and.M’ = 0. We call RepfZp the category of finite Zp[G]-modules. In [FoLa] they
construct a faithful exact contravariant functor, Us : MFf,qtor ~ RepfZp. They show
that when restricted to certain subcategories of MFf,", US is fully faithful. All we
will need is their result that Us is fully faithful on MFf,jtor for j  p.

Fontaine and Lafaille have shown in Section 5 of [FoLa] that when the
residue field of A is algebraically closed the G-modules associated to these
filtered modules have the closure properties of property X of the previous
section. They do not state this result in the explicit form we want, but they give
the explicit galois action for simple filtered modules. In the case of arbitrary
residue fields Faltings has shown in [Fa] Theorem 2.6 that the G-modules
associated to these filtered modules have the requisite closure properties.

DEFINITION. Let j  p. Let Fi be the subfunctor of F such that each p comes
from a Fontaine-Lafaille module of filtration length equal to j.
From the previous paragraph we know that Fi is a functor satisfying the

Schlessinger criteria.
Fontaine and Lafaille have shown in Section 9 of [FoLa] that the category

MFf,2tor is antiequivalent to the category of finite flat group schemes over A. For
M an object of MFfc;r2, US(M) is the generic fiber of the corresponding group
scheme. (As Us is fully faithful, they recover the result of Raynaud that a finite
group scheme over an unramified extension of Qp extends to a finite flat group
scheme over the ring of integers in at most one way.) We say that a

representation has weight j if it comes from an object M of MFfc;/.
Suppose now that K is unramified over Q, and we are given a representation

p : Gal(K/K) ~ GL2(Fp) such that the galois module F 2 is the generic fiber of a
finite flat group scheme over A. In this situation the functors F fl and F2 are the
same. The problem of calculating the representing object of these functors is
addressed in the following sections.

Section 3

We are now ready to do a computation. We restrict our attention to two
dimensional representations as those arising from modular forms are two
dimensional. When doing computations in this paper we only mean that the
representing object is topologically isomorphic to the ring given. Our results are
not explicit as those in [B].
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Let K = Q p and p : G ~ GL2(Fp) be the representation coming from the galois
action on the p-division points of an elliptic curve over Qp with good
supersingular reduction. From the Weil pairing we know det p = x the cy-
clotomic character and the good reduction implies that p is of weight 2. We
know from Section 1.11 of [Se1] that C( p) = Fp. Thus in the sense of Section 2 of
this paper and Section 2.8 [Se2] p is weight 2. We show that in this case

Rfl(p) = R2(03C1) = Zp[[Tl, T2]]. In fact all we need to compute Rfl(03C1) is that p is
weight 2 and that C(p) = Fp. First we compute tF2.

LEMMA 3.1. F2(Fp[E]) = Ext12(H, H) where H is the galois module associated to
p. The extensions on the right are in the category of weight 2 representations and
the tilde indicates that we only consider those extensions killed b y p.

Proof. We view (Fp[03B5])2 as a 4-dimensional Fp space. Then p ~ F2(Fp[03B5]) can

be written as 03C1(03C3) = (03C1(03C3)Z03B1 003C1(03C3)). Such a représentation clearly ives rise to an
element of Ext12(H, H). An element of Ext12(H, H) gives such a representation and
hence gives an element of F2(Fp[03B5]). It is a simple calculation to verify that strict
equivalence of lifts corresponds to equivalent extensions.
As H = U s(M) for M an object of MFf,2tor, Ext12(H, H) = Ext12(M, M) where the

extensions on the right are in MFf,2tor and are also killed by p. From [FoLa] we
know that lgAM = lgZp US(M) so M has underlying space a 2 dimensional Fp
space, and Fp = EndZp[G](H) = End(M) by full faithfulness. We will see that only
the size of the steps in the filtration and knowledge of End(M) are needed to
determine Ext12(M, M).
To simplify computation, we consolidate the ~i attached to M into a single

notation. Recall that in this case the object M is killed by p and thus a vector
space over Fp. We will soon show that dimFpM1 = 1. Thus we can choose a basis
(el, e2) over Fp of M° where e2 spans M1. We have

where a, 03B2, 03B3, 03B4 E Fp. As ~1: M 1 --+ M, the *’s are to indicate that ~1 is not defined

at el. We combine thèse to get a single matrix: Xm = (03B103B2|03B303B4). Thé dashes give
the filtration structure. The number of columns to the right of the dashes is the
dimension of Ml. So here we have that M’ is 1-dimensional. We get that an

object M of MFf,2tor is determined by a single dashed matrix XM, where the
dashes indicate the size of the steps in the filtration. When we multiply X M by a
matrix R which respects the filtration of M, RX M denotes the dashed matrix
formed by R(po and R~1. Similarly XMR denotes the dashed matrix formed from
(POR and ~1R. We say X M commutes with R if X MR = RXM.
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LEMMA 3.2. Ext12(M, M) = Hom(M, M)/([R, XM]| R in M2(Fp) respects the
filtration of M).

Proof. Let 0 ~ M ~ N ~ M ~ 0, N ~ Ext|2(M, M). Then

where CE M2(Fp) is a dashed matrix. Note that XN has two sets of dashes. The
second and fourth elements of an ordered basis for the underlying space of N
form a basis for NI. The set of all possible C’s corresponds to the Hom(M, M).
We mod out by equivalent extensions. An element P ~ Ext12(M, M) with

corresponding matrix D ~ M2(Fp) is equivalent to N if there is a matrix 0 
such that

We get the relation D = C + [R, XM]. Here R must preserve the filtration of M.
This is because the isomorphism of N to P must preserve the filtrations. So C
and D give equivalent extensions whenever C - D = [R, XM] for some R

respecting the filtration as above, and we are done.
We now use some of our knowledge of p. From [Sel] we know that C(p) = Fp

so H and thus M have endomorphism ring Fp. We know that dimFp M’ = 2 and
dimFp M2 = 0. All that remains is dimFp M1. This equals 1 because otherwise an
endomorphism of M would not have to respect any filtration structure and any
element of M2(Fp) that commuted with XM would do. As the centralizer of every
element of M2(Fp) is at least 2 dimensional we conclude diMF.(M’) = 1. So to
compute tF2 we note Hom(M, M) is 4 dimensional, the set of R that preserve the
filtration is 3 dimensional, and kernel(R ~ [R, XM]) is simply End(M) which is 1
dimensional. Thus tF2 is 4-(3 -1) = 2 dimensional. One of these dimensions is
easily seen to come from twisting p by the étale character 1 + eX. The other

dimension is not so clear.

We now have that R2(p) = Zp[[T1, T2]]II for some ideal I. We show that 1 is
zero. We do this by counting the Zp/(pj)-valued points of R2(p). We will show
that for every 1, there are p2(1- 1) of them. This is the number of Z pl(pl)-valued
points of Zp [[Tl, T2]]. So if f ~ I and (x, y) E (pZpl(pl»2 then f(x, y) ~ 0 mod pl.
Lifting to characteristic zero, we see that if (x, y) ~(pZp)2 then f(x, y) = 0.
Without difficulty one can show such an f must be zero. Thus I = 0 and
R2(P) = Zp[[Tll T2]].

Let us now count Zp/(p’)-valued points of R2(p). We try to find objects N of
MFf,2tor whose underlying spaces are free Zp/(pl) modules of rank 2. We denote
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the kernel of p on N by Np. So we seek N such that Np ~ M. This is the same as
requiring XN ~ XM mod p, where X N has a dashed structure like XM. As

XN E M2(Zp/(pl)) and is determined mod p there are p4(l-1) possibilities. We now
show that there are only p2(l- 1) possibilities up to isomorphism. We see that
XN1 ~ XN2 if and only if there is a matrix R ~ M2(Zp/(pl)) such that:

We require R to be lower triangular to preserve the filtration. There are p’(1 - 1)
such R and pl-1 lie in the center of M2(Zp/pl) and thus commute with all XN. We
know that no others commute because C(03C1) = Fp. Thus up to isomorphism there
are p4(l-1)/(p3(l-1)/p(l-1)) = p2(l - 1) lifts of M to Zp/(pl).
Thus we have proved:

THEOREM 3.1. Let p &#x3E; 2 and G = Gal(QpIQp), and p : G ~ GL2(Fp) be weight 2
and suppose C(p) = Fp. Then Rf’(P) = R2(p) = Zp[[T1, T2]].

Section 4

We now generalize the results of the previous section. Let G = Gal(Qp/6p) We
consider p : G ~ GL2(Fq), an irreducible flat representation with det plI = x and
q = p". This is the representation attached to an eigenform of weight 2 on ho(N)
where p 1 N at a non-ordinary prime. The following proposition is due to Serre.
See [Se2].

PROPOSITION 4 (Serre). Let G = Gal(QpIQp). Let p : G ~ GL2(Fq). We assume

F 2 c F .1 is irreducible and at with det - - then 03C1|I=(03C80 0 03C8p whereFp2 c Fq. If 03C1 is irreducible and flat with det p 1X then p 1 ( n 0 where
is a fundamental character of level 2. Furthermore C(p) = Fq.

Proof. Let It = I/Ip the tame inertia group. Recall that a fundamental

character of level s is a homomorphism It ~ F*ps ~ F*p which extends to an
embedding ofFp. into Fp as fields. Let V be the 2 dimensional Fq space on which
G acts. As p is irreducible it follows from Proposition 4 of [Sel] that the wild
inertia group 1 p acts trivially on E Thus I t acts on V and this action is

semisimple. By Proposition 1 of [Se2] this action is via two characters of level 1
or 2. As det 03C1|I = x it follows they are both level 1 or both level 2. If they are both

level 1, Serre shows in Sections 2.3 and 2.4 of [Se2] that 03C1|I = x a 0 b where
0  a  b  p - 2. As det plI = x and p is flat we must have by Theorem 3.4.3 of

[R]a=0 and b = 1. Thus p )j = (10 0~). Then by local class field theory the
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image of p is abelian and one sees by considering centralizers that the full image

of 03C1 would be contained in ( 0 and p would not be irreducible. Thus we have
that 03C1|I=(03C8a0 b where is a fundamental character of level 2 and

a + b = p + 1 as det p I r = x. But by the flatness and Theorem 3.4.3 of [R] we must
have, without loss of generality, a = 0, and b = p, the desired result. It remains to
show C(p) = Fq. One easily sees that those elements of GL2(Fq) that commute

with the image of p II are of the form (*0 0*). If in fact all such elements

commute with the full image of p then we find without difficulty that the full

image of 03C1 is contained in the set of matrices of the form (*0 0*). In particular it
is abelian so by local class field theory the order of the image of tame inertia
divides p -1. But this cannot be true as plI acts via fundamental characters of
level 2 so not all diagonal elements commute with the full image of p. Thus

EndFQ(H) is 1 dimensional, and we are done.
We want to compute R(p), the universal deformation ring with no restrictions.

We recall from [Ml] and [B] that the tangent space is given by H 1 (G, Ad p).
Furthermore if H2(G, Ad p) is trivial then R(p) is a power series ring in

dimFq H1(G, Ad p) variables. We show that for the p above, H2(G, Ad p) is trivial.
It will then follow from the Euler characteristic of local galois cohomology that

dimFqH1(G, Ad p) = 5. See [Se3] for the necessary results in galois cohomology.
LEMMA 4.1. For the p given above, H2(G, Ad p) is trivial.

Proof. By Tate duality, H2(G, Ad p) is dual to H’(G, (Ad p)*). We show that
H0(G,(Ad03C1*) = ((Ad P)*)’ is trivial. Let ~~((Ad p)*)G. We show 0 has 4
dimensional kernel so 0 = 0 and we will be done. We have that 0: Ad p - Fp
where the G-action on Ad p is conjugation by p and the G-action on Fp is by the
cyclotomic character which is det 03C1|I. For Z E Ad p, ~(g. Z) = g.~(Z). For all
g E I we see 03C1(g)Z03C1(g)-1-(det p(g))Z E kernel 0. It suffices to show for some g e I
that the image of the map Tg: Z 03C1(g)Z03C1(g)-1-(det p(g))Z is 4 dimensional. We
find a g ~ I such that the kernel of this map is trivial, an equivalent result. Choose
gEl so that 03C8(g) = a, an element of order p2 -1 in Fp2. (Recall 03C8 is a fundamental

character of level 2). If we put Z = ( t then 03C1(g)Z03C1(g)-1-(det 03C1(g))Z

simplifies to

One easily sees that this last matrix equals 0 only if Z = 0. So we have that kernel
~ is 4 dimensional so ~ = 0, the desired result.
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LEMMA 4.2. For the p given, H’(G, Ad p) is 5 dimensional.
Proof. We have dim H0 - dim H1 + dim H2 = - dim Ad 03C1 by the Euler charac-

teristic of Ad p. From the above lemma that H2 is trivial. H° is 1 dimensional

because C(p) = Fq and Ad p is 4 dimensional.
We now obtain similar results for the case Fp2 ~ Fq.

PROPOSITION 4.2. Let G = Gal(QpIQp). Let p : G ~ GL2(Fq). Ifp is irreducible,
flat and det 03C1|I = x the cyclotomic character, then C(p) = Fq.

Proof. Let p : G -4 GL2(Fq)  GL2(Fq2) where i is the injection i : Fq ~ Fq2. We
have Fp2 c Fq2 and det |I = x. Furthermore p is flat by the argument used in
Proposition 1.1. We show p is irreducible. Then we can apply Proposition 4.1.
As p is irreducible the wild inertia acts trivially through p as before. Thus p(7p)

is trivial. We suppose p is reducible and arrive at a contradiction.
If p is reducible then the image of p is contained in matrices of the form

( * . As Ip acts trivially we see that |I = (
Y2 

where the are

characters. Since p is flat we have by Theorem 3.4.3 of [R] that y, and y2 are
products of distinct fundamental characters of level 2r. We show 71 =1 03B32. Let 03C8
be a fundamental character of level 2r and let a = 1 + p + p2 + ··· + p2r-1. As
det plI = x, and x = t/Ja we see that if yi = y2 then they both equal 03C8a/2 or - 03C8a/2.
But by Theorem 3.4.3 of [R], 03C8a/2 and -03C8a/2 are not flat. Thus 03B31 ~ 72-
We now show p must be semisimple. If it is not, there is a 03C3 E G such that

As 03B31 ~ 72, there is a 03C4 ~ I such that

We see that

But this must lie in the Image p II as inertia is normal. As y(s - t)z-1 ~ 0 we have
a contradiction so no such u exists and p is semisimple and thus abelian.

As p is abelian we see that the order of the image of inertia must divide p - 1.

By flatness we see fi)j = (). Thus plI = () and as p is abelian we
easily see that the image of p is contained in the diagonal matrices. This
contradicts the fact that p is irreducible. Thus p is irreducible.
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By Proposition 4.1 we see C(p) = Fq2. As the map C(03C1)~Fq Fq2 ~ C(p) is
injective we see C(p) = Fq .
PROPOSITION 4.3. For p as in Proposition 4.2, H2(G, Ad p) = 0.

Proof. We know C(p) = Fq and this is equivalent to H°(G, Ad p) being 1

dimensional. From the Euler characteristic we see

It is thus enough to show H’(G, Ad p) is 5 dimensional.
We know H 1 (G, Ad p) is at least 5 dimensional and we show that the

map H1(G, Ad 03C1)~FqFq2 ~ H1(G, Ad ) is injective, where p is as before.

Applying Lemma 4.2 will finish the proof.
We show that no nontrivial deformation p of p to Fq[03B5] becomes trivial when

considered as a deformation of p to Fq2 [9] .
Suppose p is such a deformation. Then p(6) = A03C3+03B5B03C3. We claim there is an

X E M2(Fq2) such that (I+03B5X)03C1(03C3)(I-03B5X)=A03C3. Simplifying, we see that

[A(1’ X] = B(1. We show that there exists a YE M2(Fq) such that [A(1’ Y] = B(1’ i.e.
that p is the trivial deformation to Fq[03B5].

Let i be the automorphism of Fq2 given by raising to the qth power. Then i
fixes Fq. We have

as A03C3 and B(1 lie in M2(Fq). Subtracting one from the other we see

A03C3(X-X03C4) = (X-X03C4)A03C3. As C(p) = Fq2 we see that X - XT lies in the center of

M2(Fq2). Thus if X = s t we have t = tt, u = u’ and (s - v) = (s - v)’. Thus we
have

Choosing Y = ( t we are done.
From the preceding discussion we have proved the following theorem.

THEOREM 4.1. Let p &#x3E; 2, G = Gal(Qp/Qp) and p: G ~ GL2(Fq) be an irreducible
weight 2 representation such that det 03C1|I = ~. Then the universal deformation ring
R(p) = W(Fq)[[T1, T2, T3, T4, T5]].
We now compare R(p) to Rfi(p). The ideas are the same as in Section 3 but a

little more care must be taken. We again let H be the galois module and M the
Fontaine-Lafaille module associated to H. Now dimFp M’ = 2r and we have a
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map Fq ~ End(M). This map gives M an Fq structure. The underlying space of
M can now be realized as a 2-dimensional Fq space. As endomorphisms of a
Fontaine-Lafaille module preserve the filtration we see that M 1 is also an Fq
space. Since C(p) = Fq the same argument as in Section 3 shows that

dimFq M’ = 1. We also note that if N is the Fontaine-Lafaille module associated
to a W(Fq)/(p’)-valued point of Rfl(03C1) then the underlying space of N is a free
W(Fq)/(pl)-module of rank 2 and N1 is direct summand free of rank 1 over

W(Fq)/(P’). To find tF2 we cannot merely compute É 2(M, M). Instead we have
to compute Ext12,Fq(M, M) the extensions of M by M killed by p having an Fq
structure.

LEMMA 4.3. F2(Fq[03B5]) = EXt12,Fq(H, H) where H is the galois module associated
to p and the extensions on the right are in the category of weight 2 representations
with an Fq structure.

Proof. As before.

LEMMA 4.4. Ext12,Fq(M, M) = HomFq(M, M)/([R, XM]|R in M2(Fq) respects the
filtration).

Proof. Note that the Fontaine-Lafaille modules here are Zp-modules, but we
give them an Fq-structure. We can do this as the a semilinear structure vanishes
for modules over Zp so there is no difficulty in making these two structures

compatible. For N~Ext12,Fq(M, M) we have XN= () where C is a
dashed matrix in M2(Fq). That is, the set of allowable C’s corresponds to

HomFq(M, M). An element P E EXt 2,Fq (M, M) with corresponding matrix D is
équivalent to N if there is a matrix () R such that

Here the matrices I, R, C, D and X M are all in M2(Fq). Furthermore not only

does R préserve the filtration as before, but to ensure that ( /7 R ) is an

isomorphism respecting the Fq structure, we see R must commute with the Fq
structure. We again get D = C+[R,XM], and the result follows.
So the set of R that preserve the filtration is the set of R e M2(Fq) that preserve

a 1 dimensional subspace of a 2 dimensional Fq space. The set of such R is a 3
dimensional Fq space. We get that

just as before.
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So we have Rfl(03C1) = W(Fq)[[Tl, T2]]/I for some ideal I. The same counting
argument as before shows I=0. The only difference is that here we find Rfl(03C1)
has q2(l-1) nonisomorphic W(Fq)/(pl)-valued points. We have proved the

following theorem.

THEOREM 4.2. Let p : Gal(Qp/Qp) ~ GL2(Fq) be an irreducible weight 2 repre-
sentation where det 03C1|I = ~ the cyclotomic character. Then Rfl(03C1) =
R2(p) = W(Fq)[[Ti, T2]1-
The following corollary, which is similar to Mazur’s result in the ordinary case,
is immediate.

COROLLARY 4.1. For p as above, there is a surjective map R(03C1) ~ Rfl(03C1). The
kernel of this map is an ideal generated by three elements.

Section 5

We now make a straightforward generalization of the previous theory.
We concern ourselves first with computing weight j universal deformation

rings for j  p. The key points here is that Us : MFf,jtor ~ Zp [G]-modules is fully
faithful. We assume then that K = Q p and p:G--+GL2(Fq) is a weight j
representation whose associated galois module H has endomorphism ring Fq.
To H there corresponds to a Fontaine-Lafaille module M ~ MFf,jtor. Here we
assume the filtration length of M is exactly j. We have a map Fq ~ End(M). The
underlying space of M is a 2r dimensional Fp space. As Fq acts on M, we have
dimFp M’is one of 0, r or 2r. It cannot be 0 or 2r for the same reason as before.
Here X M has a slightly different dashed structure. There are in fact j - 1 dashed
lines. The basis with respect to which X M is written is found by choosing a basis
of Mi - ’ and augmenting it to a basis of Mj- 2 and then augmenting to a basis of
Mj-3 and so on. The number of columns between the ith and i + lst dashed
lines of X M is the dimension of Mi/Mi+1. For the problem here, each Mi is an Fq
space so most of the dashed lines are adjacent with no columns between them.
We again have the following lemma for determining tFj = ËXfiFq(M, M).

LEMMA 5.1. Ext1j,Fq(M, M) = HomFq(M, M)/([R,XM]|R in M2r(Fp) respects
the filtration and Fq structure).
As before we see tF2 is 2 dimensional. The same argument of counting W(Fq)/(pl)
valued points of Rj(03C1) carries through and we have the following:

THEOREM 5.1. Let p &#x3E; 2, G = Gal(Qp/Qp) and 03C1: G ~ GL2(Fq) be weight j.
Suppose also that C(p) = Fq. Then Rip) = W(Fq)[[Tl’ T2]].
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Section 6

Finally we do a computation for an ordinary flat residual Fp representation. By
ordinary we mean the representation has semisimplification a direct sum of 1
dimensional representations, one of which is unramified. Assuming det p = x,
from Section 2.8 of [Se2] we see that this representation restricted to inertia is

given by

We consider the latter case. We see that 03C1 = ( ) where 03C81 and are
étale characters. One easily sees that C(p) = Fp, so by the methods of Section 4
we see that Rfi(p) = Zp[[T1, T2]1-
We now insist that 03C81 ~ 03C82. That such a representation exists is an easy

exercise in computing extensions of Fontaine-Laffaille modules. A Zp-valued

point x of Rfl(03C1) gives the représentation 03C1x = ( ) where X is the0 2
cyclotomic character and the Wi are unramified characters with values in Z*
such that 03A8i ~ 03C8i mod p. This follows as the p-divisible group associated to px
has non-trivial connected-étale sequence on p-torsion and thus itself has non-
trivial connected-étale sequence. The characters on the diagonal of px must be as
described because there are only two 1-dimensional p-divisible groups over

W(Fp), 03BCp~ and the constant p-divisible group Qp/Zp, i.e. 03C1x|I = (). We will
show that for any pair of étale characters (03A81, 03A82) lifting (03C81, 03C82) there is a

unique lifting p of p to Z p such that p = ( ). A simple counting

argument will then show that this lifting is then a Zp-valued point of Rfl(03C1).
Thus we will have shown that any ordinary lift of p that "looks" p-divisible, i.e.
has semisimplification the Tate module of a p-divisible group over Zp, is in fact
the Tate module of a p-divisible group over Zp.

All that follows can be done more generally, but we treat only the specific case
for the p described above.

Let 03A81 and ’P2 be étale lifts of 03C81 and 03C82 to Zp* We want to consider for

R e 0, lifts of p to R such that 03C1 =(
0 Y2) The characters XIF 1 and ’y 2 act

on R via the composite of their action on Zp and the map Zp ~ R. We call two

lifts pi and P2 as above very strictly equivalent if there is a matrix Y = 1 a
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where a E mR and pi = Y03C12Y-1. We call a very strict equivalence class of lifts of
p to R a (~03A81, 03A82)-deformation.

DEFINITION. For R ~ 0 we have the functor F*:W°-Sets given by
F*(R) = {the (~03A81, 03A82)-deformations of p to R}.

THEOREM 6.1. The functor F* satisfies the Schlessinger criteria.
Proof. The verifications for Mazur’s functor easily carry over. One need only

pay some attention to the notion of very strict equivalence. See Chapter 1 of [B]
for details.

DEFINITION. Let Ad*p denote those elements of M2(Fp) of the form (0 ).
PROPOSITION 6.1. The tangent space to F* is given by H’(G, Ad*p).

Proof. Let p e F*(Fp[e]). Put f(03C3) = r(03C3)03C1(03C3)-1 e I + e (D Ad*p. We easily see f

is a 1-cocycle and conjugating p by an element of the form 1 ) corresponds
to changing f by a coboundary.

THEOREM 6.2. R*(p) = Zp[[T]].
Proof. As in Section 1.6 of [Ml], the obstruction to lifting lies in H2(G, Ad* p).

Using the fact that 03C81 ~ 03C82 and a similar argument as in Lemma 4.3 we see
H2(G, Ad*p) = 0. One easily sees that H’(G, Ad* p) = 0 and from the Euler
characteristic we have H’(G, Ad*p) is 1 dimensional.

PROPOSITION 6.2. The Z,I(p’)-valued points of R*(p), and hence the Zp-valued
points of R*(p), give rise to isomorphic galois modules.

Proof. Let 03C1(03C3) = ( %P2 be a Zp/(pl)-valued point of R*(p). For some
pz ~ Zp/(pl) we see that

is in the same very strict equivalence class as p. For some py E Zp/(pl) we have

We claim that for each of the pl -1 choices of py ~ Zp/(pl), the isomorphic
representations obtained above lie in different very strict equivalence classes.
Once we have proved this we are done. If this were not so, there would exist py,
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pw, pz E Zp/(pl) such that

where py Q pw mod pl, that is y ~ w mod pl-1. Simplifying we have that

This reduces to

As - (X 1 ) there is a 03C30 c- G such that f(03C30) and 03A82(03C30) - ~03A81(03C30) are

units in Zpl(P’). It follows then by examining the above congruence at Uo that
y - w = pru and z = prv where u and v units and r  1- 2. We now have that

Thus we see that

As r  l - 2, upon letting x = ulv we have

So we have

where all entries of the above matrix are considered mod p. Conjugating by

This contradicts the fact that the original p was not semisimple. So all the
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Zp/(pl)-valued points of R*(p) give rise to isomorphic galois modules and we are
done.

THEOREM 6.3. Let ’P 1 and ’P 2 be any two étale characters lifting 03C81 and 03C82.

Recall 03C81 ~ 03C82. Then there is a unique lift p of p to Zp such that p = ( Y2
The galois module associated to p is the Tate module of a p-divisible group over Zp.

Proof. We know from Section 3 that Rf 1(p) has p2(l - 1)Zp/(pl)-valued points
which give rise to nonisomorphic galois modules. Each of these representations

looks like ( * where the yi are étale characters and yi ~ 03C8i mod p. For

each pair (y,, 72) there is by the previous proposition at most one deformation of
p to Zp/(P’) with xy 1 and 72 on the diagonal. As there are p2(l-1) pairs (yi, y2) and
p2(l-1) nonisomorphic Zp/(P’)-valued points of Rfl(P), we see that to each pair

(03B31, 03B32) there is in fact a flat lift p of p to Z p/(pl) such that p = ( * . The
result follows by taking the limit.
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