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1. Introduction and summary

Aomoto [Aol] has recently given a simple and elegant proof of an extension of
Selberg’s integral [Sel]. Kadell [Ka4] has given two proofs of the following
generalization [Kal, Conjecture 2] of Aomoto’s theorem. There exists a family
{S’(t)l of homogeneous symmetric functions such that if the integrand of
Selberg’s integral is multiplied by s1(tl,’ .., t"), then the integral has a certain
closed form. It follows by comparison with the recent results of Stanley [Stl]
and Macdonald [Ma2, Chap. VI] that s1(t) is the renormalized Jack symmetric
function J03BB,(t; a), introduced by Jack [Jal], with a = l/k. We call sl(t) the
Selberg-Jack symmetric function.
Our main result is that if the integrand of Selberg’s integral is multiplied by

the product 81(tl,’ .. , tn)su(t1, ... , tn) of two Selberg-Jack symmetric polynomials,
then the integral has a certain closed form provided that y = k. Hua [Hul]
proved the k = 1 case of this theorem by using the Cauchy identity for the Schur
symmetric functions. Our proof requires a certain homogeneous rational

function identity which follows by Hua’s theorem and which also follows by the
Cauchy identity. We formulate our main result as an equivalent constant term
identity and, using the homogeneity, we obtain a constant term orthogonality
relation for the Selberg-Jack symmetric functions which was conjectured by
Kadell [Ka3, Conjecture 2] and recently proved by Macdonald [Ma2,
Chap. VI]. We give an expansion which is also equivalent to our main result.
The constant term orthogonality mediates between this expansion and the
constant term formulation of our main result.

We use throughout this paper notation and terminology related to partitions
and symmetric functions from Macdonald [Mal]. Let 03BB= (03BB1,03BB2, ...),
03BB1  03BB2 ...  0, be a partition. The number l(03BB) = card({i |03BBi &#x3E; 0}) of parts of
03BB, called the length of 03BB, is finite as is the norm of À, denoted by 1 Âl = 03A3i103BBi. We
write = (03BB1,... , 03BBn) to indicate that Àn+ 1 = ... = 0.

*Research supported by National Science Foundation grant DMS-90-02043.
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Let t = (tl, t2, ...) be an infinite set of indeterminates. We write t = (tl, ... , tn)
to indicate that tn+1 = ... = 0. Let m03BB(t) denote the monomial symmetric
function.

Let n  1 be a positive integer and let

denote the Vandermonde determinant. Let k  0 be a nonnegative integer and
let x and y be real numbers with Re(x) &#x3E; 0, Re(y) &#x3E; 0. The integrand of Selberg’s
integral [Sel] is

Kadell’s generalization [Ka4] of Aomoto’s extension [Aol] of Selberg’s
integral [Sel] is given by the following theorem.

THEOREM 1 (Kadell [Ka4]). Let n  1, Re(x) &#x3E; 0, Re(y) &#x3E; 0. For each k  0
there exists a basis s,(t) for the vector space of homogeneous symmetric functions
in t such that the coefficient ofm¡(t) in sl(t) equals 1 and whenever 1(À)  n we have

where, taking

We have (see [Stl, Ka4 or Ma2, Chap. VI])

where A is an integer for which both Selberg-Jack polynomials are defined.
Observe that when the parameter x is a positive integer, it is subsumed by 03BB.

The integration formula (1) generalizes Selberg’s integral [Sel] which is the
case 03BB = (0). See Andrews [An2] for a readily accessible version of Selberg’s
proof. Theorem 1 was also known for k = 1 by Kadell [Kal], for 03BB1 = 1 by
Aomoto [Aol], and for n = 2 by Richards [Ril] and Kadell [Ka3].
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Kadell [Kal] showed for k = 1 that

is the Schur function. This is the ratio of alternants formula for the Schur

functions.

Aomoto [Aol] showed for 03BB1 = 1 that

is the mth elementary symmetric function. Here (1m) denotes the partition
À 1 = ... = 03BBm = 1, 03BBm+1 = ... =0.

Richards [Ril] and Kadell [Ka3] independently showed that

where

is the Jacobi polynomial (see Szegô [Szl, Chap. IV]) of degree n. Thus we may
view sr(s, t) as a formal Jacobi polynomial.

It follows by comparison with the recent results of Stanley [Stl] and
Macdonald [Ma2, Chap. VI] that sl(t) is the renormalized Jack symmetric
function J(t; a) with a = 1/k. We have

where the constant c is given by Stanley.[Stal]. We call s’(t) Â the Selberg-Jack
symmetric function.
We show that if the integrand of Selberg’s integral is multiplied by the product

s,(t 1, ... , t")s(t 1, ... , tn) of two Selberg-Jack symmetric polynomials, then the
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integral has a certain closed form provided that y = k. This is given by the

following theorem, which is our main result.

THEOREM 2. Let n  1, k , 0, Re(x) &#x3E; 0, l(03BB,)  n and l(03BC)  n. We have

Observe by (1.4) that when the parameter x is a positive integer, it is subsumed
by 03BB, and also by /1. The parameter y = k introduces the factor 03A0ni=1(1-ti)(k-1)
into the integrand.
Hua [Hul] proved that the Schur functions s03BB(t) satisfy the product

integration formula (J) when k = 1. This is given by the following theorem.

THEOREM 3 (Hua[Hul]). Let n  1, Re(x) &#x3E; 0, l(03BB)  n and l(03BC)  n. We have

Hua’s proof used the ratio of alternants (RA) and the Cauchy identity for the
Schur symmetric functions in the form

Our proof of Theorem 2 requires a certain homogeneous rational function
identity which follows by Hua’s Theorem 3 (1.9) and which also follows by the
Cauchy identity (C).

Let [co]f denote the coefficient of the monomial co in the Laurent expansion
of f and let x(A) be 1 or 0 according to whether A is true or false, respectively.
We let a  0 and b  0 be nonnegative integers.

Habsieger [Habl] and Kadell [Ka2, Ka4] (see also Section 4 of this paper)
have independently shown that Selberg-type integrals can be formulated as
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equivalent constant term identities. We formulate Theorems 1 (1) and 2 (J) as
constant term identities as follows.

The integration formula (1) is equivalent to the constant term identity of the
following theorem.

THEOREM 4 (Kadell [Ka4]). Let n  1, k  0, a , 0, b , 0, l(03BB)  n and 1(p)  n.

We have

We have

Hence (1.4) gives

Multiplying (1.11) by 03A01ijn(1-ti/ti) and extracting the constant
term, we have

Thus the parameters a and b in (A) can be replaced by the single parameter a + b.
For 03BB = (0), we see that (A) reduces to Morris’ theorem [Mol, (4.12)]. Morris

obtained his theorem from a Selberg-type integral which used the Cauchy form
of the beta integral. The a and b parameters of Morris’ theorem are related to the
x and y of Selberg’s integral (see [Habl, Ka2 or Ka4]) by

The product integration formula (J) is equivalent to the constant term identity
of the following theorem.
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THEOREM 5. Let n  1, k  0, a  0, l(03BB)  n and 1(p)  n. We have

Observe that setting y = k in (1.13) gives b = k - a - 1, which is the value of the
parameter b that is used in (K). Setting b = k - a -1 in (1.11), multiplying the
result by 03A01ijn(1-ti/ti) and extracting the constant term, we have

The last expression is obtained by replacing 03BB, by (03BC1-a,...,03BCn-a) and
(tl, ... , tn) by (1/tl, ... , 1/tn) in (1.4). Thus the parameter a is subsumed by 03BB, and

also by ,u.
Using the homogeneity of s(t), Theorem 5 implies a constant term orthogon-

ality relation which was conjectured by Kadell [Ka3, Conjecture 2] and recently
proved by Macdonald [Ma2, Chap. VI]. This orthogonality combines or-
thogonality relations for the Schur functions and the Jacobi polynomials. It is
given by the following theorem.

THEOREM 6 (Macdonald [Ma2, Chap. VI]). Let n  1, k  0, l(03BB)  n and
l(03BC)  n. We have

where



11

Kadell [Ka4] obtained the expansion (H), given by the following theorem,
which is also equivalent to (A). The orthogonality (0’) mediates between (H)
and (A).

THEOREM 7 (Kadell [Ka4]). Let k  0, a , 0. We have

where

Observe that the coefficient Hk(a; 03BB,) is independent of n. We identify with its
Ferrers diagram {(i,j)| 1  i  l03BB), 1  j ÀJ, by letting (1,j) ~ 03BB be the cell in
row i and column j of 03BB. The conjugate partition 03BB’ of 03BB, is given by (1,j) ~ 03BB’ iff

( j, i) E À. Thus Â. = card({i|03BBi  j}), j  1. We define the k-content number and

the k-hook number of (i, j) by

and

respectively, where

are the arm and leg, respectively, of the cell (i, j). We have (see [Ka4])

which is independent of n.
Observe that (H) is a multivariable extension of the binomial theorem. It

follows by using Stanley’s [Stl] extensions of the Cauchy identity and the
specialization formula for the Schur functions. Kadell [Ka4] used the argument
in the first proof [Ka4, §§3-5] of the integration formula (I) to give an induction
on a.
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Alternatively, we may use the orthogonality (0’) to compute the coefficient
Hk(a, À) as follows. Use n variables in (H) where l(03BB)  n and multiply by
s,( 1/t1, ... , 1 /tn) times the weight function 03A01ijn(1-ti/ti)k(1-ti/ti)k of (O’).
Since the constant term is unchanged by the substitution ti ~ 1/ti, 1  i  n, we

may use (A) to extract the required constant term. We obtain

Observe that the formula (1.17) for Hk(a; 03BB) follows by substituting (A) and the
normalization (1.15) of the orthogonality (0’) into (1.22).
By (1.12) and (1.22), we see that if we know two of the three quantities

CSkn(a, b; 03BB), Hk(a; 03BB) and gkn(03BB), then we can evaluate the third. Macdonald [Ma2,
Chap. VI] proves Theorem 6 (0’), giving an elegant evaluation of the

normalization factor gkn(03BB). By (H), we obtain the value of CSkn(a, b; 03BB,), thus
proving the extension (A) of Morris’ theorem [Mol, (4.12)]. Thus (0’) mediates
between (H) and (A). Since (A) and (I) are equivalent, this gives the second proof
[Ka4, §§9-10] of the integration formula (1).
Macdonald [Ma2, Chap. VI] proves that the constant term orthogonality

(0’) may be used to define the Selberg-Jack symmetric functions s’(t)l. Let us
now assume that we use (0’) to define (s§(t)) and that we want to evaluate the
normalization factor gkn(03BB). We have (see [Habl, Ka2, Ka4] or Section 4 of this
paper) that the constant term identity (A) is equivalent to the integration
formula (I). Alternatively, we may prove (A) by giving the first proof [Ka4, §§3-
5] of (1) in the constant term setting. One may then obtain both the coefficient
Hk(a; À) and the normalization factor g’(Â) by the following argument.

Since Hk(a; 03BB) is independent of n, we see that (1.22) gives

We want to use the known values of CSkn(0, a; À) and CSkn+1(0, a; À) to evaluate
gkn(03BB) by induction on n. Rearranging (1.23) gives

This only applies if l(03BB)  n. We may circumvent this difficulty by using (1.4).
Replace A by - A in (1.4) and use the substitution ti -+ Ilti, 1  i  n.
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Multiplying our results gives

Multiplying (1.25) by 03A0 and extracting the constant
term, we have

Observe that (1.26) follows from the explicit formulas (1.15) and (1.16). Replacing
n by n + 1 and setting A=-03BBn+1 in (1.26) gives

Using this in (1.24) gives

Substituting (1.28) into (1.27), we have

We may evaluate gkn(03BB) by (1.29) by induction on n and then evaluate Hk(a; À)
directly by (1.22).

There is an expansion (G), given by the following theorem, which is also
equivalent to (K). The orthogonality (0’) mediates between (G) and (K) just as it
mediates between (H) and (A).

THEOREM 8 (Kadell [Ka4]). Let k  0. We have
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where

In Section 2, we reprise the first proof [Ka4, §§3-5] of the integration formula
Theorem 1 (1). We use (1) to guess the coefficients Uk(v/03BB) and Vk(03BB/03BC) occurring
in the extensions [Ka4, (U) and (V)] of the Pieri formula and the combinatorial
representation, respectively, of the Schur functions. The (U) property overdeter-
mines the Selberg-Jack symmetric functions s(t)l by a double induction on the
number À1 of columns of À and on the number cl(03BB) = 03BB’03BB1 of cells (i, À1) in the last
column of 03BB.

In Section 3, we prove the product integration formula Theorem 2 (J) by using
the double induction given in Section 2. The proof requires a certain homog-
eneous rational function identity which follows by Hua’s Theorem 3 (1.9) and
which also follows by the Cauchy identity (C).

In Section 4, we formulate the product integration formula Theorem 2 (J) as
the constant term identity Theorem 5 (K). Using the homogeneity of sl(t), we
prove the constant term orthogonality Theorem 6 (0’), including the evaluation
of the normalization factor gkn(03BB).

In Section 5, we use the constant term orthogonality (0’) and the constant
term identity (K) to obtain the expansion Theorem 8 (G). The orthogonality (0’)
mediates between (G) and (K) just as it mediates between (H) and (A).

In Section 6, we outline alternative proofs of the constant term identity
Theorem 5 (K) and the expansion Theorem 8 (G). We show that the argument
used to prove the product integration formula Theorem 2 (J) in Section 3 can
also be used to prove (K) and (G) and that the identities which arise for (K) and
(G) are both equivalent to the identity which arises for (J), which may be
formulated as a homogeneous rational function identity.

2. A reprise of the first proof [Ka4, §§3-5] of the intégration formula Theorem
1 (1)

In this section, we reprise the first proof [Ka4, §§3-5] of the integration formula
Theorem 1 (1). We use (I) to guess the coefficients Uk(03BD/03BB) and Vk(03BB/03BC) occurring
in the extensions [Ka4, (U) and (V)] of the Pieri formula and the combinatorial
representation, respectively, of the Schur functions. The (U) property overdeter-



15

mines the Selberg-Jack symmetric functions s(t)l by a double induction on the
number 03BB1 of columns of 03BB, and on the number cl(03BB) = 03BB’03BB1 of cells (i, 03BB1) in the last
column of 03BB.

Let the skew diagram 03BD/03BB, = {(i, j) | 1  i  l(v), Ài  j  vil consist of those cells
of v which are not in 03BB. We call 03BD/03BB, a vertical m-strip if 03BBi  03BDi  Ài+ 1, for all i,
i  1, and |v| |=|03BB| + m. We call 03BB/03BC a horizontal r-strip if Â’/M’ is a vertical r-strip.
The first proof [Ka4, §§3-5] of Theorem 1 uses the integration formula (I) to

find the coefficients Uk(03BD/03BB,) and Vk(03BB/03BC) occurring in the following two properties
of s(t).

and

The (U) property reduces for k = 1 to a special case of the Littlewood-

Richardson rule which is dual to the Pieri formula. The (V) property extends the
combinatorial representation of the Schur functions. Each of these properties
determines the Selberg-Jack functions.

Let 0  m  n and l (v)  n. Observe that if 03BD/03BB, is a vertical m-strip, then no
two cells of 03BD/03BB, are in the same row. Thus 03BD = 03BB + xM where

M = {f = +1} [1, n], where [1, n] = {i |1  i  nl denotes the interval
from 1 to n. We have

All of the coefficients are identically equal to 1 when k = 1, in which case
Theorem 1 is known [Kal]. Thus (2.1) and (2.2) hold for k = 1 and we may
convert them into polynomial identities. Observe that if Uk(03BD/03BB,) and Vk(03BB/03BC) are
rational functions, then (2.1) and (2.2) may be converted into polynomial
identities. We boldly define Uk(03BD/03BB.) so that when (2.1) is written as a polynomial
identity, it is homogeneous in x, y, k and Ài, 1  i  n. Using n-nk,
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x ~ x + 1 - k, we define Vk(03BB/03BC) so that when (2.2) is written as a polynomial
identity, it is homogeneous in 1/k and 1  j  03BB1. This gives

and

Observe that

Using (2.5) to compare (2.3) and (2.4), we have the elegant identity

which is related to Macdonald’s extension (see [Ma2, Chap. VI]) of the duality
property of the Schur functions.

There now arises an important quandry. While the (V) property determines

{S(t)l by induction on the number of variables, it is not clear that the resulting
functions are symmetric. However, the (U) property overdetermines {Sk(t)}
although it is clear that if there exist functions satisfying (U), then they must be
symmetric. This quandry is resolved and Theorem 1 (1) is proved by a double
induction on n and y by showing that the functions defined by (V) satisfy (U).
This requires induction on the number of variables and the identity
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which is homogeneous in

We require some of the calculations from [Ka4] for the homogeneous
polynomial identity obtained from (2.1). Divide both sides of (2.1) by

We obtain

The coefficients U’(Â + XM/À) are chosen so that (2.7) becomes the homogeneous
polynomial identity

This may be done by dividing (2.7) by

Thus we have

which is the M = 0 case of
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We now recall the proof [Ka4, §2] of the fact that the (U) property
overdetermines the Selberg-Jack symmetric functions s(t). We proceed by a
double induction on the number 03BB1 of columns of 03BB, and on the number

cl(03BB) = 03BB’03BB1 of cells (i, À1) in the last column of À. We begin the induction by using
the initial condition

We may assume that 03BB1 &#x3E; 0. We set m = cl(03BB) &#x3E; 0 and let e(03BB) be the partition
obtained by deleting the last column of 03BB. Thus

We have

and, since the coefficient of m03BB(t) in s(t) equals 1,

By the (U) property, we have

By (2.14) and (2.15), we see that the term s(t) occurs on the right side of (2.16)
when M = [1, mJ. Solving for this term, we obtain

Since all of the partitions which occur in the terms on the right side of (2.17) have
fewer cells in column 03BB1, our induction is complete and the (U) property
determines the Selberg-Jack symmetric functions s(t).

Observe that the coefficient Uk(03BD/03BB) is constrained so that (2.16) holds for all
m  1. Thus the (U) property overdetermines the Selberg-Jack symmetric
functions s(t).
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3. A proof of the product intégration formula Theorem 2 (J)

In this section, we prove the product integration formula Theorem 2 (J) by using
the double induction given in Section 2. The proof requires a certain homog-
eneous rational function identity which follows by Hua’s Theorem 3 (1.9) and
which also follows by the Cauchy identity (C).
We proceed by a double induction on the number 03BB1 of columns of 03BB, and on

the number cl(03BB) = 03BB’03BB1 of cells (i, À1) in the last column of 03BB.

We begin the induction by setting 03BB = (0) and letting y be any partition with
l(03BC)  n. Using the integration formula (I), we have

We easily have

and

Substituting (3.2) and (3.3) into (3.1) yields

as required.
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We let l(03BB)  n and we may assume that À1 &#x3E; 0. We set m = cl(03BB) &#x3E; 0 and let

03B8(03BB) be the partition obtained by deleting the last column of À.
Using n variables in the (U) property, we may expand em(t1, ... , tn) times

either sk03B8(03BB)(t1, ..., tn) or sk03BC(t1, ..., tn). This gives

Multiplying (3.5) by Wk(x, k; tl, ... , tn) and then integrating using (J), we obtain

We now show that (3.6) holds when we use the product integration formula
Theorem 2 (J) for J’(x; À, y). Substituting (J) into (3.6) and dividing by n ! (r(k))n
gives

Multiply both sides of (3.7) by
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We obtain

Using (2.10) and (2.11), we divide (3.9) by This gives

Observe that (3.10) and hence (3.6) is homogeneous in k and x as well as 03B8(03BB)i,
1  i  n, and Jlj, 1  j  n.

Let us set
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Recognizing the Vandermonde determinants, we see that (3.10) becomes

Let us set

Observe that since the Vandermonde determinant is unchanged if all of its
arguments are shifted by the same amount, we may just as easily incorporate the
parameter x into the yt, 1  i  n. Using the substitutions xi ~ xi + kx(i E M),
1  i  n, and yj ~ yj + kx(j ~M), 1  j  n, for the left and right sides of (3.12),
respectively, we have

Observe that (3.14) is homogeneous in k as well as Xi’ 1  i  n, and yj,
1 jn.
The k = 1 case of the product integration formula Theorem 2 (J) was proved

by Hua [Hul]. Thus (3.6) and hence (3.14) holds for k = 1. Since it is

homogeneous in k as well as Xi’ 1  i  n, and Yj, 1  j  n, we see that (3.14)
holds for all k  0. Hence (3.6) holds for all k  0 when we use the formula (J) for

We pause to show that (3.14) and hence (3.6) also follows by the Cauchy
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identity (C). Using (C), we see that (3.14) becomes

Expanding the determinants in (3.15), we obtain

This follows directly using the bijection

and, since it is equivalent to (3.14), we obtain (3.6).
By (2.14) and (2.15), we see that the term Jf(x; 03BB, p) occurs on the left side of

(3.6) when M = [1, m]. Solving for this term, we obtain

Since all of the partitions which occur as a first argument of Jkn(x; , .) in the terms
on the right side of (3.18) have fewer cells in column 03BB1, our induction is complete
and the product integration formula Theorem 2 (J) is established.

4. Proofs of the constant term identity Theorem 5 (K) and the constant term
orthogonality Theorem 6 (0’)

In this section, we formulate the product integration formula Theorem 2 (J) as
the constant term identity Theorem 5 (K). Using the homogeneity of s(t), we
prove the constant term orthogonality Theorem 6 (0’), including the evaluation
of the normalization factor gn(03BB).
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By (1.14), the parameter a is subsumed in the constant term identity (K) bey À
and also by y. Thus in order to prove Theorem 5 (K), we need only prove the
a = 0 case of (K). This is given by

We assume throughout this section that l(03BB) , n, l(03BB)  n. Let us set

where by homogeneity the sum on the right side of (4.2) is also restricted to

Substituting (4.2) into the product integration formula Theorem 2 (J), we can

carry out each integral separately. We obtain

Equating this with (J) and dividing by (F(k»", we have
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Observe by (4.3) that the sum in (4.5) is a finite sum. Thus (4.5) is valid for all x
since both sides are rational functions in x. We can convert (4.5) into a
polynomial identity if we wish.
We are going to require the closely related function

The identity for reversing a finite product is

By (4.7), we have

Hence (4.5) gives

By (4.7), we have

Observe that
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since either n or n + 1 must be even. Thus we see that (4.9) becomes

Set

By (1.4), we see that we may define Sk03BB(t1..., tn) even when some of the parts of À
are negative provided that the parts are in nonincreasing order. Kadell [Ka4]
has shown that

Observe that

By (4.2), (4.14) and (4.15), we have

Substituting (4.16) into (4.1) and extracting the constant term, we have
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Let A be an integer. We have

Observe by the standard convention

that the constant term (4.18) is 0 if A  0 or A &#x3E; k -1. We assume that

0  A  k - 1. This gives

Observe that

Comparing (4.18) and (4.21), we have

Since the right side of (4.22) is 0 if A  0 or A &#x3E; k - 1, we see that (4.22) holds for
all integers A.

Using (4.22) to extract the constant term in (4.17), we have
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Using the rational function identity (4.12), we obtain

We now reconcile (4.24) with the formula (4.1) for Kkn(0;03BB, ,03BC).
Using the substitution 1 ~ n + 1 - j, j ~ n + 1- i, we have

Observe that under the substitution i - n + 1- j, we have

Thus (4.24) becomes

Let us investigate when J(0; 03BB, li) is 0. Observe that

Thus for a fixed i, 1  i  n, when we consider
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as a function of 8, it has only simple poles. If it has a pole at e = 0, then there
exists a unique j(i), 1 j(1)  n, such that

has a pole at e = 0. This requires that

Multiplying by -1 and reading the inequality from right to left gives

We observe from the factor 8" on the right side of (4.27) that %:(0; À, fl) is 0
unless for each i, 1  i  n, the function (4.29) has a simple pole at s = 0. Thus
for each i, 1  i  n, there exists a unique j(1), 1  j (i)  n, which satisfies (4.32).

Replacing i by i + 1 in (4.31) gives

Adding (4.32) and (4.33) together gives

Since 03BB, is a partition, we have 03BB201303BBi+1  0, 1  i  n -1. Hence

Observe that

Since this contradicts (4.35), we have j(i)  j(i + 1), 1  i  n -1. Thus j(i) = i,
1  i  n, and (4.32) becomes

We have that kn(0; 03BB, Il) is 0 unless (4.37) holds. Assume that this is the case.
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Then we have

Putting . we have

Hence

Using the substitution i H j and the identity (4.7) for reversing a finite

product, we have

Substituting (4.40) and (4.41) into (4.38), we have

Since the first factor on the right side of (4.42) is 0 if (4.37) does not hold, we see
that (4.42) holds for all partitions and ,u. Substituting (4.42) into (4.27) gives the
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formula (4.1) for kn(0;03BB,03BC ). This completes the proof of the constant term
identity Theorem 5 (K).
We have that .. tn) is homogeneous of total degree IÀI. Similarly,

is homogeneous of total degree |03BC|. Since

is homogeneous of total degree 0, we have

Let us assume that JÂJ = IIÀI. Then we have

We have already seen that this is 0 unless (4.37) holds. We require only the
weaker condition

Since IÀI = |03BC|, this gives = y. Thus we have

This gives the constant term orthogonality (0’). We may evaluate the normali-
zation factor gkn(03BB) by setting y = 03BB in (4.44). We obtain
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in agreement with the formula (1.15) for gkn(03BB). This completes the proof of the
constant term orthogonality Theorem 6 (0’).

5. A proof of the expansion Theorem 8 (G)

In this section, we use the constant term orthogonality (0’) and the constant
term identity (K) to obtain the expansion Theorem 8 (G). The orthogonality (0’)
mediates between (G) and (K) just as it mediates between (H) and (A).

Since it is a symmetric function, we may expand s(t)IIi ,1 ( 1- ti)k -1 in terms of
the Selberg-Jack symmetric functions s,(t). Let Gk(À, 03BC) dénote the coefficient.
We may use the constant term orthogonality (0’) to compute the coefficient

Gk(03BB, y). Using n variables in the expansion (G) where l(03BC)  n, we have

Multiply (5.1) by s,(1/tl, ... , 1/tn) times the weight function

of the orthogonality (0’). By (0’), we may compute the coefficient Gk(03BB, p) by
extracting the constant term. Thus we have

Since the constant term is unchanged by the substitution ti ~ 1/ti, 1  i  n, we

may use the constant term identity (K) to extract the required constant term. We
obtain
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By (1.3), (1.15) and (1.16), we have

Substituting (1.3) into (4.1) gives

Substituting (5.4) and (5.5) into (5.3) gives the formula Theorem 8 (1.30) for
Gk(03BB, y). This completes the proof of the expansion Theorem 8 (G).
By (1.14) and (5.3), we see that if we know two of the three quantities

03BC), Gk(03BB, Jl) and gn(03BB), then we can evaluate the third. Thus (0’) mediates
between (G) and (K) just as it mediates between (H) and (A).

6. Alternative proofs of the constant term identity Theorem 5 (K) and the
expansion Theorem 8 (G)

In this section, we outline alternative proofs of the constant term identity
Theorem 5 (K) and the expansion Theorem 8 (G). We show that the argument
used to prove the product integration formula Theorem 2 (J) in Section 3 can
also be used to prove (K) and (G) and that the identities which arise for (K) and
(G) are both equivalent to the identity which arises for (J), which may be
formulated as a homogeneous rational function identity.

Observe by Aomoto’s theorem [Aol] (1.5) that the 03BB = (1m) case of (4.14) is

This plays a key role in Macdonald’s elegant evaluation [Ma2, Chap. VI] of the
normalization factor gn(03BB) of the constant term orthogonality (0’). It is

important to note that (4.14) and (1.4) are implicit in the orthogonality (0’). The
following result is also implicit in (4.14).
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where

In [Ka4], we verified (6.2) and used it to obtain (4.14).
For the constant term identity Theorem 5 (K), we may assume that a = 0 since

by (1.14) the parameter a is subsumed by 03BB, and also by y. By (6.1), we may
proceed by induction on 03BB, or on y. We proceed by a double induction on the
number pi of columns of fl and on the number cl(03BC) = 03BC’03BC1, of cells (i, pi) in the last
column of y. We begin the induction by observing that for Jl = (0), the expansion
(K) reduces to the b = k -1 case of (A). Assume that l(03BB)  n. We have

We let l(03BC)  n and we may assume that pi &#x3E; 0. We set m = cl(03BC) &#x3E; 0 and let

0(li) be the partition obtained by deleting the last column of ,u. Replacing 03BB by il
in (2.14) and (2.15), we have

and

Using the n variables (1/ti , ... , 1/tn) in the (U) property, we have

Multiplying (6.7) by times the weight function

(1- tiltj)k(l - tj/ti)k of the orthogonality (0’) and using (K) to extract
the constant term, we obtain
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Use n variables in the (U) property and replace the index M of summation by
JI. By (6.1), we have

Setting M = [1, n] - U, we have 1 MI = m and aV = [1, n] - M. By (1.4), we have

Hence (6.9) becomes

Multiplying (6.11) by sé(03BC)(1/tl, ... , 1/tn) IIn-1(1-1/ti)k -1 times thé weight func-
tion of the orthogonality (0’) and using (K) to
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extract the constant term, we obtain

Equating (6.8) and (6.12) gives

The homogeneous rational function identity (3.14), which is equivalent to
(3.6), is central to our proof in Section 3 of the product integration formula
Theorem 2 (J). We now show that (6.13) is equivalent to (3.6).

Substituting (4.9) into (4.23) gives

By (4.4) and (4.5), we have

Comparing (6.14) and (6.15), we have

We require identity expressing p) in terms of li). To
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obtain this we observe by (4.14) and (1.4) that

Multiply (6.17) by ti/tj)k(1 - tj/ti)k and extract the constant term.
Using the fact that the constant term is unchanged by the substitution te -+ 1/ti,
1  i  n, we have the symmetry

Using (6.16), the A = k -1 case of (1.4), and the fact that J:(x; À, Jl) is symmetric
in À and Jl, we have

Substituting (6.19) into (6.13) and dividing both sides by we
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obtain

Observe that

Replacing by À and M by M in (6.2) and using the facts that Â = 03BB and M = M,
we have

Hence (6.20) becomes

Since IMI = |M| and the parameter x in (3.6) is subsumed by 03BB and also by Jl, it is
easy to see that (6.23) is equivalent to (3.6).
We now return to our alternative proof of the constant term identity Theorem

5 (K). We require that (6.13) holds when we use the constant term identity (K) for
n(0; 03BB, y). We may simply verify (6.19) and (6.22) formally or we may explicitly
massage (6.13) into (3.14) as was done for (3.6). The preceding analysis shows
that this may be done using the substitution

As in Section 3, we may use the Cauchy identity (C) to establish the

homogeneous rational function identity (3.14). Thus (6.13) holds when we use
the constant term identity (K) for %:(0; À, À). We may use Hua’s argument
[Hul] in the constant term setting to establish the k = 1 case of (K). This
requires the Cauchy identity (C). We again obtain (6.13) since (3.14) is

homogeneous in k as well as x;, 1  i  n, and yj, 1  j  n.
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By (6.5) and (6.6), we see that the term À, Jl) occurs on the left side of
(6.13) when M = [1, m]. Solving for this term, we obtain

Since all of the partitions which occur as a second argument of ’) in the
terms on the right side of (6.25) have fewer cells in column y,, our induction is
complete and the constant term identity Theorem 5 (K) is established.
For the expansion Theorem 8 (G), we proceed as with (G) by a double

induction on the number 03BC1, of columns of /1 and on the number cl(03BC) =03BC’03BC1 of
cells (i,03BC1) in the last column of Jl. We begin the induction by observing that for
,u = (0), the expansion (G) reduces to the a = k -1 case of (H). That is

We let l(03BC)  n and we may assume that pi &#x3E; 0. We set m = cl(03BC) &#x3E; 0 and let

0(p) be the partition obtained by deleting the last column of y.
Using n variables in the (U) property, we have

Multiplying (6.27) by II"=1 ( 1- ti)k -1 and using the expansion (G), we have

Using the expansion (G) first gives
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Multiplying (6.29) by em(tb... , tn and using n variables in the (U) property, we
have

We set

where we assume that 1(v)  n. We have 1(03BB)  n and we may equate coefficients
in (6.28) and (6.30). We obtain

The homogeneous rational function identity (3.14), which is equivalent to

(3.6), is central to our proof in Section 3 of the product integration formula
Theorem 2 (J). We now show that (6.32) is equivalent to (3.6).

Substituting (5.3) into (6.32) and multiplying by n!g(03BB) gives

Observe that substituting

into (6.33) gives (6.13), which is equivalent to (3.6). We give an elegant argument
due to Macdonald [Ma2, Chap. VI] which establishes (6.34) directly. By (6.1)
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and (1.4), we have

Expanding the extreme left and right sides of (6.35) by the (U) property,
multiplying by the weight function II,-ij-n (j _ tiltj)k(l _ tjlti)k of the or-
thogonality (0’), and using (0’) to extract the constant term, we obtain

By (1.26), we have

Substituting (6.37) into (6.36) and rearranging gives (6.34). Thus (6.32) is

equivalent to (3.6).
Solving (6.34) for g(03BB) gives

Observe that

Macdonald [Ma4, Chap. VI] evaluates the normalization factor gn(03BB) of the
constant term orthogonality (0’). He proceeds by induction on 03BB starting with
03BB = (0) (6.39) and uses the |M| = 1 case of (6.38). Observe that we may evaluate
gn(03BB) by using any nonempty subset M and that the coefficient Uk(03BD/03BB) is

constrained so that we obtain the same value for gkn(03BB) for all M ~ 0. This
constraint is also implicit in the fact that the (U) property overdetermines the
Selberg-Jack symmetric functions s(t).
We now return to our alternative proof of the expansion Theorem 8 (G). We

require that (6.32) holds when we use the formula Theorem 8 (1.30) for Gk(03BB, y).
We may simply verify (5.3) and (6.34) formally or we may explicitly massage
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(6.32) into (3.14) as was done for (3.6). The preceding analysis shows that this
may be done using the substitution (6.24).
As in Section 3, we may use the Cauchy identity (C) to establish the

homogeneous rational function identity (3.14). Thus (6.32) holds when we use
the formula Theorem 8 (1.30) for Gk(03BB, y).
By (6.5) and (6.6), we see that the term Gk(03BB, fl) occurs on the left side of (6.32)

when M = [1, m]. Solving for this term, we obtain

Since all of the partitions which occur as a second argument of Gk( ) in the
terms on the right side of (6.40) have fewer cells in column 03BC1, our induction is
complete and the expansion Theorem 8 (G) is established.

Since the constant term identity Theorem 5 (K) and the product integration
formula Theorem 2 (J) both reduce to the rational function identity (4.4), we see
that they are equivalent. Since it follows from (K), let us assume that the constant
term orthogonality (0’) is known including the value of the normalization factor
gkn(03BB). The orthogonality (0’) mediates between the constant term identity (K)
and the expansion (G). Thus (J), (K) and (G) are equivalent. It is not surprising
that the argument used to prove (J) in Section 3 can also be used to prove (K)
and (G) and that the identities (6.13) and (6.32) which arise for (K) and (G),
respectively, are both equivalent to the identity (3.6) which arises for (J), which
may be formulated (3.14) as a homogeneous rational function identity.
The product integration formula (J), the constant term identity (K), and the

expansion (G) are equivalent formulations of the constant term orthogonality
(0’). Since the rational function identity (3.14) is homogeneous, the orthogon-
ality (0’) is in some sense independent of k. That is, the orthogonality (0’) is in
some sense the same for all k  0 as the orthogonality of the Schur functions. As
is well-known (see [Mal, Chap. I]), the Cauchy identity (C) is a formulation of
the orthogonality of the Schur functions. Accordingly, we may use (C) to
establish the homogeneous rational function identity (3.14) which is central to
our proof of (J), (K) and (G).
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