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Introduction

The classic Lefschetz theorems [4] concern intersections of subvarieties of
projective space with hyperplanes. This paper is about some similar theorems
concerning the integral leaves of holomorphic or real harmonic one forms. Let
X be a smooth projective variety, and let ah E H°(X, Qi) be a holomorphic one-
form on X. We will look at a = ah or the real part 03B1 = Rah. Let Y be any
connected covering space of X such that the pullback of a is exact, and let
g : Y ~ C (resp. R) denote an integral of a. It is well defined up to addition of a
constant. We may think of the fibers g -1(v) as intersections of Y with linear
hyperplanes in a vector space (this is precise if we take Y to be the covering Z
defined below). We obtain some theorems about connectivity of the pairs
( Y, g -1 (v)), analogues of the classical Lefschetz theorems.
The Lefschetz theorems have been interpreted in terms of Morse theory, and

this is the basis for expecting the theorems we discuss below. The idea is that Y is
obtained by starting with one of the fibers g-1(v) and then expanding by
continuously adding other fibers, which changes the topology by attaching
various cells along the way. The cells come from singular points in the fibers. By
analyzing what can happen at the singular points, we obtain bounds on the
connectivity of the pair ( Y, g -1 (v)). This simple description would be enough to
justify the theorems, except that the covering Y is not compact (and not even
topologically finite). For example, the set of values of g at singular points can be
a countable dense set in C or R. In the end it turns out to work as expected with
no additional complications but we treat the argument with some caution
because the situation is slightly unusual.

This question arises when considering equivariant harmonic maps from the
universal covering of X to trees [3]. The fibers of the harmonic map are more or
less unions of connected components of the integral leaves of a harmonic one
form, so questions of connectivity of these leaves are important for knowing
what can happen. We obtain here a statement which is a technical step used in a

1 Partially supported by NSF grant DMS-9157700 and the Alfred P. Sloan foundation.
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classification of irreducible two dimensional representations of 1tl(X), to be
discussed in a forthcoming joint paper with K. Corlette [1]. Since the question
of 1-connectivity of (Y, g -1(v)) is what is at issue there, that aspect is stressed
here. We also indicate how one can obtain statements about higher connectivity,
and give a sample. To give a more complete discussion is not so easy, as one
encounters some problems about which types of singularities can arise in the
fibers.

The statement about 1-connectivity for the case of a real harmonic one-form a
is as follows.

THEOREM 1. Suppose X is a connected smooth projective variety, a is a real
valued harmonic one form (resp. complex valued holomorphic one form) on X, and
D c X is a closed subvariety such that 03B1|Dreg = 0 (resp. D is empty in the case of a
complex valued holomorphic form). Let p: Y - (X - D) be any covering space such
that the function g(y) = f yo p*(a) is well defined. There are three possibilities.

1. The one form a is identically zero.
2. There exists a smooth projective algebraic curve C, a morphism f : X - C

with connected fibers, and a harmonic one- form fi on C such that a = f *(03B2).
3. For any v ~ R (resp. v ~ C), the fiber g -1(v) is connected and the map

03C01 (g -1(v)) ~03C01 (Y) is surjective.
Here is how one can see the analogy with the usual Lefschetz theorems. In the

present case, the one form a determines a map to an abelian variety X - A (cf.
below). Let Z be the covering of X corresponding to the vector space covering A.
The fibers g -1(v) are the intersections of Z with linear hyperplanes in the vector
space. Conclusion (3) is analogous to the conclusion of the classical Lefschetz
theorem for hyperplane sections of varieties of dimension greater than or equal
to two in projective space. The other possibilities correspond to the fact that the
image of Z might have dimension zero or one.

Preliminary discussion

Let X be a connected smooth projective variety. Suppose D c X is a closed
reduced subvariety; let Dreg denote the open set of smooth points in D. Put
X* = X - D. We will treat two similar situations at the same time; we call these
the complex case and the real case. In the complex case we suppose a E HO(X, 03A91X)
is a holomorphic one-form such that alDreg = 0. In the real case we suppose that a
is a real valued harmonic one-form such that (XIDreg = 0. In the real case, there is a
unique holomorphic one-form oc’ E H°(X, 03A91X) such that a = 9îoc’. In the complex
case we set 03B1h = a. Let K = C in the complex case, and K = R in the real case. Let
B(x, e) c K denote the set of points y E K such that lx - yl  e, and B(x, e) its
closure. Let ôB(x, e) denote the boundary, which is a circle of radius e in the
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complex case, two points in the real case. Let Bc(x, e) denote the disc of radius e
around x in C.

The albanese map determined by a

Fix a base point xo ~ X*, not in the zero set of a. Let Alb(X) denote the albanese
variety Ho(X, 03A91X)*/H°(X, Z). Integration from Xo determines a natural map

which sends xo to the origin; and the one-form a is pulled back from a linear
one-form which we call aAlb on Alb(X). Let B be the sum of all abelian
subvarieties of Alb(X) on which aAlb vanishes. Let

and consider the map 03C8: X - A. We will call this the albanese map determined by
a. Note that aA,b projects to a linear one form aA on A, and a = 03C8*(03B1A). The pair
(A, aA) has the property that if A’ is a nontrivial abelian subvariety of A, then the
restriction of a_4 to A’ is nonzero.

Let A denote the universal covering of A (it is a complex vector space). Set

Let 03C0:Z ~ X denote the projection on the first factor, and  : Z ~ A the

projection on the second factor. Let Z*=Z201303C0-1(D). Fix a point zo E Z
projecting to xo e X.

There is a function gÂ : Ã -+ K defined by the properties that g ((Zo)) = 0 and
d(gÂ) = aÂ. Let g = gÃ 0 . It is characterized by the same properties on Z, and
can be given by the integral

The integral is independent of the choice of path.

The critical locus

Let S c X be the set of points x such that a(x) = 0. Let 1 = S ~ D.
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LEMMA 2. The set S is a closed algebraic subvariety of X. The image 03C8(03A3) is a
finite set.

Proof. In the complex case it is clear that S is an algebraic subvariety. For the
real case, we claim that the zeros of a are the same as the zeros of 03B1h. Taking the
real part of a linear form gives a map

This is an isomorphism, so a(x) = 0 if and only if ah(x) = 0. Thus S, being the zero
set of the holomorphic one form a’’, is an algebraic subvariety.
Suppose 03A3’ ~ 03A3 is a resolution of singularities of an irreducible component of

E. We obtain a map Alb(03A3’) ~ Alb(X) (a translate of a morphism of abelian
varieties), compatible with the morphisms 03A3’ ~ Alb(E’) and X ~ Alb(X). The
pullback of a to E’ is zero. Hence the image of Alb(E’) is contained in a translate
of the abelian subvariety B defined above. When we project to A = Alb(X)/B,
Alb(E’), and hence E’, map to a single point. D

Write 03C8(E)={03C31, ... , 03C3r} with ai distinct. Let Zi = 03C8 -1 (03C3i), so we have a
decomposition

into disjoint pieces. Note that the pieces are not necessarily connected.
Let dA(x, y) denote a euclidean metric on A. Let BA(x, s) denote the open ball

{y ~ A, dA(x, y)  03B5), and let BA(x, s) denote its closure. Assume that 03B51 is small

enough so that A(x, 03B5i) is simply connected for all x E A, and such that for
distinct points 03C3i ~ 03C3j in 03C8(03A3), dA(03C3i, 03C3j)  403B51.

Put MA,i= BA(6i, 03B51). Let MoA,i denote the interior (the open ball) and ôMA,i
thé boundary. Set Mi = 03C8 -1 (MA,i), Mio =03C8-1(MoA,i), and ~Mi = 03C8 -1 (~MA,i).
Note that Moi is the interior of Mi; and aMi is the boundary. The Moi are open
neighborhoods of the 03C8 -1(03C3i).

Define functions gA,i: MA,i ~ K by gA,i(03C3i) = 0 and d(gA,i) = 03B1A|MA,i. These
functions are well defined because M A,i are connected and simply connected. Set

Similarly, define

Note that in the complex case gi = ghi and in the real case gi = Rghi.
LEMMA 3. If we choose e, sufficiently small, then ôMi is smooth and Mi is a
tubular neighborhood of 03C8 -1(03C3i). And there exists e2 &#x3E; 0 such that on the set
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(gih) -1(BC(0, 2E2)) n DMi, the differential d(ghi)|~Mi is nonvanishing.
Proof. The distance function dA(03C8(x), 03C3i)2 is real analytic and proper on the

inverse image of a neighborhood of ui. The set of values of 03B51 such that DMi is
not smooth is the image of the closed real analytic critical point set of this
function, and by Sard’s theorem it is countable. Hence it is finite. Thus if el is
small enough then DMi is always smooth. Morse theory implies that there is a
deformation retraction from Mi to 03C8 -1 (03C3i) (we take this as the definition of
tubular neighborhood).

Similarly if 81 is sufficiently small then DMi n (ghi)-1(0) is smooth. Thus we
may choose 82 so that DM, n (gih) -1(v) is smooth for v E BC(O, 82). This smooth-
ness is equivalent to the nonvanishing of (dghi)|~Mi.

Fix 03B51 and 82 as in the lemma, simultaneously for all Mi . Put

LEMMA 4. Ni is a smooth manifold with corners. Its boundary decomposes

where T = (ghi)-1(BC(0, 03B52)) ~~Mi and Ri = (ghi)-1(~BC(0, 03B52)) ~ Moi are smooth
pieces, and Ci = (gih)-1(~BC(0, 03B52)) n oMi is a smooth corner.

Proof. The function gh is smooth outside of 03A3i, in particular it is smooth near
the boundary of Ni, This implies that the Ri are smooth. The previous lemma
implies that T is smooth, and the nonvanishing of the differential dghi restricted
to ~Mi implies that Ci is a smooth corner. D

Let Fi=gi-1(0)~Ni. Put Foi = Fi ~ Noi and ~Fi = Fi ~ ~Ni. Note that Li is a
compact subvariety of F?.

Some homotopy theory

A pair ( U, V) consists of a topological space U and a subspace V c U. Recall
that (U, V) is k-connected if, for any l  k and any continuous map of the
l-dimensional ball h: l ~ A such that h(ôBl) c V, there exists a continuous
map ~ : Bl x [o,1] ~ U such that ~(x, 0) = h(x), ~p(Bj x {1}) ~ V, and

~(~Bl x [0,1]) c K
We have the following properties, which are either standard or easy:

5.1. If ~ exists as required in the definition, then we may choose it in such a way
that ~(y, t) = y for YEoBl.

5.2 (Transitivity). Suppose W c V c U, and (V, W) is k-connected. Then (U, V) is
k-connected f and onl y if ( U, W) is k-connected.
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5.3 (Deformation). Suppose (U, V) is a pair, and U’ c U, V’ c U’ n Jt: Suppose
f : U x [0, IJ ~ U is a continuous map such that f(u, 0) = u, f ( V x [0, 1]) c J’;
f(U’ x [0, 1]) c U’, f (U, {1}) c U’ and f (V,{1}) c V’. Then (U, V) is k-connected
if and only if ( U’, V’) is k-connected.

5.4 (Excision 1). Suppose W c V c U. Suppose that the U-closures W and U - V
are disjoint. Then (U, V) is k-connected if and only if ( U - W, V - W) is k-

connected.

One uses the trick of dividing up the ball B’ into small pieces, each of which
maps either into U - W or V, then treating the resulting complex inductively one
skeleton at a time.

5.5 (Excision II). Suppose W c V c U. Suppose that there exists W’ c W such
that W’ n U - V = QS and there is a deformation from the pair ( U - W’, V - W’)
to the pair (U - W, V - W) (in the sense of (3) above). Then (U, V) is k-connected if
and only if (U - W, V - W) is k-connected.

This is a combination of 5.3 and 5.4.

5.6 (Exhaustion). Suppose U (resp. V) is an infinite union of open subsets Ui 
(resp. Vi), with Vi cUi, If the pairs (Ui, v) are k-connected then ( U, V) is k-

connected.

This follows from compactness of É’ and DB’-the image of any map h is
contained in one of the Ui or v.

5.7 (Expression in terms of homotopy groups). The pair (U, V) is k-connected if
and only if the inclusion induces isomorphisms 03C0i (V) ~ 03C0i(U) for i  k and a

surjection 03C0i (V) ~ 03C0i(U) for i = k.

This comes from the definition of homotopy groups. Note that the same result
holds for homology groups, but that property does not characterize k-

connectedness.

5.8 (Covering spaces). Suppose p: Y ~ U is a covering space, and V c U is a
subspace. Then (U, V) is k-connected if and only if ( Y, p -1 (V)) is k-connected.

This is because the covering map p has the homotopy lifting property.

Local topology near Li

Fix a point ’1 E B(O, 82), ri ~ 0. Let Ei = gi-1(~) c Ni be the nearby fiber at 03A3i. Let
Di = D n Ei, and let Nf = Ni - Di. Let Fi* = Fi-Di,
The map ghi: Ni ~ BC(O, 82) is a fibration outside of (gih)-1(0) (and Di is in the

fiber over zero, so the same is true of the function restricted to Ni*). The proof of
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this well known statement is similar to the proof of Theorem 14 below, so we do
not give the details.

In the real case, Ei is equal to the inverse image by ghi of a line segment not
containing the origin in Bc(0, 82). Hence if we set Efl equal to the inverse image
by ghi of a nonzero point, the pair (N*, Ei) is homotopically equivalent to the pair
(N*, Eh) arising in the corresponding complex case.

LEMMA 6. Suppose V c B(O, 82) is a nonempty open contractible subset such that
0 ~ V. Then (Ni, gi l(V) n Ni*) is k-connected for all k.

Proof. In the real case, let V’ c BC(O, G2) be the set of points y such that 91y E E
Then gi-1(V) = (ghi)-1(V’), and V’ is a nonempty open contractible subset

containing 0. Thus we may reduce to the complex case, which we now suppose.
Choose a deformation retraction from B(O, 82) to v obtained by flowing along a
vector field which vanishes in the neighborhood of the origin, and is transverse
to the boundary pointing inward. This can be lifted to a vector field on Ni,
vanishing in a neighborhood of 1:i. The flow along the vector field is a retraction
from N* to gi-1(V) n Ni. This implies the k-connectedness for all k. If

LEMMA 7. Suppose V c B(O, e2) is a nonempty open contractible subset. Suppose
that (Ni, Ei) is k-connected. Then (Ni, gi-1(V) n Ni*) is k-connected.

Proof. The previous lemma treats the case where V contains the origin, so
suppose 0 0 V As in the proof of the previous lemma, we may assume we are in
the complex case. The map g : Ni* ~ B(O, G2) is a fiber bundle with fiber Ei outside
of the fiber over the origin. If we choose v E V, the pair (N*, gi-1(v)) is homotopic
to the pair (Ni, Ei) and thus k-connected. The pair (gi-1(V), gi-1(v)) is k-

connected, since it is isomorphic to Ei x (V, v). Apply Property 5.2 to complete
the proof. D

LEMMA 8. Suppose that K = C and the dimension of the image 03C8(X) c A is  2.

Then the pairs (Ni, Ei) are 1-connected.
Proof. The connected components of N* and Ni correspond. Choose one of

these connected components Ni,,, and let T,1 be the corresponding part of the
boundary piece T .
We claim that Ti,1 is nonempty. Suppose the contrary. Then every fiber of

gi,l: Ni,1 ~ B(0, 03B52) is compact without boundary. These fibers map to open balls
in A, hence they must map to finite sets. In other words, 03C8(gi,1-1 (v)) is a finite set
for any v E B(O, 03B52). This implies that dim 03C8(Ni,1)  1. Hence d03C8 has rank  1 on
Ni,l’ As this is an open subset of the connected variety X, the rank of dqf is  1

everywhere, contradicting the hypothesis that dim gi(X) a 2. This proves that
7§,i is nonempty.
By Lemma 3, the map gi,1: T,1 ~ B(O, G2) is smooth. Since the ball is

contractible, this implies that there exists a C~ section s : B(O, G2) -+ 7i, l’ In
particular, the fiber Ei contains a point s(~) in our component N*i,1. To complete
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the proof of 1-connectedness, it suffices to show that if y : [0,1] ~ Nt is a path
with y(O) = s(~) and 03B3(1) E Ei then y can be deformed to a path in Ei while leaving
fixed the endpoints. First note that by deforming slightly we may assume y does
not meet the fiber gi-1(0). Now y is a path in N1* = Ni - g- ’(0), such that gi (y) is
a loop in B*(O, 82) = B(O, E2) - {0} based at ~. Let 03B6 = sgi(y). This is a loop in N**
based at s(’1), and it is contractible in Ti, hence in N*. The product 03B303B6-1 projects
to a contractible loop in B*(O, 92). The map gi : Ni** ~B*(0,03B52) is a fibration, so
we may lift the contraction of gi(03B303B6-1) to a homotopy from 03B303B6- 1 to a path y’ in
E, (fixing the endpoints). Thus y is homotopic to 03B303B6- 103B6 which is homotopic to y’ j
in N**, and 03B3’03B6 is homotopic to y’ in N* - all of this with the endpoints fixed.
This completes the proof of the 1-connectedness. 

LEMMA 9. Suppose that K = R and the dimension of the image 03C8(X) c A is  2.
Then the pairs (N1, Ei) and (N1, F1) are 1-connected.

Proof. As described previously, the pair (N1, Ei) is equivalent to the pair
(N*, Eh) which arises in the complex case. Thus the first statement follows from
the previous lemma. For the second statement, let I c BC(O, 82) denote the
imaginary axis. Decompose into a disjoint union I = I+ ~ {0} ~ I- where 1+ and
I - are the positive and negative parts. Note that Fi* = (ghi) -1(I) - Di, so

where Fhi = (ghi) -1(0). The pair (Ni*, (ghi)-1(I+)) is 1-connected, by Lemma 7 and
the B1-connectivity of (Ni*, Ehi). This proves that the inclusion F*i ~ Ni* induces
surjections on no and 03C01. By Property 5.7, it suffices to show that it induces an
injection on no. For this, it suffices to show that every connected component of
F* contains a component of (ghi)-1(I+). If x E Fh then we can choose a

holomorphic map from a complex disc into X, with the origin mapped to x, and
the disc not mapped into Fhi. The composition of this map with ghi is a

holomorphic map from a disc to BC(0, 03B52). The inverse image of I+ in the disc
contains the origin in its closure, so x is in the closure of (gih)-1(I+). Suppose C is
a component of (ghi)-1(I- ). Then C contains a connected component of some
fiber of the form Ehi. From the proof of Lemma 8, it follows that C contains a
point y E T c oNi. But the map ghi : Ti ~ BC(0, E2) is smooth and proper, so we
can lift the segment 1 to a path in (ghi)-1(I) ~ T containing y. This path also
contains a point of (ghi) -1 (I+). Hence the component of F* containing C also
contains a component of(ghi)-1(I+). This completes the proof. D

LEMMA 10. Suppose that D is empty. Then the pairs (Ni*, F*) are k-connected for
all k.

Proof. One can show that Ni* = Ni retracts onto F* = Fi (cf. [2]). 

We also recall a result of Milnor.
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PROPOSITION 11. Suppose D is empty. Suppose that the map 03C8: X ~ A is finite,
and dim(X) = k. Then the pair (Ni, Ei) is k -1-connected.

Proof. The singular set li is finite. The neighborhood Ni is a disjoint union of
contractible neighborhoods of points of 03A3i. On each of these components, Ei is
the nearby fiber of a function with an isolated singularity. Milnor shows that Ei
has the homotopy type of a bouquet of k-1-spheres [5]. By looking at

homotopy groups this implies that (Ni, Ei) are k -1-connected. D

Finally we have to collect these results in the form they will be used in below.

LEMMA 12. Suppose V c U c B(O, G2)’ where U is an open ball and V is

nonempty, either a contractible open subset or a single point. If (Nt, g-1(V) n Nt)
is k-connected then so is the pair (gi-1(U) n Nt, gi-1(V) n Ni*).

Proof. If U does not contain the origin, then this follows from the fact that gi is
a fibration outside of gi 1(0). Thus we may assume 0 E U. By Property 5.6, we
may replace V by a subset which is relatively compact in U. Then we can
construct a deformation from B(0, 82) into U which fixes V and a neighborhood
of the origin, and maintains U mapping into itself. This can be lifted to a

deformation from (Nt, gi-1(V) n Nt) to (gi-1(U) n Nt, gi-1(V) n Ni*). We may
then apply Property 5.3. D

COROLLARY 13. Suppose V ~ U ~ B(O, G2)’ where U is an open ball and V is
nonempty, either a contractible open subset or a single point. We obtain the
following statements about connectedness of the pair (gi l(U) n Nt, gi l(V) n Ni*).
If K = Rand dim 03C8(X)  2 then it is 1-connected. If K = C, dim 03C8(X)  2, and D
is empty then it is 1-connected. If K = C, dim 03C8(X)  2, and V is open, then the
pair is 1-connected. If D is empty, the map 03C8: X ~ A is finite, and dim(X) = k then
the pair is k - 1 -connected.

Proof. This results from combining the above statements. Note that if V is a
single point, then the fiber over V is either Ei or F*. D

Main theorem

For each i = 1, ... , r let Ji be an index set whose elements correspond to the
points of A lying over ui E A. Label those points by 03C3j. The inverse image of M,,i
in A decomposes as a disjoint union ~j~Ji MÂj of components MÂj which
project isomorphically to MA,i. Let Mj= -1(M,j) c Z. The projection
n : Z - X provides an isomorphism of Mj onto its image Mi . Keep the same
notations as above, but with subscripts j, for the corresponding subsets of

Mj: M9 OMj, 1:j, Fj, Nj, Tj, Rj, Cj, et cetera. Combine the index sets into a
disjoint union J = J1~... u Jr .
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Fix a number ô with 0  503B4  e2. For each b E K, let J(b) c .I denote the set of
indices j such that |b - ajl  303B4. Let Ub = B(b, b) be the open disc of radius à
around b.

Suppose b E K, and suppose V c Ub is a nonempty contractible subset.

Suppose that V satisfies the following condition.

(*) There exists a map 03B6 : U x [o,1 ] ~ U such that ’(x, 0) = x, 03B6 (U x {1}) c E
and 03B6(V x [0,1])~ E

Define a subset of Z

THEOREM 14. The pair (Q*(b), P*(b, V)) is k-connected for all k.
Proof. Let QL(b) = Q(b) - ~j~J(b) (g-1(Ub)~Noj). Let F(b) = g -1(b) and

FL(b) = F(b) n QL(b). Note that the closure of QL(b) is a manifold with corners. Its
boundary consists of some pieces of the form oNjnQ(b) (for j ~ J(b)), and one
piece of the form g -1(~ Ub). They meet in smooth corners. Similarly FL(b) is a
smooth manifold with boundary, the boundary consisting of pieces of the form

oF(b)n oNj’ We claim that there exists a trivialization

such that 9 = P2 ° 03A6 (where P2 is projection on the second factor in the product)
and

for j E J(b).
We will prove the claim separately in the real and complex cases; consider first

the complex case. Choose two vector fields u and v on X with the following
properties. If x is not in any N? n (ghi)-1(BC(0, b)), then dg(ux) and dg(vx) should be
the unit vectors in the real and imaginary directions respectively. So if

x E T c oNi then ux and vx should be tangent to T . It is possible to choose these
vector fields because dg is nonzero outside Nio ~ (ghi)-1(BC(0, 03B4)), and has
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maximal rank when restricted to the boundary pieces Ti. Lift these to vector
fields û and v on Z. They have uniformly bounded length measured with respect
to the complete metric dZ which is pulled back from X.

Construct 03A6 as follows. Let Ub,R = {X~ Ub: x2013b~R}. There is a deformation
retraction from Ub to Ub,R obtained by making points flow in the positive or
negative imaginary direction until reaching Ub,R . Lift this to a retraction from
QL(b) to QL(b) ~ g-1(Ub,R), by flowing along the vector field v. The fact that v is
bounded with respect to the complete metric dz implies that the flow along the
vector field exists. Note that if j ~J(b) then bNi n Q(b) = T n Q(b), and the vector
field is tangent to 7§, so the flow does not cross into the interior of Nj. If j ~J(b)
then Q(b) does not meet Ni ~(ghi)-1(BC(0, b)), by the definitions of J(b), Q(b), and
Ub. In particular, the flow is always a lifting of the flow in Ub, so we obtain a
lifting of the retraction. There is a deformation retraction from Ub,R to {b} where
points flow in the positive or negative real direction. Similarly this can be lifted
to a deformation retraction from QL(b) ~ g -1 (Ub,R) to FL(b), by flowing along the
vector field û. The composition gives a map QL(b) -+ FL(b) which serves as the
projection of 03A6 on the first factor. The projection on the second factor is given by
g. The fact that the vector fields are tangent to T implies that the map P1 o 03A6

preserves ~Nj~ Q(b).
We treat the real case in a similar fashion. Choose a vector field u on X such

that if x is not in any N? n (gih)-1(BC(0, 03B4), then dg(ux) is a unit vector in T(K) = R,
and if x ~~Ni~gi-1 (B(0,403B4)) then ux is tangent to DNi. Again note that dg is
nonzero outside Ni n (ghi)-1(BC(0, b). We have to check that dg has maximal
rank when restricted to the boundary bNi n gi-l(B(O, 403B4)). There is no problem
on the pieces T . For the pieces Ri and the corners Ci note that, since 5ô  8,, the

region indicated lies over the part of DBC(O, E2) which projects submersively on
the real axis. This pulls back to the desired property of g. Hence we can
construct u. Lift it to a vector field û on Z, again having bounded length with
respect to dz. Use the flow along û to lift the standard retraction from Ub c R to
{b}, to a retraction from QL(b) to FL(b). This works as before, in view of the
definition of J(b). The retraction preserves èNjn Q(b), and gives the first

projection of 03A6. Again g serves as the second projection. This completes the
proof of the claim.
To prove the theorem, note that

with the boundary between the two pieces being ~j~J(b)(g-1(Ub)~~Nj) This
boundary corresponds to DF’(b) x Ub via the identification 03A6. This boundary
has a collar which retracts to it in the complement of the interior of Q’(b). The
second piece of this union is contained entirely inside P(b, V). Hence we may
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apply Property 5.5 (Excision II). Set PL(b, V) = P(b, V) n QL(b). Then the con-
nectedness of (Q*(b), P*(b, V)) is the same as that of (QL(b), PI(b, V)). But our
identification gives

If we apply the deformation given by condition (*) in the second variable, we see
that the pair

is k-connected for all k. Via the homeomorphism (D we obtain the same result for
(QL(b), PL(b, V)), and hence the theorem. n

COROLLARY 15. Suppose that V c Ub is an open, nonempty contractible subset.
Suppose that all the pairs (N1, Ei) are k-connected. Then the pair
(Q(b), g-1(Y) n Z*) is k-connected.

Proof. By Lemmas 7 and 12, the pairs (g-1(Ub)~ Nj*, g-1(V)~N*j) are k-
connected. By Property 5.5, this implies that the pair (P*(b, V), g-1(V) n Z*) is k-
connected (it is easy to see that there exist the collars of DFL(B) x V in FL(b) x V
required to satisfy the hypothesis needed for Excision II). Property 5.2 and
Theorem 14 now imply that (Q(b), g-1(V) ~Z*) is k-connected. 

COROLLARY 16. Suppose that V = {v} c Ub consists of a single point. Suppose
that all the pairs (N1, Ei) and (N1, F1) are k-connected. Then the pair
(Q(b), g-1(V) n Z*) is k-connected.

Proof. This is the same as the previous proof, referring at the beginning to
Lemma 12 and the remark in the proof of Corollary 13. 

The global results

THEOREM 17. Suppose that all the pairs (N1, Ei) are k-connected. Suppose that
V c Ub c K is a contractible open subset satisfying condition (*). Then the pair
(Z*, g - 1( V) n Z*) is k-connected. Suppose in addition that the pairs (N1, F1) are k-
connected. Then for any v E K the pair (Z*, g-1(v) ~ Z*) is k-connected.

Proof. Choose a sequence of subsets Wo, Wl, ... c K, starting with Wo = V
with the following properties. There exists a sequence of points b1, b2,... E K
such that W = Wi-1 U Ub,, and such that Ubi n Wi-1 is an open contractible
subset of Ubi satisfying condition (*). Finally, K = Ux o Jti. This is easy to do if
K = R, and can be done with a clever picture if K = C (beginning with W1 = U b)’
Corollary 15 implies that the pairs (Z*~g-1(Ubi), Z*~ g-1(Ubi ~ Wi-1)) are k-
connected. Since Wi-1 is open and the complement of Ub is closed, we can apply
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Excision (I) to conclude that the pairs (Z*~g-1(Wi), Z*~g-1(Wi-1)) are k-
connected. By transitivity, the pairs (Z*~g-1(Wi), Z*~g-1(W0)) are k-

connected. This implies that (Z*, Z* n g-1(V)) is k-connected (by 5.6).
For the second part of the theorem, use the same proof but replace V by {v}.

Note that we do not use excision at the first step, so the proof does not need
openness of Wo. Use Corollary 16 instead of 15. D

REMARK. The first statement will also hold for larger open sets V which are
nice enough. Namely, those expressible as V = ~i~=0 Vi for an increasing
sequence Vi with Yo c Ub and Vi+1 = Vi~ Ub, such that Jtin Ubi satisfies (*). For
in this case the same proof shows that (g-1(V) ~ Z*, g-1(V0) ~ Z*) is k-

connected, and we may apply Property 5.2.

COROLLARY 18. Suppose that dim 03C8(X)  2. If K = C, suppose that D is

empty. Then for any v E K the pair (Z*, g-1(v) ~ Z*) is 1-connected.
Proof. This follows from Lemmas 8, 9 and 10, and the theorem. D

COROLLARY 19. Suppose that D is empty, dim 03C8(X) = k, and 03C8 is finite. Then
for any v ~ K the pair (Z, g-1(v)) is k -1-connected.

Proof. This follows from Lemma 10 and Proposition 11, and the theorem.
D

COROLLARY 20. Suppose 03C0Y: Y~ X* is any covering space such that a function
gy: Y ~ K may be defined with dgy = n*a. Under the hypotheses of the previous
two corollaries, the same conclusions hold for the pairs (Y, gy 1(v)).

Proof. Let X be the universal covering of X*. There is a function g g : À - K,
with dg = 03C0*03B1. There are covering maps  ~ Z* and  ~ Y. We may (by
translation of g and gy) assume that these maps are compatible with the
functions g. By Property 5.8, the k-connectivity of (Z*, g-1(v) ~ Z*) is equivalent
to that of (X, gX 1 (v)), which in turn is equivalent to that of ( Y, gy ’(v». 
COROLLARY 21. Suppose A’ is an irreducible abelian variety, X c A’ is a

smooth connected closed subvariety of dimension k, and a is the restriction of a
linear holomorphic or real harmonic form on A’. Suppose Y is a covering space of X
such that the function gy is defined. Then for any v E K the pair (Y, gy 1(v)) is k - 1-
connected.

Proof. In this case, A’ has no abelian subvarieties so it is equal to the abelian
variety A defined above. The map 03C8 is the closed immersion, so it is finite. Apply
Corollary 19. D

A factorization statement

We have obtained a result valid when the dimension of 03C8(X) is at least two. If the
dimension of the image is zero, then a is identically zero.
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LEMMA 22. Suppose dim 03C8(X) = 1. Then there exists a smooth projective
algebraic curve C, a morphism f : X ~ C with connected fibers, and a holomorphic
or harmonic one-form p on C such that a = f*(03B2). The triple (C, 03B2, f) is uniquely
determined by a, up to unique isomorphism. The image of D is a finite set in C.

Proof. Let C be the normalization of im(tf¡) in the function field of X ; this gives
the Stein factorization 03C8 = pf where p is the finite map from C to im(03C8) and
f : X ~ C has connected fibers. The curve C is normal, hence smooth, and
projective. Set fl = p*a : this is a holomorphic one form on C, with f*03B2 = oc on X.
The image of D is a finite set, by Lemma 2.
To prove uniqueness, suppose (C’, fi’, f ’) were another such triple. Let

03C8’: C’ ~ A’ denote the albanese map determined by P’, with A’ = Alb(C’)/B’ as
before. By functoriality of the albanese construction we obtain a map

Alb(X) - Alb(C’), and a on Alb(X) is the pullback of fi’ on Alb(C’). The image of
B c Alb(X) is equal to B’ c Alb(C’). Therefore the map of albanese varieties
gives an injection A ~ A’. It is surjective because the map f’: X ~ C’ is surjective
(since 03B1~ 0). Hence A’ = A. The albanese map for (X, a) factors as 03C8 = 03C8’/f’
since a = (f’)*03B2’. But 03C8’: C’ ~ im(C’) is finite, and f’ has connected fibers. The
uniqueness of the Stein factorization gives an isomorphism C’ -- C with respect
to which gi’ = p and f’ = f. Finally, f is generically smooth, so if f*03B2 = f*03B2’,
then P = 03B2’ (and similarly, the isomorphism Y -- Y’ is unique). D

Proof of Theorem 1. First we treat the real harmonic case. If a is identically
zero, we get conclusion (1). If not, then dim 03C8(X)  1. If dim 03C8(X) = 1, we obtain
conclusion (2) from the lemma above. If dim 03C8(X)  2 then we obtain conclusion
(3) from Corollary 18, Corollary 20, and Property 5.7. In the complex-valued
holomorphic case, the proof is the same. Note however that we must assume D is
empty. D
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