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Abstract. In this paper 1 prove that if G = SOo(n, m) and X is an irreducible unitary Harish-Chandra
module of G whose infinitésimal character minus half the sum of the positive roots is dominant, then
X is isomorphic to a Zuckerman derived functor module induced via cohomological parabolic
induction from a one dimensional unitary character of a subgroup. The proof is by reduction to a
subgroup of G of smaller dimension: arguing by contradiction we find two K-types where the
Hermitian form is indefinite.
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1. Introduction

In addition to being the sequel of an earlier publication, this paper generalizes
the argument used in part 1 (Salamanca-Riba, [2]), to prove the main theorem
for the case of SL(n, If8). It therefore illustrates how the general case for the proof
of that main theorem (Theorem 2.1 in this paper) should be approached. In
other words, if G is a simple real Lie group with Cartan involution 0 and
complexified Lie algebra g, the general result 1 am alluding to is the folldwing.
Fix a Cartan subalgebra b and a set of positive roots A+(g, 1)).

CONJECTURE 1.1. Suppose X is an irreducible unitary Harish-Chandra
module of G with infinitesimal character corresponding to a dominant weight
y E 1)*. Assume further that

Then there are a 0-stable complex parabolic subalgebra q z g and a one-
dimensional unitary character of the Levi-subgroup L of q such that X is
isomorphic to the Zuckerman module (see Section 2)

(See part 1 for undefined terms. There, é9f( Y) for any Harish-Chandra module Y,
is also denoted RSq(Y).)

1 outlined an algorithm for a case-by-case proof of this conjecture in part 1
and 1 mentioned that the case of SOo(n, m) was analogous to the one of Sp(n, R). 1
also summarized the algorithm as a reduction to a special case of a proper
subgroup of the same type in Cartan’s classification and a real form of GL(m, C).
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However, if we look closely at the argument for Sp(n, R) in part 1, it is obvious
that the choice of the appropriate subgroups is a very ad hoc one. It can be done
for SO(n, m) following the same ideas, but this paper contains a new idea which
arose from the search for a more canonical subgroup. This idea (mainly Lemma
3.4, its proof and Lemma 3.5) simplifies the argument and lends itself to a non
case-by-case proof of the same result for every classical Lie group. It also makes
the argument run more parallel to the one used for SL(n, R).
Throughout this paper 1 will refer the reader to part I for a few of the results

that were also used there, especially if the original sources (which the reader may
find in the bibliography of part I) state these results differently. 1 include the
main theorems in Section 2.

The theorem that 1 actually prove is Theorem 2.2 which states that if X is not
an Aq(03BB) the reason is because it contains two K-types where the restriction of
the Hermitian form on X is indefinite. Lemma 3.4 and 3.5 mimic Lemma 7.5 in

part 1 and the discussion following it, and Lemma 3.3 and 3.6 are analogous to
the concluding argument of chapter 7 in the same paper.
The argument goes as follows. One of the main tools in dealing with unitary

representations is the Dirac operator inequality (Lemma 6.1, part I), which
states that if a representation is unitary then the highest weight of any of its K-
types must satisfy a certain inequality.

Hence, if we argue by contradiction, we would like to show that if X is not a
module of the desired form then Dirac inequality must fail for some K-type of X.
However, to carry out this idea is impractical. Lemmas 3.3-3.6 give then a
reduction to a subgroup of G for which proving that this inequality fails is very
easy. Computing this inequality involves a choice of non-compact positive roots
and the new element in this proof consists of choosing one set of non-compact
positive roots given by the highest weight of the lowest K-type of X plus the sum
of the compact positive roots (this choice is not unique but it does not matter).

This choice of positive roots essentially determines the subgroup L. It

contains the subgroup Lu of G, which Vogan ([2], Chap. 6) attaches to a lowest
K-type p of a Harish-Chandra module X. This in turn implies that (a) of
Theorem 2.2 holds. Then, with the help of Lemma 6.3(a) in part 1 and using
Theorem 2.3, one can show that (b) and (c) of Theorem 2.2 hold.

In Section 2 we set up notation, state the main theorems and give a few
lemmas which will be needed in the proof. Section 3 is devoted to the proof of
Theorem 2.2. At times it is necessary to specify which type of group is SO(n, m) in
terms of the parity of n and m. On a first reading, the reader may choose to fix
one in order to maintain some continuity in the argument.

2. Notation and main theorems

Let G = SOo(n, m) and go its Lie algebra. The maximal compact subgroup K of G
is
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If 0 is the Cartan involution defined by

then

The maximal compact Cartan subgroup of G is H = TA where

Here, ti, Sj are in !f8 and

Let 1)0 = to + Qo be the Lie algebra of H and write 1) = t + Q for its com-

plexification. Then a = 0 except when m, n are both odd. The roots of t in 1 and p
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are

The construction of the modules that we will use to parametrize the unitary
Harish-Chandra modules of SOo(n, m) was given by Zuckerman [6] (see also
part 1, Sections 3-4). Given a 0-stable parabolic subalgebra q z g with Levi
subgroup L c G and a Harish-Chandra module (nL, X L) of L, Zuckerman
constructs a (g, K) module Rgq(XL). Under certain conditions, Rgq(XL) is unitary
and irreducible. Set q = 1 + u, where 1 = Lie(L)c, the conditions we are interested
in are, if rIL: L - Aut(C) is one-dimensional, À: 1 - End(C) is the corresponding
representation of 1 = Lie(L)c and (À, ce’) a 0 for all a E 0(u). Let Aq(À) = Rgq(C03BB).
Then Aq(À) is irreducible and unitary (see Speh-Vogan [3] and Vogan [5]).
The main theorem that we want to prove is

THEOREM 2.1. Let G = SOo(n, m). Suppose X is an irreducible Harish-Chandra
module with infinitesimal character y satisfying (1.1) and a positive definite
Hermitian form ,). Then X is isomorphic to some module Aq(À).
We will argue by contradiction. Assuming that X is not isomorphic to any

one of these modules we will prove the following

THEOREM 2.2. Let G = SOo(n, m) and g = go (D C and X an irreducible Harish-
Chandra module of G endowed with a non-zero Hermitian form ,) and

infinitesimal character as in ( 1.1 ).
If X e Aq,(À’) for any q’, À’, then there are, a 0-stable parabolic q = 1 + u, a

Harish-Chandra module XL of L, the Levi factor of q and (L n K)-types bf, bi such
that

(a) X is the unique irreducible subquotient ofBlq(XL) and X occurs only once as
a composition factor of Rgq(XL),

(b) the Hermitian dual of XL is endowed with a Hermitianform  @ &#x3E;L * 0 and
~, @ &#x3E;LI(Vô, 1 + V03B4L2) is indefinite,

(c) choose A’ (t, t) = A’ (1 n f) u 0(u n f). Then if bf has highest weight flf, then
fli = ,uL + 2p(u n p) is 0 +(f)-dominant.

Assume this is true. The proof is given in Section 3. We will use the following
result to finish the proof of Theorem 2.1.
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THEOREM 2.3 (Vogan) (see part 1, Theorem 5.8). Let q = 1 + u z g be a 0-stable
parabolic with Levi factor L and XL a Harish-Chandra module of L. Suppose X is
an irreducible Harish-Chandra module of G with a non-zero Hermitian form ( , )
and X is the unique irreducible submodule of Rgq(XL) and that it occurs there only
once as a composition factor.

Suppose further that xi, the Hermitian dual of XL has a Hermitian form ~, )L.
If bL E (L n K)- is a K-type of XL (i.e. XL(bL) i= 0), bL has highest weight ML and

fl = Il L + 2p(u n p) is dominant for 0(u n f), then if b E K has highest weight y,
X(à) # 0 and sign(~,~|X(03B4)) = sign«, ~L|XL(03B4L)).

Using these two theorems we can show that the form , &#x3E; on X is indefinite as
follows. Since there are 03B4L1, 03B4L2~(L~K)~ such that ~,~L|V03B4L1+V03B4L2 is in-
definite, then by Theorem 2.3, X(b) i= 0 for j = 1, 2 and ~, ~|(V03B41 + V03B42) is indefinite.
This proves Theorem 2.1.

To prove Theorem 2.2 we will need three lemmas. Suppose G is a quasisplit
Lie group, K ~ G a maximal compact subgroup and fo = Lie(K). Vogan in [4]
gives the definition of a fine (for G) K-type fl E K. (Definition 4.3.9). Using this
definition the following lemma can be proved, by reducing to SU(2, 1), SL(2, C)
and Sp(2, R).

LEMMA 2.4 (Vogan, unpublished). Let G be a quasisplit Lie group and Jl E K,
then fl is a fine K-type for G if and only if the following three conditions hold. 1£t 4
be the fundamental Cartan subalgebra of g.

(i) Suppose fi E 0(g, 1)) is an element of a strongly orthogonal set {03B2i} of non-
compact imaginary roots, of maximal order. Then

|(03BC, 03B2~)|  1.

(ii) Suppose 03B2, a E 0(g, 1)) are orthogonal imaginary roots, with a compact and fi
noncompact such that fi and a are not strongly orthogonal. Then

|(03BC, 03B1~)|1.

(iii) fi is trivial on the identity component of the compact part of any quasisplit
Cartan subgroup HS ~ G.

LEMMA 2.5. Let fl be a fine K-type. Then for any maximal strongly orthogonal
set B of imaginary non-compact roots

Proof. By condition (iii) of Lemma 2.4. If y is fine then y lives in the span of any
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maximal strongly orthogonal set B = {03B21, 03B22···03B2t} of imaginary non-compact
roots. Hence

but by condition (i) of Lemma 2.4

Hence |aj|  t and since 03BC is intégral this means that aj=0, ±y ( j = 1, 2···t).

LEMMA 2.6. Let 03BC be a non-trivial fine K-type and choose a maximal strongly
orthogonal subset B of positive imaginary non-compact roots and a positive root
system 0394+ =0394+ (g, t) =) B so that fl is 0394+-dominant and

Set 03C1n=03C1(0394+(p)), Pc=p(LB + (f)), 03C1=03C1(0394+) and 03B4 = 03BC - 03C1n + w03C1c where w E Wk makes
03BC - 03C1mw0394+f-dominant. Then (b, ô)f  (p, p)f, and equality holds only if Ci = 0,
~03B2i E B.

Proof. By Lemma 2.5, we can choose B as desired. Then

Now p-2a=2(p-a)+2p=2(6ap)+2p. Hence ~03B1~0394+, 03C1-1 203B1~H[W·03C1]=
convex hull of W·03C1. By induction on #{03B2i, 03B1|ci, b’03B1 ~ 0} we can show that
03B4~H[W·03C1]. Therefore, (03B4,03B4)(03C1,03C1) and equality holds only if 03B4= w1·03C1 for
some W1 e W Note that 03B4= -[03C1-203C1(B0)-03C1(B1)], where Bo c 0394+c and B1 c 0" .
Then 03B4 = w1 · p implies that B 1 = ~ and hence Ci = 0, V Pi e B. This proves Lemma
2.6.
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3. Proof of Theorem 2.2

In what follows let X be an irreducible Harish-Chandra module with a non-zero

Hermitian form ~,~. Let 03BC = highest weight of a lowest K-type (LKT) g of X.
After conjugating by an outer automorphism of K we may assume

Fix 0394+(t) such that y is dominant. Then

Since we want to argue by contradiction we will give some necessary and
sufficient conditions for g to be the LKT of a module Aq(03BB).

Recall from Vogan [4] that to construct a 0-stable parabolic subalgebra we
need a weight XE i(tc)*. Suppose

where ~1 &#x3E; ~2 &#x3E; ... &#x3E; ~k &#x3E; 0, pi, qi  0.
Set r= p-03A3pi, s=q-03A3qi, n= p+q, ni=pi+qi.
Set

Denote by q(x), u(x), and I(x) the subalgebras spanned by these subsets, where
q(X) = u(X) + f(X). Consider first the case G = SOo(2p, 2q), an easy calculation
shows that
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where, for j = 1, 2···k

Now assume G = SOO(2p + 1, 2q). Then if X is as in (3.3).

where

as before
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Now, if G = SOo(2p + 1, 2q + 1), then

where

We can now give the conditions for our lowest K-type 1À. Since fl E i(tÓ)*, fl
determines a 0-stable parabolic subalgebra q(03BC). However, this is not quite the
parabolic q of the Aq(03BB) module that y should determine. By Proposition 4.4 and
Lemmas 4.6 and 4.8 of Salamanca-Riba [2] we may assume that our weight y
determines the compact part of the parabolic. Then write

Note that q’ ~ q(03BC) but their compact parts coincide. An easy argument shows
that

PROPOSITION 3.1. In the above setting write
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then V. is the LKT of an Aq(À) iff

The proof follows from the conditions on 03BB and y given in Salamanca-Riba [2]
4.1 and 4.3. Assume now that y is not the LKT of an Aq(03BB). Rewrite the
coordinates ofg as

where ak &#x3E; 0 and bk &#x3E; 0.

If y were to satisfy the conditions of Proposition 3.1 then

Let 0394+03BC = 0394+(g, b) be a 0-stable positive root system making fl+2pc dominant.
The roots of t in g, A(g, t) are the restriction of A(g, 1)) to t.

Write lllJ = 03A003BC(g, t) for the set of simple roots restricted to t. Vogan attaches to
p a quasisplit subgroup L03BC and a weight ~03BC in L03BC n K which is the highest weight
of a fine (L03BC n K)-type (see Vogan [4], Proposition 5.3.3 and Definition 5.3.22).
Having in mind this construction we obtain the highest weights of the fine K-

types for the quasisplit group G = SOo(m, n).
G is quasisplit if |m-n|  2 which gives the following results.

1. If G = SO0(2p, 2 p) the fine K-types are
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2. If G = SOo(2p, 2p - 2),

This computation follows from the definition of fine K-type.
Recall that fine K-types have the property that the quasisplit subgroup

attached to them is all of G. With this information we can obtain the subgroup
L03BC attached to p : L03BC will be a product of quasisplit subgroups and tl4 will be fine
on each quasisplit factor of L03BC.

Hence, we follow Vogan’s algorithm in the fine case and we can conclude that
the general picture will be as follows. Write 03BC + 203C1c = (x1, x2...xpIYl, y2···yq).
We can form an array of 2 rows with the coordinates of y+ 2p, so that they

are aligned in decreasing order from left to right, having the first p coordinates in
the first row and the last q in the second row. For example if

the array would look like:

This array gives a choice of A’, compatible with 0394+(f): the simple roots are given
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by the arrows. (This choice is not unique.) Because the terms in each row
decrease by at least 2, the entire array is a union of maximal blocks of the
following types. If G = SO(2p, 2q):
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or

1, 2 and 3 will give U(p, q) factors of LIJ’ 4 and 5, an SOo(2m, 2m) factor and 6 and
7, an SOo(2m, 2m - 2) factor.
The coordinates of p can then be grouped by the blocks that p + 2p, determines
as follows. All blocks except the last one on the right will be of type 1 to 3. The
last one will be of any of the types 4 to 7.

with |pi-qi|  1 and |m1-m2|  1.
If G = SO(2p + 1, 2q), y + 2p, will give the following types of pictures.

1’. Like type 1 but with r - 2k &#x3E; 1

2’. Same as type 2

3’. Like type 3, with r - 2k &#x3E; 0

Again, as in the case of SOo(2p, 2q), 1’, 2’, 3’ give also U(p, q) factors of L,; 4’, 5’
give an SOO(2m + 1, 2m) factor and 6’ gives an SOo(2m -1, 2m) factor. Also, the
coordinates of p can be grouped to give a picture of the form (3.9).
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If G = SO(2p + 1, 2q + 1), we will have the following pictures.

1 ". As type 1, with r - 2k &#x3E; 1

2". As type 2, with r - 2k -1 &#x3E; 1

3". Same as type 3

Once again 1", 2", 3" correspond to U(p, q) factors; 4", 5", to SOo(2m + 1, 2m) and
6", 7" to SOo(2m -1, 2m) and we get a picture like (3.9).
The above discussion proves the following

PROPOSITION 3.2. Let G = SOo(n, m) and X a Harish-Chandra module of G
with a lowest K-type of highest weight 1À and LIJ’ the quasisplit subgroup attached
to 1À by Vogan. Ifu gives picture (3.9), then
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L03BC ~ U(rl, SI) x U(r2, S2)  ··· x U(rt, St) X SOo(N, M), (3.10)
where N - n (mod 2), M - m (mod 2), IN - M|  2 and Iri - si|  1.

Set

then L = Li x L2 ~ L03BC and if 1 = I0 Q C, 1 ;2 IIJ and we can define a subalgebra
u c u03BC by u03BC = u + (u03BC~I) then q = I + u ~q03BC and by induction by stages (a) of
Theorem 2.2 holds, i.e., there is an (1, LnK)-module XL, such that X occurs only
once as a composition factor of Rdim(u~I)q(XL). We can see XL as the exterior
tensor product XL = X L ~ X L2 with X Li an (Ii, Li~K)-module. By Corollary 5.3
in Salamanca-Riba [2], (b) of Theorem 2.2 holds also. Set 03BCL = fl-2p(unp) and
03BCi=03BCLBLi, then JlL(resp. 1À,) is the highest weight of a lowest (LnK)-type of
XL (resp. XLi).
LEMMA 3.3. With notation as in the preceding paragraph, f X is unitary, with
infinitesimal character satisfying (1.1), then there is a parabolic subalgebra q, 9 Il
and a character 03BB1: L1 ~ C such that

Proof. By Theorem 5.7 of Salamanca-Riba [2], if XL1 ~ Aq1(03BB1) for any al, 03BB1,
then there is 03B2~0394(I1~p) such that ~,~L is indefinite on the sum V03BC1 ~ V03BC1+03B2.
By Theorem 2.3 we need to check that for this fi E 0394(I1 np), fl + fi is dominant

for 0394+(f). This will show that X is not unitary.
If 03BC=(a1, a2,...,aR, aR+1···ap|b1, b2···bS, bS+1···bq) with R and S as in (3.11),

then clearly, since

03BC+03B2 is dominant unless aR = aR+1 or bS= bS+1. Note that aR+1 and bS+1 are
either 0 or 1. If R = S = 0, then we have a fine K-type for SOo(n, m) and by Lemma
2.6 X is not unitary. Then if either R or S are non-zero, this means that 03BC does
not satisfy (3.7) and we can prove that X will not be unitary using the following 2
lemmas.

LEMMA 3.4. Let 03BC~it*0 dominant for 0394+(f, t) and LB: as defined above. Suppose
that
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then Dirac inequality fails on p.

LEMMA 3.5. We keep the notation of the above lemmas. Suppose that either
aR = aR+ 1 or bs = bS+ 1. Let {03B41, b2,..., Ôdl be an ordering of 03A003BC given by the
blocks that fl + 203C1c determines and let t be the smallest integer, such that 1  t  d

and (03BC + 203C1c, 03B4~i)  2 for all i  t. Then X is not unitary.

Proof of Lemma 3.4. We first prove the following
Claim. (03BC-03C1n,03BC, 03B1~)  0 for all simple 03B1~0394+(t) where 03C1n,03BC=03C103BC-03C1c and

03C103BC= P(,A+).

(a) If a is also simple for 0394+03BC, then (03BC + 2p,, 03B1~) (li, 03B1~) + 2(p,, 03B1~) =
(03BC, 03B1~)+2~(03BC, 03B1~)=0 and (03BC-03C1n,03BC, 03B1~)=(-03C1n,03BC, 03B1~)  0, since Pn,1J is

A + (t)-dominant.
(b) If a is not simple for 0394+03BC and (,u, 03B1~) = 0 we still can argue as in (i).
(c) If a is not simple for 0394+03BC and (03BC, 03B1~) &#x3E; 0 then we need to look at the blocks

of simple roots that fl + 2p, determines:

As before write 03A003BC for the simple roots of LB:. From Figures 3.8 (resp. 3.8")
and 3.9 we may deduce that if (y, 03B1~) &#x3E; 0 for some compact simple root a, not in

TIIJ’ then either

where the 03B2’jS are non compact and the ai’s, compact roots in TIIJ. We have
(again from Figures 3.8, 3.8" and 3.9), in case (i),

in case (ii),

in case (iii),

i.e., in these cases, a = 03A3ki=103B3i (k = 2, 3, 4), and
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moreover, (03C103BC, 03B1~) = k, since 03C103BC decreases by one on each simple root in 03A003BC. Then

Hence 03BC-03C1n,03BC is dominant for -03C1c and the claim follows for SOo(2p, 2q) and
SOo(2p + 1, 2q + 1). 
From Figures 3.8’ and 3.9, when G = SOo(2p + 1, 2q), if (p, a ) &#x3E; 0 for a

compact simple not in 03A003BC, then only cases (i) and (ii) in 3.13 hold, i.e., either

and again (3.14) holds by inspection of Figures 3.8’ and 3.9. Hence, since

(03C103BC, a ) = k in this case also, the claim follows for SO0(2p+1, 2q). Now, since
03BC-03C1n,03BC is dominant for -0394+(f) then the Dirac expression becomes

Then, we will prove Lemma 3.4 if we can show that (Jl- p,, Jl- 03C103BC)  (p,, 03C103BC),
whenever y satisfies 3.12. Again, from Figures 3.8 and 3.9, we may conclude that
if y satisfies 3.12 then, at worst we may have

where the jumps from one block to the other are exactly 2 on the top row.
If we write the coordinates of li in two rows, respecting the blocks to which

they correspond, we get
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and writing the coordinates of PIJ in these blocks we have

Clearly (fl- 03C103BC, 03BC-03C103BC)  (03C103BC, p,) unless r1 = r2 =... = rk = 0. This is the worst case
since any other configuration of blocks will make (03BC-03C103BC, 03BC-03C103BC) at least as bad
as this one.

From Figure 3.8’ the worst situation is

and the K-type p will have the same coordinates as in 3.16. So clearly if we
arrange 03C103BC as in 3.17 we will have

Similarly, the worst case from 3.8" and 3.9 is when the last block of the

sequence in 3.15 is of type 4" (in 3.8") and Lemma 3.4 follows then for

SO0(2p+1, 2q+1).
Proof of Lemma 3.5. The set of roots 03A01= {03B31,..., 03B3t-1} forms a group

Li = U(R’, S’) and TI2 = {03B3t,..., 03B3d} form a group L’2 = SO(N’, M’). Simply take in
Figure 3.9 all the blocks, starting from right to left up to the first time that the
jump to the left from one block to the next is greater than 2. These blocks will
give L2, then take all the roots of the leftover blocks to form L’1.

If L’ = L’1 x L2, then L’ ~ L and there is q’ ~ q such that (a) of Theorem 2.2
holds. (By Vogan [4], 6.5.9(g), 6.5.12(b) and 6.3.10). Corollary 5.3 in part 1

implies then that xi, has a Hermitian form ~, )L’ i.e. (b) of Theorem 2.2 holds.
Also 03BCL’ =03BC-203C1(u’~p) is the LKT of XL’, and by Lemma 3.4, Dirac

inequality fails on ,u2 = flL’ |L’2.
By Lemma 6.3(a) (part 1), there is a K-type V~’2 in V03BC’2~(I’2~p) that makes

~,~L’ |V~’2 ~V03BC’2 indefinite. Since (03BC+203C1c, 03B3~t-1) &#x3E; 2 and 03B1~0394(u’~f) is expressed as a
sum

with B c 03A003BC and B~03A0i ~ 0, i = 1, 2 then, since the ordering of fl is given by
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the blocks determined by fl+2pc, 03B3t-1~B and (03BC+203C1c, 03B1) &#x3E; 2. Hence

(03BC, 03B1) &#x3E; 0 and therefore, since ~ = ~2 + 203C1(u’~p)=03BC+03B2’ for some 03B2’~0394(I’2~p) we
have that il is dominant for 0394(u’~f) and (c) of Theorem 2.2 holds. By Theorem
2.3, X is not unitary.

This proves Lemma 3.5. Now, to conclude the proof of Lemma 3.3, we just
argue as in the proof of Lemma 3.5, with L = L1 x L2 and 13 E A(li np). Since y + fi
is dominant, if XL1 ~ Aq1(03BB1) then X is not unitary.
We will conclude the proof of Theorem 2.2 if we prove the following

LEMMA 3.6. We use the notation of 3.11 and Lemma 3.3 and its proof. Assume
XL1 ~ Aq1(03BB1), with aR &#x3E; aR+1 and bs &#x3E; bS+1 then Theorem 2.2 is true.

Proof. If aR &#x3E; aR+1 and bs &#x3E; bS+1 we will consider two cases.

(1) Suppose first that 03BC2=03BCLBL2 is trivial. Then Dirac inequality fails on p2
unless the infinitesimal character y2, of XL2 is PI2. If 03B32 ~ P12 then by Lemma 6.3
in Salamanca-Riba [2] we can find 13 E 0394(I2~p) such that the signature of the
form of XL2 on V03BC2 and V12+0 is indefinite. Clearly if 03BC2+03B2 is dominant for
0394+(I2~f) then, by the hypothesis of the lemma, y + /3 is dominant for A +(1), and
by Theorem 2.3, X is not unitary.
Now, if 03B32 =03C1I2 then the Langland’s subquotient of XL2 is the trival rep. Hence

the Langlands subquotient of -4 q (XL ~ XL2)=Rq(XL1) Q Blq(XL2) i s X ~

Rq(Aq1(03BB1))~Rq(trivial). By induction by stages, X is an Aq(03BB) module.
(2) Now suppose that Jl2 is not trivial. Since fl2 is fine, by Lemma 2.6, Dirac

inequality fails on 03BC2 and again, by the above argument in the casey 2 is trivial,
we can show that will be indefinite. This concludes the proof of Theorem
2.2.
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