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Introduction

Let G be a connected reductive quasi-split algebraic group defined over a
nonarchimedean local field F of characteristic 0. Let G = G(F). Harish-

Chandra’s philosophy of cusp forms describes the classification of the

irreducible admissible representations of G in two steps: determine the supercus-
pidal representations of all Levi components of G, and decompose those
representations which are parabolically induced from supercuspidals. With
regard to this second step we ask when these parabolically induced represen-
tations are reducible. We restrict ourselves to the case where the inducing
representation is unitary.

Suppose P is a parabolic subgroup of G with split component A, Levi

component M, and unipotent radical N. Let W(A) = NG(A)/ZG(A) be the Weyl
group of A. Let n be a unitary irreducible supercuspidal representation of M. If
we W(A) then we define n"’ by the formula reW(m) = n(w -’mw). This defines an
action of W(A) on the equivalence classes of irreducible unitary supercuspidal
representations of M. Let W(03C0) be the elements of W(A) which fix n. Bruhat

theory shows that if W(03C0) = {1}, then the unitarily induced representation
Ind G(n) = IndGP(03C0 Q 1N) is irreducible. This reduces us to studying the case where
W(03C0) ~ {1}.
We study the group G = U(2, 2) defined with respect to a quadratic extension

E/F. Then there is a maximal parabolic subgroup P of G with Levi factor
M ~ GL(2, E). If 03C0 is an irreducible unitary supercuspidal representation of M,
then W(03C0) is non-trivial if and only if n is fixed by the automorphism of GL(2, E)
given by g H tg-1. Let s ~ C and 1(s, n) = IndGP(03C0 ~ | det( )|s/2E). Suppose W(n) is
nontrivial. Then there is a standard intertwining operator [12,20]
A(s, n): I(s, n) - I(-s, n), which is meromorphic in s as an operator valued
function. Since P is maximal, the theory of intertwining operators implies
IndGP(03C0) is reducible if and only if W(03C0) ~ {1} and 0 is not a pole of A(s, 03C0) [14].
A lemma of Rallis (Lemma 2.1) allows us to interpret the intertwining

operator as a sum of twisted orbital integrals of the type that appear in [11]. By
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decomposing the domain of the orbital integral (Lemma 2.4) we are able to
detect the possible pole of the intertwining operator and show that it is related
to base change from U(2). More explicitly, Proposition 2.6 shows that 03C0 being a
base change lift is a necessary condition for A(s, 03C0) to have a pole at s = 0.
We then use orthogonality relations for twisted characters and an expansion

of the Plancherel formula in terms of stable characters to show that a sufficient

condition for A(s, 03C0) to have a pole at s = 0 is that 03C0 be a non standard, in the
sense of [11], base change lift from U(2) (Theorem 2.9 and Corollary 2.10).
Therefore, the two base change maps from U(2) to GL(2, E) described by
Rogawski are distinguished by poles of these intertwining operators. This is the
local analogue of the global result of Asai [1]. Namely, the poles of the global
Asai L-function, associated to a Hilbert modular form, are related to two base

change liftings, and these poles distinguish the liftings from one another.
Since the poles of the intertwining operator allow us to compute reducibility

criteria we do so in Theorem 2.11. We then apply the theory of Shahidi [ 14] to
compute the length of the complementary series in Theorems 2.12 and 2.13.

In recent work Shahidi [15] has shown that if G = SO(2n + 1), Sp(2n), or
SO(2n), and P = MN with M ~ GL(n), then the poles of the intertwining
operators can be interpreted in terms of the theory of twisted endoscopy. Our
result gives another example where the theory of transfer of twisted orbital
integrals plays a role in determining the reducibility of induced representations.

In Section 1 we briefly describe the results on base change which are necessary
for our argument. These results all appear in [11]. In Section 2 we carry out the
computation of the pole of A(s, 03C0) and computation of reducibility criteria. In
[18] Tamir computed a normalizing factor for A(s, n). Our calculations

duplicate this result, but also give the interpretation of the pole of the operator
in terms of base change and the location of the complementary series.

1 would like to thank F. Shahidi for suggesting this problem and engaging in
many constructive conversations which furthered the course of the argument. J.
D. Rogawski clarified several aspects of the theory of base change. Conversa-
tions with J. D. Adams and S. S. Kudla helped resolve several technical points. 1
would like to thank the referee for some helpful comments. Mostly, 1 wish to
thank my advisor, R. A. Herb, for her support throughout the research for and
preparation of the dissertation in which most of these results appeared.

1. Preliminaries on base change

Let F be a nonarchimedean local field of characteristic 0. Let MF be its ring of
integers and pF the unique maximal ideal in 0 ’WF. Let MF be a uniformizer in F, i.e.
PF = FRF. Let qF = |RF/PF| be the residual characteristic of F. Let F be a
(separable) algebraic closure of F.
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Let E be a quadratic extension of F. We choose an element u of F, which is not
a square in F, so that E = F(03B2), with p2 = u. Let IWE, 0 PE, E, and qE be the
appropriate objects in E. Let a: E - E be the nontrivial Galois automorphism.
We also denote the action of 6 by u(x) = x. Let N : E* - F* be the norm map,
N(x) = xx.

Let H = U(2) as an algebraic group over F. H is defined as follows. Let

Then

H = {g ~ GL(2)|g03B41tg = 03B41}.

Let H = ResE/F(H). Then H is an algebraic group such that

Over E,  ~ H x H. Let H = H(F) be the F-rational points of H. Let fi = H(F)
be the F-rational points of H. We define the automorphism 03B5 :  ~  by
gHtg-1.

DEFINITION 1.1. An element ô of H is said to be 8-semisimple if (b,8) is

semisimple in the non-connected group  (8).

DEFINITION 1.2. Two elements ô and ô’ of fi are said to be 8-conjugate if
there is a g E fi such that à’ = g -lb8(g).

Let 03B4 be an 8-semisimple element of fi. Let Ha, = {g ~ |g-103B403B5(g) = 03B4}, and
let ’03B403B5 = {g ~ |g-103B403B5(g)03B4-1 ~ F*}. Similarly, for y a semisimple element of H,
we define Hy = {g ~ H|g-103B3g = 03B3}.

DEFINITION 1.3. An element 03B4 ~  is stably 8-conjugate to 03B4’ if there is a

g ~ (F) so that ô = g-103B4’03B5(g). In this case 03C3(g)g-1 ~ 03B403B5 [11]. Two elements of H
are stably conjugate if they are conjugate by some g in H(F). This implies that
03C3(g)g-1 E Hy. 

LEMMA 1.4.

(1) A stable conjugacy class in H is a union of conjugacy classes.
(2) A stable 8-conjugacy class in fi is the union of 8-conjugacy classes. ~

DEFINITION 1.5. For y E H we let (9 st (y) be the stable conjugacy class of y in H.
For 03B4 ~  we let O03B5-st(03B4) be the 8-stable conjugacy class of (j in fi.

Let El be the norm 1 elements in E, i.e. El = {z ~ E*|zz = 1}. Note that
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Z = Z(H) ~ E’ and Z = Z() ~ E*. Let 03C9: E1 ~ C* be a character. Let

 : E* ~ C* be the character defined by w(z) = 03C9(z/z).
Let C(H, m) be the space of locally constant functions, compactly supported

modulo Z, such that f(zg) = 03C9-1(z)f(g) for all z E Z, and g E H. Similarly, we let
C(H, w) be the space of locally constant functions, compactly supported modulo
Z, such that f(zg) = -1(z)f(g) for all ZEZ, and g ~ .
For y a semisimple element of H and f E C(H, 03C9), we define

where dg* is the right invariant measure on the quotient coming from Haar
measure dg on H. This is referred to as the orbital integral of f at y. Similarly, for
03B4 an 8-semisimple element of H and f E C(, 6», we define

where again the measure dg* is the right invariant one coming from Haar
measure. This is called the 8-twisted orbital integral of f at (j.

DEFINITION 1.6. We define the norm map for 03B4 ~  by N(03B4) = 03B403B5(03B4). Note
that N(g-103B403B5(g)) = g-1N(03B4)g. Thus, N defines an injection N : [03B4] ~ N([03B4])
from 8-stable conjugacy classes of fi, to the set of stable conjugacy classes of H
[11, §3.10].

LEMMA 1.7 (Rogawski [11, Proposition 3.12.1(e)]). If N«(j) is scalar then for
any 03B4’ ~ O03B5-st(03B4), det(03B4’03B4-1) ~ F*. In this case there are two 8-classes in lPe - st (b), and
the 8..class of (j’ is in correspondence with det(03B4’03B4-1) ~ NE*BF*. ~

We will apply this to the following situation. Recall that 03B41 = - 03B2).
Then 03B41 is hermitian, and 8-conjugacy is the equivalence of hermitian forms. If 03B42
is stably 8-conjugate to 03B41 then b2 is also hermitian. Note that Nô, = 1, so the
lemma applies. Therefore, O03B5-st(03B41) consists of two 8-classes. Since there are only
two classes of hermitian forms [8, 10], O03B5-st(03B41) consists of all hermitian matrices
in il. If (j2 is a representative of the hermitian class which is not 8-equivalent to
03B41, then

For any connected reductive group G defined over F we let q(G) be the F-rank
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of the commutator subgroup [G, G]. Let G’ be the quasi-split form of G and let

For an 03B5-semisimple 03B4 ~  we let e(03B4) = e(03B403B5) [11, pg. 57]. Let {03B403BD} be a
collection of representatives for the 8-conjugacy classes in O03B5-st(03B4). It is possible
to define a character x on the collection of 8-conjugacy classes in O03B5-st(03B4) [11,
§4.10]. We denote the value of this character on the 8-class of ô’ by K(v). If N«(j) is
scalar then K is the nontrivial character on NE*BF*. In any case x is either the
trivial character, or the nontrivial character on NE*BF* [11, pg. 59].

DEFINITION 1.8. Let l5 be an 8-semisimple element of fi. Let ~ ~ C(, ).
Define

Also define

REMARK. Note that if N(Ô) is scalar then

Since fi(jle is the quasi-split form of U(2), e(ôl) = 1. For Ô2 representing the other
hermitian class, fi(j2e is the anisotropic form of U(2). Therefore, e(03B42) = -1.
Moreover, if vi is the norm class corresponding to ôi then 03BA(03BD1) = -03BA(03BD2). So
from definition 1.8

DEFINITION 1.9. For f E C(H, co) and 03B3 ~ H semisimple, we let

where y’ runs over a set of representatives of conjugacy classes in Ost(03B3) [11, pg.
39]. If y is regular, all the signs e(y’) = 1.
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Let WE/F be the local class field theory character of F* attached to E*,

We let J1 be a character of E* whose restriction to F* iS COEIF-

THEOREM 1.10 (Rogawski [11, Proposition 4.11.1]). Let ~ ~ C(, ). Then
there exist fl E C(H, co) and f2 E C(H, WJ1-1) such that, for any regular 8-semisimple
(j Eil with y = N03B4~H,

and

THEOREM 1.11 (Rogawski [11, Proposition 8.4.4]). Suppose l5 E H and y = N l5
is central in H. Then for any qJ E C(, w):

where fl and f2 are given in Theorem 1.10. ~

We briefly recall the construction of the Weil form of the L-group. For more
details the reader should consult [3]. Let K be a nonarchimedean local field
and let rK = Gal(K/K). The Weil group, WK, is a topological group endowed
with a continuous homomorphism, ~ : WK ~ 0393K, whose image is dense. For
each finite extension K’/K we let WK’ = ~-1(0393K’). Then WK. is a Weil group for
K’. Moreover, WabK ~ K*, and for each finite extension K’/K,
WK/WK’ ~ HomK(K’, K). The group WK satisfies further number theoretic and
algebraic properties which are described in [19].

If G is a connected reductive algebraic group defined over K, then G is given
by a root datum 03C8(G) = (X*(T), A, X *(T), Â), where T is a maximal torus in G,
X*(T) the group of characters of T, X *(T) the 1-parameter subgroups of T, A a
choice of simple roots of T in G, and Â the simple coroots [17]. Note that the
choice T, A defines a Borel subgroup B of G.
The group r K acts on root data as follows. If 03C4 ~0393K then -((T) is another

maximal torus of G(K) and i(B) a Borel. Therefore, we define
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The root datum dual to 03C8(G) is given by 03C8(G) = (X *(T), 0, X*(T), A).
To define the L-group we first define its connected component. Let LG’ be the

complex group with canonical root datum 03C8(G). Then we let LG = LG0  WK,
where WK acts on LG° through the map ~: WK ~ rK, and rK acts on LGO by the
action on root data.

We return now to the setting H = U(2), H = ResE/F(H). Since H(E) =
GL(2, E), LHO = GL(2, C). Since (E) ~ H(E) x H(E)

The Weil group actions are determined by the action of 03C3 ~ Gal(E/F). If

x ~ LH0, then 03C3(x) = 03A62tx-103A62, where 03A62 = (-1 J. If (x, y) c- H , then

03C3((x, y)) = (03C3(y), u(x» [11, pg. 47].
There are two base change maps from H to fi. These maps are parameterized

by two maps, tfJH’ 03C8’H : LH L. These L-homomorphisms are described by
Rogawski [11, pg. 50]. The maps tfJ H and 03C8’H are related by a cocycle a : W F L.
In the Langlands correspondence this cocycle defines the character ~03BC = 03BC  det
over F. In order to describe the images of tfJH and 03C8’H we need some more
vocabulary.

DEFINITION 1.12. A distribution on H is called stable if it vanishes on every f
such that 03A6st(03B3, f ) = 0 for every regular semisimple y e H.

Let é(H) be the set of equivalence classes of admissible irreducible represen-
tations of H, and C 2(H) c é(H) is the collection of square integrable equivalence
classes. Let ’d(H) be the supercuspidal equivalence classes. We make no

notational distinction between a class [x] and its representative 03C0. For any

x e é(H) with central character 03C9, we define the distribution character of 03C0 on

C(H, cv) by x,(f) = Tr(03C0(f)), where

For H = U(2) an L-packet is defined to be a PGL(2, F) orbit in é(H) [ 11, pg.
161]. We denote the collection of tempered L-packets of H by è(H). We let
2(H) be the subset of discrete series L-packets. If 1-1 E .9(H), then we can choose
non zero integers m(p) for each p E TI such that

is stable. The distribution xn is called the stable tempered character attached
to Il.
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For each II E d(H) there should be two base change lifts, 03C8H(03A0), 03C8’H(03A0) E 03B5(),
coming from the two maps of L-groups described above. The existence of the
base change maps is an example of the Langlands correspondence [5]. That is if
’Y: WF ~ LH is an admissible homomorphism defining II then 03C8H  ’JI: WF LH
should define t/J H(TI). Since the two L-maps differ by a, the two lifts are related by

We need the following observation [ 11, pp. 161-162]. Let Ho = U(1) x U(1).
Let 0 = 01 Q o2 be a character of Ho. Let 0’ = 03B82 Q 0,. Then there is an L-
packet p(0) of U(2) corresponding to the set {03B8, 03B8’}, and each p(0) has two
elements. Some of the properties of these L-packets are given below.

THEOREM 1.13 (Rogawski) [11, Proposition 11.1.1].

(1) An L-packet of H has more than one element if and only if it is of the form p(0)
for some 0.

(2) If p(O) = {03C01, 7121 then X1tl + X1t2 is stable, i.e. XP(O) = ~03C01 + ~03C02.
(3) 03B8 ~ 0’ if and only if p(e) is supercuspidal, i.e. both nl and n2 are supercuspidal.
(4) If 0 = 0’ and p(0) is unitary, then n 1 (B n2 = IndHB(03BC-1), where 8(z) = 03B8(z/z).

Let (03C0, V) be an irreducible admissible representation of H. Suppose that
03C003B5 ~ n where ne(g) = 03C0(03B5(g)). We let n(8) be an equivalence;

We define a distribution ~03C003B5 on C(H, w) by ~03C003B5(~) = Tr(rc(cp)n(8)). Let 6’(À) be the
set of 8-invariant irreducible admissible representations of H with trivial central
character on F*. Then the images of t/J H and 03C8’H lie in é’(H) [11].

Suppose 1-1 is a tempered L-packet in é(H), with central character cv. Then

for every 9 E C(, ), where Xn is the stable tempered character of II and
f1 ~ C(H, 03C9) is given by (1.3).

for every ~ ~ C(, ), where f2 E C(H, 03C903BC-1) is given by (1.4) [11, pg. 164].

THEOREM1.14 (Rogawski) [11, Proposition 11.4.1(c)]. Every square integ-
rable 03C0 ~ 03B5’() is a base change lift o,f’the form t/J H(TI) or 03C8’H(03A0) for a unique square
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integrable L-packet TI, which is not of the form 03C1(03B8). The images 03C8H(03B52(H)) and
03C8’H(03B52(H)) are disjoint. Il

We will use these results to describe the pole of the intertwining operator for a
particular parabolic of U(2, 2).

2. Relation of reducibility in U(2, 2) to base change

Let EIF be as in Section 1. Recall that E = F(f3). Let G = U(2, 2) with respect to

maximal torus of diagonal elements:

Let Td be the maximal F-split sub-torus of T:

The restricted root system 03A6(G, Td) is of type C,. Let A be the subtorus of Td
given by {e1 - e2l-

Let M be the centralizer of A in G. Then
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The Weyl group W(A) is of order two, with the non trivial element w represented

Then P is a maximal parabolic of G.
Let X(M)F denote the F-rational characters of M. Let a be the real Lie algebra

of A. Then a = Hom(X(M)F, R) [6]. Let a* = X(M)F Oz R be its dual, and let

at = a* ~R C. There is a homomorphism [6] HP : M ~ a defined by

Let 3 be the center of a. Let p be half the sum of the positive roots in N. Let a be
the unique simple root in N. Let  = ~03C1, 03B1~-103C1. Here ~03B31, 03B32~ is defined as

follows [13]. Let Yi and y2 be non-restricted roots of T in G, which restrict to y 1
and y2 respectively. Let ( , ) be the standard Euclidean inner product on

0(G, T). Then

A straightforward calculation shows that if 

We identify 03B1*C/ with C via the map s ~ sa.
Let (n, V) E °6(M). Let w be the central character of n. Let SEC and let

Then G acts on V(s, 03C0) by right translations. We denote this action by

We write IndGP(03C0) for 1(0, 7r).
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Note that by Bruhat theory [6] IndGP(03C0) is irreducible if 03C0w  03C0. If

We formally define an operator A(s, 03C0) on V(s, 03C0) by

for f’ E V(s, n), g E G. If A(s, rc) converges, then it defines an intertwining operator
between I(s, rc) and 1( - s, 03C0w). It is a theorem of Harish-Chandra [12] that, for n
supercuspidal, A(s, n) converges for Re s &#x3E; 0. Moreover, s ~ A(s, n) is merom-
orphic as an operator valued function, and has a meromorphic continuation to
the whole plane. This means that there is some fixed polynomial P(t) so that
s H P(q-sF)  A(s, 03C0)f(g), ~ is holomorphic for each g E G, v c- f E V(s, n).

Harish-Chandra’s completeness theorem [16] implies IndGP(03C0) is reducible if
and only if 03C0 ~ 03C0w and 0 is not a pole of s ~ A(s, n).

LEMMA 2.1 (Rallis, Shahidi [15]). Let

V(s, n)o = {f ~ V(s, 03C0)| supp f c PN and is compact mod P}.

Then every pole of s H A(s, rc) is a pole of s H A(s, n)f (e) for some f E V(s, rc)o. ~

Thus, we study poles of s-A(s, 03C0)f(e) for f E V(s, 03C0)0 and 03C0 ~ ne. Let

L = M(2, PmE) for some mE 7L +. Let L’ c N be given by

Let f E V(s, 03C0)0. We assume that there is a v E V so that for 9 E N,

LEMMA 2.2.

a E GL(2, E) and a = tâ.
Proof. Suppose a, b, c E M(2, E), and g ~ GL(2, E). If
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then

Therefore, a = tg-1, which implies a ~ GL(2, E). Moreover, if n ~ N then

a = tâ. Conversely, if a E GL(2, E) with ta = a, then the above calculation shows

Let  ~ . By Lemma 2.2

LEMMA 2.3. If d x a = Idet aiE ~03C1,~ da then d a-1 = d x a.

Proof Let M act on N by conjugation. If tX = X E M(2, E ) and g E GL(2, E)
then

Therefore, on . 
Now suppose g = X. Then

and therefore
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Then, using the relation à = ta and Lemma 2.3, we rewrite (2.1) as

REMARK. Since v and b were arbitrary, any matrix coefficient 9 of 03C0 can

appear in (2.2).
Let 03B42 represent the equivalence class of hermitian forms in GL(2, E) which

are not equivalent to 03B41. By Lemma 1.7 det(03B4203B4-11) ~ NE*. If a E GL(2, E) is
hermitian then a = g-103B4i03B5(g) for some g and a unique i = 1 or 2. Thus, using the
notation in Section 1, we can rewrite (2.2) as

where d g is the invariant measure on the quotient coming from d a.

Note that the orbital integral in (2.3) is over 03B4i03B5EB, while Rogawski’s
theorem (Theorem 1.10) gives transfer of orbital integrals over ’03B4i03B5B. We wish
to rewrite (2.3) to include such an integral, allowing us to use the transfer
described in Theorem 1.11.

LEMMA 2.4. For i = 1 or 2, 03B4i03B5B’03B4i03B5 ~ F*.
Proof. Note that ~ : ’03B4i03B5 ~ F* given by 03C8(g) = g-103B4i03B5(g)03B4-1i is a homomorph-

ism. By its definition 03B4i03B5 is the kernel of 03C8. Let z E F*. Then, by Landherr’s
theorem [10], zôi and ôi are equivalent hermitian forms. Since 8-conjugacy is
equivalence of hermitian forms, there is some g ~  so that g-103B4i03B5(g) = zôi.
Therefore, g is in ’03B4i03B5. Since 03C8(g) = z, we see t/J is surjective. D

Note that if g eN is a representative of a coset of ’03B4i03B5 BH, then we have just
shown that for any zo E F* there is some go E ’03B4i03B5 so that

Thus, we can choose coset representatives {g} for ’03B4i03B5B so that the supremum
norm ~g-103B4i03B5(g)~~ = qim. We fix these representatives. Then for all g ~ ’03B4i03B5B
and z E F*,
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We now can rewrite (2.3) as

LEMMA 2.5. {03B3 ~ ’03B4i03B5B/g-103B4i03B5(g) ~ supp ~} is compact.
Proof Let Lo = {x| Illxlloo = q-mE} ~ M(2, E). We have already chosen repre-

sentatives g with g-103B4i03B5(g) e Lo. Let S c M(2, E) be the set of hermitian matrices.
Since transposition and Galois conjugation are continuous S is closed in

M(2, E). Define 03C8 :  ~ S by 03C8(g) = g-103B4i03B5(g). If g ~  then det(03C8(g)) ~
det 03B4i mod NE*. Since both NE* and its complement are closed in F*, and the
determinant is continuous, Im(tf¡) is closed in S, and hence is closed in fi.

If SES and 03C8(g) = s, then 03C8-1({s}) = 03B4i03B5g. Note that 03C8-1(ZFs) = ’03B4i03B5g,
where ZF c Z is the set of F-scalars. Let C be a compact subset of fi such that
supp ~ c ci. Since x ~ Il x 1100 and x ~ |dct x|E are continuous we can choose
integers j, k, l, n so that qkE  |c|~  qjE and qlE  |det c|E  qnE for all CE C.
Therefore, ifceC and cz ~ C ~ L0 then q-m-jE  |z|E  qim-k. We let

Then CZ n Lo c co, which is compact. Therefore, Im g/ n supp 9 n Lo is

compact in fi. Hence the lemma holds. 0

By Lemma 2.5

Consequently, taking the residue at 0 of A(s, n)f (e) we get
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Thus, if A(s, 03C0)f(e) has a pole at s = 0, then

has a pole at s = 0.

Therefore, if WIF* is ramified, then the sum (2.8) is 0. Consequently, if ÕJ is
ramified, A(s, rc) cannot have a pole. If |F* is unramified then (2.7) is

proportional to

Therefore, there is no pole at s = 0 unless (F) = 1. Since WIF* is unramified
and 03C9(F) = 1, |F* ~ 1.

REMARK. With our normalization of I(s, 03C0), the normalizing factor

(1 - w(mF)qi2S) is the same one determined by Tamir [18].

PROPOSITION 2.6. If 03C0 ~ 03B5(GL(2, E)) and A(s, 7r) has a pole at s = 0 then n is
a base change lift from U(2), i.e. n = 03C8H(03A0) or 03C8’H(03A0) for some discrete series L-
packet II of U(2).

Proof. Suppose A(s, 03C0) has a pole. Then n is ramified in G and therefore
03C0 ~ 03C003B5. We have just shown that the central character ii of 03C0 is trivial on F*.

Since 03C0 is supercuspidal 03C0 is a base change lift from U(2) by Theorem 1.14. D

REMARK. One can show that every 03B5-invariant supercuspidal representation
of GL(2, E) is a base change lift from U(2). That is, every such 03C0 has central

character whose restriction to F* is trivial. This follows from Theorem 11.5.2 of

[11] and Proposition 5.1 of [14].
Fix a character co of E1, and let ÕJ be the character of E* given by

(z) = co(z/z). Let 03C0 be an irreducible unitary supercuspidal representation of
GL(2, E) with central character w. From (2.9) we see that if 03C0 is a base change lift
from U(2) to GL(2, E), then A(s, 03C0) has a pole at s = 0 if and only if 03A603BA03B5(03B41, cp) ~ 0
for some matrix coefficient cp of n.
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Since ~ ~ C(, -1), Theorem 1.11 implies 03A603BA03B5(03B41, ~) = J1(det(jl)fz(e) where
f2 ~ C(H, 03C9-1 03BC-1) is given by Theorem 1.10. We intend to show, by use of the
Plancherel formula, that if n is in the image of t/J H then, for each matrix
coefficient ~ of n, f2(e) = 0. On the other hand we will show that if n is in the
image of t/J’¡¡, then in fact there is a pole of A(s, 7r).

LEMMA 2.7. Let (03C01, Vi), (nz, V2) be two inequivalent irreducible admissible
representations with central character w. Further suppose that nz is supercuspidal.
Then for any matrix coefficient cp of 03C02, 1(~) = 0. Therefore, if nl and nz are 8-
invariant, ~103B5(~) = 0.

Proof. This follows from Theorem 2.42 of [2], and the fact that any matrix
coefficient of nz is compactly supported modulo Z. D

Let U be the collection of standard Levi components of H. Let 03B52(M)03C9-1 be
the collection of 03C1 ~ 03B52(M) with central character 03C9-1. Let  = IndHP(03C1). By the
Plancherel formula [7],

where C(M) &#x3E; 0, p(p) is the Plancherel measure [14], d(p) is the formal degree
[4], and dp is the measure described in [7].
We intend to collect terms corresponding to L-packets as follows. By

Theorem 1.13, an L-packet fi of U(2) is either a singleton, or of the form

03C1(03B8) = {1, 2}. If fi = p(0) then Xp(O) = ~1 + XP2. If P 1 and 2 are supercuspidal,
then they have the same formal degree since they are PGL(2) conjugate. Since pi
are not induced, 03BC(03C1i) = 1. We let ÀH(TI) = d(pi), for i = 1, 2. Then, combining
the terms in (2.10) for 1 and b2, we obtain 03BBH(03A0)~. If 03C1(03B8) is not supercuspidal,
then Theorem 2.13 (4) implies 1 ~ 2 = 03BC-1. The formal degree of the
inducing representation 8J-l-l is 1. Therefore, the stable character /n appears
with coefficient 03BBH(03A0) = 03BC(03BC-1). If fi = {} is a singleton L-packet then Xp
must be stable. Therefore, xn appears with coefficient ÀH(TI) = p(p)d(p). Conseq-
uently, we rewrite (2.10) as

By (1.10) ~(f2) = ~03C0’03B5(~) where 03C0’ = 03C8’H(). By Lemma 2.7

DEFINITION 2.8. Let rc be an irreducible admissible e-invariant discrete series

representation of 17. A function CfJ1t E C(I7, -1) is called an 03B5-pseudo-coefficient of
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03C0 if: (i) for every irreducible tempered 8-invariant representation s gk 03C0 with

central character 6j, ~03B5(~03C0) = 0, and (ii) ~03B5(~03C0) ~ 0.
Kazhdan [9] proved the existence of pseudo-coefficients for discrete series

representations, and non twisted characters. That is for every discrete series
representation n there is a function f1t so that ~(f03C0) = 03B403C403C0. In the twisted case for
unitary groups, the existence of 03B5-psuedo-coefficients for the discrete series is
discussed in [11]. If n is 8-invariant., and supercuspidal, then Lemma 5 of [7] and
Lemma 2.7 show that there must be matrix coefficients of 03C0 which are 8-pseudo
coefficients.

THEOREM 2.9. Let 03C0 ~ 03B5(). Then A(s, n) has a pole at s = 0 if and only if
7c = 03C8’H(03A0) for some L-packet II of H.

Proof. Proposition 2.6 implies that if A(s, 03C0) has a pole at s = 0, then n is a
base change lift. By Theorem 1.14  must also be a base change lift. Let cp be any
matrix coefficient of n. If7c= 03C8H() then, by Theorem 1.14,  ~ 03C8’H) for all L-
packets Â. Therefore, by (2.12), ~03C0’03B5(~) = 0 for any 03C0’ = 03C8’H(). Consequently,
each term in (2.11) vanishes, and thus f2(e) = 0. Hence there can be no pole of

A(s, 03C0) at s = 0.
On the other hand, suppose  = 03C8’H(). Suppose that ç is a matrix coefficient

for n which is also an 8-pseudo coefficient. By Theorems 1.3 and 1.14 Û = {} is
a singleton. Then, by (2.12), there is some c ~ 0 so that f2(e) = c~03B5(~). Thus, for
such a ç, we have f2(e) ~ 0. Hence, by (2.9), A(s, rc) has a pole at s = 0. D

COROLLARY 2.10. Let 03C0 ~  03B5(). Then n = 03C8’H(039B) for some L-packet A of
U(2) f and only if n = 03C8’H(03A0) for some L-packet II of U(2).

Proof. By the remark following Proposition 2.6, and Theorem 2.9, TE = H (rl)
if and only if 03A603BA03B5(03B41, cp) ~ 0 for some matrix coefficient of n. Let ~(g) = ~(g-1).
Then 9 is a matrix coefficient of vr. Let à ~ {03B41, 03B42}. Then

Since det ô = det 03B4-1 (mod NE*), the hermitian forms ô and 03B4-1 are equivalent.
Thus,

Since 8 is measure preserving, 03A603B5(03B4, ip) = 03A603B5(03B4, ~). Thus, 03A603BAe(03B41, ip) = 03A603BA03B5(03B41, (p).
Therefore, 1r = 03C8’H(03A0) if and only if 03A603BA03B5(03B41, ip) ~ 0, for some matrix coefficient -
of 1r. By Theorem 2.9, this is equivalent to 03C0 = 03C8’H(039B) for some L-packet A of
U(2). D
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THEOREM 2.11. Let G = U(2, 2), M ri GL(2, E), and nE °C(M). Then Ind%(n)
is reducible if and only if n = for some L-packet Il of U(2).

Proof. Since P is a rank 1 parabolic subgroup, Ind%(n) is reducible if and only
if n is ramified in G and A(s, 03C0) does not have a pole at s = 0. By the remark
following Proposition 2.6, 03C0 is ramified if and only if n is in the image of 03C8H or
tf¡’¡¡. By Theorem 2.9 and Corollary 2.10, A(s, rc) has a pole at s = 0 if and only if
03C0 = 03C8’H(03A0) for some L-packet II of U(2). Thus, 03C0 is ramified and A(s, rc) is

holomorphic at s = 0 if and only if 03C0 = 03C8H(03A0) for some L-packet TI of U(2).
D

Based on the work of Shahidi [14], we can determine when the representation
1(s, n) is reducible, for s ~ iR. We compute the constituents of the adjoint
representation of LM on Ltt, where LM is the L-group of M, Ltt, is the Lie algebra
of LN, and Lp = LMLN [3].

Since G(F) = GL(4, F), we have LG° - GL(4, C). If g ~ LG0, then

type A3, while the restricted roots 03A6(G, Ao) are of type C,. Recall that P = MN is
generated by the short root el - e, in 03A6(G, Ao). Note that el - e, is the

restriction of two roots of A3. Namely el - e, and e3 - e4. (This clear from the
automorphism of A3 which gives rise to G.) Thus, ’P is the parabolic subgroup
of LG corresponding to 0 = {e1 - e2, e3 - e4}. Therefore,

Note that the action of Gal(E/F) on ’M’ is given by

Note that this is consistent with the description given in the discussion prior to
Definition 1.12.

Now LM = LM0  W, with this action. The unipotent radical LN = LNO is

given by LN = {(I2 0 X I2)| X ~ M(2, )}&#x3E; Thus, L = {(0 0 X 0)| ~ M(2, C)}. Let
LM act on Ln by the adjoint representation. We denote this representation by r.
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Then r(m) Y = mYm-1. Let (g, h) ~ LM0. Then

Therefore, r|LM0 ~ P2 O P2, where 03C12 is the standard representation of GL(2, C).
Since rlLMo is irreducible, r must also be irreducible.

THEOREM 2.12. Let G = U(2, 2) and suppose P = MN, with M ~ GL(2, E).
Let 03C0 ~  03B5(M). Suppose that 7i = 03C8’H(03A0) for some discrete series L-packet of
H = U(2).

(a) For 0  s  1 the representation I(s, 7c) = IndGP(03C0 Q j|et( |s/2E) is irreducible
and unitarizable (i.e. in the complementary series).

(b) 1(1, n) is reducible. It has a unique generic non-supercuspidal discrete series

subrepresentation. Its Langlands quotient is degenerate (non-generic) pre-
unitary, and nontempered.

(c) If s &#x3E; 1 then l(s, 03C0) is irreducible and never unitarizable.

Proof. By Theorem 2.11 03C0 ~ 03C0w and IndGP(03C0) is irreducible. Since r is

irreducible, Corollary 7.6 of [14] implies that the polynomial P03C0,1(t) has a zero at
t = 1. (See [14] for the definition of this polynomial.) Therefore, (a), (b) and (c)
follow immediately from Theorem 8.1 of [14]. D

THEOREM 2.13. Suppose 03C0 ~ 03C8H(03B52(H)) n 03B5(M). Then for all s &#x3E; 0, the repre-
sentation I(s, n) is irreducible and not unitarizable.

Proof. This follows from Theorem 2.11 and Theorem 8.1 (d) of [14]. Q

Thus, we have completely described the complementary series coming from
this parabolic subgroup of G. Notice that the technique of rewriting the
intertwining operator as a sum of twisted orbital integrals is valid for the group
G = U(n, n) and the parabolic subgroup P = MN, with M ~ GL(n, E). There-
fore, one hopes to interpret the poles of these intertwining operators in terms of
the theory of transfer of such integrals, once this theory is understood.
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