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In this paper, we consider the following situation: Suppose (9 is a commutative
local ring, M - Spec(O) a smooth morphism, co E Spec«9) the closed point,
U c Spec(O) a quasi-compact open subscheme, (D a complex of étale sheaves
[1, VII] on U whose cohomology sheaves are torsion and bounded below.
Denote Q03A6 = the image of 03A6 in the derived category [7, Ch. I] of the category of
abelian sheaves on Uét.

Let K = i* Rj* (Q(03C0*U 03A6)) ~ D+(Mét, Z).
If ç qt M is a morphism where (03BE is the spectrum of a field k(03BE) which is

separable algebraic over k(~(03BE)), we can form OhM, 03BE = [the unramified exten-
sion corresponding(1) to k(~(03BE)) ~ k(03BE) of the henselization(2) of OM,~(03BE)] =
r( ç, ~*étOMét), and let Mh03BE = Spec(OhM,03BE).

Consider a point 03BE e M and and the generic point fi -+ Mh03BE. [Recall that Mh03BE is
regular (and hence irreducible) as OM,03BE is.] OhM,~ is the henselization of the local
ring of Mh03BE at fi, so we have a morphism Mh~ a Mh03BE.

THEOREM 1. ~q~Z the map

Theorem 1 was conjectured by K. Kato in the case that U is the generic point
in the spectrum of an unequal characteristic discrete valuation ring (9 of residue

(’)By [2, III 4.6] and taking the limit.
(2) [2, III 4.5].
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characteristic p &#x3E; 0, and (D = Z/(p). In that case, Theorem 1 helped him to define
a finite filtration on Hq(Mh03BE o U, Z/(p)) whose gr is described in terms of

differentials. This was done in an earlier version of [3], but the final argument
does not require my result. Our method was used again in [9, 1.8].

REMARK 1. Suppose M = P1o, and 03BE is a closed point of Pi. Then we knew (in
a special case) to define a "residue" map Hq(Mn o U,
pr*203A6) ~ Hq-l(Uét, 03A6(-1)), whose image contains [k(03BE): k] - Hq-l(U, 03A6(-1)) and
which vanishes on the image of Hq(Mh03BE x o U, pr*2 03A6), and this inspired in part the
present proof.
Theorem 1 can be equivalently stated as

THEOREM 1’. The composed maps

are injective.

REMARK 2. It can be shown, on any topos, that the derived category of

complexes of torsion sheaves maps by an equivalence to the derived category of
complexes of abelian sheaves with torsion cohomology sheaves. So we may
assume that 03A6 is a complex of torsion sheaves.

REMARK 3. Let 03BB03BE: M( - M be the canonical morphism,

its restriction, and j03BE-1(03C0-1(U))  Mh~. In showing Theorem 1 ~ Theorem l’
one uses

the last map being an isomorphism by ([I], VII Cor. 8.6) [extended to

complexes bounded below, e.g. using the second spectral sequence [5, OUI
(11.4.3.2)] for hypercohomology] because (9h, is local henselian. The equality
uses that the "base change" morphism(3) 03BB*03BE R+ j*  R+ j03BE*,03BC*03BE(4) is an isomorph-
ism by the standard description of the stalks of Rpj* [1, VIII Th. 5.2]. Similarly
for 03BE replaced by il.

(3) In the sense of [1, XVII 4.1.4].
(4) R+j* denotes the right derived functor of the functor (jét)* between the categories of complexes
bounded below (compare [7, pages 51, 87]).
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1. Proof of Theorem 1

We make the following preliminary reductions:
(i) We may assume that M is affine and that there exists an étale morphism

M 7’ A mo of (9-schemes. ~1  i  m define ei = pri - e: M ~ A1o.
(ii) We may assume that if r = tr. degk k(03BE) then a transcendence basis for k(03BE)

over k is given by the first r coordinates of e(03BE).
(iii) We replace (9 by the local ring (9’ of Am at the generic point of Ark, and

replace M over a by the pull-back to Spec(a’) of M p Ar, and replace
(U, C) by their pull-backs to Spec(t’). This does not change the schemes and
cohomology groups in the statement of Theorem 1. So we reduce to the case

r = 0. Then 03BE E M is a closed point, and let m03BE c (9(M) be its defining ideal.
(iv) Reduction to the case where (9 is henselian. (Replace M by M ~o (!)h, U

and 4Y by their pull-backs to Spec«(!)h). Then M, Mh03BE etc. will be replaced by
isomorphic ones.)

(v) Let L be the separable closure of k in k(03BE), and (9L the corresponding local
ind-étale extension of (9. Let ML = M Q9(g (9L. There is a canonical isomorphic
lifting 03BE’ of 03BE to ML, obtained from the morphism ( - Spec(L) ~ Spec«9L). So
the étale morphism ML ~ M induces MhL03BE’  Mh . 4 Thus, one reduces Theorem 1
to ML over (9L and 03BE’, i.e. to the case where k(03BE) is purely inseparable over k. Then
k(e(ç))  k(03BE), because k(03BE) is separable over k(e(ç)) by unramifiedness of e.

(vi) By a limit argument using [1, VII Cor. 5.8], to show Theorem l’it suffices
to show that if 6 E Rq 0393(Mh03BE, K), 0 E m and Q vanishes outside V(~) c Mh03BE,
then 03C3 = 0. Notice, by the excision exact sequence ([1]V (6.5.3), generalized to
complexes), that J comes from an element 6’ E HqV(~) (Mh03BE, K). We may assume
that V(~) ~ 0, which implies m ~ 0.

(vii) Notations: Let f1, ... , fm E (9(M) be the coordinates of e, and ~0  i  m let

ei: M ~ Aio be the O-morphism defined by (f1, ... , fi). Then ~0  i  m,
e-1i (ei(03BE)) is the zero subscheme of the "function" Pi(fi) on e-1i -1(ei -1(03BE)), where Pi
is the irreducible equation of fi(03BE) over k(ei -1(03BE)).

(viii) We shall modify e by changing successively Vi  m its i-th coordinate f
to f + gi with gi E m203BE (so that the new e is still étale in a neighborhood of 03BE) s.t.
the new e will satisfy V0 K i  m the condition

dimensional.

This is known for ?o= V(~). If 0  i  m and f1, ... , fi - 1 are already
corrected, and 1: is the finite set of generic points of Vi - 1, we choose gi s.t.

Va e 03BB03BE (03A3), [gi(03B1) = 0] ~ [Pi(fi)(03B1) ~ 0]. (Notice 03BE ~ 03BB03BE(03A3).)
(*m -1) means that 03BB-103BE(e’-1(e’(03BE)) ~ V(~) = {03BE}, where e’ = em - 1. Let

B = Am-1o be the target of e’.
(ix) Then 03C3 will vanish on the generic point Q of N = 03BB-103BE(e’-1(e’(03BE))), so to
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show 03C3 = 0 it suffices to show that (Rq 0393(03BE, K) ~)Rq0393(Nét, K) - Rq r(Qét, K)
is injective, which is just the problem of (vi) for the situation of

where S’ = Spec(OhB,e’(03BE)), 7r’ is the base change of e’ by S’ ~ Am-1o, and (U’, (D’) is
the pull-back of (U, 0) to S’. [Cf. reductions (iii), (iv)]. So the problem of (vi) is
reduced to the case m = 1.

(x) Since e: M - A1o induces Mh03BE  (A1o)he(03BE), the problem of (vi) is reduced to
the case of M = Aè. Take M = Pè. Let 03A3 be the oo section of Pè (so
03A3  Spec(O)), and similarly for 1:, Yu. Let K = Rj*(03C0*03A6). So K (for if over O) is
î* K.

We have to show that Hq03BE(Mh03BE, K) ~ Hq(Mh03BE, K) is the zero map. But(5)

Hq03BE(P1k, K)  Hq03BE(Mh03BE, K), so it suffices to show that if 7: e Hq03BE(P1k, K) then its image
03C4 ~ Hq(P1k, K) vanishes on A1k. This follows from

LEMMA 1. Ker(Hq(P1k, K) ~ Hq(03A3, K)) c Ker(Hq(P1k, K) ~ Hq(A1k, K)).

[In fact, the two kernels are equal].
Proof. Since K is a complex with torsion cohomology sheaves, we have by the

proper base change theorem ([1], XII Cor. 5.5, extended to complexes as before)
Hq(P1o, K)  Hq(P1k, K). The first group is isomorphic to Hq(P1U, 03C0*U 03A6) by the
definition of K. Furthermore, if 7: is an element of the first kernel (in Lemma 1),
then its lifting T to Hq(P1o, K) vanishes on 1: by Hq(03A3, K)  Hq(03A3, K). Hence
03C41 aef (the restriction of:r to Pu) vanishes on 1:u. We want to show 03C4|Ak 1 = 0. For
that it suffices to show  |A1o = 0, and again by Hq(A1o, K  Hq(A1U, 03C0*U 03A6) it

suffices to show 03C41 |A1U = 0. So, we reduce to the S = U case of the following

(5)Using the relation [1, V6.5] between Hq03BE and Rq-1 ~*, ~: P1 - {03BE} ~ P1.
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LEMMA 2. Let S be a scheme, (D a complex of torsion étale sheaves on S, and
03C0: P1S ~ S. Let S 00 c P1S denote the oo section. Then

[The hyper-cohomology is taken in the sense of the derived category of torsion
sheaves.]

Proof. If F is a p-torsion étale sheaf(6) on S, we define F(n) for n * 0 to be the
extension by zero of the usual Tate twist [1, XVIII 1.1.1] on S - V(p). If F is any
torsion sheaf, we define F(n) = Qp Fp(n), where for every prime p, Fp is the p-
torsion component of F.

LEMMA 3. We have

This is shown using the proper base change theorem [1, XII, Cor. 5.2], to reduce
to the case S = Spec(Q), Q an algebraically closed field, and the knowledge of the
cohomology of P103A9 with constant coefficients (cf. [1, IX, 3.5 and Cor. 4.7]).
The map y is defined using 03A6 ~ 03C0*03C0*03A6 and a Yoneda extension

( + ): 0 ~ n*(D -+ Ei - E 2 -+ 03C0*03A6(-1) ~ 0 that can be constructed on P = /FD s.
y induces isomorphisms

where h = c1(1)) ~ Ext2((-1)P, P). (The Ext2 is taken in the exact category
~P of pro-(étale sheaves) on P of the form "lim" X n (the index category is N +
ordered by reverse divisibility) s.t. each Xn is a flat Z/(n) - Module, and ~m|n
the transition map induces Xn/mXn  Xm.)

Then if x = 03C0*(03B1) + h - 03C0*(b) E Ker(03BB) [see the statement of Lemma 2] we get
by the triviality of 19(1)lsCX) that hlsCX) = 0 so 0 = x|s~ = (03C0*03B1)|s~ = 03B1. As O(1) is
trivial also on /E1 , so is x = h. (03C0* b).

REMARK 4. One can clearly reduce Theorem 1 by Remark 2 and a limit
argument to the case when (D is a bounded complex of Z/(N) - Modules for
some N &#x3E; 0. Also if IF e D(P, Z/(N)) where for simplicity N is a prime power
p03B1(03B1 &#x3E; 0), then the operation Hq(Pét, 03A8(-1)) ~ Hq+2(Pét, 03A8) in the proof of

(6)In the sense of [1, IX Def. 1.1].
(7)Compare SGA5, VII Cor. 2.2.4.
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Lemma 3 is the usual cup-product with

(Recall (compare SGA 42 [Cycle] p. 7) that if V g X is an open immersion of
schemes (or topoi ... ) and F, G are complexes of abelian sheaves on Vét or VZar,
there is a cup-product operation

REMARK 5. Theorem 1 and its proof extend to the case that U - Spec(O) is
any coherent morphism.

REMARK 6. Theorem 1 can be slightly generalized (as Bloch also noted) by
taking 03BE = Spec(k(03BE)) where k(03BE) is a separable algebraic extension of the residue
field k(03BE1) of a point 03BE1 E M. To prove this "generalized" form one can adapt the
reduction steps (i)-(x), e.g. in reduction (v) one should speak about a canonical
lifting 03BE - ML of 03BE ~ M. After performing reduction (v) one will have

k(e(03BE1))  k(03BE1)  k(03BE). (Alternatively, one can reduce by a limit argument to
Theorem 1 as stated, using that Mh03BE is a filtered projective limit of schemes of the
form Nh~, where (N, ~) are certain pointed étale M-schemes.)
REMARK 7. One may consider the injectivity propery for various cases of non
smooth morphisms. Suppose for example that f is flat and that the special fibre
is a curve with an ordimary double point at 03BE. Then the injectivity property
holds in the case of rational tangents (one maps to the product of cohomologies
at the two ~’s), but not in the case of conjugate tangents (one il).

2. An application to cohomological purity for the Brauer group

Let R be a regular strictly henselian local ring of dimension n  2, with maximal
ideal m and residue field k. Set U = Spec(R) - {m}, W = Spec(R). In ([6],
Section 6) Grothendieck conjectured that

H 2 (U@ Gm) = 0. (2.1)

In (ibid.), (2.1) is proven when dim(R) = 2. In ([4], Ch. I, Theorem 2’) we proved
(2.1) when dim(R) = 3. Using Theorem 1 (and results stated below (2.5) in the
equicharacteristic case), we shall show

THEOREM 2.2. (2.1) holds if R is a strict henselization(8) of 03B1 local ring (9m,4 (of

(8)i.e., we choose a separable closure k(03BE) of k(03BE) and let R = Wh 1 .
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dimension d  2) of a smooth scheme M over a, field or a discrete valuation ring A.
(This was known for A a field.)

We first review known facts. U is regular, so by ([2], IV 1.8) H2(Uéh Gm)
injects into H2(~, Gm), (ri = the generic point of U), and thus it is torsion. Also
H1ét(U, Gm) = Pic U = 0 (by the proof that R is a U.F.D. [EGA IV, 21.11]), so
the Kummer sequence gives

0 prime to char(k).

(Here An aef Ker(A n A), for any abelian group A.)

Now, to show Theorem 2.2 it suffices to show H2ét(U, Gm)l = 0 for every prime
1. Suppose A is a field.

In the case l ~ char(A) = char(k), one knows the stronger statement

which is deduced from the absolute cohomological purity theorem ([1], XVI,
Th. 3.7, Cor. 3.9). [Hi(Uét, pi) appears as the stalk at 03BE of Rj, MI, where j denotes
the inclusion M - {03BE}  M. To make [1, XVI] applicable, we first replace A by
its perfect closure Aperf, M by M ~~ ~perf, and 03BE by the unique point above it in
the new M. Using [1, VIII 1.2], this replacement "does not change" the group
Hl Uét, 03BCl); and it makes Y = {03BE} generically smooth over S  = Spec(A).]
The case d &#x3E; 2, 1 = char(k) &#x3E; 0 was done by Hoobler [8], using the exact

sequence

on Spec(R)ét.
Before proving Theorem (2.2), we indicate our results in the equicharacteristic

case.

THEOREM 2.5. (2.1) holds for p-torsion if R is of characteristic p &#x3E; 0.

Proof (sketch). One can show that the Cartier isomorphism

holds on any regular Fp-scheme X, and that the sequence (2.4) is exact. (The
main point is proving exactness at Z1.) Also, Zq and 03A9q can be shown to be flat
OX(p) - (resp. (9x-) Modules, and hence for X affine they are filtered direct limits
of free OX(p) - (resp. (9x-) modules (D. Lazard). Now, it is known (for any
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Cohen-Macaulay local ring) that

so the same vanishing holds for the cohomologies Hi{m} (Wét, Qq) and H’,, (W, zq)
in the set-up of Theorem 2.5. So (following [8]) if d &#x3E; 2, the long exact local

cohomology sequence associated to

on »êt gives

2.6. Proof of Theorem 2.2 for A a discrete valuation ring. Let K = fract(A). By
the above, it remains to prove (2.1) for l-torsion, l ~ char(K), and we may
assume that (9 = OstM,03BE where 03BE is a point in the closed fibre of M - Spec(A). Let
ko = the residue field of A. Define Y = U ~~ K and Z = U ~~ ko. Let ( be the
generic point of Z, V = Spec(OhU,03BE) the henselization of U at C, and

V’ = V~~ K = V  U Y Consider the commutative diagram of "restriction"

maps

By [6] the theorem holds when dim(R) = 2. So we may assume dim(R)  3.
Then dim(R Q9A ko) = dim(R) - 1  2, so by the case A = (a field) we have
H2(Z, GJ = 0. Also (X is bijective by ([6], Theorem 11.7 (2)). Hence the diagram
shows yp = 0.

Recall that 03B403B2 is injective, so p is injective, and it remains to show that y is
injective on 1-torsion. (In fact, y is injective.) As Pic Y = Pic V = 0, the map 71 is
"isomorphic" to the map

pr2 is injective by Theorem 1 (and Remark 6) [with (9 there taken to be A, and
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U = Spec(K)], as the sheaves J.lI on Yét and têt are canonically the pull-backs of
(D def (03BCl on SpeC(K)ét)·

We state additional results concerning (2.1).

THEOREM 2.8. Let R be a noetherian ring, henselian with respect to an ideal l,
U c Spec(R) and open subscheme containing V(I)c, R the I-adic completion of R,
and Û = the inverse image of U in Spec(R). We have Û ~ U. Then

(i) 03B1*: H2(Uét, G.) - H2(Uét, Gm) is injective, and defines an isomorphism on
the torsion subgroups.

(ii) ~q  2, ~n  1, 03B1*: Hq(Ufppf, lin) ~ Hq(fppf, lin) is bijective.
COROLLARY. The truth of (2.1) depends only on the completion .

PROPOSITION 2.9. Suppose O1 ~ O2 is a local homomorphism of noetherian
local rings, which is formally smooth for the m-adic topologies (in the sense of
EGA 0IV,19.3). Then there is a direct system Bi of O1-algebras, which are local
rings of smooth (91-algebras, s.t. the transition maps Bi ~ Bj are flat and mj = mi Bj
(where mi c Bi is the maximal ideal) di  j, and s.t. 2  (lim Bi) ^ as 1-algebras.
COROLLARY 2.10. If A-+ R is a formally smooth local homorphism of
noetherian local rings, with A a field or a D. Jl:R., and R of dimension  2, then R
satisfies (2.1). This applies in particular when R is an unramified regular local ring
(of dim.  2).

Indeed, Corollary 2.8 allows us to replace R by any R’ having the same
completion, and by Proposition 2.9 R’ can be chosen s.t. (2.1) holds for it by
Theorem 2.2 and a standard passage to the limit [1, VII Corollary 5.9].

THEOREM 2.11. If R is a strictly henselian regular local ring with maximal ideal
m, and N  1 is an integer prime to char(R/m), then

Hqét(Spec(R) - {m}, ZI(N» = 0 for every 0  q  dim(R) - 1.

In particular, we get that conjecture (2.1) holds in general for torsion prime to
the residue characteristic.

3. Appendix

We recall some technical facts which are needed for understanding Lemmas 2, 3
of Section 1 as stated.

A. Let X 1t Y be a coherent morphism of locally coherent topoi [1, VI]. Let
F(X, Zt) (resp. F(X, Z)) denote the abelian category of torsion (resp. all) abelian
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sheaves on X and D(X, Zt) (resp. D(X, Z)) the associated derived category. We
have a commutative diagram of categories

and similarly for complexes of sheaves. Taking right derived functors, we obtain

where a: iy 0 Rt n* -+ Rn* 0 ix is a natural transformation.

PROPOSITION 3.2. If K E D(X, Zt) and either K is bounded below or 03C0* has

finite cohomological dimension on F(X, Z), then a(K) is an isomorphism.

PROPOSITION 3.3. If X ~ Y is a proper morphism of schemes and n: ét ~ Yét
the associated morphism of étale topoi, then for any K E D(X, Zt) there is a

convergent spectral sequence

I n particular, if the dimensions of the fibers of f are all  d and K ~ DN, then
Rt03C0* K ~ D N+2d.

B. A basic Yoneda extension on pl

Suppose X is a scheme, F  i X a closed subscheme, U  j X an open subscheme,
L a line bundle on X, and (1: Liu  OU, 03BE2 : L|F  OF are given trivializations.
Assume F n U = Ø. Denote Q = F’, Z = U’. We shall construct an extension
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The sequence (3.4) is an inverse system of exact sequences

(n ~ N &#x3E; 0).
We recall that in general if 0 ~ A -+ B ~ C ~ D ~ 0 is an exact sequence in an

abelian category A, then we get morphisms of complexes

a a quasi-isomorphism, (here D(2) = D[ - 2] is D placed in degree 2) which define
an arrow QD[-2] ~ QA in D(A).
One can show

PROPOSITION 3.7. Suppose n &#x3E; 0 is invertible on X and F = Ø. Recall that
the isomorphism class of (L, 03BE1) is classified by

Then the class c defined by (3.5)n and (3.6),

is -03B4(c1(L,03BE1)), where 03B4 is the connecting homomorphism H1Z(X, Gm) -+ H2Z(X, 03BCn)
deduced from the Kummer sequence. 

The sequence (+) in the proof of Lemma 3 is gotten from (3.4) for

L = OP(-1), F = U = Ø, by tensoring with 03C0* 03A6, (using the bi-functor

Q9: CC x (torsion sheaves. (torsion sheaves)). The morphism
Q03C0*03A6(-1)[-2] ~ 67r*C in D(P, Zt) associated to (+) is used in the definition
of (the second component of) y.

CONSTRUCTION OF (3.5)n. The sequences (3.5)" will be constructed together
with transition maps (3.5)n -+ (3.5)m when min. If n, mare relatively prime
integers we should have (3.5)nm  (3.5)n x (3.5)m, so it suffices to define (3.5)n (and
the transition maps) when n is a power pa of a fixed prime p. Let Y = X - V(p),
and dénote by a the immersion Y 4 X. We shall first construct (3.5)n on Y, and

(9)This cohomology group is the same on XZar, Xét, xfppf, etc.
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product of

3.8. CONSTRUCTION OF (3.5)" FOR n INVERTIBLE ON X

If L is a line bundle on a scheme X, one associates to L thc Gm-torseur L* = the
sheaf of invertible sections of L (here Gm, L* and all sheaves below are taken as
sheaves on the étale site), and one associates to L* an extension

equipped with a Gm-isomorphism 03C0-1(1)  L*.
A trivialization C: L Z (9 defines a splitting of e(L), and thus a morphism

~03BE: (0 ~ 0 - Z ~ Z - 0)  e(L). In particular, in our situation we get
subcomplexes

and

Define a subcomplex e(L, 03BE2) of e(L) by the cartesian square

We have j! Im(~03BE1) c e(L, (2), and the quotient complex e(L, 03BE2)/j! Im(~03BE1) is an
extension

We have a short exact sequence
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(Those form an inverse system w.r.t. divisibility of n’s.)
On any topos, the forgetful functor (abelian sheaves. (sheaves of sets) has a

left adjoint F - Z(F). There is an adjunction counit Z(F) - F for F abelian.
From (e*) and (3.9)", one obtains by taking fibred products new short exact

sequences

in which (I) and  are cartesian by definition.
In other words, we replaced by a canonical procedure the Yoneda extension

0 ~ (03BCn)03A9 ~ m ~ E* ~ ZZ ~ 0 coming from (e*) and (3.9)n by a Yoneda
extension

(defined by splicing (3.10) and (3.11)") whose third term is Z-flat.
The complexes (3.12)n form an inverse system w.r.t. divisibility of n’s. The

sheaves Zz and A are torsion free, i.e. Z-flat, so the sequences (Z/(n)) Q9z (3.10)
and (Z/(n)) ~Z (3.11)" are exact, and thus

is also exact.

The sequence (3.5)" is defined to be the Tate twist (3.13)n(-1).

REMARK 3.14. Suppose S is a site, O1 -+ (!)2 a morphism of sheaves of rings on
S, M a flat (91-Module, N an (!)2-Module. The "trivial duality theorem"
[1, XVII 4.1.4] for the morphisms of ringed sites (S, O2) ~ (S, O1) and the fact
that (!)2 ~LO1 M  Q((O2 ~O1 M) give an isomorphism
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The above procedure of defining (3.13), slightly generalized, is in fact a way to
construct ( on the level of Yoneda extensions. (Note that the construction of ,-1
is easier.)
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