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Continuing an investigation launched in [Dl], this paper presents a setting in
which a proper map defined on an arbitrary manifold of a given dimension can
be quickly recognized as an approximate fibration, by virtue of having all point
preimages of a certain fixed homotopy type. More precisely, the aim is to
describe closed n-manifolds N which force maps p:M ~ B to be approximate
fibrations, when M is an (n + 2)-manifold and each p -1 b has the homotopy type
(or, shape) of N. The results center upon an algebraic property pertaining to
03C01(N), the hyperhopfian condition appearing in the title, which typically is

sufficient (but not necessary) for achieving the desired conclusion. We call a
finitely presented group G hyperhopfian if every homomorphism 03C8: G - G with
4f(G) normal and G14«G) cyclic is necessarily an automorphism.
The standard setting involves several notational items employed throughout:

a specific closed n-manifold N; an (n + k)-manifold M, with k = 2 the nearly
universal rule; a usc (i.e., upper semicontinuous) decomposition iff of M into
copies of N up to (shape) homotopy equivalence; the associated decomposition
space B = Mlg, and the usual decomposition map p: M ~ B. Equivalently, for
such N and M, p : M - B is a proper, closed, surjective mapping and each p-1b
is (shape) homotopy equivalent to N. When k = 2, B is known to be a 2-
dimensional manifold [D-W]; in any event, B is taken to be finite-dimensional.
The issue to be addressed is the following:

MAIN QUESTION. Under what conditions on N is p : M ~ B an approximate
fibration?

If it is, as a payoff Coram and Duvall [C-D1, Cor. 3.5] have an exact sequence
relating the various homotopy groups of N, M and B, analogous to the one for
genuine fibrations. The sequence provides the most efficient means available for
extracting structural information about M from that of N and B.

Strictly speaking, one says a closed n-manifold N is a codimension k fibrator
(respectively, a codimension k orientable fibrator) if whenever 0 is a usc

decomposition of an arbitrary (respectively, orientable) (n + k)-manifold M such
that each g E 8 is shape equivalent to N, then p:M ~ B is an approximate
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fibration. However, we limit the focus here to the doubly orientable situation,
requiring it of both M and N, and drop the word "orientable" from the
terminology.

There are two prominent topics here: information concerning hyperhopfian
groups in section 4 and applications to codimension 2 fibrators in section 5. The
information developed about finite groups includes specific data and, more
generally, lists certain collections in which hyperhopficity is recognized by the
absence of an obvious obstruction: cyclic direct factors. Among infinite groups,
except for the anomalous Z2 * Z2, a hopfian group is hyperhopfian if it is a

nontrivial free product of finitely presented, residually finite groups (Theorem
4.11) or if it has a presentation with at least two more generators than relations
(Theorem 4.8). Proofs of these algebraic statements entail topological con-
siderations. The main result, Theorem 5.4, assures that a closed n-manifold N
with hyperhopfian fundamental group is a codimension 2 fibrator, provided
every degree one map N ~ N inducing an automorphism of 03C01(N) is a

homotopy equivalence. In dimension 3 this means that by and large all

nontrivial connected sums of 3-manifolds, excluding those homotopy equivalent
to RPI # RP3, are codimension 2 fibrators. At the other extreme, a 3-manifold
with finite fundamental group r is a codimension 2 fibrator if r has no cyclic
direct factor. In higher dimensions the hyperhopfian property holds a less
exalted position, for ordinarily a closed manifold is a codimension 2 fibrator if it
has non-zero Euler characteristic (Theorem 5.10), where the implicit restriction
is again to those manifolds N such that degree one mappings N ~ N are
homotopy equivalences. For instance, a closed 4-manifold N is such a fibrator if
7Ti(N) is hopfian and Hi(N) is finite (Corollary 5.11).

Basic connections between the algebra and the geometry of the setting appear
in Lemmas 5.1 and 5.2. If the manifold N generating the decomposition é has
hyperhopfian fundamental group, then any retraction R : U - go e 6 defined on
a neighborhood of go in M restricts to a degree one map g ~g0 and induces an
isomorphism 7r,(g) ~ 1tl(gO), for all g E tC sufficiently close to go.
By way of preliminaries, section 2 contrasts older hopfian properties with the

hyperhopfian one; section 3 sets forth a reminder of why manifolds that cover
themselves in regular, cyclic fashion cannot be codimension 2 fibrators and
outlines a new method, due to F. C. Tinsley, for constructing such things.

Originally the plan for this paper was to provide a classification of codimen-
sion 2 fibrators among aspherical 3-manifolds, in terms of geometric structures.
Among surfaces geometry neatly regulates the fibrators; among 3-manifolds
geometry’s governance is somewhat fuzzier but the effects still interesting.
However, as work progressed, new directions evolved and the results became
increasingly independent of dimension. Consequently, we treat aspherical 3-
manifolds, which demand markedly different techniques, in another place [D3].
The author must acknowledge indebtedness to many colleagues for beneficial
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comments and discussions, and wishes to thank, in particular, Craig Guilbault,
Klaus Johannson, Fred Tinsley, and Wilbur Whitten for their help.

1. Definitions

All manifolds are understood to be connected, metric and boundaryless.
Whenever the presence of boundary is tolerated, the object will be called a
manifold with boundary.
Homology and cohomology groups are computed with integer coefficients.

The degree of a map f : N - N, where N is a closed, connected (orientable) n-
manifold, sometimes called the absolute degree, for emphasis, is the nonnegative
integer d such that the induced endomorphism of Hn(N) ~ Z amounts to
multiplication by d, up to sign.
The symbol x is used to denote Euler characteristic.
Let N be a closed n-manifold. A usc decomposition 8 of a manifold M is N-

like if dim MI8  oo and each g c- 9 is shape equivalent to N. For simplicity or
familiarity, we shall assume each g E 8 in an N-like decomposition to be an ANR
having the homotopy type of N; experts can easily adapt the proofs to the more
general situation. 
A proper map p:M ~ B between locally compact ANR’s is called an

approximate fibration if it has the following approximate homotopy lifting
property: given an open cover Q of B, an arbitrary space X, and two maps
f : X ~ M and F : X x I ~ B such that pf = Fo, there exists a map F’ : X x I ~ M
such that Fi = f and pF’ is n-close to F. The latter means: for each z E X x I
there exists Uz~03A9 such that {F(z), pF’(z)l - Uz.
The continuity set of p: M ~ B, usually denoted as C, consists of all points

XEB such that, under any retraction R:p-1U~p-1x defined over a neighbor-
hood U c B of x, x has another neighborhood £ c U such that

Rp -1 b : p-1b ~ p-1x is a degree one map for all b E Vx. By way of explanation
for the terminology, such neighborhoods Vx form the domains of local winding
functions ax to the nonnegative integers, where ax(b) is defined to be the degree
of Ru 1 p - ’b, and C then equals the set of points x for which ax is continuous at x.

2. Conséquences of hopfian properties in fundamental groups

Recall that a group G is hopfian if every epimorphism 03A8: G - G is an

isomorphism, while it is cohopfian if every injection 03A6: G - G is an isomorphism.
One significant aspect of cohopficity is: no path-connected and locally simply
connected space with cohopfian fundamental group can be properly covered by
itself.
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Repeating the new term for contrast, we say a finitely presented group G is
hyperhopfian if every homomorphism 03C8 : G - G with 03C8(G) normal and G/03C8(G)
cyclic is an isomorphism (onto). Hyperhopfian groups G submit to a key
restraint: if Jl: G --+ ris an injection having normal image with r/Jl(G) cyclic and
if 03B8:0393 ~ G is an epimorphism, then 8Jl: G - G is an automorphism. Finitely
presented simple groups are hyperhopfian, obviously, as are the fundamental
groups of all compact surfaces with negative Euler characteristic (a class which
includes all finitely generated nonabelian free groups). On the other hand, no
group which splits off a cyclic direct factor has this property. Also, hyperhopfian
groups are hopfian, by definition, but they are only partially cohopfian. The
related topological feature clearly exposes the limited cohopfian phenomenon:
no path-connected and locally simply connected space with hyperhopfian
fundamental groups can be a proper, regular, cyclic cover of itself.

Call a closed manifold N hopfian if it is orientable and every degree one map
N - N is a homotopy equivalence. The notion aids in efficiently identifying
approximate fibrations. Whether 1tl(N) a hopfian group necessarily makes N a
hopfian manifold is part of a significant, old unsolved problem, due to Hopf and
recently reexamined by Hausmann [Ha].

THEOREM 2.1. If N is a closed hopfian manifold and 8 is an N-like

decomposition of an orientable (n + k)-manifold M, then p: M ~ B is an approx-
imate fibration over its continuity set.

Proof. This follows immediately from the definition of hopfian manifold and
from Coram and Duvall’s characterization [C-D2] of approximate fibrations in
terms of movability properties.

THEOREM 2.2. A closed, orientable n-manifold N is a hopfian manifold if any
one of the following conditions holds:

(1) n  4 and 1tl(N) is hopfian;
(2) 1tl(N) is hopfian and its integral group ring, Z1tl(N), is Noetherian;
(3) 03C01(N) contains a nilpotent subgroup of finite index; or
(4) 1ti(N) is trivial, 1  i  n - 1, and 1tl(N) is hopfian.

ADDENDUM. A 3-manifold N is hopfian if its prime factors (in a connected sum
decomposition) are either virtually Haken or have finite or cyclic fundamental
group.

Proof. That each of the first three conditions implies N hopfian was shown by
Hausmann [Ha]. That the fourth has the same effect was derived by Swarup
[S2, Lemma 1.1], who also took care of the 3-dimensional version of (1) in an
earlier paper [Sl]. The addendum follows because in this class, which conceiv-
ably includes all closed 3-manifolds, fundamental groups are residually finite
and therefore are hopfian [He, Theorem 1.1] (also see [He] for terminology).
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The work of both Hausmann and Swarup greatly influenced the development
of the results here.

3. Manifolds that regularly, cyclically cover themselves.

Manifolds that regularly, cyclically cover themselves include those with circle
factors, those that fiber over S 1 with periodic monodromy, doubles of twisted I-
bundles, and things arising from a construction related to me by F. C. Tinsley.
The key Orbit Space Construction of[Dl], outlined in this paragraph, reveals

why such manifolds fail to be codimension 2 fibrators. Let A be a finite cyclic
group of order k &#x3E; 1 acting freely on a given closed (connected, orientable) n-
manifold N". Determine a semifree A-action of rotations on the plane, E2, fixing
the origin. Let Mn+2 denote the orbit space of N" x E2 resulting from the free
diagonal A-action, and let p:Mn+2 ~ B denote the quotient map with point
inverses equal to the various images of Nn  {point} in the orbit space. In any
case p:Mn+2 ~ B fails to be an approximate fibration, as decomposition
elements near the image No of N" x 0 in Mn+2 retract to No via a degree k map
(factoring through the covering Nn ~ N"/A). When N"/A is homeomorphic to
Nn, this construction yields an N"-like decomposition of Mn+2.
The Tinsley Construction works for any finitely presented non-cohopfian

group G with trivial Whitehead group such that G is the fundamental group of

an aspherical finite complex K. Let K’ ~ K denote a covering determined by a
proper subgroup of 03C01(K) isomorphic to G. By asphericity, K, K’ are homotopy
equivalent, and the Whitehead group hypothesis translates to the existence of a
new complex L collapsing to both K’ and K. Embed L in a high-dimensional
Euclidean space, and consider the boundary M of a regular neighborhood. Then
03C01(M) ~ G (provided dim M - dim L &#x3E; 1) and M bounds a regular neighbor-
hood of both K’ and K, from which it follows that, in general, M nontrivially
covers itself. A relevant example is

the subgroup generated by x, ym has a presentation identical to the above, and
Waldhausen’s result [W] about torsion-free 1-relator groups gives the triviality
of Wh(G). This specific example G fails to be hyperhopfian, and the manifold M
determined through the Tinsley Construction covers itself regularly and
cyclically.

4. Conditions implying a group is hyperhopfian

The results of this section afford easy detection of hyperhopfian groups amid
certain classes, initially among the finite groups, and later among the infinite
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ones. While much of the first part is a bit specialized, it fits together neatly with
the conclusion (Theorem 4.7) that a finite fundamental group of a closed 3-
manifold is hyperhopfian if and only if it has no cyclic direct factor. In the
infinite case, we show that a nontrivial free product of finitely presented,
residually finite groups is hyperhopfian unless two groups are involved, both
cyclic of order 2 (Theorem 4.11), and that every hopfian group with s &#x3E; t + 1

generators and t relations is hyperhopfian (Theorem 4.8).
Since finitely generated (nontrivial) Abelian groups are never hyperhopfian,

commutators play a role. We denote the commutator subgroup of a given group
G as G’ or, occasionally, as [G, G]. Stated below are relevant elementary
features.

LEMMA 4.1. If 03C8:G~G is a homomorphism with normal image such that
G/03C8(G) is cyclic, then 03C8(G) ~ G’ and the projection G - G/03C8(G) induces a

epimorphism G/G’ - G/03C8(G).

REMARK 4.2. Every hopfian perfect group is hyperhopfian. (Recall that a
group G is perfect if G = G’.) So are the generalized dihedral groups

D’(2k, 2n + 1) of order 2k· (2n + 1) (k &#x3E; 0), where

Referring to such a group just as r for the moment, we see that r’ is generated by
y, any proper subgroup H ~ r’ of r is Abelian, and IHI is a multiple of 2n + 1.
There can be no epimorphism gl : 0393 ~ H, as it would induce an epimorphism of
r/r’, the cyclic group of order 2k, to H.
The quaternionic group Q = ~c, d|c2 = (cd)2 = d2~ of order 8 has

Q’ = {1, c’l and Q/Q’ ~ Z2 ~ Z2; since the proper subgroups of Q containing Q’
with cyclic quotient (generated by c, d, cd, respectively) are all cyclic of order 4,
Lemma 4.1 implies Q is hyperhopfian. More generally, the same is true of the
groups T(8, 3k) = T of order 8 - ·3k, k &#x3E; 0, where

Here T’ is the quaternionic group Q generated by x and y, and its abelianization
is cyclic of order 3k. There can be no epimorphism T ~ T’ = Q, because there is
none between their abelianizations. As Z3 belongs to the center of T, any proper
subgroup H of T containing T’ has a direct product representation H = Q x A,
for some subgroup A. Consequently, there is no epimorphism T ~ H, for it
would give rise to one from T to Q. In particular, T(8, 3) happens to be the
binary tetrahedral group
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although exhibition of an isomorphism is probably harder than direct veri-
fication that T* is hyperhopfian.

THEOREM 4.3. Suppose G is a finite group such that G/G’ has square-free order

relatively prime to that of G’. Then G is hyperhopfian if and only if G has no cyclic
direct factor.

Proof. One direction is obvious. For the other, suppose 03C8: G - G is a

homomorphism with 03C8(G) normal and G/03C8(G) cyclic of order k. Then 03C8(G) ~ G’
and k divides IG/G’I. Moreover, the representation of G as an extension

shows IGI = |ker 03C8|·|03C8(G)|. Since |ker 03C8| = k is relatively prime to |03C8(G)|,
03C8(G) n ker 03C8 = {1}. This shows G to be the direct product 03C8(G) x ker 03C8. Finally,
the projection G ~ G/03C8(G) restricts to an isomorphism ker 4( -+ G/03C8(G), indicat-

ing G has ker 03C8 as a cyclic direct factor.

COROLLARY 4.4. A finite group G of square-free order is hyperhopfian if and
only if G has no cyclic direct factor. In particular, every nonabelian group of order
pq, where p and q are distinct primes, is hyperhopfian.

EXAMPLES. For p prime, the solvable group of order p4

fails to be hyperhopfian but has no nontrivial factorization as a direct product.
The same statement holds for the group of order 4n2, n &#x3E; 1, having presentation

LEMMA 4.5. Let G be a group with G’ hyperhopfian and G/G’ ~ Z2. Then either
G ~ G’ x Z2 and G’ is perfect or G is hyperhopfian.
Proof If there exists an epimorphism 03C8: G ~ G’, then [G’ : 03C8(G’)]  2 and G’

hyperhopfian imply 03C8|G’:G’~G’ is an automorphism. This gives
G = G’ x ker 03C8 and G’ perfect. In light of Lemma 4.1, the only other possibility is
for G to be hyperhopfian.

REMARK 4.6. The binary octahedral group

of order 48 is hyperhopfian, since 0*/[0*, O*] ~ Z2 and [O*, O*] is the non-
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perfect, hyperhopfian group

formed by a = y2 and b = y-1x.
In a similar but more complicated vein, one can verify hyperhopficity of the

dihedral group

When m = 2n + 1, this group coincides with D’(4, m); when m = 2k the argu-
ment that D = D*,n is hyperhopfian proceeds by induction on k, with the initial
step k = 1 completed previously, since D then equals the group Q of Remark 4.2.
Generally, the abelianization of D is Z2 0 Z2, with [D, D] generated by {x2, y2}.
The three subgroups of D determining cyclic quotients are generated by {x2, y},
{x, y2}, {xy, y2l, respectively, the first of which is isomorphic to Z2 0 Zm, while
the other two have presentation:

where c stands for either x or xy. There is no epimorphism of D onto the former,
by application of Lemma 4.1, nor to the latter, by induction and the argument of
Lemma 4.5.

A similar analysis can be used to check that for pairwise relatively prime
integers 8n, k, l, the groups

where r - -1 (mod k) and r - + 1 (mod 1), are hyperhopfian.

THEOREM 4.7. A finite group r isomorphic to the fundamental group of a closed
3-manifold is hyperhopfian if and only if r has no cyclic direct factor.

Proof. Milnor [Mil] provides a list of all finite groups potentially the
fundamental group of a closed 3-manifold, and Lee [L] updated the list to
exclude two of Milnor’s classes. Remarks 4.2 and 4.6 point out that all remaining
groups of this type with no cyclic direct factor are hyperhopfian.

At this point the subject shifts to infinite groups.

THEOREM 4.8. Suppose the group G has a presentation consisting of s
generators and t relations, s &#x3E; t + 1. Then G is hyperhopfian if and only if G is
hopfian.

Proof. To address the nontrivial implication, construct a finite CW complex
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K having 1 vertex, s edges, t 2-cells and 03C01(K) ~ G. Given a subgroup H with
[G : H] = k  oo, form the covering p: K’ ~ K corresponding to H. Then

so

When k  s we have 03B21(K’) &#x3E; s  03B21(K), which precludes the existence of any
epimorphism G ~ H, as the induced homomorphism on abelianizations would
yield 03B21(K)  03B21(K’). We reach the same end for arbitrary k &#x3E; 1 by showing next
that 03B22(K’)  03B22(K), for then

Order the 2-cells D 1, ... , Dt of K. Generators of H2(K) are determined,
consecutively, as some multiple of ~Di is null-homologous in

Pi = Lu ~{Dj:j  il, where L is the 1-skeleton of K. Let y: Si ~ Pi denote a
map of a compact, orientable, 2-manifold with boundary Si realizing this null-
homology. The pull-back

shows the existence of a nontrivial 2-cycle 03B1i carried by 03BC’(S*i)~ p -’(Di) ci K’.
Since the carrier of ai nontrivially involves 2-cells in p-1(Di) while that of 03B1j,
j  i, does not, the cycles {03B1i} are linearly independent.
Now consider a would-be homomorphism 03C8: G ~ G with 03C8(G) normal and

G/03C8(G) infinite cyclic, and let v: G ~ G/03C8(G) denote projection. The kernel K of
the composition

is generated by 03C8(G) and any m~v-1(s + 1), and we see, as before, that the
covering Kk ~ K determined by x has 03B21(Kk) &#x3E; s + 1, an impossibility. The
only alternative is 03C8(G) = G, whence 03C8 is an isomorphism for hopfian groups G.
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REMARK. The direct product of the integers with a free group on t generators
illustrates the sharpness of 4.8.

COROLLARY 4.9. A free group on s generators is hyperhopfian whenever
1s~.

COROLLARY 4.10. The fundamental group of any closed surface S with

x(S)  0 is hyperhopfian.

It is well known that 03C01(S) is hopfian.

THEOREM 4.11. If G1, G2 are nontrivial, finitely generated residually finite
groups and G2 i= Z2, then G1 * G2 is hyperhopfian.

Proof. Consider G = G1 * G2, where Gi (i = 1, 2) has no further nontrivial
decomposition as a free product. The general case G = G1 * ... * Gm, m &#x3E; 2, is

proved by the same means as this special one. Let V1: G - G be a homomorphism
with H = 03C8(G) a normal subgroup such that G/H is cyclic. Here

[G:H] = k  oo [S-W].
Construct connected 2-complexes Xi with 03C01(Xi) ~ Gi (i = 1, 2), join them

with an edge e to form another complex X ~ X1 ~ X2, and examine the
covering q:X* ~ X corresponding to the subgroup H. Regularity of q ensures
that the components of q-1(Xi) are pairwise homeomorphic. Let Ki denote a
component of q-1(Xi). Obviously q|Ki gives a regular cyclic cover of X having
order ki dividing k, with k1 ~ 1 or k2 i= 1. For definiteness assume k2 =F 1.
Moreover, nl(X*) is a free product of k/k1 copies of 03C01(K1), k/k2 copies of 1tl(K2),
and a free group F.

Examination of certain first homology groups shows F to be trivial. The free
part of H1(X*) has rank 03B21(X*) equal to the sum of (k/k1)· 03B21(K1), (k/k2)· 03B21(K2),
and the rank of the abelianized free group, while similarly
03B21(X) = 03B21(X1) + 03B21(X2). Since 03C8 induces an epimorphism from the Abe-
lianization of G to that of H, 03B21(X)  03B21(X*). Being of finite index in H1(Xi),
q*(H,(Ki» has free part isomorphic to H1(Xi), so 03B21(Ki)  P,(X,) for i = 1, 2.

Hence, F = 1.

Geometrically, this implies that q|K1 is 1-1, for otherwise one could produce
a loop in X* as a composition of paths 03B1103B3103B1203B32 ··· 03B1m03B3m, m &#x3E; 1, where q(at) is
contained in one of X 1, X 2, q(03B1i+1) is contained in the other, q(03B3i) c e, and the

various yj are pairwise disjoint. Such a loop would necessarily be carried by the
free part of the graph of groups used to describe 1tl(X*).

Clearly 03C01(X2) is generated by q# (03C01(K2)) and one additional element sent to
a generator of G/H. Denoting the rank of a group G (the minimum cardinality
required for a set of generators) as p(G), we have
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In what follows we frequently use the consequence of Grushko’s theorem that
p(A * B) = p(A) + p(B).

Case 1. k  3. This can be ruled out immediately, for it leads to the

impossibility

Case 2. k = 2. The same impossibility as in Case 1 occurs if 03C1(03C01(K1)) &#x3E; 1. We

can identify 03C01(K1) with the cyclic group Zp, for the reasoning used previously to
show F trivial indicates 1t1(K1) is not infinite cyclic. Accordingly,

Hence Pl(K2) = 03B21(X*) = 03B21(X) = Pl(X2). Since H1(X) surjects to H1(X*) and
H1(K2) surjects to a subgroup of index 2 in H1(X2),

Similarly,

Comparisons with (Q reveal p = 2.
Keep in mind that 03C8 lifts to an epimorphism

and the composite 03C8’°q# provides a homomorphism

whose image has index  2. Repeating the preceding sort of rank arguments
(regard G1 as Z2 * Z2), we see the index cannot equal 2. This means that VJ’ 0 q# is
an epimorphism. By Gruenberg’s work [G] on root properties, the free product
of residually finite groups is residually finite, which implies that Z2 * Z2 * 03C01(K2)
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is hopfian and 03C8’°q# is an automorphism. As a result, the sequence

has a direct product splitting. However, this is impossible, since free products are
never direct products.
Consequently, k = 1. As above, G1 * G2 is hopfian, implying

03C8:G1* G2 ~ H &#x26;é G1 * G2 is an isomorphism, as required.
The argument establishes variations such as the following.

COROLLARY 4.12. If G1, G2 are nontrivial, finitely generated groups such that
IG21 i= 2 and G1 * G2 is hopfian, then G1 * G2 is hyperhopfian.

COROLLARY 4.13. If G1, G2 are nontrivial, finitely generated hyperhopfian
groups with G1 * G2 hopfian, then G1 * G2 is hyperhopfian.

Thus, in principle the hyperhopfian property is closed with respect to free
products. It is closed neither under HNN extensions nor under free products
with amalgamation (recall that the double of a twisted I-bundle over a

nonorientable surface 2-1 covers itself). The matter of closure with respect to
direct products is still open. On this front, Im [I] has shown that all Cartesian
products of surfaces of negative Euler characteristic have hyperhopfian groups.

5. Codimension 2 fibrators

To streamline the envisioned topological applications, we say that a decom-
position 8 of a manifold into ANRs has Property R &#x26;é if, for each go E 8, a
retraction R : U ~ g0 defined on some open set U ~ go induces 7r,-isomorphisms
(R |g)#: 1tl(g) - 1tl(gO) for all g sufficiently close to go. If this property holds for
one retraction R : U - go, then it holds for every retraction R’ : U’ ~ go defined
on another open set U’ ~ go. Similarly, we say that 8 has Property R*~ if

R : U ~ go as above restricts to H1-isomorphisms (R|g)*:H1(g) ~ H1(g0) for all
g sufficiently close to go (and all go E d). Property R ~ is the fundamental effect of
hyperhopficity, whereas the weaker Property R*~, in context, causes

R |g:g ~ go to be degree one.

LEMMA 5.1. If N" is a closed n-manifold with hyperhopfian fundamental group
and 8 is an N"-like decomposition of an (n + 2)-manifold M, then 03B5 has Property
R~.

Proof. There is no difficulty at go e 6 in the preimage of the continuity set, C;
any neighborhood retraction R:U ~ g0 restricts to a degree one map

R|g:g ~ g0, which induces a 03C01-epimorphism; the hopfian hypothesis gives
Property R~.



171

Just as in [Dl, Theorem 3.1], points of BBC are isolated in B, and we can
reduce immediately to the situation where the decomposition space B is

identical to E2 and the decomposition map p is an approximate fibration over
the complement of the origin, 0.
Use go to represent p-1(0). First we claim go is a strong deformation retract of

M. Properties of ANRs ensure that go is a strong deformation retract in M of
some (8-saturated) neighborhood V. Specify a homotopy pulling E2 into p(V)
and fixing a smaller neighborhood of 0. By [C-D1, Prop. 1.5], there exists an
approximately lifted homotopy pulling M into V while fixing a neighborhood of
go throughout (first restrict to MBgo; after obtaining the desired lift on the

deleted space, fill in across go with the inclusion).
Name the retraction R : M - go promised above.
Fix an arbitrary g from 6)(go). From the exact homotopy sequence for

approximate fibrations [C-D1, Cor. 3.5], we have

showing 03C01(MBg0)/03BB(03C01(g))~Z.
Because go has the homotopy type of a codimension 2 compactum from M,

the inclusion M)go - M induces an epimorphism 03A8 of fundamental groups
(readily verifiable by passing to universal covers and exploiting homology
properties). It follows directly that R#03A803BB(03C01(g)) is a normal subgroup of
03C01(g0)~03C01(Nn) having cyclic cokernel. Due to the hyperhopfian hypothesis,
R#03A803BB|03C01(g) is a (surjective) isomorphism. In other words, the restricted

retraction R|g:g ~ g0 induces a fundamental group isomorphism, and Prop-
erty R~ holds.

The next result is basically due to Im [I]. Although results similar to 5.2
appear in the literature, nothing matched it, and Im seems to be the first to have
noticed this extremely useful fact.

LEMMA 5.2. Suppose 8 is an N"-like decomposition of an (n + 2)-manifold M
with Property R* ~, and go E 8. Then, for all g E 8 sufficiently close to go, a given
neighborhood retraction R : U ~ go restricts to a degree one map g - go.

Proof. Using the reduction and notation of 5.1, we take B = E2,
go = p - ’(0 = BBC), and R : M = p-1(E2) - go, a strong deformation retraction.
For any other g c-,O, we verify that R|g is a degree one map by checking it gives a
cohomology isomorphism between Hn(g0) ~ H2(M, MBgo) and Hn(g) ~
H2(M, MBg) and applying the universal coefficient theorem to obtain the same
for homology. The larger step depends on showing p provides isomorphisms of
pairs H2(M, MBg0) ~ H2(B, BBO) and H2(M, MBg) ~ H2(B, BBp(g)), and then
spotting an isomorphism between the images. To find the isomorphism of pairs,
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examine the homology ladder

Property R*~ leads to a splitting H1(MBg0) = 03BB*H1(g)~im ~, where

03BB: g - MBgo denotes inclusion. As point inverses of p are connected, p’ induces
epimorphisms of both 1tl and Hl. With 03BB*(H1(g)) ~ ker p’*, diagram chasing
yields that p’ carries im ô isomorphically onto Hi(B)0).
By a similar argument, p restricts to an isomorphism

H2(M, MB9) - H2(B, BBc), for c = p(g). Specify a closed disk D c B containing
0, c in its interior. One sees what is needed, the desired isomorphism between
H"(g.) and H"(g), in the diagram below.

Before going on, we give a variation to Lemma 5.2 with other uses.

LEMMA 5.2’. Suppose 03B5 is an N"-like decomposition of an (n + 2)-manifold M,
go E 8, and for all g E 8 sufficiently close to go, a given neighborhood retraction
R: U - go sends H1(g) to a finite index subgroup of H1(g0). Then R g: g - go has
positive degree.

Proof. By the Universal Coefficient Theorem, a map f: N1 ~ N2 between
closed (orientable) n-manifolds has positive degree (integer coefficients implicitly
understood) if, with rational coefficients (Q), the induced homomorphism
H"(N2: Q) ~ Hn(N1; Q) is an isomorphism, which follows by the argument of 5.2.

LEMMA 5.3. Suppose N n is a hopfian manifold and 8 is an Nn-like decomposition
of an (n + 2)-manifold M with Property R éé . Then p: M - B is an approximate
fibration.

Proof. The hypothesis concerning Property R~ routinely yields that 03B5 has
Property R* and Lemma 5.2 ensures that all go E 8 live above the continuity
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set of p : M - B. For hopfian manifolds N", Theorem 2.1 certifies p is an

approximate fibration.

Lemmas 5.1 and 5.3 combine to form the main theorem. Its consequences all

rely on Theorem 2.2.

THEOREM 5.4. All closed, hopfian manifolds with hyperhopfian fundamental
group are codimension 2 fibrators.

COROLLARY 5.5. If N is a closed, orientable n-manifold such that nl(N) is
hyperhopfian and n¡(N) is trivial, for 1  i  n - 1, then N is a codimension 2

fibrator. In particular, this conclusion holds for aspherical closed manifolds with
hyperhopfian fundamental groups.

COROLLARY 5.6. Every closed, orientable manifold with finite, hyperhopfian
fundamental group is a codimension 2 fibrator.

COROLLARY 5.7. Let N3 be a closed 3-manifold such that nl(N3) is finite and
has no cyclic direct factor. Then N3 is a codimension 2 fibrator.

COROLLARY 5.8. Suppose the hopfian group G is a nontrivial free product of
residually finite groups, G ~ Z2 * Z2, and suppose N3 is a closed orientable 3-
manifold with 03C01(N3) ~ G. Then N3 is a codimension 2 fibrator.
COROLLARY 5.9. Suppose the group G is a nontrivial free product,
G ~ Z2 * Z2, and suppose N3 is a closed orientable 3-manifold with 03C01(N3) ~ G,
where N3 has a connected sum decomposition consisting of virtually Haken
manifolds and/or those with finite or cyclic fundamental groups. Then N3 is a

codimension 2 fibrator.

Next comes a result leading to less restrictive analogs of the two last

corollaries for 4-manifolds. This provides unequivocal evidence that codimen-
sion 2 fibrators neither are characterized in terms of hyperhopfian fundamental

groups nor determined solely by their groups. For instance, real projective space
RP2n+1 is a codimension 2 fibrator [D1] but 03C01(RP2n+1) ~ Z2 certainly is not
hyperhopfian; the ensuing results furnish a large collection of additional

examples. Moreover, it is useful to compare any 4-manifold N having
03C01(N) ~ Z2 * Z2 to RP3 # Rp3, a known nonfibrator with the same group, for by
Corollary 5.11 N is a fibrator.

THEOREM 5.10. Every closed, hopfian n-manifold N with 7r,(N) hopfian and
X(N) e 0 is a codimension 2 fibrator.

Proof. Let p : M - B be a closed map defined on an (n + 2)-manifold M such
that p-1b ~ N for all b E B. Just as in proof of Lemma 5.1, localize to the
situation in which B = E2 and p is an approximate fibration over C = E2B0.
(Remark: each point preimage above C has a neighborhood retraction trans-
porting nearby preimages in degree one fashion, and the hypothesis on N being
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a hopfian manifold with hopfian group ensures that the restricted retractions are
homotopy equivalences.)
Use go to represent p-1(0), which again is a strong deformation retract of M

under a retraction R : M ~ g0. In light of Lemma 5.3, it suffices to show that the
restriction of R induces an epimorphism H1(g) ~ H1(g0) for p-1b = g ~ g0.
Suppose that is not the case.
From the exact homotopy sequence for approximate fibrations [CD, Cor.

3.5], we have

showing that 03C01(N) injects onto a normal subgroup of 1tl(MBgo) having infinite
cyclic quotient.

Fix an arbitrary 9 = p-1b in MBgo. The fiber fundamental group rc 1 (N) in
formula (*) above is carried by 03C01(g). Hence, there exists an epimorphism of
1tl(MBgo) to Z with kernel determined by the image of 1tl(g). Because go has the
homology type of a codimension 2 manifold in M, the inclusion M)go - M
induces an epimorphism at the first homology level. For j:g ~ M the inclusion,
this implies H1(M)/j*(H1(g)) ~ H1(g0)/R*(H1(g)) is a cyclic group T (nontrivial,
by an earlier supposition), so there exists an induced epimorphism
03C01(M) ~ H1(M) ~ T whose kernel K contains j#(03C01(g)) c Ki(M).
Form the (cyclic) covering 03B8:M’ ~ M corresponding to K. Since the de-

formation retraction R lifts to another deformation retraction

M’ ~ 03B30 = 03B8-1(g0), we can regard 8 as providing a cyclic covering
8’ : N’ z yo - N such that order 0’ = order 0.

Case 1. [03C01(M):K] = oo. We will verify that N’ y o has finitely generated
homology. The contradiction that x(N) = 0 will follow immediately from work
of Milnor (Assertion 6 [Mi2]).
Here yo has the homotopy type of M’ (and N’), and M’Byo is partitioned into

copies of N (namely, the components of the various sets (p 0 03B8)-1(z), z ~ 0) and
the associated decomposition map (which is a closed mapping) makes the
following diagram commutative:

Now 03BD:B’ ~ E2B0 is an infinite cyclic covering and MB03B30 ~ B’ ~ E2 is an
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approximate fibration, as before, from which it follows that M’Byo has the
homotopy type of N.
We give an inductive argument showing each HK(YO) to be finitely generated.

Obviously true for k = 0, 1, suppose it is also true for all j  k, where k  2.
Then Hk-2(YO) finitely generated implies the same for each of the following, in
turn: Hn+k-2c(03B30); Hk(M’, M’Byo); and Hk(M’) ~ Hk(yo). The first implication
results from Poincaré duality in yo; the second, from Poincaré-Lefshetz duality
in M’; and the last, from inspection of the long exact sequence for the pair
(M’, M’Byo).

Case 2. [03C01(M):K] = k &#x3E; 1. By Lemma 5.2’, R restricts to a map g ~ g0 of
positive degree. Thus, R|g lifts to a positive degree map R’:g ~ yo with
R 1 g = 8R’ g. But the existence of a positive degree map N1 ~ N2 between
closed, orientable manifolds yields the relationship Pi(N 1)  Pi(N 2) for arbitrary
Betti numbers 03B2i (see [Mu, p. 399]; applying this with both 0 yo and R’| g, we

find

for all i, thereby determining

which gives the contradiction X(N) = 0.

COROLLARY 5.11. If N4 is a closed orientable 4-manifold such that nl(N 4) is
hopfian and Hl (N4) is finite, then N4 is a codimension 2 fibrator.

Proof. Here 03B21(N4) = 03B23(N4) = 0, so ~(N4)  2.

COROLLARY 5.12. Every closed orientable 4-manifold N4 with finite funda-
mental group is a codimension 2 fibrator.

No counterexamples to 5.12 are known in other dimensions.

COROLLARY 5.13. Let N be a hopfian 2n-manifold with 1tl(N) a hopfian group
and H2i - l(N) finite for 0  i  n. Then N is a codimension 2 fibrator.
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