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Let E be an elliptic curve over Q, L(E, s) its L-function, and W(E) the associated
root number, defined intrinsically as a product of local epsilon factors (Deligne
[6]) and hypothetically as the sign + 1 in the conjectural functional equation of
L(E, s):

(N(E) denotes the conductor of E). The Birch-Swinnerton-Dyer Conjecture
implies that

Over the years this conjectural formula has been a frequent source of insight in
the study of elliptic curves. Here it will be used to study some elliptic surfaces.
Our project is inspired by some recent ideas of Mazur concerning the

"topology of rational points" on an algebraic variety over Q, and in particular
by the case where the variety in question is an elliptic surface over Q with base
the affine line. Given such a surface, consider the family of elliptic curves Et over
Q which arise as smooth fibers over rational points t in the base. Mazur
conjectures that a sharp dichotomy governs the variation of the rank of E,(U)
with t: either there are only finitely many t e o such that the rank of Et(Q) is
positive, or else the set of all such t is dense in R. With this hypothesis in mind we
shall look at a few examples, seeking evidence not only for Mazur’s conjecture
but also for the existence of a similar dichotomy in the variation of W(E,) with t.
The first example we shall consider is the family
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THEOREM 1. Given jE Q, j =F 0, 1728, write

with fi, y c- { ± 11 and positive integers a, b, c such that a and c (hence also a and b)
are coprime. If a, b, and c are square-free and relatively prime to 6, and

yac = 1 (mod 4), then

The arguments of Gouvêa-Mazur [10] yield a corollary:

COROLLARY. Put

Then J + and J - are both dense in R.

If we grant (0.1), then Mazur’s conjecture for the family {Ej} follows from the
density of J - in R. 1 do not know whether the counterparts to J + and J - are
dense in Il for an arbitrary family with nonconstant j-invariant. However, for
families with constant j-invariant it can happen that neither set is dense, as we
shall now explain.
Given an elliptic curve E over 0 and a nonzero rational number d, let Ed

denote the quadratic twist of E by d, so that if y2 = X3 + ax + b is an equation
for E then dy2 = x3 + ax + b is an equation for Ed. Our second theorem
concerns families of the form

Et = Ef(t)

(t E Q, f(t) ~ 0), where E is a given elliptic curve over Q and f is a nonzero
polynomial with rational coefficients. Using a method of Waldspurger ([22],
Prop. 16), we shall prove:

THEOREM 2. Put

One of two mutually exclusive alternatives holds: Either
(1) the sets T + and T - are both dense in R; or,
(2) one of the sets T ± is (t E Q: f(t) &#x3E; 01 and the other is {t E Q: f(t)  O}.
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Furthermore, if E is given, then there exists f such that (2) holds and such that the
number of sign changes of f on R exceeds any preassigned value. On the other
hand, there exists f such that (1) holds if and only if E does not acquire everywhere
good reduction over any abelian extension of Q.

It is easy to give examples of elliptic curves over Q which do not acquire
everywhere good reduction over any abelian extension of Q: for example, any
elliptic curve over 0 with multiplicative reduction at some prime has this
property. According to the theorem, for such elliptic curves we can realize both
alternatives (1) and (2) by an appropriate choice of f. On the other hand, there
exist elliptic curves over which do acquire everywhere good reduction over
some abelian extension of Q, and for these curves only the second alternative
can occur. As examples of the latter class of elliptic curves we mention two
curves of conductor 37’: the curve

which has invariant j = 212 and minimal discriminant A = 373, and the curve

which has invariant j = 33 x 37 and minimal discriminant A = - 372. (The
second example was also found by Masato Kuwata.) Other examples are given
in [12], pp. 9-11, and in a forthcoming paper of Connell [5], who gives a
complete characterization of such elliptic curves using congruences on the j-
invariant. In addition, the list of elliptic curves in Edixhoven-De Groot-Top [7],
although compiled for a different purpose, actually contains several curves with
the property at issue here.
At first glance, the fact that the second alternative in Theorem 2 really does

occur may appear to cast doubt on Mazur’s conjecture. Suppose for example
that E is either of the elliptic curves (0.3) and (0.4), and choose f to be any
quadratic polynomial over Q with two distinct real zeros. Then Mazur’s

conjecture and (0.1) together imply that the set of tc-0 for which Ef(’)(0) has
positive rank is dense in R. This conclusion may appear implausible, because the
function t H W(Ef(t)) is identically equal to 1 on one of the sets {t E Q: f(t) &#x3E; 01
and {t ~ Q: f(t)  0}. Nevertheless, in the case at hand one can verify Mazur’s
conjecture directly by an elementary argument:

THEOREM 3. Let E be an elliptic curve over Q and f a quadratic polynomial
with rational coefficient. If there exists t ~ Q for which f(t) :0 0 and Ef(l)(0) has
positive rank, then the set of all such t is dense in R.

So far we have made no reference to the group of sections of an elliptic surface
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or to the interplay between the rank of the group of sections and the rank of the
individual fibers. We shall end the paper by touching on this theme at least
briefly. In [4], Cassels and Schinzel consider the family

Using the root number calculations of Birch-Stephens [1] and granting (0.1) (or
using the descent calculations of Cassels [2] and granting Selmer’s conjecture;
see [3], p. 276, and [13]) they observe that each member of the family (0.5) has
positive Mordell-Weil rank while the group of Q-rational sections has rank 0.
We shall present a class of examples in the same spirit, still contingent on (0.1), in
which the curve y2 = x3 - x is replaced by any elliptic curve over Q and the
polynomial 7(1 + t4) by some other suitably chosen polynomial, which can
always be taken to be of degree four. Assuming (0.1) we shall also give examples
of families for which the group of Q-rational sections has rank 0 while the
individual members Et have Mordell-Weil rank  2 for a dense set of t ~ Q.
These applications appear as Proposition 9 in Section 9.

1. Root numbers

Let E be an elliptic curve over Q. As we have already mentioned in the
introduction, the root number of E has an intrinsic definition, independent of
any conjectures, as a product of local factors

where p runs over the prime numbers and infinity, Wp(E) = ± 1 for all p, and
Wp(E) = 1 for all but finitely many p. The local factor Wp(E) is an invariant of the
isomorphism class of E as an elliptic curve over Qp. It is defined by the formula

where V/ is any nontrivial unitary character of Qp, dx is any Haar measure on
Qp, 03C3’E,p is a certain representation of the Weil-Deligne group of Qp (here
denoted W’(Qp/Qp)), and 03B5(03C3’E,p, 03C8, dx) is the corresponding epsilon factor as in
Deligne [6] and Tate [19]. That the right-hand side of (1.2) is independent of the
choice of dx and 03C8 follows from formulas (3.4.3), (3.4.4), and (4.1.6) of [19]; in the
case of 03C8 we must also use the fact that det (1E,p is real-valued and positive. Here
we should explain that we are thinking of 03C3’E,p as a pair (03C3E,p, NE, p ), where (1 E,p is
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a continuous representation of the ordinary Weil group W(Qp/Qp) on a two-
dimensional complex vector space V, and NE, p is a nilpotent endomorphism of V
satisfying a certain compatibility with (1 E,p. The precise definition of 03C3’E,p will be
recalled in stages as needed, but we mention at the outset that it breaks up into
three cases: the case where p = oc, the case where p  oo and E has potential
good reduction at p, and the case where p  oo and E has potential multipli-
cative reduction at p. It is only in the last case that the nilpotent endomorphism
NE,p comes into play; in the other two cases we simply set NE, p = 0 and identify
03C3’E,p with 03C3E,p. Corresponding to the three cases just enumerated, there are three
types of formulas for Wp(E) which are needed for the proof of Theorem 1. The
first of these allows us to rewrite (1.1) in the form

PROPOSITION 1. W~(E) = -1.
Proof. This is completely standard, but for the sake of completeness we say a

few words. At the infinite prime the Weil-Deligne group is simply the Weil group
W(C/R), defined by

where J2 = -1 and JzJ-1 = z for z ~ C . The representation 03C3’E,~ = (1E,oo is

canonically associated to the Hodge decomposition of H1(E(C)) and can be
described as follows: if we write 1%’(C/C) for the subgroup C x of W(C/R), then
03C3E,~ is the induced representation

where ~:C (=W(C/C)) ~ C  is the character z~z-1. To compute the

associated root number, put 03C8R(x) = e2"ix and 03C8C(z) = 03C8R(trC/R(z)), and let dx
and dz denote respectively Lebesgue measure on Il and twice Lebesgue measure
on C. Also let 1R and le denote the trivial representations of ir(CjlR) and
W(C/C) respectively, and let "sign" denote the nontrivial character of W(C/R)
with kernel 1%’(C/C). Inductivity of the epsilon factor in degree 0 gives

while
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by additivity. Hence the proposition follows from formulas (3.2.4) and (3.2.5) of
[19].

2. The case of potential good reduction

Let p be a prime and let Qp denote a fixed algebraic closure of Qp. We recall that
the Weil group W(Qp/Qp) is the subgroup of Gal(Qp/Qp) consisting of those
elements which induce an integral power of the Frobenius automorphism
x - xP on the residue class field of Qp. By its very definition, W(Qp/Qp) comes
equipped with a homomorphism

such that 03C9(03C3) = p" if (1 induces the n-th power of the map x - xP on the residue
class field of Qp. By an inverse Frobenius element of W(Qp/Qp) we shall mean
any élément C such that 03C9(03A6) = p -1.

Let I denote the inertia subgroup of Gal(Qp/Qp). Then I is contained in

ir(QpjQp) and is in fact the kernel of co. We make (Qp/Qp) into a topological
group by requiring that I be open in W(Qp/Qp) and that it retain the topology it
inherits as a subgroup of Gal(Qp/Qp).
Now let E be an elliptic curve over Qp with potential good reduction. We

write Qp,unr for the maximal unramified extension of Qp in Qp and L for the
minimal extension of Op, unr over which E acquires good reduction. If m  3 is an
integer prime to p, then it is known ([15], p. 498, Cor. 3) that

where E[m] denotes the group of points on E of order dividing m. Furthermore,
putting

we have exactly four possibilities for A:

(a) 039B ~ Z/eZ, with e = 1, 2, 3, 4, or 6.
(b) p = 3 and A xé Z/32 - Z/4Z, where the semidirect product is taken with

respect to the unique nontrivial action of Z/4Z on Z/3Z.
(c) p = 2 and 039B ~ H 8’ the quaternion group of order 8.
(d) p = 2 and 039B ~ SL(2, Z/3Z).

Cf. [14], p. 312. The classification follows from the argument used to prove [15],
Thm. 1 together with the list of possible automorphism groups of elliptic curves
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over finite fields, as in [17], pp. 325-329. Note in particular that A is abelian
only in case (a).

Let W(L/Qp) denote the subgroup of Gal(L/U,) consisting of elements which
induce an integral power of the map x H xP on the residue class field of L. The
natural identification

endows *’(L/U,) with the discrete topology, because Gal(QpjL) is open in
lq-«Dpl0p). If 03A6 is any inverse Frobenius element of 1f/(LjQp) (i.e. the image in
W(L/Qp) of any inverse Frobenius element of W(Qp/Qp)) then we have an
isomorphism

where ~03A6~ 1» denotes the infinite cyclic group generated by 03A6.

Now choose a prime 1 ~ p, and fix an embedding of 0, in C as well as a Zi-
basis for the Tate module T (E). These choices determine a representation

where the first arrow represents the natural action of W(Qp/Qp) on Tl(E). The
isomorphism class of this representation is independent of the choices made to
define it by virtue of [15], Thm. 2 and Cor. to Thm. 3. We define (1E,p to be the
contragredient of (2.2). Note that with this definition we have

because 039B2Tl(E) is isomorphic as a Gal(U,/U,)-module to the Tate module of
the group of 1-power roots of unity. It follows from (2.3) that the kernel of O"E,p is
contained in 7. In fact by taking m = ln in (2.1) with n arbitrarily large, we see
that the kernel of 03C3E,p is precisely Gal(QpjL), so that 03C3E,p may be viewed as a

faithful representation of 1Y(LjQp).
Our assumption that E has potential good reduction means that there is a

finite extension of Qp over which E acquires good reduction. Part (ii) of the
following proposition specifies conditions under which we can choose this
extension to be abelian over Qp. Parts (iii) and (iv) give formulas for W,(E) in this
special case. Part (v) gives a formula in the general case, but only for p &#x3E; 3. Part

(i) merely recalls a well-known fact.

PROPOSITION 2. (i) The representation 6E,p is semisimple.
(ii) The following are equivalent:
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(1) E acquires good reduction over some finite abelian extension of Op
(2) 1Y(LjQ p) is abelian.
(3) 03C3E,p is reducible.

(4) E acquires good reduction over some totally ramified cyclic extension of Up
of degree lAI.

Furthermore, f p &#x3E; 3, then the preceding conditions are equivalent to

where A is the discriminant of any generalized Weierstrass equation for E over Op,
(iii) Suppose that the equivalent conditions in (ii) hold, and let K be any totally

ramified cyclic extension of Op of degree e = lAI such that E has good reduction
over K. Let Jl be any character of Q; of order e which is trivial on N K/Op (K X).
Then

(iv) If E has good reduction over Op, then Wp(E) = 1.
(v) Suppose that p &#x3E; 3. Put e = JAI and let A E Q p be the discriminant of any

generalized Weierstrass equation for E over Q p. Then

and

Proof. (i) The endomorphism ring of an elliptic curve over a finite field is an
order in an imaginary quadratic field or in a quaternion algebra, and as such it
contains no nilpotent elements. The semisimplicity of the matrix 03C3E,p(03A6) is a
consequence of this fact. The semisimplicity of (1 E,p as a representation follows
because ~03A6~ has finite index in ir(LjQp) (cf. [19], p. 20).

(ii) We begin with a general remark. Let K be any finite extension of GP. By
the criterion of Néron-Ogg-Shafarevich,
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E has good reduction over K ~ Gal(QpjK) ~ I ~ ker 6E,p.

Since I = Gal(Qp/Qp,unr) and ker 03C3E,p = Gal(Ù,,/L), this equivalence amounts
to:

E has good reduction over K ~ KQp,unr ~ L. (2.4)

Suppose now that the left-hand side of (2.4) holds with K abelian over Qp.
Then L is contained in the compositum of two abelian extensions ofQp and so is
itself abelian over Op. Hence (1) implies (2).
Next suppose that W(L/Qp) is abelian. Then A is abelian and the action of

~03A6~ on A is trivial. Recalling the four possibilities for A, we see that A xé Z/eZ
(with e = 1, 2, 3, 4 or 6) and that W(L/Qp) ~ 7Lje7L x ~03A6~. Let K be the subfield
of L fixed by ~03A6~ (i.e. fixed by the closure of ~03A6~ in Gal(L/Op». Then K is a
totally ramified cyclic extension of Qp of degree e, and E has good reduction
over K by (2.4). Therefore (2) implies (4). Since (4) trivially implies (1) we see in
fact that (1), (2), and (4) are equivalent. Now a faithful two-dimensional
semisimple complex representation of a group is reducible if and only if the
group is abelian. This gives the equivalence of (2) and (3). Finally, the

equivalence of conditions (4) and (5) when p &#x3E; 3 will be verified in the course of

proving (v).
(iii) By assumption, E has good reduction over the extension KGp,unr. Since L

is the minimal extension of U p,unr with this property, L is contained in KQp,unr·

On the other hand, since K is totally ramified over Qp, we have

and therefore L = KQp,unr. Thus Gal(L/Op, unr) is isomorphic to Gal(KjQp), and
the Artin map affords identifications

the second isomorphism being an expression of the fact that K is totally ramified

over Qp.
Since u,,p is a reducible semisimple representation of 1f/(LjQp) of determinant

03C9-1 (cf. (2.3)), we have

for some one-dimensional representation v of W(L/Qp). Furthermore, since the
restriction of co to Gal(L/Op unr) is trivial while (1 E,p is faithful we see that the
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restriction of v to Gal(L/Qp,unr) is also faithful. Hence if v is regarded as a
character of Q p using (2.5), then

for some k E (Z/eZ) . In particular,

Now let § be a nontrivial unitary character of Qp and dx a Haar measure on Qp.
By (2.6) we can write

03B5(03C3E,p, 03C8, dx) = 03B5(03BD,03C8, dx)03B5(03C9-103BD-1, 03C8, dx).

Dividing both sides by their absolute values and applying formulas (3.4.4),
(3.4.5), and (3.4.7) of [19], we obtain W,(E) = v(-1), whence the desired formula
follows from (2.7).

(iv) This is a special case of (iii) (and a well-known fact).
(v) If p &#x3E; 3 then the only possibility for A is ZleZ, with e = 1, 2, 3, 4 or 6.

Furthermore, since E has potential good reduction and p &#x3E; 3, we can apply a
well-known criterion to decide whether E has good reduction over a given
algebraic extension K ofQp: E has good reduction over K if and only if the order
of 0394 with respect to a uniformizer of K is divisible by 12 (cf. [17], p. 186, Ex. 7.2).
In particular, let d be an arbitrary positive divisor of e, and let K be the unique
extension of 0 p, unr of degree d contained in L. Then E has good reduction over
K if and only if

On the other hand, L was chosen to be the minimal extension of Qp,unr over
which E acquires good reduction. Hence the preceding congruence holds if and
only if d = e, so that

Before proving the formula for Wp(E) let us complete the proof of (ii) by
verifying that for p &#x3E; 3, conditions (4) and (5) in (ii) are equivalent. On the one
hand, (5) amounts to the congruence p ~ 1 (mod e), and by local class field
theory, this congruence holds if and only if Qp has a totally ramified cyclic
extension of degree e. Hence (4) implies (5). On the other hand, if p = 1 (mod e),
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and if K is a totally ramified cyclic extension of Q p of degree e, then the valuation
of 0394 relative to a uniformizer of K is congruent to 0 modulo 12, by (2.8). Then E
has good reduction over K. Therefore (5) implies (4).
To prove the formula for WP(E) we consider two cases, according as the

equivalent conditions in (ii) do or do not hold. First suppose that these

conditions do hold, so that p ~ 1 (mode). Let y be as in (iii). Then

Wp(E) - 03BC(-1), and the restriction of p to 7L; has order e. Hence if e = 1 or 3
then Wp(E) = 1. This conclusion is in agreement with the stated formula,
because if e = 3 then our assumption that p ~ 1 (mod e) implies that ( - 3/p) = 1.
Now if e = 2 or 6 then 03BC|Z p is the Legendre symbol at p times a character of
order 1 or 3 respectively. Hence 03BC(-1) = (-1/p), as claimed. Finally, suppose
that e = 4. Then p - 1 (mod 4), and 03BC(-1) is 1 or -1 according as -1 is or is
not a quartic residue modulo p. In other words, 03BC(-1) = ( - 21p), as claimed.
Next suppose that the equivalent conditions in (ii) are not satisfied, so that

03C3E,p is irreducible and p ~ 1 (mod e). Then e = 3,4, or 6, and ir(LjQp) is

isomorphic to Z/eZ ~03A6~, with the unique nontrivial action of ~03A6~ on Z/eZ.
Now the group Z/eZ  ~03A6~ contains 7Lje7L x ~03A62~ as an abelian normal

subgroup. Hence if we view O"E,p as a representation of the former group, then

0" E,p is induced from a one-dimensional representation of the latter group. Stated
more intrinsically,

where H is the unique unramified quadratic extension of Qp and ç is a one-
dimensional representation of 1r(LjH)( = W(L/Qp) n Gal(L/H)). Let (9H denote
the ring of integers of H. Via the Artin isomorphism we may identify 9 with a
quasicharacter ofNB and since O"E,p is faithful we know that ~|O H has order e.
Now choose a nontrivial unitary character 03C8: Qp ~ C  as well as Haar

measures dx and dy on Qp and H respectively. Let il denote the unramified
quadratic character of Q p and write 1Qp and 1 H for the trivial characters of Q p
and H x. As in (1.4) and (1.5), the inductivity of the epsilon factor in degree 0
gives

Dividing each side of this equation by its absolute value, and applying [19],
formula (3.2.6.1), we obtain
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where n is the largest integer such that 03C8(p-nZp) = 1 and

(the asterisk denotes an arbitrary character of H ’).
Write H = Qp(u), with u2 ~ Z p. We claim that

whence

after substitution in (2.9).
To verify (2.10), we first observe that

Indeed the formula for the determinant of an induced representation ([9]; or see
[6], p. 508) gives

whence (2.12) follows from (2.3). Now let 0 be the unramified character of H
such that 03B8(p) = -p-1. Following the convention of [6] and [19] for the
reciprocity law map, we have w(p) = 03C9(03A6) = p -1 = 10(p), so that ~03B8|Q p is

trivial, by (2.12). Hence the result of Frôhlich-Queyrut ([8], Thm. 3) gives

(In applying [8], note that the left-hand side of (2.13) is a priori independent of
the choice of § by virtue of formula (3.4.4) of [19] and the fact that ~03B8|Q p is

trivial.) On the other hand, 0 is unramified, and since pie the conductor-
exponent of ç is 1. Hence formula (3.2.6.3) of [19] gives

Together, (2.13) and (2.14) yield (2.10) and therefore (2.11).
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It remains to check that (2.11) coincides with the stated formulas for Wp(E) in
terms of Legendre symbols. If e = 3 then our assumption that p ~ 1 (mod e)
implies that ( - 3/p) = -1. This value coincides with (2.11), because cp(u) is equal
a priori to a cube root of unity and by (2.11) to ± 1, hence to 1. If e = 4 then

p --- 3 (mod 4), and u2 ~-1Z  2p. Thus the order of the subgroup of «9HIpCH)
generated by the image of u is divisible by 4 but not by 8, and cp(u) is 1 or -1

according as p2 - 1 is or is not divisible by 16. Therefore ~(u) = -(-2/p), as
desired. A similar argument for e = 6 completes the proof.

3. The case of potential multiplicative reduction

Let E be an elliptic curve over Qp with potential multiplicative reduction. The
distinction between ’ir’(QpjQp) and ir(QpjQp) now becomes important; the 1-
adic representations afforded by E are not trivial on an open subgroup of 7 and
hence do not define continuous complex representations of W(Qp/Qp). In
compensation for this, one exploits the correspondence between 1-adic represen-
tations of W(Qp/Qp) and certain complex representations of W’(Qp/Qp) ([19],
(4.2.1)), associating to E a representation 03C3’E,p = (6E, p, NE,p) of W(Qp/Qp) which
must now be made explicit.

Since E has potential multiplicative reduction, there is a unique Tate curve
ETate over Qp, together with an element d ~ Q p, uniquely determined modulo
Q  2p, such that E is isomorphic over Qp to the twist of ETate by d:

Let x = ~d,p be the character of Q p (quadratic or trivial) determined by the

extension Qp(d)/Qp, and define a continuous homomorphism

by

The matrix
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satisfies the compatibility relation

and so fixing a basis {e1, e2} for e2 we may view the pair (03C3E,p, NE, p ) as giving a
representation of W’(Qp/Qp) on e2. This is 03C3’E,p.

Put V = e2 and let VN denote the kernel of NE, p . We write V I for the subspace
of V fixed by 03C3E,p(I) and VJ for VI n vN .

PROPOSITION 3. (i) The representation 03C3’E,p is reducible but indecomposable.
(ii) The following are equivalent:

(1) E has additive reduction over Q p.
(2) ~d,p is ramified.
(3) VI = YN = {0}.

If these equivalent conditions hold, then Wp(E) = Xd,p( -1). In particular, if p is
odd, then

(iii) The following are equivalent :

(1) E has multiplicative reduction over 0..
(2) ~d,p is unramified.
(3) VI = V and YN = VN = Ce2.

If these equivalent conditions hold, then

W,(E) = - 1, if EjQp has split multiplicative reduction
1 if E/Qp has nonsplit multiplicative reduction.

Proof. Part (i) and the equivalence of conditions (1), (2), and (3) in parts (ii)
and (iii) are immediate consequences of the definitions and the theory of Tate
curves. The formulas for Wp(E) are also well known, but we say a few words for
the sake of completeness.

If 03C8 is a nontrivial unitary character of Qp, dx a Haar measure on Op, and
(D E W(Qp/Qp) an inverse Frobenius element, then

([19], (4.1.6)), and therefore
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by additivity. Dividing each side by its absolute value we find

by formulas (3.4.5) and (3.4.7) of [19]. Now under the equivalent conditions in
(ii) we have VI/VIN = {0}, so that the determinant in (3.1) is 1 and Wp(E) = x( -1).
On the other hand, in the situation of (iii) we have x( -1) = 1 but

so that Wp(E) is - 1 or 1 according as x is trivial or nontrivial.

4. Proof of Theorem 1

Let a, b, and c be square-free positive integers satisfying 1728a + 03B2b - yc = 0,
with 03B2, 03B3 ~ {± 1}. We assume that a, b, c are relatively prime to 6 and to each
other and that yac ~ 1 (mod 4). Put j = ycla and let Ej be as in (0.2). We shall
compute W(Ej).
The curve Ej is the quadratic twist by j of the curve on p. 52 of [17] or on p. 38

of [18]. Using the formulas on p. 38 of [18] (but noting a sign error in the
formula for c,), one sees directly that the covariants c4, c6, and A associated to
the equation (0.2) are

and

If p is a prime not dividing abc, then the coefficients of the equation (0.2) are p-
integral and A is a p-unit. (The congruence yac ~ 1 (mod 4) ensures that the
coefficient of X2 in (0.2) is p-integral even for p = 2.) It follows that Ej has good
reduction at p, whence
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by part (iv) of Proposition 2.
If p is a prime dividing a, then ord p j = - 1  0. Hence E has potential

multiplicative reduction at p. From the theory of Tate curves we see that over

Op, E is isomorphic to EdTate, with d = - c6/c4 (notation as in Section 3). On the
other hand, since -c6/c4 = j and ord p j = -1, the extension Qp(-c6/c4)/Qp
is ramified. Therefore

by part (ii) of Proposition 3.
Next suppose that p divides either b or c. Then j is p-integral; Ej has potential

good reduction at p. Furthermore, ordp0394 = - 3 if p divides b and ordp0394 = 8 if p
divides c. Hence part (v) of Proposition 2 gives

and

Substituting formulas (4.1) through (4.4) into (1.3), we obtain

proving Theorem 1.
For later reference, we note that the formula for W(Ej) can also be written as

Indeed, since yc = 1728a + 03B2b, we have c ~ 03B303B2b (mod 24). In particular, we have
the congruence c - ypb (mod 3), and also, since a ~ yc (mod 4), the congruence
a - 03B2b (mod 4). It follows that
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and that

Making these substitutions in (4.5) we obtain (4.6).

5. The square-free sieve

We shall formulate a variant of a result of Gouvêa-Mazur ([10], Thm. 3) which
will be used in Section 6 to derive the corollary to Theorem 1. In principle,
Proposition 4 below is much weaker than the original result, because we
consider only forms which factor into linear factors, rather than into factors of
degree  3 as in [10]. However, the key point for us is that in Proposition 4, a
and b are allowed to vary over independent intervals.

Let F(u, v) E Z[u, v] be a product of homogeneous linear forms with coeffi-
cients in Z, and assume that F(u, v) is not divisible by the square of any nonunit
of Z[u, v]. Let M be a positive integer, let ao and bo be integers relatively prime
to M, and let N(x, y) denote the number of integers (a, b) such that 0  a  x,
0  b  y, a = ao (mod M), b ~ b0 (mod M), and F(a, b) is square-free. For
a positive integer m put b(m) = gcd(m, M) and let p(m) denote the number
of pairs of integers (a, b) satisfying 0  a, b  m - 1, F(a, b) ~ 0 (mod m),
a == ao (mod 03B4(m)), and b - bo (mod b(m». Also put r(m) = b(m)2 p(m).
PROPOSITION 4. For x, y - oo with x » y » x, we have

where

( p runs over all prime numbers).
Proof. Since the argument in [10] goes through virtually without change, we

shall be brief.

Put 03BE = (1/3)log x and let N’(x, y) denote the number of pairs of integers (a, b)
satisfying 0  a  x, 0  b  y, a ~ a0 (mod M), and b ~ bo (mod M), and such
that F(a, b) is not divisible by the square of any prime  ç. Clearly N’ (x, y)
 N(x, y). It suffices to prove that
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and that

For a positive integer n, let Nn(x, y) denote the number of pairs of integers
(a, b) satisfying 0  a  x, 0  b  y, a ~ a0 (mod M), and b ~ bo (mod M), and
such that F(a, b) is divisible by n. The inclusion-exclusion principle gives

where 1 runs over square-free integers divisible only by primes  03BE. On the other
hand, reasoning as in the second paragraph on p. 16 of [10], but recalling that by
definition c5(l2) = gcd(l2, M), we find

(The key point to keep in mind is that x = O( y) and y = O(x).) Substituting (5.4)
in (5.3) and arguing as in the remainder of the proof of Lemma 8 of [10], we
obtain (5.1).
Now write

where the f are homogeneous linear forms with integer coefficients. For

1  i  t, let E’i(x, y) be the number of pairs of integers (a, b) such that 0  a  x,
0  b  y, and fi(a, b) = 0, and let E"i(x, y) be the number of pairs of integers
(a, b) such that 0  a  x, 0  b  y, and fi(a, b) is nonzero but divisible by the
square of some prime &#x3E; 03BE. Put Ei(x, y) = E’i(x, y) + E"i(x, y). Also let Eo(x, y)
denote the number of pairs of integers (a, b) satisfying 0  a  x and 0  b  y
such that there is a prime p &#x3E; 03BE which divides both a and b. Finally, let

Reasoning as in the proof of [10], Proposition 2, we see that

if x (and hence y) is sufficiently large.
We have



137

just as in Lemma 9 of [10]. Also E’i(x, y) = O(x) for 1  i  t because the zeros of

h lie on a line. As for E"i(x, y), observe that if 0  a  x and 0  b  y, then
|fi(a, b)) « x. Hence if p2 divides fi(a, b) and h(a, b) ~ 0, then p2 « x. We may
now argue as in [10] to conclude that E"i (x, y) = O(x2/log x), whence

for 1  i  t. Combining (5.5), (5.6), and (5.7), we obtain (5.2).

6. Proof of the corollary

We apply Proposition 4 with M = 24 and F(u, v) = uv(1728u + 03B203BD), where
fi ~ { ± 1}. Integers ao and bo relatively prime to M will be chosen later. We claim
that A ~ 0. To see this we refer to [10], Proposition 5. According to part (1) of
the result cited, it suffices to check that for each prime p, r(p2) ~ p4. This
condition is satisfied for p &#x3E; 3 by part (4) of the proposition, and for p = 2 and
p = 3 by part (3). Thus A ~ 0. Now let r be a fixed positive real number, let n be a
large positive integer, and put x = n, y = rn, A = n/(log n)1/3. Then Proposition
4 gives

and the right-hand side is simply

We conclude that if n is sufficiently large, then there is a pair of integers (an, bn)
satisfying n  an  n + n/(log n)1/3 , rn  bn  rn + n/(log n)1/3, an ~ ao (mod 24),
and bn = bo (mod 24), and such that anbn(1728an + 03B2bn) is square-free. Note that

Now suppose that jo E RB{0, 1728} and 03B5 ~ {± 11 are given. Put



138

and

Then r &#x3E; 0. Choose integers ao and bo relatively prime to 24 such that

and

Let (an, bn) be the sequence of pairs of positive integers constructed in the
previous paragraph, and define

The second expression for jn in (6.4) gives

Since this is also the limit of YCnjan, we see that for n sufficiently large, ycnjan has
the same sign as jo. In fact since an is positive and y has the same sign as jo, we see
that cn is positive for large n, whence an, bn, and cn are square-free positive
integers relatively prime to 6 and to each other such that

Furthermore,

because an ~ 03B2bn (mod 4) by (6.2) and 03B2bn ~ yc,, (mod 4) by (6.6). Consequently,
the rational number jn satisfies the hypotheses of Theorem 1, and using (4.6) and
(6.1) we find
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Since jo E R/{0, 17281 and 03B5 ~ { ± 11 were arbitrary, (6.5) and (6.7) together imply
that the closure of J± contains RB{0,1728} and therefore equals R. This

completes the proof of the corollary.

7. Proof of Theorem 2

We shall prove three propositions (Propositions 6, 7, and 9 below) which
together contain all of the assertions of Theorem 2. The proofs are a

straightforward application of Waldspurger’s results on local epsilon factors,
encapsulated here in Propositions 5 and 8.

Let E be an elliptic curve over Q. For each prime p we may regard E as an
elliptic curve over Qp and form the quadratic twist Ed over Qp by an element
d ~ Qp. We let D+E,p denote the set of all d ~ Q p such that

where xd, p : Q p ~ {± 1} is the character (quadratic or trivial) associated to the
extension Qp(d)/Qp. We also let Di,p denote the complement of D+E,p in Q p,
and we define 03B4E,p: Q p ~ {± 1} by

Then for all d ~ Q p we have

Note that Di,p contains Q 2p and is in fact a union of cosets of Q 2p. Hence DE+ is
both open and closed in Q p, and ÔE,, is continuous.
Now suppose that d ~ Q . For all but finitely many p, the factors Wp(Ed),

Xd,p(- 1), and Wp(E) are equal to 1, hence the same is true for ÔE,,(d). Using
Proposition 1 we may write

The last of these three products is W(E), by Proposition 1, and the second is

~d,~(-1), by global reciprocity. Hence
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where we put sign x = xjlxl for a nonzero real number x.
To make use of this formula we need some information about the functions

bE,p.

PROPOSITION 5. (i) If E acquires good reduction over some abelian extension

of Qp then D’p = 0’, i.e. 03B4E,p is identically 1.
(ii) If E does not acquire good reduction over any abelian extension of Qp, then

D+E,p ~ Q p , i.e. 03B4E,p assumes both values 1 and -1.
Proof. (i) If E acquires good reduction over some abelian extension of Op,

then 03C3’E,p (= 03C3E,p) is a direct sum of two one-dimensional representations as in
formula (2.6):

Furthermore, we have W,(E) = v( -1) by formula (2.7) and part (iii) of Proposi-
tion 2. In like manner, we have

and Wp(Ed) = VXd,p(- 1). Therefore Wp(Ed) = ~d,p(-1)Wp(E) for all d E (Ux
whence bE,p is identically 1. 

(ii) Let Wl/2 denote the character of 1f/(QpjQp) given by w ~ W(W)1/2, so that
03C3E,p ~ Wl/2 has trivial determinant. Following the usual conventions for a tensor
product of representations of 1f/’(QpjQp), put

and let 03C0 be the irreducible admissible representation of PGL(2, Qp) correspond-
ing to 03C3E,p ~ 03C91/2 under the local Langlands correspondence. (For the cases of
the local Langlands correspondence needed here see Tunnell [20], [21].) In
terms of the epsilon factor B(n, s), defined as in [22], p. 225, the relation (7.1)
takes the form

If E does not acquire good reduction over any abelian extension of Qp then 03C3’E,p
is either irreducible (Proposition 2, part (ii)) or else reducible but indecom-
posable (Proposition 3, part (i)). Hence n is a discrete series representation, and
there exists d ~ Q p such that
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([22], Prop. 16 b)). Referring to (7.3), we see that 03B4E,p(d) = -1 for this d, whence
D+ * (Iâx

Let M(E) be the product of all primes p such that E does not acquire good
reduction over any abelian extension of Qp. In view of part (i) of Proposition 5
we can rewrite formula (7.2) as

Now consider a family of elliptic curves of the form Et = Ef(t)(t E Q, f(t) ~ 0),
where E is a given elliptic curve over Q and f is a nonzero polynomial with
rational coefficients. Put

The first assertion of Theorem 2 is contained in the following proposition:

PROPOSITION 6. (i) If there exists a prime divisor po of M(E) such that the sets

f(Qpo) n DÉ,po and f(Qpo) n Di,po are both nonempty, then T+ and T - are both
dense in R.

(ii) Suppose on the other hand that for every prime divisor p of M(E), one of the
sets f(Qp) n D+E,p and f(Qp) n D-E,p is empty. Then one of the sets T ± is

{t ~ Q:f(t) &#x3E; 0} and the other is {t ~ Q:f(t)  01.
Proof. (i) Let U ± denote the nonempty open subset of Qpo consisting of

t ~ Qpo such that f(t) E Dipo. Let r c- R be given, and suppose that f(r) :0 0. There
exist rational numbers q+ and q - arbitrarily close to r such that q ± E U± and
such that q ± E Q;2 for every prime divisor p of M(E) different from po. We have
03B4E,po(f(q±)) = + 1 and 03B4E,p(f(q±)) = 1 for p :0 po; also sign(f(q±)) = sign(f(r)) if
q + and q - are sufficiently close to r. Hence (7.4) gives

so that one of q+ and q - belongs to T + and the other to T -. Since r E R was
arbitrary except for the condition f(r) ~ 0, we conclude that T+ and T - are
both dense in R.

(ii) Our hypothesis is now that for every prime divisor p of M(E), the function
t ~ 03B4E,p(f(t)) (with domain {t~Qp:f(t) ~ 01) is a constant function, say with
constant value Ep. Put
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The next proposition contains the third assertion in Theorem 2.

PROPOSITION 7. The following are equivalent:

(1) E acquires everywhere good reduction over some abelian extension of Q.
(2) For each prime p, E acquires good reduction over some abelian extension of
.

(3) We have W(Ed) = sign(d)W(E) for every d ~ Q .

(4) For every nonzero polynomial f over Q, one of the sets T± is

{t ~ Q: f(t) &#x3E; 0} and the other is {t ~ Q: f(t)  0}.
Proof. Clearly (1) implies (2), and the converse implication holds because any

finite set of local abelian extensions can be realized by a global abelian
extension. That (2) implies (3) follows from (7.4), because (2) means that
M(E) = 1. Furthermore, (4) is an immediate consequence of (3). Suppose now
that (2) does not hold. Then by part (ii) of Proposition 5 there is a prime po such
that bE,po assumes both values 1 and -1. Since Q x is dense in Q;o’ there exist
a, b E Q x such that bE,po(a) = 1 and 03B4E,po(b) = -1. Choose a polynomial f over
Q such that a, b e f(Q). For this f the first alternative in Proposition 6 is in
force, and therefore (4) does not hold.

Using condition (5) in part (ii) of Proposition 2, one sees that the equivalent
conditions of Proposition 7 are satisfied by the curves (0.3) and (0.4) of the
introduction, because 37 - 1 is divisible by 12.

It remains to prove the second assertion of Theorem 2. Before doing so, we
prepare an ancillary result. Given an elliptic curve E over Q p’ consider the
following condition:

(§) There exists a subgroup C of index 2 in Q p and an element b e Q p such
that bE,p is constant on bC.

LEMMA. (i) If p is odd then (§) is satisfied.
(ii) If p = 2 then (§) is satisfied under either of the following hypotheses :

(1) E acquires good reduction over some abelian extension of Q2’
(2) E has potential multiplicative reduction.

(iii) If p = 2 then (§) holds with the words "index 2" replaced by "index 4".
Proof. (i) If p is odd then Q 2p has four cosets in 0; , and the union of any two

of them is a coset of some subgroup of Q p of index 2. Since bE,p has at most two
values and is constant on cosets of Q 2p, we can find two cosets on which bE,p
takes the same value.

(ii) If E acquires good reduction over some abelian extension of Q2 then bE,2
is identically 1 (Proposition 5, part (i)) and C and b may be chosen arbitrarily. If
E has potential multiplicative reduction, then we can write E = EdoTate with a
unique Tate curve ETate over Q2 and an element d0 ~ Q 2 uniquely determined
module Q 22. Put
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and b = - do. Since ~-1,2(-1) = - 1 we have

In particular, if d E bC then ~ddo,2 is ramified. Referring to (7.1) and to part (ii) of
Proposition 3, we see that for d ~ bC,

which is independent of d.
(iii) We argue as in (i): Q 22 has eight cosets in Q 2 and the union of any two of

them is a coset of some subgroup of Q 2 of index 4.

REMARK. There exist elliptic curves over Q2 which do not satisfy either of the
hypotheses in part (ii) of the lemma but nevertheless satisfy (§) for p = 2.
However, (§) does not hold in all cases when p = 2: the curve y2 = x3 - x is a
counterexample.

Let us now prove the second assertion of Theorem 2. Given an arbitrary
elliptic curve E over Q we must show that we can choose f so that the family
Et = Ef(t) falls into the second case of Proposition 6, the number of sign changes
of f ’ on Il being arbitrarily large. Recall that the zeros of an irreducible
polynomial over Q are simple, whence such a polynomial changes sign at every
real zero.

PROPOSITION 8. Let E be an elliptic curve over Q, let n be a positive even
integer, let m be an even integer satisfying 0  m  n, and let 03B5 ~ {±1}. If E does
not satisfy (§) for p = 2 then we assume that n is divisible by 4. There exists an
irreducible polynomial f over Q of degree n, with exactl y m real zeros

r 1  r2  ···  rm, such that W(Ef(t)) = 03B5(-1)k for t ~ Q ~ (rk, rk+1 ), 0  k  m.
Here we put ro = - ~ and rm+1 = 00.

Proof. If M(E) = 1 then we choose f to be any irreducible polynomial over Q
of degree n with exactly m real zeros such that lim|t|~~ sign(f(t)) = 03B5W(E). The
formula for W(Ef(t)) then follows from (7.4). Henceforth we assume that

M(E) &#x3E; 1.

For each prime p dividing M(E), choose a subgroup Cp of Q p and an element
bp~Q p such that 03B4E,p is constant on bp Cp, with Cp of index 2 or 4 in Q;
according as (§) is or is not satisfied. Let Kp be the unique abelian extension of
Qp such that NKp/Qp(K p) = Cp, and let Lp be any extension of Kp of degree
n/[Q p : Cp]. Thus Lp is an extension of Op of degree n. Choose a primitive
element of Lp over Qp and let
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be its irreducible monic polynomial over Qp. Also choose a monic polynomial

of degree n with real coefficients and exactly m real zeros, all of them simple.
Finally, let 03B5p ~{± 1} be the constant value of ÔE,p on bp CP for p dividing M(E),
and define 03B5~ by the requirement

Now choose a monic polynomial

with rational coefficients such that for PIM(E) and p = oo the coefficient ak
approximates ak,p very closely. Our precise requirements are as follows:

- For each p dividing M(E), g is irreducible over 0., and one of its zeros in Qp
generates Lp over Qp.

- g has exactly m real zeros, all of them simple.

We also choose a rational number b such that b E bp Cp for pIM(E) and such
that sign b = e.. We claim that the polynomial f = bg has the desired

properties.
By assumption, M(E) has at least one prime divisor po, and since g is

irreducible over OPO we see that f is irreducible over Q. By construction, f has
exactly m real zeros and

We claim that for pIM(E) we have f(Q) c b p C p, so that

for 03C4 ~ Q. Indeed, let ap be a zero of g in Qp which generates Lp over Qp. Given
t ~ Q we have
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and the last term is equal to b p Cp by construction. Combining (7.4), (7.5), and
(7.7), we find

and then (7.6) gives

8. Proof of Theorem 3

Next we specialize to the case of a family of the form Et = Ef(t) with f quadratic.
We assume that there exists a value of t ~ q such that f(t) ~ 0 and Et(Q) has
positive rank, and we must prove that the set of all such t is dense in R. After
completing the square in f and replacing the parameter t by a translate of t, we
may assume that f has the form f(t) = ct2 + e with c, e e Q and c ~ 0. We may
also assume that e ~ 0, for otherwise the family is a constant family and the
assertion to be proved is trivial.

Let y2 = X3 + ax + b be an equation for E over Q. Then

is an equation for Et . Let n be a positive integer divisible by the denominators of
a, b, c, and e. After multiplying (8.1) by n3 and replacing the variables x and y by
nx and ny, we may assume that a, b, c, e E Z.
The principle of the proof is simply this: the surface defined by equation (8.1)

can be realized as an elliptic fibration of the affine line in two different ways.
First, the map (x, y, t) H t gives an elliptic fibration of the t-line, and second, the
map (x, y, t) ~ y gives an elliptic fibration of the y-line. Now suppose that some
fiber of the first fibration has a point of infinite order. This point belongs to some
fiber of the second fibration, and if we arrange things properly then it is even a
point of infinite order on that fiber. By projecting the group it generates onto
the base of the first fibration, we shall obtain a dense subset of the t-line where
the fibers have positive rank. (The referee has informed me that this type of
argument is well known and occurs for example in Elkies’ proof that the rational
locus of x4 + y4 + z4 = 1 is dense in the real locus.)

Let us now put this prescription into practice. By assumption, there exists
s ~ Q such that f(s) ~ 0 and Es(Q) has positive rank. Since cef(s) ~ 0, the
equation cx’ + e = f(s)y2 defines a smooth curve of genus 0 over 0 with a
rational point (x, y) = (s, 1). Hence this curve has infinitely many rational points.
Now if (u, v) is any such rational point, then Es ~ Eu. Hence after replacing s by
some u if necessary, we may assume that s ~ 0.
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By assumption, Es(Q) n Es([R) is dense in Es([R), where the circle denotes
identity component. Since the map Es(R)B{O} ~ Il sending a point to its y-
coordinate relative to equation (8.1) is surjective, the restriction of this map to
Es(Q) n (Es(R)B{O}) has dense image. Thus E,(U) contains points of infinite
order of the form (q, k/4, with q ~ Q and relatively prime positive integers k and 1
which are greater than any prescribed bound. In particular, we can choose such
a point with

and

Hère h &#x3E; 0 dénotes the denominator of s.

Consider the curve

where

and

We have

and k is relatively prime to 1. From (8.2) we conclude that the left-hand side of
(8.5) is not congruent to 0 modulo 1 and hence is not equal to 0. Therefore E’ is an
elliptic curve.
By direct calculation, (cI2q, c2kl2s) is a point on E’. We claim that it is a point

of infinite order. If not, then it is a torsion point of order &#x3E; 2, because ckls ~ 0.
Hence the Lutz-Nagell Theorem implies that c2kl2s E 7L and that (e2kI2s)2 divides
4A3 + 27B’. Recalling that h is the denominator of s, we see that k2 divides
h2(4A3 + 27B2)/(c414), whence k2 divides c218h2(4a3 + 27b2). Since k and 1 are

relatively prime and c2h2(4a3 + 27b’) * 0, we have a contradiction to (8.3). Thus
(cI2q, c2kl2s) is a point of infinite order on E’.
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It follows that E’(Q) n E’ (R)° is dense in E’(M). Hence the set of y-coordinates
(relative to the equation (8.4)) of points in E’(Q)B{0} is dense in R. For

(u, v) E E’(Q)){O} put t(u, v) = vj(c2kI2). Then the set

is the set of all multiples of y-coordinates of points in E’(Q)B{O} by the nonzero
constant 11(c’kl’). Hence this set is also dense in R. On the other hand, putting
x(u, v) = u/(cl2) and y(u, v) = k/l, we see by direct calculation that for

(u, v) E E’(Q)B{O} we have (x(u, v), y(u, v» c- Et(u,v)(Q). Thus it suffices to show that
for all but finitely many (u, v), the point (x(u, v), y(u, v)) has infinite order. This is a
consequence of the following lemma, because the map (u, v) H x(u, v) is finite-to-
one :

LEMMA. Let E be an elliptic curve over Q. Fix an equation

for E over Q, so that

is an equation for Ed over U for every d c- 0 ’. Let X be the set of all rational
numbers which occur as the x-coordinate (relative to (#)) of some rational torsion
point of order &#x3E; 1 on some Ed. Then X is finite.

Proof. By [11] (or see Prop. 1 of [10]) there are only finitely many square-free
integers d such that Ed(Q) has a torsion point of order &#x3E; 2. Let {d1, d2, ... , dv} be
the set of such square-free integers, and for 1  i  v, let Xi be the finite set

consisting of the x-coordinates of rational torsion points of order &#x3E; 1 on Edi. We
claim that

Indeed, suppose that (03BE, il) c- E’(0) is a torsion point of order &#x3E; 1 for some

d ~ Q  . If (03BE, 17) has order 2 then 17 = 0 and 03BE belongs to all of the X i . If (03BE, 11) has
order &#x3E; 2, then we can write d = di w2 with w e Q " and 1  i  v, and (03BE, w~) is a
torsion point of order &#x3E; 2 in Edi(Q). Hence ç E Xi. This proves the claim.

9. Applications

For the formulation and proof of the following lemma, it is convenient to alter
our point of view slightly. Instead of referring to an algebraic family of elliptic
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curves {Et} over Q, we shall speak instead of an elliptic curve C over the rational
function field U(t). If 0 corresponds to the family {Et} then the group of Q-
rational sections of {Et} is identified with the Mordell-Weil group E(Q(t)). Given
dE Q x , we let Ed denote as usual the quadratic twist of g by d.

LEMMA. Assume that E is not isomorphic to a constant elliptic curve. Then for
all but finitel y many square-free integers d, the rank of Ed(Q(t)) is 0.

Proof. Put

We consider the representation of Gal(Û/U) on V which is afforded by the
natural action of Gal(0/0) on 8(Q(t)). Since E is not isomorphic to a constant
elliptic curve, V is finite-dimensional. In particular, only finitely many irre-
ducible representations of Gal(0/0) occur in V. But if d~O  and Xd is the
character of Gal(0/0) (quadratic or trivial) corresponding to the extension
Q(d)/Q, then Xd occurs in V if and only if Ed(Q(t)) has positive rank. From this
the lemma follows.

Recall that in Section 7 we have introduced a condition denoted (§) on an
elliptic curve E over UP. If p is odd then (§) is always satisfied. If p = 2 then (§) is
satisfied provided that E has potential multiplicative reduction or acquires good
reduction over an abelian extension Of 02-

PROPOSITION 9. Let E be an elliptic curve over Q.
(i) Let n be a positive even integer. If E does not satisfy (§) for p = 2 then we

assume that n is divisible b y 4. There exists an irreducible polynomial f - over 0 of
degree n such that:

(1) The group of U-rational sections of the family Et = Ef-(t) has rank 0.
(2) W(Ef -(’» = -1 for all te Q. Hence if we grant (0.1), then Ef-(t)(Q) has

rank  1 for all t ~ Q.

(ii) Assume that E satisfies (§)for p = 2. There exists an irreducible quadratic
polynomial f + over 0 such that:

(1) The group of Q-rational sections of the family Et = Ef+(t) has rank 0.
(2) Ef+(t)(Q) has rank &#x3E; 0 for a dense set of t E Q.
(3) W(Ef+(t)) = 1 for all t ~ Q. Hence if we grant (0.1), then Ef ’(’)(0) has

rank  2 for a dense set of t E Q.
Proof. (i) We apply Proposition 8 with m = 0 and e = -1. Let f be as in the

conclusion of Proposition 8. Since f is irreducible, the family Et = Ef(t) is not
isomorphic to a constant family. Hence the lemma implies that there is a positive
integer d such that d ~ Q 2 p for every p dividing M(E) and such that the group of
0-rational sections of the family Et = Edf(t) has rank 0. We put f- = df. Then (1)
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holds. As for (2), we have sign(f-(t)) = sign(f(t)) and also dE,p(f-(t)) = ô,,, (f(t»
for p dividing M(E), because 03B4E,p is constant on cosets of Q;2. Therefore (7.4)
gives W(Ef-(t)) = W(Ef(t») for all t ~ Q, and (2) follows.

(ii) We apply Proposition 8 with n = 2, m = 0, and e = 1, obtaining an
irreducible polynomial f ’ as in the conclusion of Proposition 8. Let

y2 = x3 + ax + b be an equation for E over Q, and for each prime p dividing
M(E) let (xp, yp) E Ef(1)(Qp) be any point of order &#x3E; 2 (coordinates are taken
relative to the equation f(1)y2 = x3 + ax + b for EI(1»). Let X be as in the
lemma at the end of Section 8, so that X is the set of x-coordinates of torsion

points on curves of the form dy2 = X3 + ax + b with d ~ Q . Choose a rational
number xo ~ X such that

and such that for p|M(E),

This is possible because the set

is an open neighborhood of xp + axp + b and therefore contains x30 + axo + b if
Xo is close to Xp. 

Put 

Since xo 0 X, the point (x,, 1) E Ef+(1)(Q) has infinite order. Therefore (2) holds by
Theorem 3. Regarding (3), we have sign(f+(t)) = sign(f(t)) and f+(t)Ef(t)Q;2
for p dividing M(E), so that W(Ef+(t)) = W(Ef(t)) for all t ~ Q by (7.4). Hence (3)
holds.

Finally, as pointed out to me by Masato Kuwata and the referee, one can use
Shioda’s formula ([16], (10.2) and (10.14)) to compute the rank of the elliptic
surface f(t)y2 = X3 + ax + b over C. There are exactly two singular fibers,
corresponding to the two complex zeros of f, and applying case (6.1) of Tate’s
algorithm ([18], p. 35), one sees that both fibers are of type Iô. Therefore the
group of C-rational sections has rank 0, and a fortiori (1) holds.
The referee has also supplied the following direct argument: Suppose that

(x(t), y(t)) is a nonzero section of f(t)y2 = X 3 + ax + b over C. Let (t) denote
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a fixed square root of f(t) in C(t). Then (x(t), f(t)y(t)) is a point on E defined
over the rational function field C(t, f(t)) and so corresponds to a morphism
P1 ~ E. But any such morphism is constant. Therefore x(t) and y(t) are constant
functions, and if y(t) is nonzero then f(t) is also constant, a contradiction. It
follows that any section of f(t)y2 = X3 + ax + b has order at most 2.
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