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Introduction

An important problem in the theory of modular forms is to obtain good
estimates for Fourier coefficients of cusp forms. On the one hand, this may lead
to asymptotic expansions of interesting arithmetical functions, on the other
hand one sometimes can derive growth estimates for Hecke eigenvalues.
Needless to say that the problem is also of intrinsic interest.

Estimates for the Fourier coefficients a(T) (T a positive definite symmetric
half-integral (n, n)-matrix) of a Siegel cusp form F of integral weight k on the
group rn : = Spn(Z) have been given by several authors. The classical Hecke
argument immediately shows that a(T) «F(det T)k/2. Using Rankin’s method,
this was improved by Bôcherer and Raghavan [2] and independently by
Fomenko [4] to a(T) «03B5,F(det T)k/2-03B4n+03B5 (s &#x3E; 0) where

with [x] = integral part of x.
In the case n = 2 better estimates have been known. On the one-hand side, by

a variant of Rankin’s method it was shown by Raghavan and Weissauer [10]
that a(T) «03B5,F (min T)1/2(det T)k/2-1/4- 3/38 + E (E &#x3E; 0), where min T denotes the
least positive integer represented by T; on the other hand, using the method of
Poincaré series and generalized Kloosterman sums, Kitaoka [7] for k even
proved that a(T) «03B5,F(det T)k/2 -1/4+E (E &#x3E; 0).

In the present paper we would like to give a new method which is largely
based on the theory of Jacobi forms and which may lead to considerable
improvements upon estimates of the above type (at least) in the case n = 2. As an
example, we shall prove:

THEOREM 1. Let F be a Siegel cusp form of integral weight k on r 2 = Sp2(Z) and
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let a(T) (T a positive definite symmetric half-integral (2, 2)-matrix) be its Fourier
coefficients. Let min T be the least positive integer represented by T. Then

provided that - 4 det T is a fundamental discriminant.

Recall that a negative integer is called a fundamental discriminant if it is the
discriminant of an imaginary quadratic field.
Very probably, the restriction to fundamental discriminants in Theorem 1 is

not essential, and a more general statement could be proved by the same
method.

Since by reduction theory min T  2 3 (det T)1/2, we obtain:

COROLLARY. One has

provided - 4 det T is a fundamental discriminant.

The proof of Theorem 1 is rather short. The main idea is a combination of

appropriate estimates for both Fourier coefficients of Jacobi forms and

Petersson norms of Fourier-Jacobi coefficients of Siegel modular forms (the
latter again is based on Rankin’s method). More precisely, in Section 1

(Proposition) we shall prove an estimate for the Fourier coefficients c(n, r)
(n, r ~ Z, D : = r2 - 4mn a negative fundamental discriminant) of a Jacobi cusp
form 4J of weight k &#x3E; 2 and index m on the Jacobi group 0393J1:= 03931 Z2
(r 1 := SL2(Z)) which is uniform in m, involves the Petersson norm Il ~ of ~ and
when IDI ~ ~ essentially bounds c(n, r) by IDI(k-1)/2 +£ (e &#x3E; 0). The proof
depends on the fact that the Fourier coefficients of Poincaré series of weight k
and index m on FI involve certain finite linear combinations of Kloosterman
sums which can be evaluated rather explicitly [5, Chap. II] and as a con-
sequence can be estimated in a simple manner. An analogous situation is known
in the context of modular forms of half-integral weight where the Fourier
coefficients of Poincaré series are closely connected with Salié sums (cf. e.g. [6]).

In Section 2 (Theorem 2) we shall show that the norms of the Fourier-Jacobi
coefficients 4Jm (m  1) of a Siegel cusp form F of integral weight k on h2 are
bounded by mk/2 - 2/9 + 03B5(03B5 &#x3E; 0). The proof is based on the analytic properties of
the Rankin-Dirichlet series 03A3m1 ~~m~2m-s (Re(s) » 0) which was introduced
and studied by Skoruppa and the author in [8] and on a theorem of Landau (cf.
[9, 11]; note that Landau’s theorem was also used in [2, 10]).



233

The proof of Theorem 1 formally follows from the Proposition and Theorem
2. It should be noted that if instead of Theorem 2 we would only use the weaker
bound Il CPm «Fmk/2 which follows by applying a variant of the classical Hecke
argument [8, Lemma 1], one would arrive at an estimate for a(T) like Kitaoka’s
one mentioned above.

The bound for the linear combinations of Kloosterman sums used in the

proof of the Proposition still is what in the context of modular forms of half-
integral weight corresponds to the "trivial bound" for Salié sums. In fact, using
some more sophisticated arguments like in Iwaniec’s paper [6], it seems possible
that one can improve upon the estimate given in , the Proposition (for D
fundamental) and hence on the bound in Theorem 1 (supposing that - 4 det T
is fundamental).

Also, in principle it seems possible to apply our method to arbitrary genus n.
This hopefully would lead to some improvements upon the estimates for Fourier
coefficients of cusp forms given in [2,4].

NOTATION. We denote by H = {03C4 ~ C|Im(03C4)&#x3E;0} and ye 2 = {Z ~ C(2,2)| Z
symmetric, Im(Z) &#x3E; 01 the upper half-plane and the Siegel upper half-space of
degree two, respectively.
We set r 1 : = SL2(Z) and 03932:= Sp2(Z).
The greatest common divisor (a, b) of two non-zero integers a and b is always

understood to be positive. In a sum Ldla where a E ZB{0}, we understand that the
summation is over positive divisors only. For a E Z/{0}, we write 6o(a) for the
number of positive divisors of a.

1. Estimâtes for Fourier coefficients of Jacobi forms

For details on Jacobi forms we refer to [3]. We denote by Fi := rl  Z2 the
Jacobi group. It acts on Yt x C by

Recall that a Jacobi cusp form of weight k E 7 and index m ~ N on F’ is a

holomorphic function 0: Jf x C - C satisfying the two transformation formulas
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and

and having a Fourier expansion

with c(n, r) E C. The coefficients c(n, r) depend only on the residue class r(mod 2m)
and the discriminant r2 - 4mn.
We denote by Jcuspk,m the complex vector space of Jacobi cusp forms of weight k

and index m on ri. It is a finite-dimensional Hilbert space under the Petersson
scalar product

where d VJ = v - 3 du dv dx dy is the normalized ri -invariant measure on e x C.
We usually write ~~, 03C8~ for ~~, 03C8~k,m·
The aim of this section is to prove

PROPOSITION. Let ~ be a Jacobi cusp form of weight k &#x3E; 2 and index m on ri
and let c(n, r) (n, r E 71, r2  4mn) be its Fourier coefficients. Put D : = r2 - 4mn.
Then

provided that D is a fundamental discriminant, where the constant implied in «
depends only on 03B5 and k (and not on m).

The rest of this section is devoted to the proof of the Proposition.
Let Pn,r - Pk,m;n,r be the (n, r)th Poincaré series in Jcuspk,m characterized by

where bn,r(03C8) denotes the (n, r)th Fourier coefficient of 03C8 and
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Then the Cauchy-Schwarz inequality gives

so it suffices to prove

for any e &#x3E; 0.

By the Proposition on p. 519 in [5], which gives all Fourier coefficients of Pn,n
one has

where

and J k - 3/2 is the Bessel function of order k - 3/2. In (3), p resp. À run through
(7L/c7L)* resp. 7L/c7L, p -1 denotes an inverse of p(mod c) and ea(b) := e203C0ib/a
(a E N, b E Z/aZ).

LEMMA. Suppose that D is a fundamental discriminant. Then

for any e &#x3E; 0.

Proof. By the Lemma on p. 524 in [5] one has
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where cm, b, b2 - D2 4mc] denotes the quadratic form with coefficients cm, b,

b2 -D2 , respectively and X, is a certain generalized r 0 ( m ) -genus character

defined in [5, Chap. 1, §2]. Since Xn takes values in {± 1, 0}, we deduce that

|Hm,c(n, r, n, ±r)|  c-’ /2 # {b(2mc)|b ~ D(2m), b2 = D2(4mc)}

(note that D - r2(4m)).
We claim that the number # on the right-hand side is less or equal to

6o(c)(D, c). Since 6o(c) «03B5C03B5 for any e &#x3E; 0, this will prove our assertion.
Write b = D + 2mx with x determined mod c. Then the congruence

b2 = D2(4mc) is equivalent to x(mx + D) - 0(c). Since the number of solutions of
the latter congruence and the functions c ~ 03C30(c), c H (D, c) are multiplicative, it
is sufficient to prove our claim for c a prime power, c = p’’. Write x = p03BCy with
03BC~{0,1,...,03BD}, y determined modp’-" and py. The number of solutions
y(mod pv - l) of m(p4y) + D - 0(pv - l) is (mp", pv - l) or 0 according as (mp", pv - l)
divides D or not, hence is K (D, pv). This proves our claim.
From now on we shall suppose that e  k - 2. To simplify our notation we

shall write "«" instead of " «,,k"-
From (2) and the Lemma we see that

Using the estimate

Hence, writing t for (D, c) and n for c/t, we find

which proves (1).
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REMARK. We expect that the assertion of the Proposition is also true if k = 2.
However, our method in this case is not applicable since the series giving the
Fourier coefficients of the Poincaré series of weight 2 (i.e. the right-hand side of
(2) with k = 2) is not absolutely convergent.

2. Estimâtes for Petersson norms of Fourier-Jacobi coefficients of Siegel
modular forms

Let F be a Siegel cusp form of integral weight k on 03932. If Z E Yt2 and we write

Z = 2 Z j then F has a partial Fourier expansion

The functions 0. are in J’"’P and are called the Fourier-Jacobi coefficients of F
(for details cf. [3, Chap. II, §6]). We shall prove:

THEOREM 2. Let F be a Siegel cusp form of weight kE7L on F2 with Fourier-
Jacobi coefficients ~m(m 1). Then

Proof. We denote by

the formal Rankin-Dirichlet series which was introduced and studied in [8].
Recall that it was proved in [8] that DF(S) is convergent for Re(s) &#x3E; k + 1, has a
meromorphic continuation to C and is entire (of finite order) except for a
possible simple pole at s = k.

Moreover, if one puts

then the functional equation

holds.
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Since DF(s) has non-negative coefficients, a classical theorem of Landau says
that D,(s) must have a singularity at its abscissa of convergence, hence it follows
that DF(s) converges for Re(s) &#x3E; k.

In [11] a modified version of Landau’s Hauptsatz proved in [9] was given. A
special case of this is the following

THEOREM ([9, 11]). Suppose 03BE(s) = 03A3n1 c(n)n-s is a Dirichlet series with non-
negative coefficients which converges for Re(s) &#x3E; (10’ has a meromorphic continua-
tion to C with finitely many poles and satisfies a functional equation

where

Suppose that

Then

for any 17 &#x3E; ~0: = (J + ao(K-1))/(K+ 1).

(To deduce this formulation from the one given in [11], we must write the
functional equation asymmetrically as

and replace each r(x) in the denominator by
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with

Taking x = m and x = m - 1 and subtracting we find

and hence

This proves the assertion of Theorem 2.

2. Proof of Theorem 1

We may suppose that F ~ 0. As is well-known this implies k  10 (for the proof
of the Theorem it actually would be sufficient to assume k &#x3E; 2).

Fix e &#x3E; 0. Both sides of the inequality to be proved are invariant if T is

replaced by U’TU ( U E GL2(Z», where U’ denotes the transpose of U. Hence we
may assume that

We put D := r2 - 4mn.
Let 4Jm be the m th Fourier-Jacobi coefficient of F so that A(T) is the (n, r)th

Fourier coefficient of 4Jm. Combining the Proposition and Theorem 2 we infer
that

By reduction theory we have m = min T  2 3|D|1/2. If we apply this in the
bracket above, the assertion of Theorem 1 follows.
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