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Let Xn be the configuration space of n + 3 points on the complex projective line
P1. The problem of modular representation of the space, namely the problem on
how to find a discrete subgroup A acting on the complex n-ball Bn such that
Xn ~ Bn/A, has been studied by many authors (e.g. [Pic], [Ter], [DM]). Their
idea is to consider a family of curves presented as covers of P’ branching at
n + 3 points and to study a suitable set of periods, which turns out to form a
solution system of the so-called Appell hypergeometric system ED defined on Xn.
When n = 1 the modular interpretation is classically known by the name of
Schwarz theory. When n  6 no one has ever succeeded to construct such a
theory. In this paper we study the case n = 5; we express the discrete subgroup in
question, first as a reflection group and second as a congruence subgroup.
Several properties of the group are described in terms of combinatorics of the
n + 3 points.

Consider the family of curves

and their six periods

where the ck(x)’s are six suitable linearly independent cycles on Sx. The period
map x ~ (u1(x),..., u6(x)) is multi-valued with monodromy A, a subgroup of
GL(6, C); the group A acts properly discontinuously on a domain D isomorphic
to the 5-dimensional ball B5. The period map induces an injection of the
configuration space

of 8 distinct points on P1 into the quotient space D/A. In Section 1 we recall the
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notion of admissible sequences introduced in [MSY] and get in Section 2 a
combinatorial description of the boundary of X8 and its compactification (some
wrong statements in [MSY] are corrected here). The monodromy group A is
known to be a reflection group, whose root vectors of generating reflections are
given in Section 4. The group A is presented explicitly as a principal congruence
subgroup of the modular group given in Section 3; a proof is given in Sections 5,
6 and 7. Since the space X8 obviously admits the action of the symmetry group
S., the group A should have an extension by Sg; this extension is given as a
reflection group and also as a modular group.
The facts stated in Sections 2 and 3 are essentially known ([Ter], [DM]); so

we do not give any proof; there we present a combinatorial explanation in terms
of admissible sequences.

1. Admissible sequences
2. Families of curves and their periods
3. Monodromy group r(1/4) as a reflection group
4. Results: the monodromy as a congruence subgroup
5. Combinatorial structure of the cusps of 0393(1/4)
6. Parabolic parts of 0393(1/4) and r(l - i)
7. Parabolic parts of r(1/4) and r

1. Admissible sequences

Let 03BC1,..., 03BCn+3 be n + 3 rational numbers satisfying

A sequence of rational numbers pi, ... , 03BCn+3 is said to be n-admissible if there
are integers nij greater than 1 or equal to oo such that

for any distinct i and j. For such a sequence 03BC1,..., 03BCn+3, if there are indices i and
j (i  j) such that pi + J-lj  1 then the sequence

is (n - 1)-admissible, which will be called the restriction with respect to i and j. If
n  2, there are only finitely many such sequences; it also turns out that n must
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be  5. The complete list of them can be found in [Ter], [DM] and [MSY]. In
case n = 5, there is a unique admissible sequence

The following diagram shows its restrictions; in the diagram, the sequence of
rational numbers

two sequences connected by ~ mean that the latter is a restriction of the former.
The meaning of (4 + 4) will be explained later.

2. Families of curves and their periods

Let Xl,...,Xn+3 be n + 3 (n  2) distinct points on P1. For each admissible
sequence 03BC = {03BC1,...,03BCn+3}, consider the family S(03BC) of curves

where d is the smallest common denominator of the J1/s and the following n + 1
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periods of Sx:

where the ck(x)’s are n + 1 linearly independent cycles on Sx depending
continuously on x = (x 1, ... , xn+ 3). Let 0393(03BC) be the monodromy group of the
(multi-valued) vector function (u1,...,03BCn+1); it turns out that the group acts

properly discontinuously on Bn. Let Bf(p) be the maximal open subset of En on
which the group 0393(03BC) acts freely; the complement of Bf(p) in Bn is the union of
countably many hyperplanes passing through the ball. Let X n be the space of
n + 3 distinct points on the projective line:

which is a Zariski open set of en. Then the period map

gives an isomorphism

If y has restriction with respect to i and j, i.e. if

is (n - 1 )-admissible, then attach to X n the manifold

which is isomorphic to Xn-1 in the obvious way. If y has a restricted (n - 2)-
sequence, i.e. if

or

is (n - 2)-admissible, then attach

{(x)~(P1)n+3| all distinct but xi = xj and xk = xl}/PGL(2),
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or

respectively. In general, for any restricted r-sequence

of y, we attach to Xn the manifold

which is isomorphic to Xr. In this way we get a quasi-projective variety X’(03BC).
The period map extends to

The variety X’(M) can be compactified to a projective variety X,,(M) by adding a
finite number of points: the points to be added correspond to the ways of
dividing the set ( 1, ... , n + 3} into two subsets I1 and 12 so that

The Satake compactification Bn/0393(03BC) of the quotient space Bn/0393(03BC) is obtained
by adding the cusps, a finite number of points; the period map extends to the
isomorphism

If xi(i = 1,..., n) dénotes the cross-ratio of (xi, xn+1, xn+2, xn+3), or equiva-
lently, if we normalize the xj’s as xi = Xi (i = 1,..., n), xn+1 = 0, Xn+2 = 1,
xn+3 = 00 then the periods u1(x),..., Un+ i(x) are linearly independent solutions
of Appell’s hypergeometric system EnD(a, b1,..., bn, c) of differential equations
where a = 03B1n+2, bj = 1 - a; (1  j  n), c = IYvn+l + IYvn+2, (ak = 1 - 03BCk).

If an admissible sequence 03BC1,...,03BCn+3 has an r-restriction Â, then the

restriction of a linear combination of the periods u1(x),...,un+1(x) which is
holomorphic along S03BB(~ X03BB) satisfies the hypergeometric system ED with the
corresponding parameters; the system can be thought of as the restriction of the
system ED along S03BB in the sense that any solution of the restricted system is the
restriction of a solution of the system ED which is holomorphic along S;..



270

3. The monodromy group r(1/4) as a reflection group

Let us introduce some terminology of reflections. Let A be a Hermitian form
with signature (n-,1+) on an (n + l)-dimensional vector space V; the form

(u, v):= A(u, v) is supposed to be C-linear in v and anti-C-linear in u. Let

Notice that D:= V+/C  is isomorphic to the unit ball Bn =
{(z1,...,zn) ~ n~z1|2 + ... + IZnl2  1} and that the group Aut(D) of automor-
phisms of D is given by the projectivization of the group {g ~ GL(V)|(gu,
gv) = (u, v)}. Notice also that êD = V’IC ’. For a E V - and an r-th root of unity
03B5 ~ 1, we define the following transformation Ra.,e, called the reflection with
respect to a root a and an exponent 8, by

which is of order r and keeps the Hermitian form A invariant; in particular, it
defines an automorphism of D. Notice that Ra pointwisely keeps the subspace
03B1~ = {v ~ V (a, v) = 01, which is called the mirror of the reflection. When r = 2
i.e. 8 = - 1, we write Ra in place of R,,,,,,. A group generated by reflections is
called a reflection group.

Let us fix a basis of a 6-dimensional linear space V and a Hermitian form
A = (aik) (1  j, k  6) as follows:

Let r(lj4) denote the monodromy group 0393(03BC) which corresponds to the

admissible sequence 03BC = {1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4, 1/4}. Generators of the
monodromy group r(lj4) can be obtained by tracing the homotopic change of
the cycles ck appeared in Section 2. Actual computation can be found in many
literatures e.g. [Ter]; so we recall the result.

PROPOSITION 3.1. The monodromy group r(lj4) is generated by the 21 = (i)
rejlections R(jk) = R(kj):= R03B1(jk) where
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Each reflection R( jk), 0  j  k  6, corresponds to a path in X5 caused by a
travel of the point xj following a loop going once around the point xk. For
symmetry sake let us define seven other reflections R( j7) = R(7j):= R03B1(j7),
0  j  6, with the following roots a( j7) :

These reflections can be expressed by R( jk) 0  j  k  6; indeed we have

an expression of iI6 will be given in Lemma 6.5. We thus defined 28 = (2)
reflections.

REMARK 3.2. The fundamental group of Xn is the colored (n + 3)-braid group
and the system ED gives an (n + l)-dimensional representation of the group.

4. Results: the monodromy group as a congruence subgroup

Let Z[i] be the ring of Gauss integers; the full modular group r is defined by

The principal congruence subgroup 0393(1 - i ) with respect to the ideal

(1 - i ) c Z[i] is defined by

An integral root of norm - 2 is a vector 03B1 ~ V- whose entries are in Z [i] such
that (a, a)= - 2. By definition, for every integral root a of norm - 2, the
reflection Ra belongs to 0393(1 - i ) and the reflection R03B1,i belongs to r, which
imply that the monodromy group r(1/4) is a subgroup of the group r(1 - i),
and the group generated by reflections with norm - 2 and exponent i is a

subgroup of r. Let r(ljj4) be the group generated by the reflections with the
roots a( jk) (0  j  k  7) and exponents i ; by the definition of reflections it is
obvious that F(1//4) is a subgroup of r.
The following are the main theorems of the present paper.
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THEOREM 4.1. r(1/4) = r(l - i).

THEOREM 4.2. r(ljj4) = r.

To show these theorems we study the cusps and the corresponding parabolic
parts of the reflection groups and the congruence groups. The following sections
are devoted to the proof of the theorems. The theorems, the argument in the
preceeding sections and the proof of the theorems lead to the following facts:

(1) The group r(l - i ) is a lattice of Aut(D); it has 35 cusps.
(2) Let Dreg be the subset of D consisting of points where the group 0393(1 - i)

acts freely. Then we have

(3) The period map X8 ~ x H u(x) E D given by the integrals

(where the cj are suitable linearly independent cycles) induces the isomorphisms

(4) The group r is a lattice of Aut(D); it has only one cusp.
(5) The quotient group 0393/0393(1 - i ) is isomorphic to the symmetric group S8 of

degree 8 acting transitively on the set of 35 cusps of 0393(1 - i).
(6) The set of mirrors of the reflection in r coincides with that of 0393(1 - i).
(7) The quotient space Dregjr is isomorphic to the quotient space Xg/S8 of

the configuration space Xg by the group Sg acting as a full symmetric group of
the 8 points; the space X 8jS 8 can be thought of as the configuration space of
distinct 8 (unordered) points on the complex projective line.

5. Combinatorial structure of the cusps of r(1/4)

By the argument in Section 2, we have the following description of the cusps,
which are by definition the equivalence classes of the rational boundary
components.

PROPOSITION 5.1. The cusps of r(1/4) are described in terms of the way of
dividing the set {0, 1, 71 into two subsets with the same cardinality.

It is now clear that the number of 0393(1/4)-cusps is 35 = (4)/2. Let us denote by
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P(11’ I2) = P(12, Il) the cusp corresponding to the division

PROPOSITION 5.2. A reflection R(jk) ~ 0393(1/4) fixes a cusp P(Il, 12) if and only
if

Proof. By virtue of the geometric meaning of the reflection R( jk) mentioned at
the end of section 4 and of Proposition 5.1, the assertion is clear. D

Since r(lj4) is a subgroup of 0393(1 - i), the number of cusps of 0393(1 - i) is not
greater than 35. We can easily check the following

LEMMA 5.3. The following 35 0393(1/4)-rational boundary components are not
mutually 0393(1 - i) equivalent. Twenty of them are given by coordinates (x1,..., X6)
such that three of xj’s are 0 and the remaining three are 1, - i, -1 in this order.
Fifteen of them are given by coordinates (xl, ... , X6) such that two ofx/s are 0 and
the remaining four are 1, - i, -1, i in this order.

COROLLARY 5.4. The number of cusps of 0393(1 - i) is equal to that of F(1/4).

The following lemma is also easy to check.

LEMMA 5.5. The group 0393(1//4) acts transitively on the 35 cusps given in Lemma
5.3. Thus the group r(ljj4) as well as the group r has exactly one cusp.

6. Parabolic parts of r(1/4) and 0393(1 - i)

Since the 35 cusps of the group r(lj4) have the same structure (Lemma 5.5), let
us study the parabolic part of the group 0393(1 - i ) corresponding to the r-
rational boundary point (-1, i, 1, 0, 0, 0), which represents the cusp P({0, 1, 2, 3},
{4, 5, 6, 71). As usual we make a linear change of coordinates z H w = Qz in
order to send the boundary point to a point at infinity. Put
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where

H : = h ~+ h : 4  4 positive definite Hermitian form,

Accordingly the group r(l - i ) is changed into the principal congruence
subgroup

of the group

and the boundary point into w = (1, 0, 0, 0, 0, 0), which will be called oo . Let us
define the parabolic part P(1 - i ) to be the subgroup of 0393B(1 - i ) consisting of
transformations which keep the point oo .

LEMMA 6.1. The group P(l - i) consists of the following matrices:

where and

Proof. A transformation Y ~ P(1 - i ) is by definition of the following form:

computing Y*BY = B, we have the assertion. D

From this Lemma the center of P(1 - i ) can be seen to be equal to



275

Let us define a homomorphism 03C0 of P(1 - i ) into the group of affine

transformations, by forgetting the first line and the first column:

and define a normal subgroup of P(1 - i):

the image under 03C0 of P1(1 - i ) is

called the lattice L(P1(1 - i )). Then we have the following commutative diagram
of exact sequences:

where the first row is given by the homomorphisms

and the third column, given by

shows that the crystallographic group n(P(l - i» is the extension of the lattice
L(P1(1 - i)) by the point group U(H, Z[i])(1 - ) . One can readily see
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LEMMA 6.2. (1) Every exact sequence in the above table splits. In particular, the
crystallographic group 03C0(P(1 - i)) is the semi-direct product of the lattice and the
point group; the group P(l - i) is the semi-direct product of the center and
p(P(1 - i)).

(2) U(H, Z[i])(1 - i) is the direct product of two copies of a reflection group
generated by the three reflections, with respect to the Hermitian form h, with
exponents - 1 and with the following roots:

this reflection group is isomorphic to the imprimitive 2-dimensional unitary
reflection group G(4, 2, 2) of order 16.

Now we prove

PROPOSITION 6.3. The parabolic part of the group F(1/4) coincides with that
of the group r( 1 - i).

This proposition together with Corollary 5.4 leads to Theorem 4.1. To prove
Proposition 6.3, it is enough to show the following

PROPOSITION 6.4. The group P(l - i) is a reflection group generated by 12
reflections with the roots

For notational simplicity, let us call the reflection Q-1R(jk)Q with root f3(jk)
by the same name R( jk).

LEMMA 6.5. i16 E F(1/4).
Proof. We have

Put

then we have
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So that the product of the three diagonal matrices is i16. Recall that, by
definition, iR( j7) is in the group; to prove the lemma, we have only to notice that
in the product the R( j7)’s appear just 4 times. D

LEMMA 6.6. (1) A generator of the center of P(l - i) is given by r2.
(2) The group {[X, 0, 0] 1 XE U(H, Z[1])(1 - i)l, a lift of the point group, is

generated by the following 6 reflections:

(3) The group {[I4, c, 0] 1 CE L(P1(1 - i))}, a lift of the lattice, is contained in the
reflection group given in 6.4.

Proof : (1) and (2) can be proved by straightforward computation. (3) Since the
point group U(H, Z[i])(1 - i) acts on the lattice, it suffices to see

R(02)R(13) = [I4, (0, -1 + i, 0, 0), -1]

R(45)R(46)R(57)R(45)diag(1, 1, 1, -1, -1, 1) = [14, (0, 0, -1 - i, 0), -1].
~

This lemma together with Lemma 6.2 lead to Proposition 6.4.

7. Parabolic parts of F(1//4) and 0393

To prove Theorem 4.2, in view of Lemma 5.5, we have only to show that the
parabolic parts of the groups F(1//4) and 0393 are the same. We transform the

groups by the transformation Q in Section 6. Accordingly the group r is
changed into the group r B, and the boundary point into w = (1, 0, 0, 0, 0, 0),
which will be called oo. Let us define the parabolic part P as the subgroup of rB
consisting of transformations which keep the point oo.

LEMMA 7.1. The group P consists of the matrices: [X, c, r] E GL(6, Z[i]), where
c ~ (Z[i])4, reZ, and

Proof. A transformation Y E P is by definition of the following form:

computing Y*B Y = B, we have the assertion.
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This Lemma shows that the center of P is equal to that of P(1 - i). Define a
normal subgroup of P:

the image under of Pi is

called the lattice L(P1). Then we have a commutative diagram (CD)’ almost
exactly the same to (CD), from which (1 - i)’s should now be removed. The
crystallographic group 03C0(P) is the extension of the lattice L(P1) by the point
group U(H, Z[i]).

LEMMA 7.2. (1) Every exact sequence in (CD)’ splits. In particular, the

crystallographic group n(P) is the semi-direct product of the lattice and the point
group; the group P is the semi-direct product of the center and n(P).

(2) U(H, Z[i])(1 - i) admits the following exact sequences

The group G(4, 2, 2)  S3 is the primitive 2-dimensional unitary reflection group of
order 96, which has the Shephard-Todd registration number 8.

PROPOSITION 7.3. The parabolic part of the group r(ljj4) coincides with that
of the group r.

This proposition together with Lemma 5.5 leads to Theorem 4.2. To prove
Proposition 7.3, it is enough to show the following

PROPOSITION 7.4. The group P is a reflection group generated by 12

reflections R(jk) with exponents i and with the roots

LEMMA 7.5. (1) The group {[X, 0, 0] 1 XE U(H, Z[i])}, a lift of the point group,
is generated by the following 6 reflections :

(2) The group {[I4, c, 0] | c ~ L(P1)}, a lift of the lattice, is contained in the

reflection group given in 7.4.
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Proof. (2) Since the point group U(H, Z[i]) acts on the lattice, it suffices to see

This lemma and Lemma 7.1 lead to Proposition 7.4. The following is a corollary
to Lemma 7.2.

PROPOSITION 7.6. F/F(1 - i) xé 0393(1//4)/0393(1/4) ~ S8.
Proof. The following equalities

imply IF/F(l - i)l = 8!. On the other hand, the group F(1//4)/F(1/4) acts

holomorphically on the configuration space X., of which group of automorph-
isms is known to be 5’g. D
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