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1. Introduction

Let G be a finite Coxeter group acting on a Euclidean space a as a real reflection
group. In his paper [8] Dunkl defines a commuting set of first order differential-
difference operators related to such a G, involving a parameter k E Cm (where m is
the number of conjugacy classes of reflections in G). In this paper we study these
Dunkl operators, by means of local analysis (even though these operators
themselves are not local operators since they do not preserve the support of
functions). The crucial observation that enables us to apply local methods was
made by Heckman in his paper [17]. His result says that G-invariant

compositions of Dunkl’s commuting operators are partial differential operators
when restricted to G-invariant polynomials on a. This yields a polynomial
algebra of partial differential operators on GBaC, and in the Sections 3-6 we
study the system of differential equations that arises from the spectral problem
for this algebra of differential operators (the Bessel equations) both locally and
globally. It turns out that locally on GBaëg this system of Bessel equations has a
finite dimensional solution space (of dimension |G|), which depends holomorphi-
cally on the parameter k E C’, and the spectral parameter 03BB E at. An important
piece of information on the global behaviour of such a system of equations is
given by the so-called monodromy representation on the space of local solutions
at some base point xo E GBa"9. For generic values of 03BB and k we determine this
monodromy representation in Section 5. However, the structure of the mono-
dromy representation can change dramatically for special values of 03BB and k. For
instance, generically the representation is both semisimple and cyclic, but for
special values of À and k the representation may fail to possess either one of these
properties. (For example, generically the space of global holomorphic solutions
is one dimensional but for special values of (Â, k) this space can be bigger). It is of
course not surprising that such phenomena arise, but it is remarkable that it is
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possible to obtain fairly detailed information as to what kind of degenerations
occur for which specializations of (Â, k). In Section 5 we also exactly locate the set
of "singular" values for the parameter k, i.e. those values for which the above
degenerations of the monodromy representation occur.

In Section 6 we introduce and study the Bessel function for G, which is the

unique solution of the Bessel equations that is holomorphic and globally defined
on GBac, normalized such that its value at the origin equals 1. We also indicate
in this section how one may use this Bessel function to solve the simultaneous

eigenfunction problem for the Dunkl operators themselves (within the space of
holomorphic functions on ac). We thus recover some of Dunkl’s results on this
subject ([11]).

In the Sections 7, 8 and 9 we investigate the relations between

(a) The degenerations of the monodromy representation for certain spec-
ializations of (À, k).

(b) The singular locus of the Bessel function (as a function of k e cm).
(c) The conjecture of Yano and Sekiguchi (see [35]) on the explicit form of the

Bernstein Sato polynomial for the discriminant of G.
(d) Macdonald’s conjecture on the Mehta type integral associated with G.

(The interplay between (b), (c) and (d) was already noted in [28], and is a

consequence of the behaviour of the so-called Bessel shift operators. For Weyl
groups this leads to a proof of (c) and (d)). It is not hard to see that there must be
some relation between (a) and (b), but for later use we are interested in the
precise description of (b), including multiplicities of poles. The key tool we use is
the linear functional "evaluation at the origin" on the local system of local
solutions of the Bessel equations (Section 8). This functional exists in the interior
of a certain polygon of parameter values, thanks to the results of Section 7. It
behaves very nicely: it commutes with monodromy, is non-zero and depends
holomorphically on the parameters (î, k). Using these properties (in Section 9)
we are able to describe (b) explicitly. In turn this solves (c) for all G (and not only
for Weyl groups). Our results are not sufficient to solve (d) completely for non-
Weyl groups, but we reduce Macdonald’s conjecture to the verification that the
conjecture holds for one choice of the parameter k (other than k = 0). F. Garvan
has informed me that he has been able to do this for k = 1 by making use of
certain symmetries and with the help of a computer. His calculations complete
the verification of the Macdonald-Mehta conjecture. The considerations in
Section 9 will also give some information on the nature of the degenerations (a)
for different values of (î, k), but a lot of questions one might ask about this topic
remain unclear.

Some of the proofs in this paper are a bit tedious (especially in Sections 4 and
7). This is mainly due to the fact that we have no explicit knowledge of the
connection matrices of the connection V we introduce (in Section 3) in relation
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to the system of Bessel differential equations. From this point of view the results
of Matsuo (see [25]) for an analoguous system of equations are very interesting.
These results seem to indicate that it should be possible to rewrite the system of
Bessel equations as a first order system in a simple explicit way.

Finally 1 would like to give another motivation for the study (in Sections 7
and 8) of the evaluation map of local solutions (evaluation at the origin). Namely
there exists another system of differential equations, the hypergeometric
equations associated with a root system ([ 18], [19], [27]), to which the results of
Sections 7 and 8 apply (almost without a change). In this case however, one
disposes of an explicit basis of power series solutions for the space of local
solutions. It turns out that one can obtain an explicit summation formula for
these series at a certain point on the boundary of the domain of convergence. In
the case of one variable this formula is equivalent to Gauss’ summation formula
for the hypergeometric series at z=1. These results will be published in a
forthcoming paper.

2. Preliminaries

This section serves to fix notation and to recall certain results of Dunkl and

Heckman ([8], [17]). If G is a finite reflection group we will define a set of

differential operators which will be called the set of Bessel differential operators
for G.

Let a be a real inner product space of dimension n. For a E aB{0} we let r03B1 be

the orthogonal reflection in al.

DEFINITION 2.1. A root system in a is a finite subset R of aB{0} such that

A root system is called normalized if (a, a) = 2 ~03B1 E R.

REMARK 2.2. If R is a normalized root system then the group G(R)= r03B1&#x3E;03B1~R is
a finite reflection group in a. Conversely, any finite reflection group in E arises
from a (uniquely determined) normalized root system in this way.

DEFINITION 2.3. If R is a root system, then a function k : R - C which is G(R)-
invariant is called a multiplicity function. The vector space of all multiplicity
functions is denoted by K = K(R), and its dimension is denoted by m = m(R). If
S c R is a G-invariant subset then 1S~K is its characteristic function.

Fix R, a normalized root system. Let h = a + 1 a be the complexification
of a. For ç E 1) let ~03BE be the directional derivative oçf(x) =
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limt~0 t-1(f(x+t03BE)-f(x)) (with f~C[h]), and let 03BE*~C[h] be the function
{03BC~(03BE, 03BC)}. If 03BE~aB{0} we define Aç E End(C[4]) by

DEFINITION 2.4. Let R be a normalized root system, and k E K(R). Then for
ç et) the operator Tç E End(C[h]) defined by

is called the Dunkl operator. We also let Tç E End(C[K x h]) denote the family
{T03BE(k)|k~K}.
THEOREM 2.5 (Dunkl, see [8]). ~03BE, 03BC~h: T03BET03BC = T03BCT03BE.

THEOREM 2.6 (Dunkl, see [8]). Let ... , Çn be an orthonormal basis for a.
Then

As a consequence of Theorem 2.5 one can define a homomorphism of algebras
C[h*] ~ End(C[K x 1)]) by sending 03BE E C[h*] to T03BE. Clearly the result is an

injective homomorphism, and we denote the image of p E C[h*] by Tp. (The
specialization to k = 0 gives the constant coefficient differential operator TI(O)
which we usually denote by ê,).
A well known result of Chevalley is that C[h]G=C[p1,...,pn], where

Pl" .. , Pn are homogeneous G-invariant polynomials. The homogeneous de-
grees of the pi are uniquely determined by R. These are called the primitive
degrees of R, and denoted by di = deg(pi). We fix a choice of fundamental G-
invariant polynomials pl, ... , p" such that: d1  d2  ···  dn. In general, if X is a
complex manifold, then A[X] will denote the algebra of (algebraic) differential
operators on X, but (due to its predominant role) we will write A for the Weyl
algebra on GBh, thus

The next theorem was an important observation by Heckman.

THEOREM 2.7 (Heckman [17]). Suppose D is an element of the associative
algebra of endomorphisms of C(h), the rational functions on h, generated by (i) the
operators T03BE(k)(03BE~h, k E K fixed) and (ii) multiplication with elements of C(h). If D
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commutes with the G-action on 1), then its restriction to C(h)G = C(pl, ..., pn) is a
differential operator on GBh with rational coefficients.

Since one obviously has

we obtain:

COROLLARY 2.8 (Heckman [17]). There exists an injective homomorphism of
algebras

Put

and

for its specialization to k~K. Let y(k): S(k) -+ C[h*]G be the isomorphism of
algebras given by Dp(k)~p.

Let R + c R be a choice of positive roots. If S c R is G-invariant, then

are semi-invariants transforming according to the same one dimensional

character xs of G. Hence, again using Theorem 2.7, we have:

(The fact that G; has polynomial coefficients follows from the following result:
~f~C[h] such that f ° g = ~S(g)f, ~g~G:(P*S)-1f~C[h]. This is well known in
the case S = R, and the general case can be proven similarly, see e.g. [31], Lemma
2.2.)

THEOREM 2.9 (Heckman [17]). The operators G±S(k) are shift operators, i.e.
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they satisfy: Vp c- C[4*]’, k E K:

Consider the map 03C0:h~GBh (canonical projection). This map is a covering,
branched along the set

The polynomial 7 = p*R2~C[p1,...,pn] is called the discriminant of R (or G).
Note that the map 03C0 induces an isomorphism of the algebras A[4"9]’ (where
hreg = {X~h|pR(X) ~ 0}) and A[GBl)reg]. (However, the image of A[4]’ is, of
course, strictly smaller than A = A[GBh]). Via this isomorphism we often
consider A c A[hreg]G.

REMARK 2.10. Take p = 03A3i03BE2i~C[h*]G then we see from Theorem 2.6 that

This operator was studied in ([27]), and the results Corollary 2.8 and Theorem
2.9 were obtained there for the case where G is a crystallographic finite reflection
group. However, the above method of Heckman to use the Dunkl operators as

building blocks for an algebra of commuting differential operators is much

simpler, and gives a better understanding.

3. The system of Bessel differential equations

Let R be a normalized root system.

DEFINITION 3.1. Given 03BB~h*, k~K we will call

the system of Bessel differential equations on GBh.

Put D = C[1)*] Q C[K] Q A and let 1 c C[h*] (D S denote the kernel of the
natural extension of y to C[4*] Q S. Let J be the left ideal in D generated by 1,
and write M = D/J for the associated cyclic D-module. Let C be the ring of
coefficient functions of operators in D, so C = C[b)*] Q C[K] Q C[1)]G. Also
introduce the following notations. If N is a C[1)]G-module then Nreg=I-1N
(with I = 03A003B1~R+ (03B1*)2~C[h]G, the discriminant of G), the localization of N at
I ~ 0. If N is a C[h*] Q C[K] module and (2, k) E b* x K, then N(2, k) denotes



339

the specialization

where 0: C[4*] Q C[K] ~ C denotes the character 0(f) = f(03BB, k).
Recall the notion of harmonic polynomials

Let H : = {~q E S(b) |q* E H*} (here q* E C[b] and q E C[b*] are corresponding
elements if we identify C[b] with C[4*] via the inner product) be the space of
harmonic constant coefficient differential operators. Put V = (e* ~C H)G. It is
well known that, as a G-module, H ~ C[G] and hence dimc V = |G|.

PROPOSITION 3.2. Consider H* ~C H as a subspace of A[b] via

q*1 Q ~q2 - qi ~q2. By taking G-invariants we consider V as a linear subspace of A.
Also identify C Q9c V with a C-submodule of D via f (8) v ~ f - v. Then we have a
direct sum decomposition of Creg-modules:

Proof. Observe that A[hreg]G = Areg and that (C[b] Q H)G ~ C[4]1 Q V.
Therefore the above statement follows by taking G-invariants from:

This is proved in exactly the same way as Proposition 3.2 of [19] if one replaces
the coefficient ring R by C[h*] Q C[K] Q C[hreg]. D

COROLLARY 3.3. As a Creg-module, Mreg ~ Creg Oc V. The A-module structure
on M(Â, k) induces an integrable connection ~(03BB, k) on C[b"9]’ Q V such that the
connection matrices are elements of Creg Oc Endc(V).

COROLLARY 3.4. Mreg(À., k) is holonomic (~03BB E 4*, k E K).
Proof. This follows since by Corollary 3.3, Mreg(03BB, k) is a free C[hreg]G-module

of rank |G|. D

DEFINITION 3.5. Let x~ GBhreg and let (!)x be the space of holomorphic germs
at x. Define Yx(Â, k) = {f E Ox|f satisfies the equations (3.1)}.
COROLLARY 3.6. x(03BB, k) ~ «9x Q V*)V*(Â,k). In particular, 2(Â, k) is a local

system on GBhreg of rank |G|.
Proof. Let bl, ... , blGI be a basis for V, and assume that b1 = 1 ~ 1 (=1 if we
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consider V c A). Clearly, b 1 is an Areg-generator for Mreg(03BB, k). Hence if

x~ GBl)reg then the map

is an isomorphism of C-vector spaces, since

? Q V*)~*(03BB,k) = HomA(l?x ~ V, Ox) ~ HomA(Mx(03BB, k), Ox).

Note that the inverse map is given by

where (bt) is the dual basis in V* of {bi}. D

Put = GBhreg, the universal covering space, and 03A6:  ~ GB1)reg the covering
map.

COROLLARY 3.7. There exist functions ~1,..., ~|G|, holomorphic on

h*  K  , such that ~(03BB,k)~h* K the specializations ~1(03BB, k),..., ~|G|(03BB, k)
form a basis of global sections of 03A6*(J(03BB, k)).

Proof Let xoEGB1)reg, and (Ào, k0)~h* x K. Let {bi}: a basis for V as in the
proof of Corollary 3.6. By standard theory of first order linear systems of
differential equations with a parameter there exist open neighbourhoods
03A92  xo and QI 3 (03BB0, ko), and holomorphic functions Vi: 03A91 x Q2 -+ V* such that
vi(Â, k, xo) = b*i and vi(03BB, k,.) is V*(À, k) flat (Vi). Put ~i = ui(b1) = vi(1). Of course,
when lifted to u, ~i(03BB, k,.) extends holomorphically to all of 0/1. By Lemma 2.6 of
[27] we obtain that this extension of Oi is holomorphic on 03A91 x 0/1. But since
(Ào, ko) was chosen arbitrarily this readily implies that 01, OIGI can be
extended holomorphically to 1)* x K x u. D

COROLLARY 3.8. The monodromy matrices of the system Y can be represented
(with respect to a suitable basis of solutions) as elements in

GL(|G|, O(h* x K»(IGI  |G| matrices with entries that are entire functions on
1)* x K).

At this point we make some remarks on two different forms of duality that
play a role in the theory of Bessel differential equations.

PROPOSITION 3.9. Let, for D E A, ’D denote the formal transpose of D (i.e.
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D -+ t D is the unique anti-automorphism of A generated by

Let I(k) = 03A003B1~R+ (03B1*)2k03B1(k E K) and let p E C[4*]’ be homogeneous. Then:

Proof. For both (1) and (2) it is sufficient to show that the statement holds in
the case p = pi = 03A3i 03BE2i (the G-invariant of degree two), since one has (see
[17], [26])

In this special case, both (1) and (2) are easy consequences of the formula

The proof of this formula is similar to the proof of ([19], Proposition 2.2). D

COROLLARY 3.10

Proof. Let us denote the left-hand side of identity (1) by R(k). Clearly R(k)
satisfies the same shift relation (2.2) as GR(k). Moreover R(k) and GR(k)
have the same homogeneous degree, and the same highest order part. Using
sl(2) theory (as in [17], [26]) and formula (3.3), this implies that

G+R(k-1)°GR(k)=G+R(k-1)°R(k), and since there are no zero divisors in A
this completes the proof of (1). Identity (2) is proved by a similar argument. D

COROLLARY 3.11. Let a be the C[h*] Q9 C[K] automorphism corresponding to
the map(03BB, k)~(201303BB, 1 2013 k), and let OC also denote the extension of this automorphism
to Dreg. Define Mreg as the Dreg-module obtained from Mreg by composing the
multiplication with a (so D·mdef03B1(D)m in Mreg). Then reg ~ (Mreg)* (the dual
connection).

Proof We compute (ExtnDreg(Mreg, Dreg))° using two différent free Dreg-

resolutions for Mreg (where M° denotes the left Dreg-module obtained from the
right Dreg-module M by composing the multiplication of M with the anti-
automorphism D -+ t D Of Dreg). Consider the operator 03B4i:Dreg~Dreg given by
D ~ D(Dpi - pi). These operators commute, and from Proposition 3.2 one easily
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obtains that the bi form a regular sequence (here we use the algebraic
independence of the (Dpi - pi)). Hence we may compute (ExtnDreg(Mreg, Dreg))o by
means of the Koszul resolution for these operators bi. If we use Proposition
3.9(2) in addition we obtain that (ExtnDreg(Mreg, Dreg))° ~ Mreg. On the other hand,
by Corollary 3.3 we have Mreg ~ Creg (8) V, endowed with a connection. Let the
Dreg-module structure be given by the formula

(with rk E Creg, and Ek E EndC(V)). Define operators

by

The 03B4’i commute and form a regular sequence and

as a left Dreg-module. The corresponding resolution gives:

(ExtnDreg(Mreg, Dreg))° ~ (mr,g)*. ~

COROLLARY 3.12. Suppose that {bi}|G|i=1 is a basis for creg ~ Y. Then there exist
elements Otij E Creg(i, j~{1, ... , |G|}) such that if 0 E Y(Â, k), 03C8 E Y(- À, 1- k), then

(where we consider Creg Q V c Dreg as usual) is independent of x E GBhreg, and such
that the resulting pairing {·,·} of 2(À, k) with 2( - À, 1- k) is perfect.

Proof. This is a reformulation of Corollary 3.11. u

4. Regular singularities

The object of this section is to prove that Mreg(03BB, k) has regular singularities at
the discriminant {I=0}.
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PROPOSITION 4.1. Let k E K and let S c R be G-invariant. The left C[4*] Q9 A-
module morphism

induces a morphism of left C[4*] Q A-modules

If 03BB~(h*)reg then i±S specializes to an isomorphism of A-modules

i± (Â, k) : M(03BB, k)  M(03BB, k + 1 s).
Proof. This is a simple reformulation of the properties of the shift operators

G±. The fact that i±S(03BB, k) is an isomorphism is a consequence of the identity (in
M(Â, k»: i+S (î, k-ls) 0 i-S(03BB, k)(D) = D. G;(k-1s)’ Gi(k) = D. Dp2S(k) = p2(î)b.

r-1

COROLLARY 4.2. If (À,k)E(l)*yegx {k|k03B1~Z~03B1} then Mreg(03BB, k) has regular
singularities (R.S.) at {I = 01.

Proof. Using Proposition 4.1 it is enough to show that Mreg(03BB, 0) has R.S. at

{I=0}. This is clearly equivalent with showing that 03C0*Mreg(03BB, 0) has R.S. at

{pR = 01 (where n: l)reg - GBhreg is the canonical projection). But

and by the argument of the proof of Proposition 3.2, this equals (as C[hreg]-
module) C[hreg] ~C[h] (C[h] ~C H). In other words: n* Mreg(2) is the re-

striction to 4"g of a connection on C[h] ~C H (so without any singularities in
b). D

LEMMA 4.3. Let O be the ring of germs of holomorphic functions at the origin of
C, and K its quotient field. Let V be a germ of a meromorphic connection on
Kn = V, and suppose that V depends polynomially on a parameter a E C. Then the
set {03B1 E C |~(03B1) has R.S.1 is Zariski closed.

Proof. Denote by v: K* ~ Z the valuation determined by O. If f E K Q C[03B1],
then the map C ~ Z, a - v(f(03B1)) is lower half continuous (with respect to the
Zariski topology on C) since f = 03A3nNanzn, an~C[03B1], so that
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is closed (~k~Z). Choose, for some ao E C, a cyclic vector 03C3~ V* for V(ao).
Clearly Q will be cyclic for ~(03B1) if a is in the nonempty open set

Choose ai~O Q9 C[03B1] such that 03A3ni=0 ai~i03C3 = 0, then the Fuchsian condition for
R.S. says: if oc c- n, then ~(03B1) has R.S. if and only if

By shrinking Q a bit we may assume that v(an(03B1)) is constant on Q, and thus we
obtain that {03B1~03A9|~(03B1) has R.S.} is closed in Q. Hence {03B1|~(03B1) has R.S.} is either
open or closed in C. Now suppose that (a |~(03B1) has R.S.1 is nonempty and open.
We will show that in this case {03B1|~(03B1) has R.S.1 = C. Namely assume 3ao E C,
D(«o) is not R.S. According to a result of Katz [21] this is equivalent with the
following: if A E K"°" Q C[03B1] is the matrix of V with respect to the derivation
03B8 = z(d/dz), then the set {v(An(03B10))}n~Z+ is not bounded from below. Put

Kn={03B1|v(An(03B1)) &#x3E; v(An(03B10))}, then Kn is finite. Hence UnEz+Kn is at most

countable, while ~n~Z+ Kcn consists of points a e C for which ~(03B1) is not R.S. This
contradicts the assertion that there are only finitely many a E C such that D(a) is
not R.S. 0

REMARK 4.4. Along the same lines one can prove (more generally) that if the
connection matrix has coefficients in K Q C[S] (S affine variety, C[S] the ring of
regular functions on S) then {s E s |~(s) has R.S.} is Zariski closed in S. ~

COROLLARY 4.5. For all (03BB, k) E 4* x K, Mreg(03BB, k) has R.S. at {I = 0}.
Proof. It is enough to prove that for any map i : D x ~ (GBhreg) (D x the

punctured disk) the connection i*(Mreg(Â, k)) has R.S. at {0}. By Corollary 4.2
this is true for (03BB, k) in a certain dense set, hence by Lemma 4.3 we are
done. D

REMARK 4.6. Mreg(03BB, k) has R.S. at infinity ~ 03BB = 0. Namely if 03BB = 0 then
the Euler vector field 03B8 = 03A3ixi(~/~xi) acts on the solution space

Hom, (Mp, Opo)(~p0~GBhreg) since 1(0, k) has a basis (over C) of eigenvectors for
ad 0. Thus, since the solution space is finite dimensional there exists a

polynomial ~~C[T] such that all (local) solutions of (3.1) (for 03BB=0) satisfy
~(03B8)f = 0. This implies the moderate growth of solutions of (3.1) (in case (03BB=0))
towards infinity. For the other implication see Remark 5.7.
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5. The monodromy representation

Let G be a finite reflection group with generators rl, ... , rn, satisfying the
relations r2 = 1 (~i) and (rir)mij = 1 (i ~ j). Recall the notion of the associated
Artin group AG, which is the group generated by elements 03B41,..., 03B4n satisfying
the relations 03B4i03B4j03B4i··· = 03B4j03B4i03B4j···(i~j, mij factors on both sides).

Consider X0~areg+ as base point for the orbit space GBl)reg and let

SiE 03C01(GBhreg, Xo) be defined by the loop

where 03B5: [0,1]~[0,1] is continuous, 03B5(0)=03B5(1)=0 and 03B5(1 2)&#x3E;0. The next

theorem is due to Artin (G = Sn) and Brieskorn (general case) (see [4]).

THEOREM 5.1. The fundamental group 03C01(GBhreg, X0) is isomorphic with AG via
03B4i~si.

If q E K we define the Hecke algebra related to G as the complex algebra
HG(q) generated by elements T satisfying (Ti-1)(Ti-q03B1i)=0 (~i) and

TiTjTi··· = TjTiTj···(i~j, mij factors on both sides). Hence there exists an

epimorphism of complex algebras:

LEMMA 5.2. The monodromy representation of the local system

on GBl)reg with respect to the base point X0, 03BC(03BB, k) say, factors through Lq for

q = -exp(-203C0-1k).

Proof. We have to show that the relations
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hold. Choose coordinates (x1,..., Xn) in a neighbourhood of the orthogonal
projection of X o onto {03B1*i=0} such that

and let

be such that

Let

thus U is a polydisk with coordinates (y1,...,yn) where y1= x21, and yi = xi
(i &#x3E; 1). Moreover,

According to Corollary 4.5 we know that Mreg(03BB, k) has R.S. at y 1 = 0 when
restricted to ilreg = U~{y1 ~ 0}. Hence the connection ~*(03BB, k) on

OU[y-11] ~ V* has, with respect to a suitable basis in OU[y-11] ~ V*, the
following connection matrix: M = y-11M1 dy1, where Mi is a constant matrix
(see for instance ([6], Remarques 5.5(ii)). Thus the columns of the matrix

exp(log(Yl)M 1) form a basis for the flat sections. By (the proof of) Corollary 3.6
we therefore see that all sections of 2(À, k) are of the form (on 0):

(finite sum, and h,n E OU V8, n). Hence there is a basis of sections of 2(Â, k) of the
form (on U):

(finite sum, and fl,n~OU such that fl,n|y1 = 0 = 0 ~ fl,n = 0). The second order
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operator in the system (3.1) (see Remark 2.10) can be written on tl as:

with

where P is an operator with holomorphic coefficients on U. So from the
equation (L-(03BB, 03BB))f = 0 we obtain the following conclusion when we insert the
expansion (5.2): if (ki - 1 2)~Z, then logarithmic terms never occur in (5.2) (for any
section f of 2(Â, k)), and the values for E that can occur are 03B5 = 0 or 03B5=1 22013ki.
(Details are left to the reader.) Hence in the case (k03B1-1 2)~Z(~03B1~R) we obtain the
relation (5.1). Finally we use Corollary 3.8 in order to see that this implies the
general case. D

DEFINITION 5.3. Let q=-exp(-203C0-1k), and put Ks={k~K|HG(q) is a
semisimple algebral.

REMARK 5.4. If we write 03A3=KBKs, then £ c K is an analytic subset of
codimension 1.

Proof. It is well known that (see e.g. [2], Ch. IX, §2, Ex. 1)
03A3={k~K|det(Trace(TgTg))=0} (where the trace refers to the trace map on
End(HG(q))). Also note that 03A3~ 0. D

COROLLARY 5.5. Let 03BD(03BB, k): HG(q)~End(Jxs(03BB, k)) be the representation so
that M(Â, k) = 03BD(03BB, k) - T. (cf. Lemma 5.2). If k E KS then 03BD(03BB, k) is equivalent with the
regular representation of HG(q).

Proof. Let A be the ring O(h* x K) of entire functions on 4* x K, Q be its
quotient field, and let h be the R-algebra with R-basis Tg(g E G) satisfying the
relations: ~g~G, Si E G simple reflection: (q = - exp(-203C0-1k) as always)

Clearly the specialization .5(0, 0) = h Q9:Ji C (and C the -4-module f. z := f(O,O)z
(V feà, z~C)) is isomorphic to the group algebra CG, which is semisimple.
Hence by ([2], Ex. 26, Ch. IV, §2) we know that hQ = h ~RQ is separable over
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Q. By Corollary 3.8, Theorem 5.1 and Lemma 5.2 we have

Hence v induces a representation, also denoted by v, of the semisimple algebra
hQ on the space Q IGI (where Q is an algebraic closure of Q). It is easy to see that
for each character of hQ, 03C8 say, one has: 03C8(Tg)~R* (dg E G), where R* is the
integral closure of -4 in Q. Fix an extension 0*:,W* --+ C of the homomorphism
~:R~C given by f - f (0, 0). From the proof of the deformation lemma in
([32], Lemma 8.5) we see that (see also the proof of Proposition 7.1 in [5]) the

application 03C8~03C8~*(03C8~* defined by 03C8~*(Tg)= ~*(03C8(Tg))) gives a bijection between
the set of (irreducible) characters of .5Q and those of CG. So we just have to show
that v is the regular representation of hQ (since the same deformation lemma can
then be applied for any specialization .5 k), v ~ v(03BB, k) if k~KS (since
h(03BB, k)( ~ Hq(G)) is semisimple in that case) and for this it is enough to show that
v(0, 0) is the left regular representation of CG. But this is clear since for

(Â, k) = (0, 0), the solution space of (3.1) equals the space of harmonic poly-
nomials on 1), and the monodromy specializes to the ordinary G-action on this
space. D

PROPOSITION 5.6. Let (as usual) (9(X) denote the space of holomorphic
functions on X.

(1) ~f~O(h*  K  GBh), f ~ 0, such that the specialization f(A, k) satisfies
(3.1) (~d(03BB, k)~h*  K).

(2) V(Â, k) E 1)* x K : dimC{~ E O(h)G| ~ satisfies (3.1)} ~ 1, and equality holds if
k~Ks (see Definition 5.3).

(3) ~(03BB, k)~h* x KS, if ~~O(h)G satisfies (3.1) then ~(0) ~ 0 if ~ ~ 0.

Proof. (1) Recall the basis of solutions ~1,..., OIGI of (3.1). The equations to
solve in order to obtain a solution with trivial monodromy are:

By Corollary 3.8, this is a set of homogeneous, linear equations in {ak}|G|k= 1 with
coefficients in (9(b* x K), and by Corollary 5.5 it has rank |G|-1 when
specialized generically (since the left regular representation contains the trivial
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representation once). Hence there exists a nontrivial solution with ak mero-
morphic (Vk), and by homogeneity of the equations we may even assume that
ak~O(h* x K) (Vk). Next we show that if (1- ka) f! Z then a solution of (3.1) (for
(î, k) E b* x K fixed) which has trivial monodromy will automatically extend
holomorphically to GBb (and notjust to GBhreg). In fact, in the neighbourhood 0
of a point in the smooth part of {I=0} it follows from the description of
solutions as in the proof of Lemma 5.2 that a solution which has trivial

monodromy extends (if 1 2-k03B1~Z, ~03B1~R) holomorphically to U. Thus the

singular set of the solution is contained in the singular part of {I = 01, which is
an analytic set of codimension  2. So by Hartog’s theorem the singular set of
the solution is empty. Finally we consider 03A3|G|k=1 ak~k as function on

h*  K x GBh. Using Corollary 3.7 and the remarks above we see that this

function is holomorphic outside the set b* x {k |1 2-k03B1 E Z ~03B1} x {I = 01, which is
again an analytic set of codimension  2. Hence f = 03A3|G|k=1 ak~k(~0) has the
required properties.

Let us now consider (2). To prove that dimC{~ E O(GBh)|~ satisfies (3.1)}  1,
~(03BB0, k0)~h* x K fixed, we use (1). If f(03BB0, k0, ·) ~ 0 ( f as in (1)) then there is
nothing to prove, so assume that f(Âo, k0, ·) = 0. It is easy to see that we can
choose an embedding i:D  h*  K (where D={03B1~C||03B1|1}) such that

i(O) = (03BB0, ko), and f|(i(D) GBh) is not identically zero. Let l~N be the largest
number such that if g is the function g(a ; x) = f(i(03B1); x). a - then g E (9(D x GBh).
Clearly, ~(x) = g(0; x) is a nonzero solution of (3.1) (for the parameters (03BB0, ko)).
Finally note that if k E K’ then dimC{~ E O(GBh)|~ satisfies (3.1)}  1 because of
Corollary 5.5. Hence we have proven (2) completely.

Finally consider (3). Suppose that for some (î, k) E h* x KS we have a solution
0 ~ ~~O(h)G of (3.1) with ~(0) = 0. Then the lowest homogeneous part ~0 of 0
clearly satisfies (3.1) for the parameters (0, k) E h* x K. But 1 E C[4]G also satisfies
this system of differential equations, contradicting (2). D

REMARK 5.7. In addition to Remark 4.6, we show that if 03BB ~ 0 then M"9(î, k)
has irregular singularities at infinity, as a consequence of Proposition 5.6.

Namely, by Proposition 5.6(2) there exists a solution 0 ~ ~ E O(h)G of (3.1). Now
assume that Mreg(03BB, k) has R.S. at infinity. Then Corollary 3.6 implies that 0 is a
polynomial on h). But if p E C[4*]’ of positive homogeneous degree d, then Dp(k)
has homogeneous degree - d. So the equation

implies that p(03BB) = 0 in this situation (by looking at the highest degree part).
Since this must hold for all nonconstant homogeneous p (by equation (3.1)), we
see that 03BB = 0.
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6. The Bessel function and the exponential function for G

In this section we make a first study of the holomorphic eigenfunctions on 4 for
the Bessel differential operators and for the Dunkl operators and their mutual

interdependence. It turns out that it is useful to consider the relationship
between these functions and 1 am indebted to G. J. Heckman for suggesting this
idea to me.

DEFINITION 6.1. Let K+={k~K|all eigenvalues of the operator
03A3ni=1 ç1Tçlk) on the space {f~C[h]|f(0) = 0} have strictly positive real part 1
Following ([8], p. 176) we note that K + is the interior of a polytope, containing
the cone {k ~K|Re(k03B1)  0 Val.

LEMMA 6.2. If k E K + then{f E C[b] | T03BE(k)(f) = 0 ~03BE E h)} = C· 1 (the constants).
Proof. Clear by Definition 6.1. D

COROLLARY 6.3. If k~K+ and 03BB~h* arbitrary, then

and if f ~ 0 is in this simultaneous eigenspace, then f(O) =1 0.
Proof. Clear by the previous lemma. D

The next lemma is essentially due to Harish-Chandra ([14], [15]). It is the key
result for the description of the relationship between eigenfunctions for Bessel
differential operators and those for Dunkl operators.

LEMMA 6.4. There exists a unique rational function

such that ~03BB E (l)*yeg, Q(03BB, gÂ) = |G|03B41,g (Vg E G). The function Q has the following
properties:

Proof. We refer the reader to ([33], Ex. 70, Ch. 4) for existence of Q, and
property (1). The properties (2) and (3) are clear, so let us prove (4). It is enough
to show that 03A3g~G Q(À, g03BC) is independent of J.l, since we have Q(À, gÀ) = |G|03B41,g.
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But this follows from the formula

DEFINITION 6.5. We denote by T(À, k) the operator TQ(Â,)(k) (03BB~(h*)reg, k E K),
acting on the space O(h) of entire functions on 4.

COROLLARY 6.6. Let k E K, 03BB~(h*)reg, and let 0 E O(h)G satisfy the Bessel
differential equation (3.1). Then 03C8 = T(À, k)o E (9(b) satisfies (T03BE(k) - (03BE, 03BB))03C8 = 0
~03BE ~h, and 03C8(0) = ~(0).

Proof. Clearly (T,(k) - (03BE, 03BB))03C8 = 0 ~03BE ~h, by Lemma 6.4(2). In order to see that
03C8(0) = ~(0), note that

by Lemma 6.4(4). D

PROPOSITION 6.7. There exists a unique meromorphic function EXPG on
h* x K x 1) characterized by :

Moreover, this function satisfies the following properties:

(3) EXPG is holomorphic on 1)* x K + x 1).

Proof. Uniqueness is clear by Corollary 6.3, so it suffices to construct a

function that satisfies (1) and (2). Let f be the function constructed in

Proposition 5.6(1). Put 9(î, k; x) = T(À, k)f(À, k; x). This is a meromorphic
function with singular set contained in {03A003B1&#x3E;0 03B1(03BB)=0}  K  h (see Lemma
6.4(1)), and by Corollary 6.6 this function satisfies (2). By Proposition 5.6(3) and
Corollary 6.5 we also see that g(03BB, k ; 0) ~ 0, and thus we can define

Property (4) is a direct consequence of Lemma 6.4(3), so let us finally prove (3).
By construction, the singular set of Exp is of the form Z x 1) for some analytic
set of codimension 1 in 1)* x K. Let i: D q 1)* x K be any embedding of the
disk D={03B1~C||03B1|1} such that i(D ) = i(D - {0}) ~ Zc. If the function



352

h(a; x) = ExpG(i(a); x) on D x h has a pole at (a = 01 x 1), let 1 E N be the smallest

integer such that alh(a; x) extends holomorphically to D x 1). Clearly
0(x) = (ajh(a; x))|(03B1= 0) is a nonzero solution of (put a(O) = (20, k0)) the system of
equations (7Q(ko) - (03BE, 03BB0))03C8 = 0 Vj E 1), and 03C8(0) = 0. By Corollary 6.3 this implies
k0 ~ K+ and the conclusion is that Z c h* x (K+)c. D

PROPOSITION 6.8. The meromorphic function J = JG defined by the formula

has the following properties:

(1) J(2, k; 0)=1.
(2) J(g2, k; x) = J(2, k; gx) = J(2, k; x) Vg E G.
(3) If (2, k) x h is not in the singular set of J, then J(2, k) E O(h)G satisfies (3.1).
(4) ExpG(03BB, k; x) = T(À, k)J(2, k ; x).

Proof. Trivial consequences of the previous results in this section. D

DEFINITION 6.9. JG is called the Bessel function associated with G.

COROLLARY 6.10. The singular set of both Exp and J is contained in

h*  (03A3~(K+)c) h (where 03A3=K-Ks, see Remark 5.4).
Proof. From the definition of J, Proposition 6.8(3), and Lemma 6.4(1) it

follows that the singular sets of Exp and J coincide. Moreover, this set is of the
form Z x 4 for some analytic set Z c 4* x K. When we apply the argument as in
the proof of Proposition 6.7(2), but with J instead of Exp we obtain the result
that if (Ào, ko) E Z is a generic point, then there exists a nonzero solution 0 of (3.1)
with ~(0)=0. By Proposition 5.6 this implies that k0~03A3, and hence that

Z ~ h*  03A3  h. On the other hand, by Proposition 6.8 we see that

Z ~ h*  (K+)c  h. D

EXAMPLE 6.11 (G = Z/2Z). Let G = {± 1} act on C by ( ± 1)x = + x. Identify the
complex number E C with the linear functional 03B1 ~ Âa on C, and denote by JG
the Bessel function associated with G. The relation between JG and the classical
Bessel function J03BD is given by:
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It is not hard to see that in this case:

where (0394f)(x) = ( f (x) - f ( - x))/x, and thus 0(JG) ~ 0. Therefore:

REMARK 6.12. Just as in the case of hypergeometric functions associated with
root systems, the Bessel function JG sometimes occurs "in nature" as spherical
function. More precisely, let e be a noncompact real semisimple group with
finite center, and Jf ~  a maximal compact subgroup. Let g =  ~ p be the
corresponding Cartan decomposition, and a ce p a maximal abelian subspace.
Denote by 03A3 ~ a* the restricted root system, and put m03B1 = dimR(g03B1) (~03B1 E a*).
Identify a and a* via the Killing form, and let R c a be the normalized root
system associated with the Weyl group W acting on a. Define k 0 = 1 403A303B1~R03B2 ma for
all normalized roots /3 E R. Then for all 03BB E at = h* we have JW(03BB, k) = ~03BB| a’ the
spherical function for the Euclidean symmetric space p = K x Vif, restricted to
a. This identity follows by taking radial parts of K-invariant constant coefficient
differential operators on p (see [20], Ch. II, §3).
Note that, however, such an interpretation of JG can only be given if G is a

Weyl group. Even in that case, the set of multiplicities for which JG is a spherical
function for some Euclidean symmetric space is discrete (and in most cases even
finite). In the case of the exponential function Exp(/L, k ; a) 1 do not know of any
direct interpretation of this sort (except for the trivial case k = 0).

It is strongly suggested by these interpretations of JG that if ~03B1:k03B1~R0, one
has the following analogy of the spherical transform on p: let f E C~c(a) and
define

Then the following inversion formula should hold:
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(here dx and dA are suitably normalized Lebesque measures) (for a proof of this
formula in the case Jf x Vif: see [20], Ch. IV, §9). For the exponential function
ExpG(03BB, k; x) one expects similarly: let f E C~c(a) and define

Then one should have:

(where we assume k03B1  0~03B1). Clearly, (6.1) follows from (6.2) by taking the
average over G. Recently these important formulas were proven by Dunkl ([12])
(on some dense subspace of L2(a, II |03B1*(x)|2k03B1 dx) other than C’(a».
REMARK 6.13. In the paper [11] Dunkl also obtains the function ExpG(03BB, k; x)
(denoted by K(x, 03BB) in his notation), by completely different methods, and he
derives many interesting properties for this kernel. It seems however that our
methods using local analysis of differential operators and monodromy are best
suited for the purpose of describing the singular behaviour of ExpG as a function
of the multiplicity parameter k e K. We will also gain some insight into the
meaning of these singularities (see Section 9).

7. Exponents at the origin

In this section we will study the singular behaviour of solutions of the Bessel
differential equations near the origin (which is the most singular point for these
equations). Our method is this. By the results of Section 5 we know that the
monodromy representation is (generically) equivalent with the regular represen-
tation of the Hecke algebra. Therefore we can easily calculate the action of the
center of the fundamental group 03C01(GBhreg)(~ AG) on the space of local solutions
of the Bessel equations (I am grateful to Prof. G. Lusztig for explaining this to
me). On the other hand we can interpret a generator for the center of AG
topologically as a loop going once (or twice sometimes) around the origin in
GBhreg (see [7]). As a consequence we obtain a detailed description of the local
exponents of solutions of the Bessel equations towards the origin. We give more
details in the description of the exponents in this section than we will use in this
paper. Yet we feel that these details are interesting enough to be presented here.

Finally we mention the fact that the results of this section also hold in the
context of hypergeometric equations associated with root systems. This can be
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used towards the evaluation of solutions of the hypergeometric equations at
special points (these results will be given in a forthcoming paper).

Let p : X - b denote the blowing-up of 4 at 0~h, i.e.

and p projects onto the first factor. If H c-- 4 is a subspace of codimension 1, and
x E 1) - H then we can define an affine coordinate patch by

Clearly we may cover X with patches like these, and p(~x,H(t, h)) = t(x + h). We
use the following notations:

Choose a base point xo E a"9, and let H = xô. Then

Let SE 03C01(GBhreg, xo) be the loop corresponding to the positive generator of

03C01(C , 1) ~ Z, so that s can be represented by {t ~ e203C0-1t . x0} (t~ [0, 1]).
Recall Theorem 5.1. It is well known that the map G~AG sending the reduced
expression g = ri1 ... ril to 03B4g = 03B4il ... 03B4il is well defined (meaning that 03B4g does not
depend on the reduced expression for g) (cf. [22], Remark 3.19).

Fig. 1. The map p for G = S3.
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PROPOSITION 7.1 (Deligne, see [7]). s = 03B42g0~AG ~ 03C01(GBhreg, xo), where go E G
is the longest element.

Proof. Assume (for sake of simplicity) that go(xo) = - xo. Let go = ril ··· riN be a

reduced expression for go. Consider the following path in l)reg

(from xo to - xo). We claim that s* is homotopic with the path

To see this, note that riN ··· ril(sil-1) is homotopic with (in b"9) the path s* 1
defined by (t E [0, 1]):

since riN ··· ril(03B1il-1) &#x3E; 0 (VP. So

The path (t ~ e03C0-1t · x0}t~[0,1] also lies in this (n + 1) dimensional real subspace
of 4, and is obviously homotopic with s* in E since they both lie in the halfspace

a+J=1R+xo. This implies the result. D

PROPOSITION 7.2 (Deligne, see [7]). 03B42go E Z(AG), the center of AG.
Proof. If ri1 ··· ril is minimal and 03B1il+1 is simple and such that ri1 ···ril(03B1il+1) &#x3E; 0,

then ri1 ··· ril+1 is also minimal. Thus if a minimal expression cannot be extended
(from the right) then it represents the longest element. Therefore there exists a
minimal expression go = rai, ... riN for any choice of ri1, a simple reflection. Let ri be
a simple reflection, and let g0 = riri2 ···riN be minimal. Put -g0(03B1i) = 03B103C4(i), then
also

and the corresponding expressions hold for 03B490 ~ AG. Hence
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REMARK 7.3. The two previous results are due to Deligne ([7]). In this paper
Deligne proves a stronger result, namely that Z(AG) is generated by 03B4g0 if

go = - id, and by 03B42g0 otherwise (we do not need this stronger result for our
purposes).

COROLLARY 7.4. Let {03C1i}Li=1 be a complete set of representatives for the set of
irreducible representations of G, and put d(i)=dimc(03C1i). Put Mi,,,,
dimC(Ker(03C1i(r03B1) + 1)). With these notations, we have:

(1) If pi also denotes the representation of .5Q corresponding with the

representation pi of G (recall hQ ~ QG (cf. the proof of Corollary 5.5)), then
03C1i(T2g0) acts by multiplication with

(2) Suppose {03B5i}Li= 1 = {03B51, 03B52, EL’I (so L’ is the number of distinct ei). Then

03BC(03B42go)~GL(|G|, R) has minimum polynomial 03A0L’i=1 (T-03B5i)(~R[T]).

Proof. By Corollary 5.5 we know that 03BC induces the left regular representation
of hQ on Q|G|, so that (2) follows from (1). As for (1), let Tg 0 = T ... Ti, be a
minimal expression. Then, if 03C1i(T2g0) acts by the scalar f E Q (since T2 E Z(hQ)!),
we obtain

From this equation we solve f (with f(0) = 1). 0

Let us return to the situation at the beginning of this section. The Euler vector
field

((x1,...,9 Xn) an orthonormal basis for a) on 1) will play an important role. Note
that, in the coordinates (t, h) (via po ~x, H) one has:
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and let C[h* x K] Q9 "fI/’reg be endowed with the connection ~W = (n 0 p)*(V). Let

1 = q!, q*2,..., q*|G| be a basis for H* consisting of homogeneous elements such
that deg(qi)  deg(qi+1)(~i). On the coordinate patch Dx,H~Xreg the elements

(Bi)x,H = tdeg(ql) aqi form a basis for Wreg|Dx,h~Xreg. Let W be the vector bundle on
the space xreg u Yreg such that (Bi)x,H (i = 1, ... , JGj) form a basis of sections for

W|Dregx,H. Let WY=W|Yreg.
LEMMA 7.5. The connection ~W has logarithmic poles along Yreg with respect to
the extension 1Y of "fI/’reg. The residue r = ResYreg(~W)~End(WY) is independent
of 03BB~h*.

Proof. This is a local calculation on Dxo,H. Let (y2, ... , yn) be coordinates on H,
and let (x1,..., xn) be coordinates on 1) such that

Then

We have to show that

do not present poles at t = 0 when expressed with respect to the basis {(Bi)x0,H}.
Now if D is any differential operator on l)reg, we can apply D to sections of 1j/reg

by means of the structure defined by ~W. On Dregx0,H( = Dxo,H n p-1(hreg)) we define
a matrix

by the requirement

or equivalently (by definition of ~W):
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Note that, in the case where D is a vector field, the matrix of the covariant
differentiation ~W(D) with respect to {(Bi)x0,H}|G|i=1 is just (fij(D)). So, since the
left-hand side of (7.2) commutes with 0 if D does so, it is enough to show the
following. Let E E A[hreg], and ad 03B8(E) = 0. If we write (according to (3.2))

(here po = 1, p1, P2, ... is a homogeneous basis for C[h*]G), then gi has no poles at
(t = 0), and gi|(t=0) is independent of 03BB E h*. To this end, let d be the largest integer
such that we can write

(expansion in ad 0 eigenfunctions). Then if d  0, (7.3) yields

Again by (3.2), (specialized in 03BB = 0) this implies

which contradicts the assertion of maximality for d. Now it is obvious that d = 0,
and (7.3) yields

by (3.2), specialized for A = 0, this determines

DEFINITION 7.6. Let Dxo,H be a coordinate patch as above, with xo E areg.
Then V xo.H denotes the connection on C[K] ~ W|(Dx0,H~Yreg) defined by

REMARK 7.7. It is easy to see that ~x0,H is an integrable connection (cf. [6]).
Note however that its definition depends on the local coordinates (t, y2, ... , 1 Y.),
and that the ~x0,H do not glue together to give a globally defined connection on
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WY. Also note that ~x0,H is independent of 03BB~h*, similar to the fact that r is
independent of 03BB~h* (Lemma 7.5). Finally we mention the fact that

0393~End(WY) ~ WY~W*Y is flat with respect to ~x0,H Q9 V:o,H (cf. [6]). In

particular, the endomorphisms 0393y(y~ Y) are conjugate to each other.

In addition to the notation of Corollary 7.4, let

be the set of so-called pi-exponents of G (i.e. the representation pi occurs with
positive multiplicity in H*,pij ( j = 1,..., d(i)), the homogeneous harmonic
polynomials of degree Pij (cf. [30], Section 2)). Denote by 03BDij~C[K] the

following affine linear function on K:

Let {03BDij|i= 1,..., L; j = 1,..., d(i)} = {03BD1, v2, ... , VL"1.
DEFINITION 7.8. The numbers v 1 (k), ... , vL,-(k) are called the exponents at the
origin of the system of Bessel differential equations (3.1). Also define the

multiplicity of the exponent v, by

where the sum is taken over all i’~{1, LI such that Bi’ = exp(203C0-1 Vi) (see
Corollary 7.4).

REMARK 7.9. The reason for these definitions is explained in Theorem 7.10 and
Corollary 7.12. The following observations are obvious from the definition. The
exponent that corresponds to the trivial representation will be called vi from
now on, and clearly 03BD1(k) = 0(~k). Note that m(1) = 1. If Re(k03B1)  0 (Va), then
Re(vi(k)) &#x3E; 0 Vi E {2,..., L"}.

THEOREM 7.10. l,f f is a section of1j/reg, then f can be considered as a differential
operator on 4"9. Hence it makes sense to consider (ad 03B8)f, which is again a section
of 1j/reg. Note that (ad 03B8)Bi = 0 (i = 1, ... , IGD on every coordinate neighbourhood
Dx, H, so that on Dx, H:

(1) If 03BB = 0 then the space of V "If"- flat sections is invariant for ad 0. Extend
r E End( 1f/ y) on Dregx,H to ~end(W|Dregx,H) by the requirement that with
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respect to the bases (Bi)x,H the matrix of  is independent of t, and restricts
to F on Y n Dregx,H. Then we have: ad 0 = - on W~|Dregx,H.

(2) In the situation of (1), one has exp(203C0-1 f’) = 03BC(s) on (W*)~*|Dregx,H (see
Proposition 7.1 and Lemma 5.2).

(3) The minimum polynomial for r equals 03A0L"i=1(T-03BDi)(03BB~h* arbitrary now). If
k E K is generic then

Vi ~{1, ... , L"}: m(i) = dim Ker(r(k) - 03BDi(k)).

Proof. (1) If Â = 0 then it is clear from (7.3) that

are independent of t when expressed, on Dx,H, with respect to the basis

{(Bi)x,H}|G|i=1. Hence ad 0 leaves invariant the space of flat sections. Moreover, by
definition of i’ one has ~W(03B8)=ad 03B8+ (with respect to the basis (Bi)x,H),
proving (1).
Next we prove (2). On W*|Dregx,H we obtain from (1) that ad(0) acts on (1I/*fv* by

means of the matrix rt (with respect to the basis (B*)). Since the vector field

10 integrates to the loop s (as in Proposition 7.1) we obtain the desired
result.

Finally consider (3). It is enough to prove this at a certain yo E Yreg (see
Remark 7.7) and by Lemma 7.5 we may assume À = 0. Hence we may consider
the endomorphism (t,y) as in (1), instead of ryo. By (1) this endomorphism
commutes with the monodromy action 03BC(0, k) on 1I/’(t,y). Recall that 03BC(0, k) is the
regular representation of HG(q) if k E KS. Thus from (2) we obtain that f(t,ylk) is
semisimple if k E KS and that there exists a decomposition into irreducibles of

1f(t, y) for the action of 03BC(0, k) such that f(t,y) is a constant times the identity on all
the irreducible constituents of 1f(t,y)’ Clearly the eigenvalues of (t,y) are

algebraic functions of k. So on a suitable open set Q c K we may assume that
the eigenvalues depend analytically on k~03A9. But then we see from (2) and
Corollary 7.4(1) that the eigenvalues are in fact polynomials in k of degree 1

obtained from the 03B5i by taking a proper logarithm and dividing by 203C0-1.
From the situation at k = 0 E KS we see which logarithm we have to take on the
irreducible components and this shows that vi is an eigenvalue with geometric
multiplicity m(i). D

We are now in the position to study the behaviour of ~*W-flat sections of W*
in a neighbourhood of Y As a direct result we can describe the behaviour of
solutions of (3.1) near the origin.

Let x E b"g and H a hyperplane in 4 such that x fi H. Let (t, y2, ..., Yn) = (t, y) be
coordinates on Dx,H as before. So xc-4 has coordinates (1, 0,...,0), and the
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origin (0,..., 0) corresponds to the element (Cx) E Y. Let {Bi}|G|i=1 be the basis of
irlDx H as usual, and let e &#x3E; 0 be small enough to ensure that Dx,H = {(t, y) 1 iti
 e and lyi |  e Vil has the property DX,H - X"g = {(0, y) 1 lyi |  e Vil.
THEOREM 7.11. Let (03BB, k)~h* x K be arbitrary. There exists a basis

|fij1 i = 1, ..., L"; j = 1,..., m(i)l ( for the definition of m(i) see Definition 7.8) of
V* -flat sections in ir* |regx,H of the form

Here Vijl: D ~ 03A3|G|i= 1 CB*i is holomorphic, and {~ij1 i = 1, ..., L"; j = 1,..., M(i)l
is a basis of solutions of (ad 0 - 0393t(Cx)(k))~ = 0, if we put

On the other hand, if f is a ~*W(03BB, k)- f lat section on x,H of the form

such that (vo(O, 0), ... , vn(0, 0)) ~ 0, then v ~(03BD1(k),..., 03BDL"(k)}.
Proof First consider the equation ~*W(03B8)f = ad(03B8)(f) + Mf = 0 on the line

{(t, 0)|0|t|03B5}. Recall that M(0,0)=-0393tCx(k). Using Theorem 7.10(3), and
standard theory of systems of first order linear differential equations in one
variable (see for example [34]) we obtain a basis of solutions for this equation of
the form:

where

runs through a basis of solutions of (ad 03B8)(~) = 0393tCx(k)~. Now define vijl(t, y) by
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Hence vijl(t, y) (t fixed) is a flat section of an integrable connection with
holomorphic parameter t, and thus vijl(t, y) is holomorphic in (t, y). With this
definition of vijl(t, y) it is clear that fij is ~*W-flat, and that {fij} forms a basis of
(1Y*)v*. Finally, if

is V§-flat, then it is clear from series expansion at t = 0 on the line {(t, 0)||t|  03B5}
that

satisfies the "constant coefficient" equation (ad03B8)~ = 0393tCx(k)~. Clearly this

equation implies (when ~ ~ 0 of course) that v is an eigenvalue of 0393tCx(k). D

COROLLARY 7.12. Let (2, k)El)* x K be arbitrary. There exists a basis

{~ij| i=1,...,L"; j = 1,...,m(i)} of solutions of (3.1) on Dx,H of the form

Here Uijl is holomorphic on Dx,H, and (uij0(0, 0), ..., uijnij(03BB,k)(0,0)) ~ (0, ..., 0).
Moreover, if 03C8(t, y) is any solution of (3.1) on Dx,H of the form

with u, holomorphic and (u,(O, 0)nl=0 ~ 0 then v E {vi(k)}L"i=1.
Proof. This is immediate from Theorem 7.11 if we use the isomorphism

(W*)~*p ~ Y, given by v -+ v(l) (see Corollary 3.6). Recall that the inverse of this
map is given by f - 03A3|G|i=1 (Bif)B*i. D

REMARK 7.13. Note that F(k)B, = 0 Vk, and also rt(k)B! = 0~k. The first of
these identities is immediate from the definition. The second one holds since (by
definition) r is the matrix determined by the condition that for all i, there exist
functions hlj, regular at t = 0, such that
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(see Lemma 7.5). On the other hand,

Applying (7.4) to the function 1 we see that this is indeed true.

EXAMPLE 7.14. By Remark 7.13 we know that ~y~Yreg:0393ty(k).B*1 = 0 (Vk).
Hence ~11(t) = Bi is a solution of

and according to Theorem 7.11 and 7.12 there exists a solution 03C811(t, y) on Dx,H
of the form:

of (3.1), with u110(0, 0) = 1, and u11l(0,0)=0~l &#x3E; 0. From the proof of Lemma 7.5
it is easy to see that

(see Definition 7.6) and so, by construction of ~11 as in Theorem 7.11 and
Corollary 7.12 we obtain that

We close this section by mentioning some simple consequences of Corollary
7.12. Let (GBh) denote the C-vector space {f E m(GB1)) |f satisfies (3.1)}.
COROLLARY 7.15. Let 03BB~h* be arbitrary, and k~K such that

vi(k)~ {0, 1, 2,...} ~i &#x3E; 1 (this is true for example f Re(ka) &#x3E; 1 ~03B1 E R). If
f E 2(GB1))(Â, k) then f ~ 0 ~ f(0) = 0.

Proof. Use Corollary 7.12. ~

COROLLARY 7.16. Let (Â, k) E 1)* x K satisfy one of the following conditions

Then dimc[J(GBh)(03BB, k)] = 1.

Proof. By Proposition 5.6(2) we have dim[J(GBh)(03BB, k)]  1. Clearly the
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assumption dim[J(GBh)(03BB, k)] &#x3E; 1 would imply the existence of

0 ~ f E .P(GBl))(À, k) such that f (0) = 0. So (1) is clear using Corollary 7.15. If
c- (4*)"g we can dispose of the intertwining isomorphisms is of Proposition 4.1.
By repeated application of these we may assume that Re(k03B1) » 0 ~03B1~R, in which
case condition (1) holds again. This proves (2). D

REMARK 7.17. If we look at Definition 7.8 and compare this to the calculation

of Dunkl in ([8], p. 176) we observe that the eigenvalues of the operator
£y= 1 03BE*i T03BE(k) on the space Jf* are precisely the exponents 03BDi(-k) (i = 1,..., L")
(counted with multiplicity). From this observation one easily sees that (see
Definition 6.1):

We will use the notation K - = - K + in the sequel. Finally note that 03BDik) E Z (Vi)
if k03B1~Z~03B1~R (cf. [10], Lemma 2.1 and Corollary 2.2).

8. Evaluation at the origin

Let xo E hreg, and consider its image as base point for GBhreg. Let K _ = - K + (see
Remark 7.17) and recall that if k~K_, then the exponents vi(k) satisfy:
vi(k)  0~k, and vi(k) = 0 ~ i = 1. Therefore the following definition makes
sense, provided that k~K_.

DEFINITION 8.1. Let (03BB, k)~h*  K_. Let E(=E(03BB, k; x0))~J*x0(03BB, k) be de-
fined by E(f) = limt-of(txo) (analytic continuation via the path (t ~ tx0)). E is
called "evaluation at the origin".

PROPOSITION 8.2. E(03BB, k) is a nonzero global section of 2*(Â, k).
Proof. This follows immediately from Corollary 7.12 and Example 7.14. D

Recall the pairing {·,·} introduced in Corollary 3.12.

THEOREM 8.3. ~~~J(03BB, k):{~, J(-03BB, 1-k)}=a(k)E(~), for some a E C(K)
such that a(k) has neither poles nor zeros inside K -.

Proof. Let us recall the bases {Bi}|G|i=1 for W on a coordinate patch of the form
Dxo,H (as in Lemma 7.5), consisting of differential operators of homogeneous
degree 0. With respect to this basis we may write (use Corollary 3.12):

with, as a result of Corollary 3.12 and Corollary 6.10, 03B2i a holomorphic function
in the variables and k (use that 1-k~K+ if ~~K_ = -K+) and a merom-
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orphic function of t and y. We claim that (t =0) is not a hyperplane of poles for
Pi (Vi). Since it is sufficient to prove this for generic (À, k) we may assume that
(À, k) are fixed, and such that the monodromy representation is semisimple. In
this situation it is clear that {~, J(-03BB, 1- k)l = 0 for all 0 E 2(À, k) that have no
component in the trivial part of the monodromy representation. Now let m E Z +
be minimal subject to the condition that tm03B2i is regular at t = 0 Vi, and put
03BCi = Mi (y) = limt~0 tm03B2i(t, y). The above remark implies that (use formula (8.1),
Remark 7.9 and Theorem 7.11):

for all eigenvectors v of Tt with nonzero eigenvalue. By Remark 7.13 this means
that y, = 0 when i = 2,..., 1 GI (since r is semisimple, and BI is the only
eigenvector with eigenvalue 0). The assumption m &#x3E; 0 would imply that also
pi = B1(03A3i03BCiBi) = 0 by a similar argument, but this contradicts the minimality of
m. So we have not only proved our claim, but also the result that

03BCi = limt~0(03B2i(t, y)) = 0 ~i  2. Using formula (8.1) again, we obtain

where J.ll(À, k) is polynomial in 03BB and rational in k. (Here we used the fact that all
the coefficients of the power series expansion in t at t = 0 of J(À, k,(t, y)) are
rational in k and polynomial in 03BB. This follows at once if from the recurrence

relations defining them (using V§ and Lemma 7.5.)) Since for all (03BB, k) E h* x K_

both (·, J(-03BB, 1-k)} and E are nonzero sections of 2*(À, k) (recall that

1-k~K+ if k~K_), we see that 03BC1(03BB, k) ~ 0, oc for (03BB, k)~h*  K_. Hence
03BC1(03BB, k) = a(k) E C(k), having no poles or zeros in K -. D

COROLLARY 8.4. E(À, k) depends holomorphically on (À, k)~h* x K_.

9. The singular set of JG and EXPG

In this section we will prove a refinement of Corollary 6.10, namely we will give
an exact description of the singular set of JG (and thus of ExpG - cf. the proof of
Corollary 6.10), counted with multiplicity. At the same time we will discuss the
relation of this result with the problem of calculating the Bernstein-Sato

polynomial b of the discriminant of G explicitly. As a consequence we obtain a
proof of the formula for b that was conjectured by Yano and Sekiguchi
(see [35]). Finally we will show how this "almost" proves the Macdonald
conjecture ([24], Conjecture 5.1) on the Mehta type integral. (In order to get a
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complete proof we still need to calculate a certain constant by computer. This
was done by Prof. F. Garvan.) We note that these results have previously been
proven in [28] for all cases where G is a Weyl group, as an application of the
calculus of hypergeometric shift operators. Thanks to the results of Dunkl and
Heckman mentioned in Section 2 we know that shift operators do exist in the

general case. But still the calculation given in [28] does not carry over to the
general situation, since it is based on the evaluation of Jacobi-polynomials at the
identity element (and Jacobi-polynomials are not present in the general case).
This part of the proof will be replaced by the use of the evaluation map E (as
defined in Section 8) in the present section.

Recall the notion of i-length 1(g) of g E G (see [23]). If k E K is a multiplicity
function on R = R(G), we define kl(g) = kl1(g)1··· klm(g)m. Here k = 03A3mi=1 ki1Ci, if

R = 03A0mi=1 Ci is the decomposition of R in minimal G orbits, and li(g) is the

number of simple reflections r03B1 with a E Ci that occur in a minimal expression for
g. We denote by PG(k) = 03A3g~G kl(g) the Poincaré polynomial of G (see [23]).
The regular representation of HG(q) contains the trivial representation

precisely once, and it is not hard to give an explicit basis vector in HG(q) for this
one dimensional subspace.

LEMMA 9.1 (See [13]). The vector v(q) = 03A3g~G(-q)-l(g)Tg~HG(q) satisfies
Tiv=v(~i) (where Ti = TSi).

Proof. Easy calculation, similar to ([13], Lemma 1). D

DEFINITION 9.2. Recall the notations of Section 5. In particular, if k~K we

define q E K by: q(k)= -exp(-203C0-1k). Clearly q03B1~R~03B1~R (recall that W is
the ring of entire functions on 4* x K). Let A~RAG be the element

A(k)=03A3g~G(-q)-l(g)03B4g (03B4g was defined j ust before Proposition 7.1).

PROPOSITION 9.3 Let (03BB, k)~h*  K_(see Remark 7.17), and let f E 2x(À, k)
( for some x E 4"9). Then (see Lemma 5.2 for the definition of y):

Proof Clearly (03BC(03BB, k)A(k)) f E 2(A, k) has trivial monodromy as a consequence
of Lemma 9.1. If k~Ks this implies that (03BC(03BB, k)A(k)) f equals some constant
times JG(Â, k), as a direct result of Proposition 5.6(2) and Definition 6.9. Then
formula (9.1) follows by applying E and using Proposition 8.2. When k~K_
arbitrary, we can still extend f by a holomorphic family of solutions

f(k’)~ 2x(A, k’), k’ varying in a neighbourhood of k and such that f(k) = f.
Hence formula (9.1) follows from the case k’~Ks by meromorphic continuation
when we use Corollary 8.4. D
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DEFINITION 9.4. Let B E C[K] be the polynomial defined by

(Here 1R: T - C denotes the function 1R(03B1) = 1 ~03B1~R as usual). We denote the
zero locus of B (counted with multiplicity) by Z, c K. Also let b E C[s] (s an
indeterminate) denote the restriction of B given by b(s) = B(s1 R), and let Zb be its
zero locus in the s-plane.

PROPOSITION 9.5. b E C[s] has degree IR, 1 .
Proof. From its definition it is clear that we have to show that

where

In order to see this we use Dunkl’s results on harmonic polynomials and peak
sets ([9], Th. 2.10, §3). Let E denote the peak set, and let xo E E. Then

(Here 03B1* denotes the adjoint of 03B1 with respect to the inner product (on C[E])
(f, 9) = 03A3x~E f(x)g(x). In the last step we used Dunkl’s results (Section 3, loc. cit.)
that the map

C[b] - C[E], p(xi,... xn) ~ p(T1*, ... , n*)1|E is an isomorphism when re-
stricted to the harmonic polynomials A’* c: C[h], together with his result

x0~hreg). D

PROPOSITION 9.6. The set of poles of J, equals (with multiplicity) 1)* x Z x 4,
where Z= UnEZ+ (ZB-n1R).
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Proof. First of all recall that J is holomorphic on 1)* x K + x b (Corollary 6.10).
We use the functional equation

in order to extend J meromorphically to b* x K x 1). Hence we see that the set of
poles of J is contained in b* x Z x 1). We obtain the equality by observing that if
03BB~(h*)reg then GR(k+ 1R)J(03BB, k+ 1R)) ~ 0 (by Proposition 4.1). This completes
the proof. D

We will now determine b explicitly (up to a multiplicative constant) using
Proposition 9.3 and Proposition 9.6. A key role is played by the well known
factorization formula for PG due to Bott [1], Solomon [29] (in the case of
identical root labels) and Macdonald [23] (general case).

THEOREM 9.7. Z=Zpn(K+)C, where (K+)’ denotes the set-theoretic comple-
ment of K+ and Zp denotes the zero locus of k ~ PG(-q-1(k)) (counted with
multiplicity).

Proof. We leave it to the reader to verify that all components of Zp intersect
the diagonal s-plane C1R ~ K (for instance by inspection of Macdonald’s list
([23], Section 2.2) which gives factorizations for the polynomials PG(q)). Since

C1R ~ K+~K_ this implies that the components of ZP~(K+)c all contain
points of K_. Therefore we may apply formula (9.1), and we obtain the result
Z c Zpn(K+Y (use Proposition 9.6 and Corollary 8.4. Note that we may
assume that E( f ) = 1 in (9.1) since E E 2*(À, k) is nonzero (Proposition 8.2)). It is
sufficient now to show that the intersections of Z and ZP~(K+)c with C1R
coincide (with multiplicity, of course). Recall the theorem of Bott and Solomon
(see [1], [29]): (t an indeterminate)

where di denotes the ith primitive degree of G. Hence (the dot · denotes
intersection counted with multiplicity):

By Proposition 9.6, (Z)·(C1R) = ~l~Z+(Z - l1R), thus by counting the number of
points per unit interval (Proposition 9.5) we obtain (Zp) - (C1R) = (Z) (C1R) in a
half plane Re(s)  M (for some M~Z_). Using (9.1) again this is clearly
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equivalent with the condition:

3f E Y,(Â, k) such that (03BC(03BB, k)A(k)) f ~ 0. (*)

Hence (*) is satisfied when k = s1R with Re(s)  M. Moreover, if we take

À E (h*)reg then condition (*) is periodic in k E K with period 1R by Proposition
4.1, and thus condition (*) holds for all k = s 1 R, with s E C. Hence by formula (9.1)
we have:

This proves the conjecture of Yano and Sekiguchi on the b-function for the
discriminant of a finite Coxeter group (see [35]):

THEOREM 9.8. The Bernstein-Sato polynomial b E C[s] of the discriminant
1 Ge (GB4) is, for any finite Coxeter group G, given by

(mi = di - 1, the G-exponents and n = rank(G)).
Proof. The reasoning in [28], Section 7 shows that b(s + -f) = c - b(s) (for some

constant c). By the proof of Theorem 9.7, we also have:

Hence,

and the factorization (9.2) follows. D

The above results also yield information on Macdonald’s conjecture on the
Mehta type integral for finite reflection groups ([24], Conjecture 5.1):

THEOREM 9.9. Consider the Mehta type integral
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where d03B3(x) = (2n) -n/2 e-1/2||x||2 dx denotes the Gaussian measure. There exists a
constant c E R + such that

Proof. Using Corollary 3.10 and Definition 9.4 we obtain the functional
equation

where, according to Theorem 9.8, for some nonzero constant:

This leads to the stated result (copy the proof which was given in ([28], Section
7) for the case where G is a Weyl group). D

This would prove Macdonald’s conjecture ([24], Conjecture 5.1) for these
integrals if we could show that in fact c = 1. Equivalently, we have to show that:

Unfortunately, I do not have an intrinsic explanation for (9.3). But when we use
the classification of irreducible finite Coxeter groups it suffices to verify (9.3) for
the groups H3 and H4 only (since the conjecture was proved for dihedral groups
by direct computation in [24], and for Weyl groups in [28]). As was already
mentioned in the Introduction, Prof. F. Garvan has informed me that he has
indeed been able to verify (9.3) for these cases by computer (after he simplified
(9.3) somewhat using certain symmetries). (In the case of H3 this computer
calculation was carried out independently by Dr. H. Finkelnberg using
"Maple".) Thus, provided that we accept these computer calculations as a proof,
we have:

COROLLARY 9.10. Macdonald’s conjecture on the Mehta type integral as-
sociated with a finite Coxeter group is true.
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