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Introduction

The classic Lefschetz theorems [4] concern intersections of subvarieties of
projective space with hyperplanes. This paper is about some similar theorems
concerning the integral leaves of holomorphic or real harmonic one forms. Let
X be a smooth projective variety, and let «* € H(X, Q%) be a holomorphic one-
form on X. We will look at a=a" or the real part a=%Ra" Let Y be any
connected covering space of X such that the pullback of « is exact, and let
g:Y — C (resp. R) denote an integral of a. It is well defined up to addition of a
constant. We may think of the fibers g~ !(v) as intersections of Y with linear
hyperplanes in a vector space (this is precise if we take Y to be the covering Z
defined below). We obtain some theorems about connectivity of the pairs
(Y, g™ }(v)), analogues of the classical Lefschetz theorems.

The Lefschetz theorems have been interpreted in terms of Morse theory, and
this is the basis for expecting the theorems we discuss below. The idea is that Y is
obtained by starting with one of the fibers g~ !(v) and then expanding by
continuously adding other fibers, which changes the topology by attaching
various cells along the way. The cells come from singular points in the fibers. By
analyzing what can happen at the singular points, we obtain bounds on the
connectivity of the pair (Y, g~ (v)). This simple description would be enough to
justify the theorems, except that the covering Y is not compact (and not even
topologically finite). For example, the set of values of g at singular points can be
a countable dense set in C or R. In the end it turns out to work as expected with
no additional complications but we treat the argument with some caution
because the situation is slightly unusual.

This question arises when considering equivariant harmonic maps from the
universal covering of X to trees [3]. The fibers of the harmonic map are more or
less unions of connected components of the integral leaves of a harmonic one
form, so questions of connectivity of these leaves are important for knowing
what can happen. We obtain here a statement which is a technical step used in a
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100 C. Simpson

classification of irreducible two dimensional representations of 7,(X), to be
discussed in a forthcoming joint paper with K. Corlette [1]. Since the question
of 1-connectivity of (Y, g~ '(v)) is what is at issue there, that aspect is stressed
here. We also indicate how one can obtain statements about higher connectivity,
and give a sample. To give a more complete discussion is not so easy, as one
encounters some problems about which types of singularities can arise in the
fibers.

The statement about 1-connectivity for the case of a real harmonic one-form «
is as follows.

THEOREM 1. Suppose X is a connected smooth projective variety, o is a real
valued harmonic one form (resp. complex valued holomorphic one form) on X, and
D < X is a closed subvariety such that a|prs = 0 (resp. D is empty in the case of a
complex valued holomorphic form). Let p: Y — (X — D) be any covering space such
that the function g(y) = 3, p*(«) is well defined. There are three possibilities.

1. The one form o is identically zero.

2. There exists a smooth projective algebraic curve C, a morphism f: X - C
with connected fibers, and a harmonic one- form 8 on C such that o = f*(f).

3. For any veR (resp. veC), the fiber g~ (v) is connected and the map
ny(g~ 1(v)) = n,(Y) is surjective.

Here is how one can see the analogy with the usual Lefschetz theorems. In the
present case, the one form o determines a map to an abelian variety X — A (cf.
below). Let Z be the covering of X corresponding to the vector space covering A.
The fibers g ~ !(v) are the intersections of Z with linear hyperplanes in the vector
space. Conclusion (3) is analogous to the conclusion of the classical Lefschetz
theorem for hyperplane sections of varieties of dimension greater than or equal
to two in projective space. The other possibilities correspond to the fact that the
image of Z might have dimension zero or one.

Preliminary discussion

Let X be a connected smooth projective variety. Suppose D = X is a closed
reduced subvariety; let D™ denote the open set of smooth points in D. Put
X*=X—D. We will treat two similar situations at the same time; we call these
the complex case and the real case. In the complex case we suppose a € HO(X, Q1)
is a holomorphic one-form such that «|p- = 0. In the real case we suppose that o
is a real valued harmonic one-form such that a|p-s = 0. In the real case, there is a
unique holomorphic one-form «* € H(X, Q%) such that « = Ra*. In the complex
case we set o = a. Let K = C in the complex case, and K = R in the real case. Let
B(x, ¢) = K denote the set of points ye K such that |x—y| < ¢, and B(x, ¢) its
closure. Let dB(x, ¢) denote the boundary, which is a circle of radius ¢ in the
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complex case, two points in the real case. Let B¢(x, ¢) denote the disc of radius ¢
around x in C.

The albanese map determined by o

Fix a base point x, € X*, not in the zero set of a. Let Alb(X) denote the albanese
variety HY(X, Q})*/H (X, Z). Integration from x, determines a natural map

X - Alb(X)

which sends x, to the origin; and the one-form « is pulled back from a linear
one-form which we call a,,, on Alb(X). Let B be the sum of all abelian
subvarieties of Alb(X) on which a,;, vanishes. Let

A = Alb(X)/B

and consider the map y: X — 4. We will call this the albanese map determined by
o. Note that a,,, projects to a linear one form a, on A, and o = y*(a ). The pair
(A, o,) has the property that if A’ is a nontrivial abelian subvariety of 4, then the
restriction of a, to A’ is nonzero.

Let 4 denote the universal covering of A (it is a complex vector space). Set

Z=Xx,A.

Let n:Z—X denote the projection on the first factor, and §¥:Z —> 4 the
projection on the second factor. Let Z*=Z—n" (D). Fix a point zoeZ
projecting to x,€ X.

There is a function g ;: A — K defined by the properties that g 7(§/(z,)) = 0 and
d(g7)=o0j. Let g =gjoy. It is characterized by the same properties on Z, and
can be given by the integral

o) = f .

The integral is independent of the choice of path.

The critical locus

Let S « X be the set of points x such that a(x)=0. Let =S U D.



102 C. Simpson

LEMMA 2. The set S is a closed algebraic subvariety of X. The image y(X) is a
finite set.

Proof. In the complex case it is clear that S is an algebraic subvariety. For the
real case, we claim that the zeros of « are the same as the zeros of o*. Taking the
real part of a linear form gives a map

Hom¢(T(X),, C) » Homg(Tg(X),, R).

This is an isomorphism, so «(x) = 0 if and only if «*(x) = 0. Thus S, being the zero
set of the holomorphic one form o, is an algebraic subvariety.

Suppose T’ — X is a resolution of singularities of an irreducible component of
Y. We obtain a map Alb(Z') - Alb(X) (a translate of a morphism of abelian
varieties), compatible with the morphisms ¥’ — Alb(X’) and X — Alb(X). The
pullback of a to X' is zero. Hence the image of Alb(X') is contained in a translate
of the abelian subvariety B defined above. When we project to 4 = Alb(X)/B,
Alb(X"), and hence X', map to a single point. O

Write Y(X)={a,,...,0,} with g; distinct. Let Z,=y ~(5;), so we have a
decomposition

=2, u--UZ,

into disjoint pieces. Note that the pieces are not necessarily connected.

Let d 4(x, y) denote a euclidean metric on A. Let B, (x, ¢) denote the open ball
{ye A4,d,(x,y) < ¢}, and let B,(x, ¢) denote its closure. Assume that ¢, is small
enough so that B,(x,¢,) is simply connected for all xe 4, and such that for
distinct points o; # ¢; in Y(Z), d(0;, 7)) > 4e,.

Put M, ;= B,(0;,¢,). Let M} ; denote the interior (the open ball) and oM 4 ;
the boundary. Set M;=y ‘(M ), M=y (M%), and oM;=y " '(OM ,).
Note that M? is the interior of M; and dM; is the boundary. The M{ are open
neighborhoods of the ¥ ~!(a)).

Define functions g,;:M,; — K by g,:(0)=0 and d(g,,;) = a4ly,,. These
functions are well defined because M, ; are connected and simply connected. Set

gi=gai°¥:M; > K.
Similarly, define g% ;: M, ; » C by g% ;(6) = 0 and d(g% ) = o"|), . Set
gt = g’,:i,i°'//:Mi“’C-

Note that in the complex case g; = g" and in the real case g; = Rg".

LEMMA 3. If we choose ¢, sufficiently small, then 0M; is smooth and M, is a
tubular neighborhood of Y~ (0;). And there exists g, > 0 such that on the set
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(99~ '(Bc(0, 2¢,)) N OM;, the differential d(g})\ap, is nonvanishing.

Proof. The distance function d ,(y(x), 6;)* is real analytic and proper on the
inverse image of a neighborhood of ;. The set of values of &, such that 0M; is
not smooth is the image of the closed real analytic critical point set of this
function, and by Sard’s theorem it is countable. Hence it is finite. Thus if ¢, is
small enough then dM; is always smooth. Morse theory implies that there is a
deformation retraction from M; to ¥ ~!(s;) (we take this as the definition of
tubular neighborhood).

Similarly if ¢, is sufficiently small then dM; N (g")~1(0) is smooth. Thus we
may choose &, so that dM; N (g?)~1(v) is smooth for v e Bc(0, &,). This smooth-
ness is equivalent to the nonvanishing of (dg?)laM',. O

Fix ¢; and ¢, as in the lemma, simultaneously for all M;. Put

N; = (9~ "(Bc(0, ;) n M.
LEMMA 4. N; is a smooth manifold with corners. Its boundary decomposes
6N i= 7: | Ri |V Ci

where T,=(g")~ (B0, &,))nOM; and R;=(g") " (0B0, &,)) " M? are smooth
pieces, and C; = (g*)~1(0B¢(0, &,)) N OM; is a smooth corner.

Proof. The function g” is smooth outside of X;, in particular it is smooth near
the boundary of N,. This implies that the R; are smooth. The previous lemma
implies that T, is smooth, and the nonvanishing of the differential dg" restricted
to M, implies that C; is a smooth corner. O

Let F;=g; Y(0)nN,. Put F? = F;nN? and 0F;= F;n0N,. Note that I, is a
compact subvariety of F?.

Some homotopy theory

A pair (U, V) consists of a topological space U and a subspace V < U. Recall
that (U, V) is k-connected if, for any | < k and any continuous map of the
I-dimensional ball h: B' - A such that h(0B') c V, there exists a continuous
map ¢:B'x[0,1]-> U such that ¢(x,00=h(x), @B'x{1})cV, and
@(@B'x[0,1]) < V.

We have the following properties, which are either standard or easy:

5.1. If @ exists as required in the definition, then we may choose it in such a way
that ¢(y,t) =y for yedB".

5.2 (Transitivity). Suppose W < V < U, and (V, W) is k-connected. Then (U, V) is
k-connected if and only if (U, W) is k-connected.
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5.3 (Deformation). Suppose (U, V) is a pair, and U' < U, V' < U’ " V. Suppose
f:Ux[0,1]1-U is a continuous map such that f(u,0)=u, f(Vx[0,1]) <=V,
fU x[0,1]) = U, f(U,{1}) = U" andf(V,{1}) = V'. Then (U, V) is k-connected
if and only if (U', V') is k-connected.

5.4 (Excision I). Suppose W = V < U. Suppose that the U-closures W and U —V
are disjoint. Then (U,V) is k-connected if and only if (U—W,V—W) is k-
connected.

One uses the trick of dividing up the ball B into small pieces, each of which
maps either into U — W or V, then treating the resulting complex inductively one
skeleton at a time.

5.5 (Excision II). Suppose W < V < U. Suppose that there exists W' < W such
that WAU—V = & and there is a deformation from the pair (U —W',V —W")
to the pair (U — W, V — W) (in the sense of (3) above). Then (U, V) is k-connected if
and only if (U—W,V —W) is k-connected.

This is a combination of 5.3 and 5.4.

5.6 (Exhaustion). Suppose U (resp. V) is an infinite union of open subsets U,
(resp. V), with V, < U,. If the pairs (U;, V}) are k-connected then (U,V) is k-
connected.

This follows from compactness of B' and 0B'-the image of any map h is
contained in one of the U; or V.

5.7 (Expression in terms of homotopy groups). The pair (U, V) is k-connected if
and only if the inclusion induces isomorphisms n;(V) =~ n,(U) for i <k and a
surjection n;(V) - n;(U) fori=k.

This comes from the definition of homotopy groups. Note that the same result
holds for homology groups, but that property does not characterize k-
connectedness.

5.8 (Covering spaces). Suppose p: Y — U is a covering space, and V < U is a
subspace. Then (U, V) is k-connected if and only if (Y,p~}(V)) is k-connected.

This is because the covering map p has the homotopy lifting property.

Local topology near X;

Fix a point ne B(0, ¢,), n # 0. Let E; = g; '(n) = N, be the nearby fiber at X,. Let
D;=DANZX, and let N*=N,—D, Let F*=F,—D,.

The map g!: N; - Bc¢(0, ¢,) is a fibration outside of (g*)~1(0) (and D; is in the
fiber over zero, so the same is true of the function restricted to N¥). The proof of
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this well known statement is similar to the proof of Theorem 14 below, so we do
not give the details.

In the real case, E; is equal to the inverse image by g” of a line segment not
containing the origin in B¢ (0, ¢,). Hence if we set E? equal to the inverse image
by g” of a nonzero point, the pair (N¥, E;) is homotopically equivalent to the pair
(N¥, EY) arising in the corresponding complex case.

LEMMA 6. Suppose V <= B(0, ¢,) is a nonempty open contractible subset such that
OeV. Then (N¥,g; (V) n N¥) is k-connected for all k.

Proof. In the real case, let V' = B(0, ¢,) be the set of points y such that Rye V.
Then g; '(V)=(g")"*(V’), and V' is a nonempty open contractible subset
containing 0. Thus we may reduce to the complex case, which we now suppose.
Choose a deformation retraction from B(0, ¢,) to V obtained by flowing along a
vector field which vanishes in the neighborhood of the origin, and is transverse
to the boundary pointing inward. This can be lifted to a vector field on N;,
vanishing in a neighborhood of X;. The flow along the vector field is a retraction
from N¥* to g; !(V) n N¥*. This implies the k-connectedness for all k. O

LEMMA 7. Suppose V <= B(0, ¢,) is a nonempty open contractible subset. Suppose
that (N¥, E)) is k-connected. Then (N¥, g; *(V) n N¥) is k-connected.

Proof. The previous lemma treats the case where V contains the origin, so
suppose 0¢ V. As in the proof of the previous lemma, we may assume we are in
the complex case. The map g: N} — B(0, ¢,) is a fiber bundle with fiber E; outside
of the fiber over the origin. If we choose v € ¥, the pair (N¥, g; !(v)) is homotopic
to the pair (N* E;) and thus k-connected. The pair (g; }(V),g; '(v)) is k-
connected, since it is isomorphic to E; x (V,v). Apply Property 5.2 to complete
the proof. d

LEMMA 8. Suppose that K = C and the dimension of the image y(X) < A is = 2.
Then the pairs (N¥, E;) are 1-connected.

Proof. The connected components of N¥ and N; correspond. Choose one of
these connected components N, ;, and let T; ; be the corresponding part of the
boundary piece T..

We claim that T;; is nonempty. Suppose the contrary. Then every fiber of
gi.1:Ni1 = B(0, &;) is compact without boundary. These fibers map to open balls
in A, hence they must map to finite sets. In other words, Y(g;*(v)) is a finite set
for any v e B(0, &,). This implies that dim y(N; ;) < 1. Hence dy has rank < 1 on
N; ;. As this is an open subset of the connected variety X, the rank of dyy is <1
everywhere, contradicting the hypothesis that dim (X) > 2. This proves that
T; 1 is nonempty.

By Lemma 3, the map g;,: T;; - B(0,¢,) is smooth. Since the ball is
contractible, this implies that there exists a C* section s: B(0,¢,) » T; ;. In
particular, the fiber E; contains a point s(r) in our component N¥,. To complete
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the proof of 1-connectedness, it suffices to show that if y: [0,1] - N¥ is a path
with y(0) = s(n) and y(1) € E; then y can be deformed to a path in E; while leaving
fixed the endpoints. First note that by deforming slightly we may assume y does
not meet the fiber g; }(0). Now y is a path in N** = N, —g; 1(0), such that g;,(y) is
aloop in B*(0, ¢,) = B(0, &,) — {0} based at 5. Let £ = sg;(y). This is a loop in N}¥*
based at s(n), and it is contractible in T;, hence in N¥. The product y¢~! projects
to a contractible loop in B*(0, ¢,). The map g;: N}* — B*(0, ¢,) is a fibration, so
we may lift the contraction of g;(y¢ ') to a homotopy from y¢~! to a path y’ in
E; (fixing the endpoints). Thus y is homotopic to y¢ ~*¢ which is homotopic to y'¢
in N¥*, and y’¢ is homotopic to y' in N¥ — all of this with the endpoints fixed.
This completes the proof of the 1-connectedness. O

LEMMA 9. Suppose that K =R and the dimension of the image Yy(X) = A is >2.
Then the pairs (N}, E;) and (N}, F¥) are 1-connected.

Proof. As described previously, the pair (N}, E;) is equivalent to the pair
(N¥*, E") which arises in the complex case. Thus the first statement follows from
the previous lemma. For the second statement, let I < B¢(0,¢,) denote the
imaginary axis. Decompose into a disjoint union I = I* U{0} UI~ where I"* and
I~ are the positive and negative parts. Note that F* = (g?)~'(I)—D;, so

Ff =@ ") u(F—D)u(gh 'U"),

where F" = (g% ~1(0). The pair (N*,(g")~!(I")) is 1-connected, by Lemma 7 and
the 1-connectivity of (N*, E¥). This proves that the inclusion F¥* — N* induces
surjections on n, and =,. By Property 5.7, it suffices to show that it induces an
injection on n,. For this, it suffices to show that every connected component of
F* contains a component of (g¥) '(I*). If xeF! then we can choose a
holomorphic map from a complex disc into X, with the origin mapped to x, and
the disc not mapped into F’. The composition of this map with g" is a
holomorphic map from a disc to B¢(0, ¢,). The inverse image of I* in the disc
contains the origin in its closure, so x is in the closure of (g¥) (I *). Suppose C is
a component of (g") (/7). Then C contains a connected component of some
fiber of the form E!. From the proof of Lemma 8, it follows that C contains a
point ye T; = N,. But the map g!: T; > B¢(0, ¢,) is smooth and proper, so we
can lift the segment I to a path in (g%~ '(I) » T; containing y. This path also
contains a point of (g¥)"!(I'*). Hence the component of F¥* containing C also
contains a component of (g¥) " !(I'*). This completes the proof. O

LEMMA 10. Suppose that D is empty. Then the pairs (N¥, F¥) are k-connected for
all k.
Proof. One can show that N} = N, retracts onto F¥ = F; (cf. [2]). O

We also recall a result of Milnor.
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PROPOSITION 11. Suppose D is empty. Suppose that the map y: X — A is finite,
and dim(X) = k. Then the pair (N, E;) is k— 1-connected.

Proof. The singular set X, is finite. The neighborhood N; is a disjoint union of
contractible neighborhoods of points of Z,. On each of these components, E; is
the nearby fiber of a function with an isolated singularity. Milnor shows that E;
has the homotopy type of a bouquet of k—1-spheres [5]. By looking at
homotopy groups this implies that (N, E;) are k— 1-connected. O

Finally we have to collect these results in the form they will be used in below.

LEMMA 12. Suppose V < U < B(0,¢,), where U is an open ball and V is
nonempty, either a contractible open subset or a single point. If (N¥, g7 }(V) n N¥)
is k-connected then so is the pair (g; {(U) n N¥, g7 '(V) 0 N¥).

Proof. If U does not contain the origin, then this follows from the fact that g; is
a fibration outside of g; 1(0). Thus we may assume O e U. By Property 5.6, we
may replace V by a subset which is relatively compact in U. Then we can
construct a deformation from B(0, ¢,) into U which fixes V and a neighborhood
of the origin, and maintains U mapping into itself. This can be lifted to a
deformation from (N¥, g7 (V) n N¥) to (g; '(U) " N¥, g7 (V) n N¥). We may
then apply Property 5.3. O

COROLLARY 13. Suppose V = U < B(0, &,), where U is an open ball and V is
nonempty, either a contractible open subset or a single point. We obtain the
following statements about connectedness of the pair (97 {(U)n N¥, g; (V) N¥).
If K =R and dim Y/(X) = 2 then it is 1-connected. If K = C, dim Y(X) > 2, and D
is empty then it is 1-connected. If K = C, dim Y(X) > 2, and V is open, then the
pair is 1-connected. If D is empty, the map y: X — A is finite, and dim(X) = k then
the pair is k— 1-connected.

Proof. This results from combining the above statements. Note that if V is a
single point, then the fiber over V is either E; or F¥. O

Main theorem

For each i=1,...,r let J; be an index set whose elements correspond to the
pomts of A lymg over g; € A. Label those points by ¢;. The inverse image of M, ;
in A decomposes as a disjoint union U,e,_ Mj;; of components M z; which
project isomorphically to M,;. Let M;= :// YM; j) < Z. The projection

n: Z — X provides an isomorphism of M; onto its image M;. Keep the same
notations as above, but with subscripts j, for the corresponding subsets of
M;: M3, o0M;, Z;, F;, N;, T;, R;, C;, et cetera. Combine the index sets into a
disjoint union J =J, U---UJ,.
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Let g;=g;°on: M; > K. Let a;= g ;(d;). The function g: Z — K restricts to a
translate

dlu,(2) = g;(2) + a;.

Fix a number 6 with 0 < 56 < ¢,. For each be K, let J(b) = J denote the set of
indices j such that |[b—aj < 36. Let U, = B(b, ) be the open disc of radius o
around b.

Suppose beK, and suppose V <= U, is a nonempty contractible subset.
Suppose that V satisfies the following condition.

(¥) There exists a map {: U x[0,1] » U such that {(x,0)=x, {(Ux{1}) = ¥,
and {(V x[0,1]) = V.

Define a subset of Z

Pb, V)=g '(Nu (J @ 'U)NN).

JjeJ(b)

Recall that Z* = Z — = Y(D). Put P*(b, V)= P(b, V) Z*. Put Q(b)=¢ '(U,) and
0*(b) = Q(b)n Z*.

THEOREM 14. The pair (Q*(b), P*(b, V)) is k-connected for all k.

Proof. Let Qb)=0(b)—jese (@ "(U)AN9. Let F(b)=g '(b) and
FX(b) = F(b) n Q*(b). Note that the closure of Q*(b) is a manifold with corners. Its
boundary consists of some pieces of the form 0N ;N Q(b) (for je J(b)), and one
piece of the form g~ !(dU,). They meet in smooth corners. Similarly FX(b) is a
smooth manifold with boundary, the boundary consisting of pieces of the form
OF(b)n 0N ;. We claim that there exists a trivialization

®: QLb) = FXb)x U,

such that g = p, o ® (where p, is projection on the second factor in the product)
and

®ON;~ Q(b) = (@N,;  F(b) x U,

for je J(b).

We will prove the claim separately in the real and complex cases; consider first
the complex case. Choose two vector fields u and v on X with the following
properties. If x is not in any N? N (g?) ™ (B(0, 9)), then dg(u,) and dg(v,) should be
the unit vectors in the real and imaginary directions respectively. So if
x e T; < ON; then u, and v, should be tangent to T;. It is possible to choose these
vector fields because dg is nonzero outside N?n(g?) 1(Bc(0,d)), and has
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maximal rank when restricted to the boundary pieces T;. Lift these to vector
fields @t and ¥ on Z. They have uniformly bounded length measured with respect
to the complete metric d; which is pulled back from X.

Construct ® as follows. Let Uy = {x€ U,: x—beR}. There is a deformation
retraction from U, to U,x obtained by making points flow in the positive or
negative imaginary direction until reaching U, . Lift this to a retraction from
QX(b) to QH(b)ng~'(U), by flowing along the vector field ¥. The fact that ¥ is
bounded with respect to the complete metric d, implies that the flow along the
vector field exists. Note that if j e J(b) then ON; n Q(b) = T; n Q(b), and the vector
field is tangent to T;, so the flow does not cross into the interior of N;. If j ¢ J(b)
then Q(b) does not meet N? N (g?) ™ (B0, §)), by the definitions of J(b), Q(b), and
U,. In particular, the flow is always a lifting of the flow in U,, so we obtain a
lifting of the retraction. There is a deformation retraction from U, g to {b} where
points flow in the positive or negative real direction. Similarly this can be lifted
to a deformation retraction from Q%(b)n g~ (U, r) to FX(b), by flowing along the
vector field . The composition gives a map Q*(b) - FX(b) which serves as the
projection of ®@ on the first factor. The projection on the second factor is given by
g. The fact that the vector fields are tangent to T; implies that the map p, - ®
preserves ON ;N Q(b).

We treat the real case in a similar fashion. Choose a vector field u on X such
that if x is not in any N¢ n(g?) ™ 1(Bc(0, 6), then dg(u,) is a unit vector in T(K) =R,
and if xedN;ng; 1(B(0, 49)) then u, is tangent to N;. Again note that dg is
nonzero outside N?n(g¥)~*(Bc(0, 6). We have to check that dg has maximal
rank when restricted to the boundary dN;ng;” *(B(0, 46)). There is no problem
on the pieces T;. For the pieces R; and the corners C; note that, since 50 < ¢,, the
region indicated lies over the part of dB¢(0, ¢,) which projects submersively on
the real axis. This pulls back to the desired property of g. Hence we can
construct u. Lift it to a vector field & on Z, again having bounded length with
respect to d;. Use the flow along il to lift the standard retraction from U, < R to
{b}, to a retraction from Q*(b) to FX(b). This works as before, in view of the
definition of J(b). The retraction preserves ON;nQ(b), and gives the first
projection of ®. Again g serves as the second projection. This completes the
proof of the claim.

To prove the theorem, note that

0*(b) = Q") v |J (g7 (U)nNY),

JeJ(b)

with the boundary between the two pieces being | ) jesty@ '(Up)nON ). This
boundary corresponds to dF“(b) x U, via the identification ®. This boundary
has a collar which retracts to it in the complement of the interior of QX(b). The
second piece of this union is contained entirely inside P(b, V). Hence we may
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apply Property 5.5 (Excision II). Set PX(b, V)= P(b, V)~ QX(b). Then the con-
nectedness of (Q*(b), P*(b, V)) is the same as that of (QX(b), PX(b, V)). But our
identification gives

®: PL(b, V) = FH4b)x V U dFXb) x U,.

If we apply the deformation given by condition () in the second variable, we see
that the pair

(FYb) x U,, FH(b)x V L dF4b) x Uy)

is k-connected for all k. Via the homeomorphism ® we obtain the same result for
(QX(b), PX(b, V)), and hence the theorem. O

COROLLARY 15. Suppose that V = U, is an open, nonempty contractible subset.
Suppose that all the pairs (N}, E;) are k-connected. Then the pair
(Q(b), g~ (V)N Z*) is k-connected.

Proof. By Lemmas 7 and 12, the pairs (g~ '(Up)nN¥, g~ (V)N N¥*) are k-
connected. By Property 5.5, this implies that the pair (P*(b, V), g~ (V)N Z*)is k-
connected (it is easy to see that there exist the collars of dFL(b) x V in FX(b)x V
required to satisfy the hypothesis needed for Excision II). Property 5.2 and
Theorem 14 now imply that (Q(b), g~ (V) Z*) is k-connected. O

COROLLARY 16. Suppose that V = {v} = U, consists of a single point. Suppose
that all the pairs (N¥,E) and (N}, F¥) are k-connected. Then the pair
(Q(b), g~ Y(V)N Z*) is k-connected.

Proof. This is the same as the previous proof, referring at the beginning to
Lemma 12 and the remark in the proof of Corollary 13. O

The global results

THEOREM 17. Suppose that all the pairs (N}, E;) are k-connected. Suppose that
V « U, < K is a contractible open subset satisfying condition (). Then the pair
(Z*, g~ Y(V)n Z*) is k-connected. Suppose in addition that the pairs (N¥, F¥) are k-
connected. Then for any ve K the pair (Z*, g~ (v)n Z*) is k-connected.

Proof. Choose a sequence of subsets W, W,,... < K, starting with W, =V,
with the following properties. There exists a sequence of points b, b,,...e K
such that W, = W,_, u U,,, and such that U, nW,_, is an open contractible
subset of Uy, satisfying condition (). Finally, K = ( )2, W,. This is easy to do if
K =R, and can be done with a clever picture if K = C (beginning with W, =U,).
Corollary 15 implies that the pairs (Z*ng~'(U,), Z* g~ '(U,,nW;_,)) are k-
connected. Since W,_, is open and the complement of U, is closed, we can apply



Lefschetz theorems for the integral leaves of a holomorphic one-form 111

Excision (I) to conclude that the pairs (Z*ng~'(W), Z*ng~*(W,_,)) are k-
connected. By transitivity, the pairs (Z*ng Y(W), Z*ng ' (W,)) are k-
connected. This implies that (Z*, Z* g~ (V)) is k-connected (by 5.6).

For the second part of the theorem, use the same proof but replace V by {v}.
Note that we do not use excision at the first step, so the proof does not need
openness of W,. Use Corollary 16 instead of 15. O

REMARK. The first statement will also hold for larger open sets ¥ which are
nice enough. Namely, those expressible as V = ()2, V; for an increasing
sequence V; with ¥, c U,, and V;,, = V;uU,, such that V,n U, satisfies (*). For
in this case the same proof shows that (g~ '(V)nZ*, g '(Vo)nZ*) is k-
connected, and we may apply Property 5.2.

COROLLARY 18. Suppose that dimy(X) = 2. If K =C, suppose that D is
empty. Then for any ve K the pair (Z*,g~'(v)NZ*) is 1-connected.
Proof. This follows from Lemmas 8, 9 and 10, and the theorem. O

COROLLARY 19. Suppose that D is empty, dim y(X) = k, and  is finite. Then
for any veK the pair (Z, g~ 1(v)) is k— 1-connected.

Proof. This follows from Lemma 10 and Proposition 11, and the theorem.

O
COROLLARY 20. Suppose nty: Y — X* is any covering space such that a function
gy: Y = K may be defined with dgy = n¥a. Under the hypotheses of the previous
two corollaries, the same conclusions hold for the pairs (Y, gy 1(v)).

Proof. Let X be the universal covering of X*. There is a function gz: X — K,
with dgg = n§a. There are covering maps X — Z* and X — Y. We may (by
translation of g and gy) assume that these maps are compatible with the
functions g. By Property 5.8, the k-connectivity of (Z*, g~ }(v) » Z*) is equivalent
to that of (X, g)}l(v)), which in turn is equivalent to that of (Y, gy !(v)). O

COROLLARY 21. Suppose A’ is an irreducible abelian variety, X < A’ is a
smooth connected closed subvariety of dimension k, and « is the restriction of a
linear holomorphic or real harmonic form on A’. Suppose Y is a covering space of X
such that the function gy is defined. Then for any ve K the pair (Y, gy '(v)) is k—1-
connected.

Proof. In this case, A’ has no abelian subvarieties so it is equal to the abelian
variety A defined above. The map  is the closed immersion, so it is finite. Apply
Corollary 19. O

A factorization statement

We have obtained a result valid when the dimension of /(X) is at least two. If the
dimension of the image is zero, then « is identically zero.
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LEMMA 22. Suppose dim y(X)=1. Then there exists a smooth projective
algebraic curve C, a morphism f: X — C with connected fibers, and a holomorphic
or harmonic one-form f on C such that o = f*(B). The triple (C, B, f) is uniquely
determined by o, up to unique isomorphism. The image of D is a finite set in C.

Proof. Let C be the normalization of im()) in the function field of X ; this gives
the Stein factorization = pf where p is the finite map from C to im(y) and
f:X — C has connected fibers. The curve C is normal, hence smooth, and
projective. Set f = p*a: this is a holomorphic one form on C, with f*f =a on X.
The image of D is a finite set, by Lemma 2.

To prove uniqueness, suppose (C, ', f') were another such triple. Let
Y': C" > A’ denote the albanese map determined by f', with A’ = Alb(C')/B’ as
before. By functoriality of the albanese construction we obtain a map
Alb(X) — AIb(C’), and a on Alb(X) is the pullback of §’ on Alb(C’). The image of
B c Alb(X) is equal to B’ = AIb(C’). Therefore the map of albanese varieties
gives an injection A — A’. It is surjective because the map f': X — C' is surjective
(since o # 0). Hence A’ = A. The albanese map for (X, «) factors as y = y'f’
since o = (f')*f’. But §': C' - im(C’) is finite, and f’ has connected fibers. The
uniqueness of the Stein factorization gives an isomorphism C’ =~ C with respect
to which ' = p and f’ = f. Finally, f is generically smooth, so if f*f = f*f,
then f = f’ (and similarly, the isomorphism Y = Y’ is unique). O

Proof of Theorem 1. First we treat the real harmonic case. If « is identically
zero, we get conclusion (1). If not, then dim y(X) > 1. If dim y(X)=1, we obtain
conclusion (2) from the lemma above. If dim y(X) > 2 then we obtain conclusion
(3) from Corollary 18, Corollary 20, and Property 5.7. In the complex-valued
holomorphic case, the proof is the same. Note however that we must assume D is
empty. O
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