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Introduction

The works of Malgrange [13], [14] and Ramis [15] have shown that the
classification of the differential equations in the complex plane is closely related
to the growth of their solutions. They used the growth of formal power series but
if we want to study the case of several variables we have to use microlocal
analysis, that is to consider sheaves on the cotangent bundle. In fact the good
object seems to be the sheaf of real holomorphic microfunctions ~RY|X of [16]
and, more precisely, a family of sheaves of the same kind with suitable

growth conditions.
The aim of this paper is to define these "real holomorphic microfunctions with

growth", prove some cohomological statements and then microlocalize them to
get "2-microlocal operators".
We made such a construction in a special case in [11] working with formal

microfunctions and obtained a construction of the vanishing cycles of a

holonomic 2)-module. In the next paper [12], we will use the microfunctions and
the 2-microlocal operators to construct the irregular vanishing cycles. From
this, we will be able to describe precisely the growth of the solutions and get the
index theorems which generalize the results of Ramis [15] in the one dimen-
sional case.

In [16], W$jx was defined as a local cohomology group, that is ~RY|X is the
microlocalization of the sheaf (9x of holomorphic functions on the complex
manifold X along the submanifold Y of X. In the same way, Andronikof [1]
defined a tempered microlocalization and, from it, he deduced the sheaf ~RY|X of
real microfunctions with polynomial growth.
We consider here another point of view, which was initiated by Boutet de

Monvel [3]: the sheaf is defined locally by a symbolic calculus and explicit
formulas are given for the action of a coordinate transformation. Aoki used this
method to define some subsheaves of ~RY|X in [2].

Boutet de Monvel worked in little neighborhoods of the real domain and
Aoki in the germs of the sheaf ~RY|X. But here we want to define symbols of the
new sheaves on global open sets and, moreover, we need results about the
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vanishing of some cohomology groups to define the sheaves of 2-microlocal

operators. That is why we have to consider growths given by plurisubharmonic
weights. Then the theorems we need are deduced from the well known results of
Hôrmander [5] about the cohomology with bounds of holomorphic functions.

Section 1 of this paper is devoted to some results about cohomology with
bounds on open conic subsets of C".

In the second section, we define the microlocal symbols and show how
coordinate transforms act on them. Then we can define the sheaves of real

holomorphic microfunctions ~RY|X(r, s), 1  s  r  + ~, the microlocal

operators and the microdifferential operators. We end the section with cohom-

ological results about these sheaves that are needed in the next section.
In Section 3, we define the 2-microlocal operators as a microlocalization of

the real holomorphic microfunctions. Then we establish a symbolic calculus for
them and prove that they are invariant under quantized canonical

transformations.

Using microlocalization in this definition allows us to consider 2-microlocal
operators in the general case of arbitrary lagrangian manifold where no
symbolic calculus is possible.

0. Some notations

A lot of different sheaves have been introduced in [16], in [10] and some others
will be defined here. This section presents these sheaves and their mutual
connections and fixes some notations:

X : a complex analytic manifold of dimension n.
Y: a complex submanifold of X of codimension d.
T*X: the cotangent bundle to X.
T*X : the cotangent bundle without the zero section: T*X = T*X - X.
P*X  !’*XIC* the projective cotangent bundle
P* fll = T*X/C*  P*X ~ X.
7: i’*X P*X 

the canonical projectionsT*X P*X 1 : T*X ~ Mv 

T*Y X: the conormal bundle to Y that is the kernel of (T*X) X Y - T* Y

T*Y X, P*Y X, P*Y X, yy, yy are defined from Ty*X as the corresponding object from
T*X.

(9x: the sheaf of holomorphic functions on X.
-qx: the sheaf of differential operators with coefficients in (9x.
W§/jx : the sheaf of "real holomorphic microfunctions" it is defined in [16] and [9]

as the microlocalization of (9x along Y:
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(Another definition will be given in Section 2.2). It is a sheaf on T*Y X.
~~Y|X = -1YY*~RY|X.
B~Y|X = HdY(OX).
By the definitions we have:

~~Y|X|T*YX = 03B3-1Y03B3Y*(~RY|X|T*YX) and B~Y|X = ~RY|X|Y.
If X is identified to the diagonal of X x X, the space T*X(X  X) is isomorphic to
T*X and thus the sheaf ~RX|X  X is a sheaf on T*X.
03B5RX = ~ RX|X  X x 03A9(0,n)X  X
where 03A9(0,n)X  X is the sheaf of holomorphic differential forms on X x X which are of
degree 0 in the first copy of X and of maximum degree n in the second.
E~X = -1 *ERX = ~~X|X  X ~OX  X 03A9(0,n)X  X
D~X = ERX|X = E~X|X.
D~X is the sheaf of differential operators of infinité order.

These sheaves were defined in [16] but ERX and tCf were denoted respectively
by PRX and &#x26;Px.

There exists other triples with the same mutual relations as (~RY|X, ~~Y|X, B~Y|X):
(1) (~RY|X, ~Y|X, BY|X): the first sheaf is defined in [1], the two others in [16].
(2) (ER,fX, EX, DX).
In this paper we will define new triples:

(a) (~RY|X(~, r), ~Y|X(~, r), BY|X(~, r)) where ~ is a plurisubharmonic function
on T*YX and r ~ R, r  1.

(b) (~RY|X(r, s), ~Y|X(r, s), BY|X(r, s)) is a special case of the preceding with
~(x, 03BE)=|03BE|1/r.

In each case there exists some ERX(*) ... ,

~RY|X is obtained when ~ = |03BE| and r = 1 and ~RY|X when r = 00.

Let us now come to the second microlocalization. We denote by A = T*YX
and A the diagonal of A x A. Then if IF is a sheaf on A x A we can consider its
microlocalization 03BCn0394(F) which is a sheaf on T*~ and then looking at the
canonical map y: T*A ~ P*~ consider -1*03BCn0394(F).

This has been done in [10] with the sheaves F = ~~Y  Y|X  X and

F = ~ Y  Y|X(r,s). We got:

In this paper we want to do the same with ~RY  Y|X  X and the sheaves

~RY  Y|X x x( (fJ, r), we will get: 
Y  Y|X  X
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and

Here (*) means one of the symbols (ç, r), (r, s) etc. and in fact from these four
types of sheaves we will be interested in -9" (cf. [10]) and in E2(R,~)~(*) for which
we will define a symbolic calculus.

All these definitions remain valid when A = T*YX is replaced by an arbitrary
homogeneous lagrangian submanifold of T*X as it will be seen in Section 3.

1. Cohomology with bounds on conic open sets

Using Hôrmander’s methods we extend to cohomology with bounds the

classical results on holomorphic functions.

1.1. Holomorphic functions

Let Uo be an open subset of en with coordinates x = (xl, ... , xj and 03930 be an
open R-conic subset of Cn’B{0} with coordinates 03BE = (ç 1, ... , (R-conic means
that rois stable under the action of Rt on Cn’B{0}). We denote by 03BB the
Lebesgue measure on Cn+n’.
Throughout this section an open subset V of U = Uo x Fo will be R-conic if it

is invariant under real positive homotheties in 03BE and we will write V’  V if
V’ ~ {|03BE| = 1} is relatively compact in K
Let ç be a plurisubharmonic function on U. For m ~ R, V conic open subset of

U and f ~ L2loc (V) we set:

Let W(9, V) be the set of the functions f e L’,,(V) such that, for every V’  V,
the norm ~f~ V’, ~,m is finite for m large enough and let S«p, V) be the subset of
W(~, V) of functions which are holomorphic on V.
When q belongs to [0,..., n+n’], W(’,")(9, V) denotes the set of differential

forms of type (0, q) with coefficients in W(~, V) and (0,q)(~, V) is the subset of
the forms u such that au E W(0,q+1)(~, V).
We denote by JU(~), W(0,q)U(~) and (0,q)U(~) the sheaves on U whose sections

on conic open sets V of U are respectively S(~, V), W(0,q)(~, V) and (0,q)(~, V)
(the index U is often omitted).
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Theorem 4.4.2 of [5] proves that we have an exact sequence

and therefore a resolution of J(~) by soft sheaves (with respect to the conic
topology).

LEMMA 1.1.0. If V is a R-conic open subset of U the following conditions are
equivalent:

(i) V is a domain of holomorphy.
(ii) There exists a continuous plurisubharmonic function 03C8 on V which is real

homogeneous of degree 0 in 03BE and such that:

In this case, we will say that 03C8 is a homogeneous exhaustion of V.

Proof. If gl satisfies (ii) sup(03C8(x, 03BE), |03BE|) is an ordinary plurisubharmonic
exhaustion of V which proves (i).

Conversely if V is a domain of holomorphy we define the following function
on V  Cn+n’:

It is known that, when V is pseudoconvex, - log bv is plurisubharmonic on
V  Cn+n’ ([4] Theorem 1.7.5).

If B(r) = {(y, ~) ~ Cn+n’/|(y, ~)|  rl then

is the euclidean distance to the complementary of K
Now we define, for j = 1,..., n’ :

and

If V is R-conic bv(x, 03BE; y, ~03BEj) is real homogeneous of degree 0 in 03BE hence the
same is true for 03B4hV(x, 03BE).
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On the other hand, if |03BEj|  1 we have:

hence

and if |03BE| = 1 we have:

Therefore the function 03C8(x, 03BE) = -log l5t(x, 03BE) is a homogeneous exhaustion of
V and is plurisubharmonic because:

PROPOSITION 1.1.1. Let V be a R-conic open subset of U. If V is a domain of
holomorphy then:

Proof. Let Vt, be a plurisubharmonic homogeneous exhaustion of V, x be a
convex positive increasing COO function on R and

As .po is homogeneous of degree 0 we have

and therefore

which proves that 03C8 is plurisubharmonic.
From Theorem 4.4.2 of [5], there exists for each g ~ L2(0,q+1)(V,03C8) such that

ag = 0 a solution u ~L2(0,q)(V, loc) of the equation Du = g which satisfies:
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Now we remark that for each g in W(o,q")(9, V), there exists an increasing
convex positive function x such that

PROPOSITION 1.1.2. Let V be a R-conic open subset of U, then

Proof. From the existence of the resolution (0)(~), it follows that

Hk(V, J(~)) = 0 for k &#x3E; n + n’. When k = n + n’, we can use the proof of Demailly
[4], Prop. 9.4.1:

We consider a function 03C80 which is strongly (n + n’)-convex on V (i.e. 03C80 is a
C2-function whose Levi matrix has at least one strictly positive eigenvalue),
homogeneous of degree 0 in 03BE and such that:

We can now follow the proof of (loc. cit.) using a function

with x convex increasing and positive.
(More generally, this proof gives the Andreotti-Grauert theorem for 5e(g),

that is: if V is strongly q-complete we have Hk(V, Y(q») = 0 when k  q.)
Let S be a complex analytic manifold and p be the projection S x U - U. If Q

is a local chart of S the preceding definitions give a sheaf J03A9 U(~°p) and
glowing these sheaves we get a sheaf i7s x u(ç) on S x U. We denote by US the
sheaf of holomorphic functions on S.

PROPOSITION 1.1.3. Let S be a compact complex analytic manifold and p be the
projection S x U ~ U. We suppose that ~ is a plurisubharmonic function on U.
Then

(If S is compact, Hk(S, (9s) is a finite dimensional C-vector space by the Cartan-
Serre theorem.)

Proof. We will show that when is an open subset of II satisfying the
hypothesis of Proposition 1.1.1, we have:
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We can calculate Hk(S  V, Js x U(~)) by the complex W(0,~ (~, S x V) which is
the subcomplex of W(0,·)(~, S x V) of the forms whose coefficients are C "0 in the
variables of S (cf. [5], Th. 4.2.5 and Cor. 4.2.6).
The complex W(0,·)~(~, S x V) is equal to the topological tensor product

W(0,·)(~, V)  ~~(0, .)(S).
In the complex ~~(0,·)(S), the differential has a close range because its

cohomology groups are finite dimensional over C and in W(0,·)(~, V) the
differential is of close range because all cohomology groups are null except one.
So we can apply the topological Künneth theorem and get the result.

COROLLARY 1.1.4. Let (~q)q0 be an increasing sequence of plurisubharmonic
functions on U and let JU(~~) = limq JU(~q).

(i) If V is a R-conic holomorphy domain in U, then

(ii) If V is a R-conic open subset of U, then

(iii) If S is a compact complex analytic manifold and p: S x U -+ U the projection
we have:

Proof. Let 4fo be a plurisubharmonic homogeneous exhaustion of v
We set

From Proposition 1.1.1, we have

and as rc = ~c’&#x3E;c Vc we have:

The sets F, are compacts (for the conic topology!), so as inductive limit

commutes with cohomology on compact sets we get:
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As V = ~c&#x3E;0 rc, Mittag-Leffler’s theorem ([17], Proposition 13.23) gives that
if for c &#x3E; 0, Hk-1(0393c, J(~~)) = 0 then

So we obtain (i) and the part (ii) is proved in the same way applying
Proposition 1.1.2 to any increasing family of compact subsets of E
For (iii), we consider a point a in U and fondamental system (0393c)c&#x3E;0 of

compact holomorphically convex neighborhoods of a. We have:

PROPOSITION 1.1.5. Let ~ be a positive plurisubharmonic function on U.

(i) If V is an open R-conic subset of U which is a domain of holomorphy then we
have:

(ii) If V is an open R-conic subset of U, then

(iii) If S is a compact complex analytic manifold and p : S x U ~ U the projection
then we have:

If moreover ~ is of the special form 9(x, 03BE) = ~0(|03BE|) then the same results are still
true for lim03B5 &#x3E; 0 J(03B5~).

Proof. In the proof of Proposition 1.1.1, the function u satisfying Du = g may be
chosen in (ker )~ and then the solution u is unique ([4], Remark 6.4.6).
Therefore if g E L2loc(V) is in W(O,q + 1)(03B5~, V) for each e &#x3E; 0 there is a solution u of

u = g in ~03B5&#x3E;0 (0,q)(03B5~, V). This proves (i) for lim03B5&#x3E;0 J(03B5~) and the parts (ii)
and (iii) are proved in the same way. 

~



32

Let us now consider the inductive limit lim03B5&#x3E;0 i7(8ç) and come back to the
proof of Proposition l.l.l. 

~

If g is a section on V of lim03B5&#x3E;0 (0,q+1)(03B5~), there exists two functions ~1 and
X2 which are positive convex increasing C~-functions on R such that

As in the proof of Proposition 1.1.1, 03C8 is plurisubharmonic because 03C80 is

plurisubharmonic and homogeneous of degree 0 in 03BE while ç and log(1 + lçl2)
depend only on lçl. By this way we can prove (i) using the proof of Proposition
1.1 and (ii) using the proof of Proposition 1.1.2. The third part of the proposition
for lim03B5 i7(8ç) is a special case of Corollary 1.1.4(iii).

1.2. Formal completion

When m E R, we denote by Sm(~, V) the subset of S(~, TI) of the functions f such
that ~f~V’,~,m is finite for each conic open set V’  tl and by Jm(~) the
corresponding sheaf.

For e &#x3E; 0 the canonical imbedding Jm(~)  Jm+03B5(~) gives morphisms
Hk(V, Jm(~)) ~ Hk(y, Jm+03B5(~)).

LEMMA 1.2.1. Let V be a R-conic open subset of U.

(a) If V is a domain of holomorphy, then for all k  1, all m &#x3E; k and e &#x3E; 0, the

morphism Hk(V, Y. (9» ~ Hk(V, Jm+03B5(~)) is zero.
(b) If V is any R-conic subset of U the preceding property is still true if

k  dimc U.

Proof. We will write Jm instead of Jm(~).
Let 1rm be the subsheaf of 1r(q» whose sections on an open set V satisfy

~f~V’,~,m  + 00 for all V’ c£ Y, W(0,p)m be the subsheaf of W(0,p)(~) of forms with
coefficients in 1rm. Let (0,p)m the subsheaf of W(0,p)m of the forms u such that
Du E W(0,p+m-1 1) and for e &#x3E; 0 fixed, V(0,p)m the subsheaf of W(0,p)m of the forms u
such that Du E W(0,p+1)m-1-03B5.
We will denote by (0,·)m the complex
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and by V(0,·)m the complex

Let us first remark that the sheaves (0,p)m-p are soft for the conic topology. In
fact, the C~-functions which are homogeneous of degree 0 in 03BE operate by
multiplication on these sheaves.

Secondly, if V is a conic domain of holomorphy, the complex 0393(V, V(0.·)m) is
exact in degree k  1 if m &#x3E; k. To prove this, we take the function 03C80 of the proof
of Proposition 1.1.1 and if ~ is a convex increasing positive function we consider

By [5] Lemma 4.4.1 applied to 03C8m(x, ç) + 10g(1 +(1 + |03BE|2)03B5) we get that for each
g ~ L2(0,q+1)(V,03C8m) such that g = 0 there exists u ~ L2(0,q)(V,03C8m+1+03B5) solution of
u = g. Then we conclude as in 1.1.1 choosing x big enough so that

g ~ L2(0,q+1)(V,03C8m).
This proves that V(0,·)m is a resolution of gm and so, for each conic open subset

V, the cohomology groups Hk(V, Jm) are equal to the hypercohomology groups
Hk(V, V(0,·)m).

If 03B1 &#x3E; (n+n’)03B5, the canonical map V(0,·)m  V(0,·)m+03B1 factorize in

V(0,·)m  (0,·)m  V(0,·)m+03B1 and therefore we have the same factorization in

hypercohomology:

As the sheaves (0,p)m-p are soft, the hypercohomology groups of (0,·)m are equal
to its cohomology groups Hk(V, (0,m ·)) = Hk(0393(V, W(0,m ·))) and the morphism of
these groups into Hk(V, V(0,·)m+03B1) factorize through the cohomology of V(0,·)m+03B1:

Finally we proved that Hk(V, Jm) ~ Hk(V, Jm+03B1) factorize in Hk(V, ,9m)-+
Hk(V, V(0,·)m+03B1) ~Hk(V, Jm+03B1) and this morphism is zero if Hk(V, V(0,·)m+03B1)=0
which proves the lemma.

LEMMA 1.2.2. Let S be a compact complex analytic manifold and p: S x U ~ U
be the projection. If k  0, m  k and e &#x3E; 0 the canonical map

is injective and its image contains the image of Rkp * Ys x U,m(~)·
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Proof. In the commutative square

jm is injective and a bijective (Proposition 1.1.3) therefore am is injective.
Let V be a R-conic domain of holomorphy in U denote by V~U,m+03B5 the

subcomplex of V(0,·)U,m+03B5 of the forms which are COO in the S-variables. It is a

resolution of Ym,,, so as in the proof of Proposition 1.1.3 we get by the

topological Künneth’s theorem:

From the preceding proof, the map

is factorized through Hk(S x Ji; V~m+03B5 ·)) ~ 0393(V, Jm+03B5(~)) ~C Hk(S, Os) and taking
the inductive limit on the neighborhoods of a point oc in U we have:

which gives the result.
Let us now assume that there exists on U a holomorphic function JÀ(x, 03BE)

whose real part is equivalent to lçl, i.e.:

(this property is satisfied if U = Uo x r 0 with r 0 strictly contained in a half
space).

PROPOSITION 1.2.3. Let ~ be a plurisubharmonic function on U and let us
define

(i) If V is a R-conic open subset of U and a domain of holomorphy, then:
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(ii) If V is a R-conic open subset of U, then

(iii) If S is a compact complex analytic manifold and p: S x U - U the projection,
then

Proof. The multiplication by (1+03BC(x, 03BE))N gives an isomorphism
Jm(~)  Jm+N(~), which proves that the results of Lemma 1.2.1 and 1.2.2 are
true for all m E R.

Let V be a R-conic domain of holomorphy in U. Lemma 1.2.1 proves that for
k  0, m E R and p &#x3E; 1, there is a commutative diagram

with ak = id and Yk = 0 so that the image of Pk is equal to the kernel of Ok that is
to Hk(V, Jm).
For all domains of holomorphy V and k  0, the projective system

Hk(V, Jm/Jm-p)p&#x3E;0 satisfy the Mittag-Leffier’s condition and from [17] Propo-
sition 13.3.1, we have:

Moreover, in the above diagram, the maps p, are injective for k  1, so as ak = id
and Yk = 0 the morphism

is an isomorphism.
Let us denote rêm = limp Jm/Jm-p. We have proved that when k  1 we have:

and therefore that
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Now we remark that lê.IY. does not depend on m and is therefore equal to
/J. We have Hk(V, /J) = 0 when k  1 and, as the same is true for J, we get

The second part of the proposition is proved in the same way. To prove the third
part we consider the sheaves

It is obvious that m satisfy the result of Lemma 1.1.4 so that  satisfy:

Now we remark that we have an exact sequence

where the first map is (fp)p0 ~ (fp - fp-1)p0 and the second

(fp)p0 ~ (03A3p-1k=0 fk)p1 which gives an exact sequence 0 ~  ~  ~ 0 and
proves the proposition.

2. Microlocal operators

2.1. Microlocal symbols

Let Uo be an open subset of Cn and 03930 an open R-conic subset of Cn’. The
coordinates on C" will be y=(y1, ... , yn) and on Cn’, 03BE = (03BE1, ... , 03BEn’). Let

U = U0  03930.
As in Section 1.1, R-conic means invariant under the positive real homotheties

in 03BE and, for R-conic sets V’ c V means relatively compact for the R-conic
topology.

Let refR, r  1, and let ç be a continuous function from U to R such that

lim|03BE|~~ ~(y, 03BE)/|03BE|1/r = 0 locally uniformly.

DEFINITION 2.1.1. Let V be a R-conic open subset of U.

(i) J+(~,V) is the set of holomorphic functions on V such that
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(ii) J _(r, V) is the set of holomorphic functions on V such that

We denote by J(~, r) the sheaf generated by the presheaf V ~ J(~, r, V).

(More precisely, the presheaf generates a sheaf on U with the R-conic

topology and J(~, r) is its preimage on U with the usual topology).

PROPOSITION 2.1.2. If V is a R-conic domain of holomorphy in U and if there
exists a holomorphic function 03BC(x, ç) whose real part is equivalent to |03BE|1/r on Y,
then

(0393(V, J(~, r)) is the set of global sections of J(~, r) on V).
Proof. Let !7+(q» and J_(r) be respectively the sheaves generated by V)

and !7 - (r, V), let ~q(x, 03BE) = -1 q Re 03BC(x, 03BE).
With the notations of Corollary 1.1.4 we have J_(r) = lim q~N* JU(~q).
The functions qJq are plurisubharmonic, so from the proof of Corollary 1.1.4,

there exists a family (rc)c&#x3E; 0 of compact subsets of V such that V = Uc&#x3E; 0 F, and
H1(0393c, i7- (r)) = 0. Thus we have:

The action of coordinate transformations on i7(ç, r) cannot be explicit on the
spaces J(~,r, V) so we will now introduce a new class of symbols, equivalent to
the preceding one, and which following Boutet de Monvel [3] we will call
"formal symbols".

DEFINITION 2.1.3. Let V be a R-conic open subset of U.

(i) Y, (9, r, V) is the set of the formal series 03A3k0 fk(y, 03BE) whose terms are in
J+(~, V) and satisfy:
VV’  V, 3m E R, 3A &#x3E; 0, 3c &#x3E; 0, 3C &#x3E; 0, V(y, 03BE) ~ V’, |03BE| &#x3E; c, ~k  0,

(ii) _(~,r, Y) is the subset of +(~, r, V) of the series f = 03A3k0 fk(Y, ç) such
that S(f) = 03A3k0 gk with gk = 03A30lk fl is still in +(~, r, V).
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The map which associates to an element f of Y, (9, V) the series 03A3k0 fk
defined by fo = f and fk = 0 if k &#x3E; 0 sends J+(~, Y) into +(~, r, V) and
J_(r, V) into _(~, r, V) hence defines a map from 91(g, r, V) to 4Î(ç, r, V).

LEMMA 2.1.4.

(i) The map J(~, r, V) - (~,r, V) is injective.
(ii) Let gl be a continuous function from U to R such that

This lemma has been proved in [3], Sections 1.13 and 1.14 when r = 1. We
may use the same proof when r &#x3E; 1.

THEOREM 2.1.5. Let Uo be a domain of holomorphy in C", ho a convex open R-
conic subset of e n’and V = Uo x 03930. The map J(~, r, V) ~ (~, r, V) is bijective.

REMARK. This theorem has been proved in [3], Theorem 1.2.3 but only for
small cones r (and for r = 1).

Proof. By the hypothesis, r is equal to Cn’ or is contained in a half space of C n.
Let us first assume that F=Cn ’ and consider an element 03A3k0 fk(y, 03BE) of

+(~, r, V’) with V’ = U 1  Cn’ and U 1 relatively compact open subset of Uo.
As lim|03BE| ~ ~ (p(y, 03BE)/|03BE|1/r = 0, we have from Definition 2.1.3: VU’ r--- U1, 3mE R,

~A &#x3E; 0, ~c &#x3E; 0, ~c &#x3E; 0, ~03B5 &#x3E; 0, ~C03B5 &#x3E; 0,

The Taylor development of the fk functions is

and Cauchy’s inequalities give: VR &#x3E; c, ~k  0, Va c- Nn’, Vy e U’1,
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Taking . and using Stirling’s formula, we get when k &#x3E; m:

that is, with other constants,

This proves that the series f(y, 03BE) = 03A3k0 fk(y, 03BE) is convergent and satisfies:

So there exists a function ~1(y, ç) such that

lim and

From Lemma 2.1.4, it follows that f is an element of Y«p, r, V’).
Let us now suppose that r c {Re 03BE1  01. Then if V’ c V, there exists some

ô &#x3E; 0 such that V’ c {(y, 03BE) ~ V/Re 03BE1  03B4|03BE|}.
For each 03BC &#x3E; 0 and a &#x3E; 0, we set

The g03B103BC(z) functions are holomorphic when Re z &#x3E; 0 and satisty
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Let 03A3k0 fk(y, 03BE) be an element of Y, (9, r, V’) with V’ (--- E We fix V"  V’. By
definition we have: 3 m c- R, 3 A &#x3E; 0, Vc &#x3E; 0, 3 C &#x3E; 0, V(y, 03BE) ~ V", |03BE| &#x3E; C, ~k  0

therefore the series f(y, 03BE) = 03A3k0 fk(y, 03BE)g03B1rk(03BE1/r1 is convergent on V" ~ {|03BE| &#x3E; c
if 03B1  A-1/r and we have:

This proves that f = 03A3k0 fk is in (~, r, V") and that f is a holomorphic
function on V" ~ {|03BE| &#x3E; c} which satisfy: ~C &#x3E; 0, V(x, 03BE) ~ V", |03BE| &#x3E; c,

Let Ci and C2 such that c  Cl  C2 and let 03B1(03BE) be a C°°-function on Cn’ such
that 03B1(03BE) = 0 if |03BE|  C1 and 03B1(03BE) = 1 if lçl &#x3E; C2.
The function (03B1f) = (ôa) f has a compact support, thus from Theorem 4.4.2 of

[5], there exists a C~-function g such that g = (03B1f) and lg(y, ç)1  C e - Re 03BE1

on V".

Now, the function af - g is in J+(~, V") and is equal to 03A3k0 fk in

4Î+ (ç, r, V").
~

Let us now consider the function qJr(Y, 03BE) = |03BE|1/r. We could define as before the
sets J(~r, r, V) and (~r, r, V) but the map J(~r, r, V) - (~r, r, V) is not

injective.
Nevertheless, we can define J(~-r, r, V) by replacing the majoration in

Definition 2.1.1(i) by the following: ~V’  V, ~03B5 &#x3E; 0, ~C03B5 &#x3E; 0, V(y, ç) EV’,
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and we define (~-r, r, V) as in Definition 2.1.3 replacing the majoration by:
~V’  V, 3A &#x3E; 0, 3c &#x3E; 0, ~03B5&#x3E;0, ~C03B5&#x3E;0, V(y, 03BE) ~ V’, |03BE| &#x3E; c, ~k  0,

By the same proof as in Theorem 2.1.5 we obtain:

PROPOSITION 2.1.6. If Uo is a domain of holomorphy and r an open R-conic
subset of Cn’, f V = Uo x r then the map J(~-r, r, V) ~ (~-r, r, V) is bijective.

2.2. Definition of microlocal operators

Let X be a complex analytic manifold, Y be a submanifold of X and let T*Y X be
the conormal bundle to Y in X.

As a fiber bundle, Ty*X is provided with a canonical action of C hence of R*,.
In the sequel, R-conic will refer to this action.

DEFINITION 2.2.1. Let reM, r  1, and let U be a R-conic open subset of

T*Y X.
A r-weight on U is a continuous plurisubharmonic function (p on U such that

limt~ + ~ (p(tX*)Itllr = 0 for t E R*+ uniformly for x* in a compact subset of U.
(The hypothesis "~ plurisubharmonic" will not be used in Section 2.2).

Let (Q, (xl,..., xn’, yl, ... , Yn)) be a local coordinate system of X such that
if 03A9 =  ~ Y we have Q = {(x, y) ~/x =0}. Let (T*, (x, y, 03BE, ~)) be the

local coordinate system associated to (x, y). We have (T*Y X) Y 03A9 =

{(x, y, 03BE, ~) ~ T*/x = 0, ~ = 0} and thus an isomorphism between (T*Y X) Y 03A9
and Uo x C"’ where Uo is an open subset of en. This allows us to consider the
sheaf J(~, r) on U ~ (T*Y X x y il) and we have now to define the action of a
coordinate transformation on J(~, r). From Theorem 2.1.5, it is enough to
define this action on the spaces 4Î(ç, r, V).

Let (Q’,x’,y’) be another coordinate system, X:Q-+Q’ be the coordinate
transformation and :(T*Y X) x y ÇI --+(Ty*X) x y D’thé map induced by x. In fact X
is given by (x, y) ~ (x’ = ~1(x, y), y’ = X2(X, y)) with ~1(0, y) = 0 and î is given by
2(y, ç) = (y’, ç’) with y’ = X2(0, y) and 03BE’ =t ~’1(0, y)-1 03BE. Let us define a matrix
M(x, y) by ~1(x, y) = M(x, y)· x and denote by J(y) the jacobian of xi(0, y).
When V is an open R-conic subset of (Ty*X) x y Q z Uo  Cn’ and V’ its image

under g, we define a map ~*: (~, r, V) - (~, r, V’) by:
(2.2.1) If f(y, 03BE) = 03A3k0 fk(y, 03BE) we set ~*f(y’,03BE’) = 03A3k0 gk(y’, 03BE) with

(y’, ç’) = X(y, ç) and
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It is easily verified that X, is well defined from (~, r, V) to (~, r, V’) and
that if x and x’ are two coordinate transforms we have (~~’)* = ~*~’*, which
proves that ~* is an isomorphism.
As the sheaf J(~, r) is generated by the presheaf V ~ (~, r, V), the formula

2.2.1 defines an isomorphism ~*: J(~, r) -+ x -1 J(~, r).

DEFINITION 2.2.2. Let r E R, r  1, and let ç be a r-weight on a R-conic open
subset U of T*Y X.
The sheaf ~RY|X(~, r) is the sheaf on U which is defined by the gluing of the

sheaves r) along the isomorphisms ~*.

If 03C0 is the canonical map n : Ty* X -+ 1’: then ~RY|X(~, r) is a sheaf of 03C0-1(OX|Y)-
modules.

DEFINITION 2.2.3. Under the preceding hypothesis, we set:

In the following text the symbol ~* in ~RY|X(~, r) will mean ~, 9 ’ or ~-.
Let us now define the sheaves of microlocal operators.
Let X be a complex analytic manifold. If we identify the diagonal of X x X to

X, the conormal bundle T*X(X x X) is identified to T*X and thus ~RX|X x x«p*, r)
is a sheaf on T*X. Now ç is a function on an open subset of T*X.

We denote by 03A9(0,n)X  X the sheaf of holomorphic differential forms on X x X of
degree 0 in the first variables and of maximum degree n = dim X in the second.

DEFINITION 2.2.4. The sheaf of microlocal operators of ~*-type is the sheaf
on T*X defined by:

«p* means (p, ~+ or ~ -).

Let (Q, (x1,..., xj) be a local coordinate system of X, then T*03A9 ~ S2  Cn. If

Ho is a domain of holomorphy in 03A9 and ro a convex cone in Cn’/{0}, then the set
of the sections of ERX(~, r) on V = Qo x rois (~, r, V).

Let x : (Q, x) ~ (03A9’, x’) be a coordinate transform and x : T*g -+ T*n’ be the
induced isomorphism. The isomorphism x* on 4Î(ç, r, V) is given by:
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If f = 03A3k0 fk (x, 03BE) and (x’, 03BE’) = /(x, 03BE) then ~*f(x’, 03BE’) = 03A3k0 gk (X’, 03BE’) with

In this formula M(x, x) is defined by x(x) - x(x) = M(x, ) · (x - x).
When P = 03A3k o Pk(x, 03BE) and Q = 03A3k0 Qk(x, 03BE) are two formal series of holom-

orphic functions on V c C" x C" we set: P # Q(x, 03BE) = 03A3k0 (P # Q)k(x, 03BE) with

PROPOSITION 2.2.5. Let ~1 and 92 be two r-weights on U.

(ii) If X is a coordinate transform then

Thèse results may be proved by a direct calculation, but it is easier to get them
from the fact that the same formulas are true for the usual microdifferential

operators.

COROLLARY 2.2.6. The operation (P, Q) ~ P # Q provides ERX(~+, r) and
ERX(~-, r) with a structure of sheaves of unitary rings.
The same formulas provide ~RY|X(~+, r) with a structure of ERX(~+, r)-module

and ~RY|X(~*, r) with a structure of ERX(~-, r)-module when ~ is a r-weight on a
neighborhood of T*Y X.

Let (, x, y) a local coordinate system of X such that 03A9 = ~Y =
{(x, y) ~ /x = 0} and let (T*03A9, (y, 03BE)) be the corresponding coordinate system of
T*YX.
The function ~s(x, 03BE) = |03BE|1/s is well defined on TJQ and is a r-weight if r  s.

So we may consider the sheaves ~RY|X(~*s, r) on TJQ.
In a coordinate transform the function ~s is not preserved but if (y, 03BE) and

(y’, 03BE’) are two coordinate systems, there exist always Ci &#x3E; 0 and C2 &#x3E; 0 such
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that C1|03BE’|1/s  |03BE|1/s  C2Iç’ll/s, hence the sheaves ~RY|X(~+s, r) and ~RY|X(~-s, r) do
not depend on the local coordinate system.
When r = s, it follows from the preceding section that the sheaf J(~-r, r) is

well defined in a local chart and is generated by the presheaf V ~ (~-r, r, V).
Moreover, it is easy to see that the morphisms x* act on the spaces (~-r, r, V)
and it follows that we can define a sheaf ~RY|X(~-r, r, V) by gluing the J(~-r, r)
along the x* .

DEFINITION 2.2.7. (i) Let r, s in IR such that s &#x3E; r  1, the sheaf ~RY|X(S, r) is the
sheaf which is equal to ~RY|X(~+s, r) in each local chart (y, 03BE) with ~s(y, 03BE) = |03BE|1/s.

(ii) The sheaf ~RY|X(r) is the sheaf equal to ~RY|X(~-r, r) in each local chart with
~r(y, 03BE) = |03BE|1/r.

(iii) With ~~ being the function 1 on T*Y X, we set

If we fix m in Definition 2.1.1, we get the spaces J+,m(~, V) and, for ~~ = 1,
J+,m(~~, V) is the set of holomorphic functions on V such that

and

In the same way we can define m(~~, r, V) which is clearly invariant under
the morphisms x*. From this we can define the sheaves ~RY|X,m(~, r) and we have

DEFINITION 2.2.8 The sheaf ~RY|X(~) is given by

with

DEFINITION 2.2.9 Let X be a complex analytic manifold and let r, s be two
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real numbers such that r &#x3E; s  1 or r = 00.

ERX(r, s) and ERX(r) are sheaves of rings on T*X.
For 1  r  + oo, we will often write ~RY|X(r, r) instead of ~RY|X(r) and ERX(r, r)

instead of ERX(r) to unify the statements with the case (r, s), r &#x3E; s but we have to

take care because

and

PROPOSITION 2.2.10 The sheaf ERX(1) may be identified with the sheaf ERX of
[16] and ERX(~, 1) with the sheaf ER,fX of [1].
The identity between ERX(1) and ERX is a consequence of Theorem 2.1.1 of Aoki

[2], and the other case can be proved by the same method.

REMARK. In [2], Aoki has defined some subsheaves of ERX which he denotes by
ERX(r) and which are equal to the sheaves ERX(r, 1) of Definition 2.2.4 here.
On the other hand we defined in [11] a sheaf RX which is denoted here ERX(~),

it is called the sheaf of formal microlocal operators.

2.3. M icrodifferential operators

Let X be a complex analytic manifold, Y be a submanifold of X, T*Y X be the
conormal bundle to Y in X. We identify Y with the null section of T*Y X and set
T*Y X = T*Y X-Y.

Let P*Y X ~ T*Y X/C* be the complex projective conormal bundle and

03B3:T*Y X ~ P*Y X be the canonical projection. Moreover we will consider the set
P*Y X = T*Y X/C* which is isomorphic to the disjointed union of P*Y X and Y and
the canonical projection : T*Y X ~ P*Y X.

In this section, the function ~ will be a r-weight (r ~ IR, r  1) which is defined
on a C*-conic open subset U of T*Y X. By definition C*-conic is equivalent to
U = -1((U)).
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DEFINITION 2.3.1. The sheaves ~Y|X(~*, r) and BY|X(~*, r) are defined by

By definition we have

and

As before ~* means ~+, ~- or ç and by the same definition we have the
sheaves ~Y|X(r, s) and ~Y|X(r) with 1  s  r  + ~.

LEMMA 2.3.2 For each k  1, we have

Proof. When T*Y X is provided with the R-conic topology, 00FF is a proper map
and thus for each x ~ P*Y X, each k  0 and each sheaf ff on T*Y X we have

As -1(x) is isomorphic to C or to C* = CB{0}, we have Rk*(F) = 0 if k  2.
If we take the notations of the proof of Proposition 2.1.2, we have

~RY|X(~,r) = J+(~)/J_(r) and thus an exact sequence:

From Proposition 1.1.1, we have

hence R1*(J+(~)) = 0 and R1*(~RY|X(~, r)) = 0. Replacing Proposition 1.1.1 by
Proposition 1.1.5, we get the same result for ~RY|X(~-, r).
At last, as -1(x) is compact for the R-conic topology, the cohomology on

-1(x) commutes with inductive limits which gives the result for ~RY|X(~+, r).

PROPOSITION 2.3.3. 7/’Pi and Y2 are two open sets in T*Y X with Vl not empty,
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V2 connected and Vl c V2, then the restriction morphism

is injective.
Proof The result is known for the sheaf ~RY|X ([16], Chap. III, Th. 2.2.8). By a

ramification, we get the same result for ~RY|X(r) when r  1 and now we remark
that ~RY|X(~*, r) is always a subsheaf of ~RY|X(r).
COROLLARY 2.3.4. ~Y|X(~*, r) is 03B1 subsheaf of ~RY|X(~*, r).

Proof. The morphism ~Y|X(~*, r) ~ ~RY|X(~*, r) is given by the restriction
morphism:

and it is injective by Proposition 2.3.3.
With the notations of Section 2.1 we have:

PROPOSITION 2.3.5. Let Uo be open in en and U = Uo  Cn’. Let r ~ R, r  1, ~
a r-weight on U.

If V is a R-conic open subset of U which is a domain of holomorphy then:

Proof. When V = Yo  Cn’, this result is a consequence of Theorem 2.1.5, thus
we may suppose that V c Uo x Cn’/{0}.

Let +(~, r) and _(~, r) the sheaves whose sections on R-conic open sets V
are respectively +(~, r, V) and 4Î-(ç, r, V). 
From Theorem 2.1.5, Y(g, r) is the quotient sheaf Y, «p, r)/_(~, r) and to

prove the proposition we have to show that if V is a domain of holomorphy then

This is proved as Proposition 1.1.1 by Theorem 4.4.2 of [5].
As in the preceding section we consider a local coordinate system (Q, (x1,...,

Xn, y 1, ... , y.» of X such that

the corresponding coordinate system of T*Y X.
Let V be a R-conic domain of holomorphy in TJQ. From Proposition 2.1.2, a

section of ~RY|X(~*, r) on V has a symbol in 0393(V, J(~*, r)) if V is contained in a
half space but from Proposition 2.3.5, it has always a symbol in r(J’; (~*, r)).



48

This applies to C*-conic open sets, hence to sections of the sheaf ~Y|X(~*, r): if
V is an open subset of T*Y X whose fibers for y are connected and if P = 03B3-1 03B3(V)
then:

(But a section of ~Y|X(~*, r) can never have a symbol in some J(~*, r, V)).
From this, we can define a better symbolic calculus for W,,,«p , r) analogous

to the symbolic calculus of ~Y|X in [16].

THEOREM 2.3.6. Let (0, (x, y)) be a local coordinate system of X, 03A9 = Y n 0 and
(T*03A9, (y, ç)) be the corresponding coordinate system of T*Y X.

Let r  1 and let ~ be a r-weight on T*03A9. We suppose that ~ satisfy:

Let V be a C*-conic open subset of T*03A9. The set of sections of ~Y|X(~+, r) on V
is isomorphic to the set offormal series 03A3k~Z fk(Y, ç) of holomorphic functions on V
such that

The same result is true for ~Y|X(~-, r) f we replace the condition (ii) by:
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REMARK. If u is a section of BY|X(~+, r) or BY|X(~-, r) on an open subset U of
Y, its symbol will be a formal series 03A3k0 fk(y, 03BE) satisfying conditions (i), and (ii)
or (iv).

Proof. We will consider ~Y|X(~+, r), the other case would be the same. Let us
denote by (~+, r, V) the set of the series which are defined on V and satisfy (i),
(ii) and (iii). The presheaf V ~ (~+, r, V) is clearly a sheaf, hence the theorem is
local in V and we can suppose that V is a domain of holomorphy.
From Proposition 2.3.5, 0393(V, ~Y|X(~+, r)) is isomorphic to

Let , we have:

and

hence

The formal series 03A3k0 gk(y, 03BE) defined by g0(y, 03BE) = 03A3k0 fk(y, 03BE) and

gk(y, 03BE) = f- k (Y’ 03BE) when k  1 is thus an element of +(C’ ~, r, V).
We get a map F from (~+, r, V) to (~+, r, V) and it is easy to see using the

Cauchy inequalities that this map is injective.
To show that this map is surjective, we will first suppose that

then using the coordinates (y, 03BE2/03BE1,...,03BEn/03BE1;03BE1) we can suppose that

V = Yo x C * with just one variable 03BE.
Let % c Vo and V’ = V’0  C*, let f(y, 03BE) = 03A3k0 fk(y, 03BE) in +(c~, r, V’).
The functions fk have a representation in Laurent series:
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and from Definition 2.1.3 and the Cauchy inequalities

As lim|03BE| ~ ~ ~(y, 03BE)/|03BE|1/r = 0 we have:

hence

and with

and

The series fl(y) = 03A3k0 fkl(y) is therefore convergent and satisfies:

Now we consider the functions

We have f+(y, 03BE) =03A3k0 fk+(y, 03BE) and 03A3k0 fk+(y, 03BE) is a formal symbol of
+(~+, r, V’) hence f+(y, 03BE) is in J+(~+, V’) (Lemma 2.1.4) that is:

The Cauchy inequalities applied to f + give:

hence the inequalities (ii) by definition of (Pk-
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The formal series 03A3l~Z f’(y)ç’ is thus in (~+, r, V’) and its image by F is the
series 1 f,(y, 03BE).

This proves that F is surjective from (~+, r, V’) to (~+, r, V’) for each
V’  V and, as F is injective, from (~+, r, V) to (~+, r, V) when

V ~ {03BE1 ~ 0}.
In the general case, the problem being local in V, we may suppose that V is of

the preceding type or that V contains (j = 01. In the latter case, we have
V ~ Vo x C" and the proof is the same, the fk(y, 03BE)’s being represented in Taylor
series:

EXAMPLE 2.3.7. When s  1 and ~s(y, 03BE) = |03BE|1/s, ~k is the constant

~k = (ks) - ks eks and the Stirling’s formula shows that in Theorem 2.3.6, ~k may be
replaced by 11(k!)s. When ~(y, 03BE) = 1, we cannot apply Theorem 2.3.6 but the
same calculus gives:

PROPOSITION 2.3.8. The set of sections of ~Y|X,m(r) on V is isomorphic to the
set of formal series 03A3k~Z fk(y, ç) of holomorphic function on V such that:

(i) For each k in Z, fk(y, ç) is homogeneous of degree k in ç.
(ii) ~k &#x3E; m, fk(y, 03BE) = 0.

(iii) ~K  V, ~C0 &#x3E; 0, ~C &#x3E; 0, ~k 0,

When r = ao the condition (iii) has to be removed in Theorem 2.3.6 and in
Proposition 2.3.8.

Let X be a complex analytic manifold and ÿ be the projection
T*X ~ T*X/C* ~ P*X ~ X. The sheaves of microdifferential operators are

defined by

and the sheaves of differential operators by

We define in the same way the sheaves EX(r, s) for 1  s  r  + ~.
Theorem 2.3.6 proves that the sheaf EX(r, s) is exactly the sheaf which has been

defined in [10], Section 1.5.
When r = 1, we saw that ERX(1) is the sheaf 6% of [8], [16] (it is denoted by PRX
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in [16]). The sheaf 6x(1) is thus the sheaf Cr of microdifferential operators of
infinite order.

The sheaf EX(~, 1) is the sheaf C x of ordinary microdifferential operators and
the equality EX = -1*RX(~, 1) was proved in [1].
At last let us remark that EX,m(~, 1) is the sheaf 8 X,m of microdifferential

operators of order m and that EX(~) is the sheaf gx of formal microdifferential
operators.
The symbol of an operator of EX(~±, r) where 9 satisfies the conditions of

Theorem 2.3.6 is a formal series 03A3k~Z fk(x, 03BE) of functions on T*X which satisfy
conditions (i), (ii), (iii) or (i), (iv), (iii). The formulas for the product of two
operators and the coordinate transforms are the same as in [16] for gx.

PROPOSITION 2.3.9. Let r, s be such that 1  s  r  + oo, then

This proposition is easily proved using the symbolic calculus. In fact if

y = {(x, y) E X/x = 01 then it is well known that

as a tff x-module and it is easy to see that the same result is true for WRI x (r, s) as a
ERX(r, s)-module and ~Y|X(r, s) as a gx(r, s)-module.
The same is true for ~RY|X(r) and in fact if ç is a r-weight on T*X in a

neighborhood of T*Y X if Ç = (pltx then we have:

2.4. Canonical transformations

PROPOSITION 2.4.1 (Division theorem). Let (x,,..., Xn, ç 1’... , çn) be a local
coordinate system of T*X and let (xo, ço) be a point of T*X with Ço = (0, ... , 0, 1).

Let P be a microdifferential operator of EX defined in a neighborhood of (xo, ço)
whose principal symbol satisfies:

There exists a neighborhood V of (xo, 03BE0) such that each section S of ERX(~*, r)
defined on V c V has a unique representation
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with Q and R sections of ERX(~*, r) on V’, R having a symbol of the form

Proof. It is enough to prove the theorem for ERX(~, r), then we get the cases ~+
and ~- by unicity.

Let f = 03A3k0 fk(x, 03BE) be a formal series of holomorphic functions on an open
R-conic convex subset V of Cn x (Cn’/{0}), the formal norm of Boutet de Monvel
[3] is:

From [3] we have

and 4Î(ç, r, V) is the set of formal series f such that N(")(f, T) is convergent for
|T|  To for some To &#x3E; 0.
Now we can prove the proposition following the proof of Theorem 2.2.1, Ch.

II of [16] with this formal norm.
In the same way it can be proved that Proposition 2.4.1 is still true if we

replace 03BE1 par x 1. (In this case another proof works as in Kashiwara-Schapira
[8], Lemma 6.2.1.)
These division theorems allow us to define quantized canonical transforms

using the usual proof of EX and E~X (cf. [16], Ch. II or [8]). We obtain:

THEOREM 2.4.2. Let f be a canonical transform from an open set U of T*X to an
open set U’ of T*X’ (with X and X’ complex manifolds of the same dimension).
Any quantized canonical transformation

extends uniquely in an isomorphism of sheaves of rings

for each r  1 and each r-weight ~.

The proof of Theorem 3.4.1, Ch. Il in [16] gives, with the preceding results:

THEOREM 2.4.3. The sheaves of ring ERX(~+, r) and ERX(~-, r) and faithfully flat
over EX.
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2.5. Cohomological properties

Let X be a complex analytic manifold and Y be a submanifold of X. Let r E R,
r  1, and ~ be a r-weight on an open subset U of T*Y X.

PROPOSITION 2.5.1. Let V be an open R-conic subset of U which is contained in
some local chart domain (y, ç) and where it exists a holomorphic function 03BC whose

real part is equivalent to (For example V is contained in some halfspace
Re 03BE1 &#x3E; 0).

(i) ~k  dimC X, Hk(V, ~RY|X(~, r)) = 0.
(ii) If V is a domain of holomorphy then

The same results are also true for ~RY|X(~-, r) and when ~ is of the form
cp(y, ç) = ~0(|03BE|) they are still true for ~RY|X(~+, r).

Proof. As V is contained in a chart domain, ~RY|X(~, r) is identified to J(~, r)
and we can write as in the proof of Proposition 2.1.2:

where ~q(y, 03BE) = -1/q Re ,u(y, ç) is pluriharmonic on E
The proposition is true for i7+ (ç) by Proposition 1.1.1 and 1.1.2 and it is still

true for limq J(~q) by Corollary 1.1.4 but only for k &#x3E; dimc X in (i) and for k &#x3E; 1
in (ii). 
We conclude using the long exact sequence

The results for ~RY|X(~+, r) and ~RY|X(~-, r) are proved in the same way using
Proposition 1.1.5.

In the same way, Propositions 1.1.3, 1.1.5 and 1.1.6 give

PROPOSITION 2.5.2. Let S be a compact complex analytic manifold and
p: S x T*Y X ~ T*Y X the projection. Then

These results are true, as a special case, for the sheaves ~RY|X(r, s) and ~RY|X(r) if
r  +oo.

The sheaf ~RY|X(~) is, by definition, the formal completion of ~RY|X(~, 1), so
from Proposition 1.2.3 we get:
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PROPOSITION 2.5.3. The results of Propositions 2.5.1 and 2.5.2 are still true for
~RY|X(~).

PROPOSITION 2.5.4. Let V be an open R-conic subset of T*Y X contained in
some local chart domain and whose fibers for the projection : T*Y X ~ Pt X u Y are
contractible.

(i) ~k  dimc X, Hk(Y, ~Y|X(~*, r)) = 0.
(ii) If moreover y(V) is a holomorphy domain, then

(iii) If S is a compact complex analytic manifold

(when ~* = ~+ we have to assume that ~(y, ç) = ~0(|03BE|)).
The proof is easily obtained from Lemma 2.3.2 and the corresponding results

for ~R.
As we showed in [7] (cf. [10]), if a family of (9x-modules satisfies the

Propositions 2.3.3, 2.5.1 and 2.5.2, it satisfies the "Edge of the Wedge" theorem,
that is we have the following result:

THEOREM 2.5.5 ("Edge of the Wedge"). Let X=Cn and Y = Cn-p X {0}. c en.
Let G be a convex closed subset of T*Y X = Cn-p X Cp which is R-conic.

Let x be a point of G. Assume that there exists no complex line L such that L n G
is a neighborhood of x in L. Then

when .f’ is one of the following sheaves:

3. The sheaf of 2-microlocal operators

Let X be an analytic manifold and Y a submanifold of X, let Ty*X be the
conormal bundle to Y in X.
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If IF is a sheaf of C-vector spaces on X, the microlocalization of IF along Y is
a complex of sheaves on T*Y X which is denoted by 03BCY(F) (more exactly it is an
object in the derived category of sheaves on T*Y X). We refer to [8], [9] for the
definition of the microlocalization which was first used in [16]. We denote by
03BCkY(F) the k th cohomology group of py(,9’). Let us recall that when Y is

identified to the null section of Ty*X we have 03BCY(F)|Y ~ R0393Y(F) and thus
03BCkY(F)|Y ~ HkY(F)·
When F is the sheaf (9x of holomorphic functions on a complex manifold X,

03BCdY(OX) (d = codimX Y) is precisely the sheaf ~RY|X of [16] which is isomorphic to
W$jx(1) as we stated in Section 2. In the same way:

Most properties of ~RY|X and ERX in [16] come from the following property:

In [10], we defined the 2-microdifferential operators by substituting ~Y|X(r, s)
to (9,. Here we will use the sheaves ~RY|X(~*, r) to get a new class of operators.

3.1. Definition of 2-microlocal operators

Let X be a complex analytic manifold, Y be a submanifold of X and A = Ty*X be
the conormal bundle to Y in X.

From now on, the symbol W$jx(*) will mean one of the sheaves that satisfy
Theorem 2.5.5 that is:

(i) ~RY|X(~, r) or ~RY|X(~-, r) when r is a real number with r  1 and ~ is a r-
weight (Definition 2.2.1) on a R-conic open subset of A.

(ii) ~RY|X(~ +, r) if ~ is a r-weight such that there exists a coordinate system
(y, 03BE) of T*Y X where ç is a function of |03BE|.

(iii) ~RY|X(r, s) when r, s are numbers such that 1  s  r  + ~.
From W$jx(*) will be defined some sheaves for which we will keep the same

notation, for example if we write as in Definition 2.3.1: BY|X(*) = ~RY|X(*)|Y, this
means that BY|X(~, r) = ~RY|X(~, r)ly, BY|X(r) = ~RY|X(r)|Y and the same

formula for all cases (i), (ii), (iii) here above.
The diagonal of A x A will be denoted by A and the isomorphism 0 ,: A gives

an identification T*0394(~ x ~) ~ T*A.

DEFINITION 3.1.1. The sheaf of 2-microlocal operators on T*A is:
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where n = dim X = dim A and 03A9(0,n)X  X is the sheaf of holomorphic differential
forms on X x X with degree 0 in the first variables.

When E is an homogeneous submanifold of A of codimension d in A, we
define:

It is a sheaf on T*03A3 ~ and by definition we have:

As for the microdifferential operators the basic result is:

PROPOSITION 3.1.2. Let d be the codimension of E in A

Proof. Using Theorem 2.5.5. we can make the same proof as Theorem 1.3.2,
Chap. 1 of [16].
More generally, let us consider a lagrangian conic submanifold of T*X (here

conic means complex conic).
Let N be a simple holonomic left 8 x-module with support A, its dual

N* =EXtnEX(N, EX) is a right 6x-module and N*03B1 = N* ~OX 03A9~-1X is a simple
holonomic left Ox-module (03A9X is the sheaf of holomorphic differential form of
maximum degree on X).

It was proved in [6] and [10], that the simple holonomic 8 x x x-module
M~ = N ê JV *a is independent of the choice of JV and thus is globally defined
in a neighborhood of the diagonal A of A x A in T*X x X.

DEFINITION 3.1.3. We set:

and we define the sheaf of 2-microlocal operators on T*A of type (*) as:

When A = T*Y X we have JI A = ~Y  Y|X  X and the definition is the same as
Definition 2.1.1 (by Proposition 2.3.9).
From now on we will exclude the case (9, r) in (*) to get the following:

PROPOSITION



58

The proof of this proposition is the same as the proof of Theorem 2.1.5 in [10].
It is based on the isomorphism:

For E2(R,R)~(~, r) we have no ring structure but an external operation:

Let us denote by ~ the canonical projection from T*A to

T*~/C* ~ (P*A) U A.

DEFINITION 3.1.5. We define a sheaf of rings on T*A by:

and we denote by D2(R,~)~(*) the sheaf E2(R,R)~(*)|~.
REMARK. By the definition we have:

Let Ai and A2 be two lagrangian conic submanifolds of T*X1 and T*X2
respectively and let ~: T*X1 ~ T*X2 a canonical transformation which

exchanges Ai and A2. Let : T*~1 ~ T*~2 be the map induced by 9.
Each quantized canonical transformation 03A6: EX1 ~ ~-1EX2 induces an iso-

morphism M~1(*) ~ (~ Q ~)-1 M~2(*) and thus isomorphism of sheaves of rings:

and

3.2. Symbols of 2-microlocal operators

We show in this section that when A is of the special form T*Y X, we can define
symbols for the operators of E2(R, ~)~(*) to make explicit calculations on these
operators.
The method we use here is the method of [10] that is of [16]. Using Aoki’s

method [2] we could in the same way define a symbolic calculus for the sheaf
E2(R,R)~(*).
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Let Y be a submanifold of X and let (x 1, ... , xp, t1, ... , tq) a local coordinate
system of X such that Y = {(x, t) E X/t = 01. If (x, t, j, 7:) is the corresponding
coordinate system of T*X we have

and we denote by (x, 7:, x*, 7:*) the local coordinate system of T*A associated to
(x, 7:).

DEFINITION 3.2.1. Let (r, s) be two real numbers with 1  s  r  + ~. Let
a = (xo, 03C40, x*0, 03C4*0) be a point of T*A with 03C40 ~ 0.

(i) g;, +(r, s) is the set of formal series

such that:

(3.2.1) There exists an open neighborhood V of a in T*A, R-conic in (03C4, x*) and
C*-conic in (x*, i*), such that for each (i, k) ~ Z x N, uik is holomorphic on V and
homogeneous of degree i in (x*, i*).

such that the series S(u) = 03A3 03BDik given by 03BDik = 03A30lk uik is an element of

1 a, , (r, s).
(iii) 203B1(r, s) = 203B1, + (r, s)/203B1,- (r, s).
(iv) When 1  s = r  + oo, 203B1(r, r) has the same definition except that

(3.2.2) is modified in:

(v) When 1  s  r = + oo, we have to replace the function:



60

(vi) When r = s = + oo, the condition 3.2.2 has to be replaced by:

THEOREM 3.2.2. Let r, s be such that 1  s  r  + oo and let

a = (xo, 03C40, x*, 03C4*0) be a point of T*A with -r. :0 0.
The set !/(1.2(r, s) is equal to the set of germs of the sheaf E2(R,~)~(r, s) at the

point oc.

If P ~ E2(R,~)~(r, s)(1.’ a symbol of P is an element of 203B1,+(r, s) whose image in
a 2(r, s) corresponds to P.

THEOREM 3.2.3. Let P and Q be two elements of E2(R,~)~(r, s)(1. with respective
symbols

Then the product R = PQ of P and Q in the ring E2(R, ~)~(r, s) has a symbol
r = p # q defined by:

The proof of these two theorems is exactly the same as the proof of Theorem
2.3.1 and 2.3.3 in [10], replacing the symbols of ~~Y|X by those of ~RY|X(r,s), that is
by the elements of g(r, s) of Section 2.1.
We have supposed that To :0 0, because when io = 0, we are in the case of 2-

microdifferential operators, that is in the case of [10] as we will see in the next
section.

In fact, the same calculations give symbols for each E2(R, ~)~(~*, r) with due
modification in the definitions. We can define lx r) in the following way:

DEFINITION 3.2.4. Let r ~ R, r a 1 and let ~(x, t, 03BE, i) be a r-weight on T*X
defined in a neighborhood of A = T*Y X.
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For 8 sufficiently small we define:

sup

then 203B1,+(~, r) is the set of series

which satisfy (3.2.1) and:

Then we can define:

and

We now have:

THEOREM 3.2.5. The set 203B1(~*, r) is equal to E2(R, ~)~(~*, S)03B1.
(As before ~* means ~+, ~, ~-.)
The formulas of Theorem 3.2.3 give the ring structure of E2(R, ~)~(~+, r) and

E2(R, ~)~(~-, r).
When a is a point of the null section A of T*A, that is when we consider

sections of D2~(r, s) or D2~(~*, r), Theorems 3.2.2 and 3.2.5 are still true but the
symbols are of the following special type:
The functions pik(x, 7:, x*, 7:*) are equal to 0 when i  0 and are homogeneous

polynomials of degree i in (x*, 03C4*) when i  0.

Instead of the formal symbols of ~RY|X we could use the "convergent symbols",
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that is the sets J(~, r, V), and define "convergent symbols" of E2(R, ~)~(r, s):
DEFINITION 3.2.6. Let (r, s) be two real numbers with 1  s  r  + ~ and
a = (xo, io, xô, r*) be a point of T*A with 03C40 ~ 0.

Let V be an open neighborhood of a in T*A, R-conic in (i, x*) and C*-conic
in (x*, i*) and a &#x3E; 0.

(i) y 2 (r, s)(a, V) is the set of formal series 1:iez u¡(x, -r, x*, 7:*) such that for
each i ~ Z, ui is a holomorphic function on V ~ {|03C4| &#x3E; al homogeneous of degree
i in (x*, i*) and such that:

(ii) J203B1, -(r, s) (03B1, V) is the subset of J203B1,+(r, s)(03B1, V) of formal series

03A3i~Z Ui(X, i, x*, 7:*) such that:

We may extend this definition to each (r, s) such that 1  s  r  + ~ as in
Definition 3.2.1 and we have:

THEOREM 3.2.7. The canonical map J203B1(r, s) ~ 203B1(r, s) is bijective.
This theorem may be proved in the same way as Theorem 2.1.5 or, by proving

directly that J203B1(r, s) = E2(R, ~)~(r, s)03B1 (replacing  by J in the proof of Theorem
3.2.2).

3.3. Bicanonical transformations

If we replace ~RY|X(*) by ~Y|X(*) in the definition of E2(R, ~)~(*) we get the sheaf
8Ãoo(*) of 2-microdifferential operators. In the case of ~Y|X(r, s) we get the sheaf
8Ãoo(r, s) which has been studied in [10].
The injective morphism ~Y|X(*)  ~RY|X(*) of Corollary 2.3.4 gives a morphism

E2~~(*) ~ E2(R, ~)~(*) which is injective from Lemma 3.1.2.
Let us recall ([10], Theorem 2.3.1) that the sections of 8Ãoo(r, s) are bijectively

mapped to the symbols of the type 03A3(i,j)~Z2Pij(x, 03C4, x*, 03C4*) where Pij is a

holomorphic function which is homogeneous of degree i in (x*, i*) and j in (03C4, x*)
and where the family (Pij) satisfy suitable estimates (cf. Remark (ii) hereafter). Of
course the same is true for E2~~(~*, r) with due modifications on the estimates.
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As the symbols of 8Ãoo(*) and 8Ã(R,oo)(*) are calculated in the same way from
the symbols of ~Y|X(*) and ~RY|X(*) respectively, the morphism of Theorem 2.3.6
gives:

PROPOSITION 3.3.1 If P is an operator of 8Ãoo(*) with symbol

03A3(i,j)~Z2 Pij(x, 03C4, x*, 03C4*), its image in E2(R, ~)~(*) is given by the following symbol of
203B1, + (*):

REMARKS. (i) The Cauchy inequalities show immediately that if the symbol u
defined by (3.3.1) is in 203B1,-(*) then the functions Pij are all identically zero which
corresponds to the injectivity of E2~~(*)  E2(R, ~)~(*).

(ii) The estimates of Theorem 2.3.1 in [10] which define the symbols of
E2~~(r, s) are exactly those which make the symbol defined by (3.3.1) belong to
203B1,+(r, s).

(iii) If a = (xo, io, xô, 03C4*0) is a point of T*~ such that 03C40 = 0, that is if

03B1 ~ (T*~)  ~ Y, the morphism E2~~,03B1(*) ~ E2(R, ~)~(*), a is an isomorphism for on
the null section Y of A = T*Y X we have ~RY|X(*)|Y = ~~Y|X(*)|Y.

This gives a symbol to the elements of E2(R, ~)~ in the case which was excluded
in Theorem 3.2.2.

For 1  s  r  ~, we defined in [10] the sheaf E2~(r, s) of 2-microdifferential
operators of finite order which is a subring of E2~~(r, s) and we associated to each
section P of E2~(r, s) a principal symbol 03C3(r,s)~(P) which is a holomorphic function
on T*A independent of the local coordinate system.
When r = s, 03C3(r,s)~(P) is always a non-zero function.

THEOREM 3.3.2. (Division theorem.) Let 03B1 be a point of T*~, and cv a
neighborhood of (x with local coordinates (x, 7:, x*, 7:*).

Let u be one of the coordinates xi, 7: j, xt or 03C4*j which vanish at 03B1 and let U be the

operator whose symbol is u (e.g. if u = x1 then U is the multiplication by x1 and if
u = x*1, then U is 8/8xl).

Let P in E2~(r, s) and let m be the first integer such that

we assume that m  + 00.

Let E2(R, ~)~(*) be some of the sheaves of 2-microlocal operators such that
E2(R, ~)~(r, s) ~ E2(R, ~)~(*).
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Each S in E2(R, ~)~(*) has one and only one representation:

where Q, R(1), ..., R(m-1) are in E2(R, ~)~(*) and the operators R(1), ..., R(m-1) have
symbols in 203B1, +(*) independent of u.

Proof. Let us first assume that u = x1. As in the proof of Lemma 6.2.1 of [8],
we consider the operator

which is well defined when |s| &#x3E; |x1| and we apply to it Theorem 2.7.1 of [10]:

with

Let S ~ 203B1, +(*), it is a formal series of holomorphic functions so it satisfies the
Cauchy formula:

We define Q, R(1), ... , R(m-1) by setting:

In these formulas, the products GS and K(03BD)S are given by (3.2.4) and therefore
Q and R(’) are belonging to 203B1,+(*) and we have:
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Let us prove that this representation is unique in 203B1, +(*):
From Theorem 2.7.2 of [10], we may assume that P is of the form

and that there exists some C &#x3E; 0 such that P = xm1 with P invertible when
|x1| &#x3E; C.

If there exists some Q and R(03BD) such that:

we will obtain when |x1| &#x3E; C:

Q is thus a formal series of holomorphic functions in x 1 which vanish in

x 1 = + oo hence Q = 0.
The same proof will work in 203B1,-(*) and thus the representation is unique in

203B1(*) = 203B1,+(*)/203B1,-(*) that is in 2 (R,
Let us now consider the case where u is one of the variables 03C4j, then we can

make a quantized canonical transformation which transforms 03C4j into xi and use

the first case. (Quantized canonical transformations operate on W%jx(*) by
Theorem 2.4.2 and Proposition 2.3.9. and thus on E2(R,~)~(*).)
When u is one of the x*’s or 03C4*’jS, we may suppose that a is not on the zero

section (otherwise the theorem would be a special case of Theorem 2.7.1 in [10])
and then, after a quantized canonical transformation, suppose that u = x* and
that x* :0 0 at a. Then the proof is the same as before replacing

Let X and X’ be two complex analytic manifolds, A and A’ be two lagrangian
homogeneous submanifolds of T*X and T*X’ respectively.
The manifold A is provided with the action of C* induced by the structure of

vector bundle on T*X, this action induces an action of C* on T*A which is not
equal to the action of C* given by the vector bundle structure T*~ ~ A.

Let us recall ([10] §2.9) that a bihomogeneous canonical transformation from
T*A to T*A’ is an analytic isomorphism from an open subset Q of T*~ to an
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open subset Q’ of T*A’ which preserves the canonical 2-form and the two

actions of C*.

We proved in [10] Theorem 2.9.11 that if ~:03A9 ~ 03A9’ is a bihomogeneous
canonical transformation, then there exists a (non unique) isomorphism of
sheaves of rings:

such that 03C3(r,s)~(03A6(P)) = 03C3(r,s)~(P) ° ~ for each (r, s) such that 1  s  r  + oo.
Using Theorem 3.3.2 when r = oo, s = 1 and the same proof as [10] we get:

THEOREM 3.3.3. The isomorphism 03A6 extends uniquely to an isomorphism:

Using Theorems 3.3.2 and 3.3.3 and the method of the proof of Theorem
2.9.12 of [10] we get:

THEOREM 3.3.4. E2(R,~)~(r, r) is faithfully flat on 8Ã(r, r) for each r E [1, + ~].

COROLLARY 3.3.5. Let 03C0: T*A -+A be the canonical map, then E2(R, ~)~(r, r) is
flat on n-l(8xIA) while D2(R, ~)~(r, r) is flat on 8x1A.

PROPOSITION 3.3.6. The sheaf NR~(*) is a D2(R, ~)~(*)-module and we have
canonical isomorphisms:

Proof The fact that NR~(*) is a D2(R, ~)~(*)-module is proved in the same way as
Proposition 3.1.4 (in fact it is much more simple).
From this structure we get canonical morphisms:

and to see that they are isomorphism we can make a quantized canonical
transformation and then we may suppose that A is of the form T*Y X. The

proposition becomes:

and the morphism is easily calculated with the symbols. Then it is clear that it is
an isomorphism.
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