
COMPOSITIO MATHEMATICA

ALEXANDRU DIMCA

MORIHIKO SAITO
On the cohomology of a general fiber of
a polynomial map
Compositio Mathematica, tome 85, no 3 (1993), p. 299-309
<http://www.numdam.org/item?id=CM_1993__85_3_299_0>

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1993__85_3_299_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


299

On the cohomology of a general fiber of a polynomial map

ALEXANDRU DIMCA1 and MORIHIKO SAITO2
’School of Mathematics, The University of Sydney, Sydney NSW 2006, Australia; 2RIMS Kyoto
University, Kyoto 606 Japan

Received 11 October 1991; accepted 21 January 1992

Compositio Mathematica 85: 299-309, 1993
(Ç) 1993 Kluwer Academic Publishers. Printed in the Netherlands.

Introduction

Let X = C", S = C, and f : X - S a map defined by a polynomial which is also
denoted by f. Then f induces a topological fibration over a Zariski-open subset
of S. It is interesting whether we can compute algebraically the cohomology of a
generic fiber F = f-1(t) using the polynomial ring (9: = C[x1,..., xn] and the
polynomial f Of course, we can calculate the cohomology using the de Rham
cohomology of the (scheme theoretic) generic fiber of f, but it is not quite
computable.

In the weighted homogeneous case, the answer was given by [3]. Let Q’
denote the complex of global algebraic differential forms on X (i.e., 03A9p is a free U-
module with a basis dxi ̂ ··· A dxip (il ...  ip)). Define a differential D f on
03A9 by

Then we have an isomorphism

if f is weighted homogeneous, where H denotes reduced cohomology. (In
[loc. cit.], D f was denoted by Df. See also (2.10) below.) In this paper, we prove

(0.3) THEOREM. The isomorphism (0.2) holds for any polynomial f.

The proof uses the theory of algebraic Gauss-Manin system which is a

generalization of [4] (see, for example, [1]), and also the theory of monodrom-
ical algebraic D-modules. Let ~fOX denote the algebraic Gauss-Manin system,
which is defined by the direct image of (9x by f as algebraic D-module. Let t be
the coordinate of S, and ôr = olot. Then we have a natural quasi-isomorphism
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(see (2.7)):

Here ôt - id is analytically equivalent to ô, (because ~t-1=et ôt e - in DSan). Let

~pfOX denote the pth cohomology of f f (9x. Its restriction to a Zariski open subset
of S is a vector bundle (i.e., a locally free sheaf) whose fiber is isomorphic to the
cohomology of the fiber of f (see (2.3)). We take the direct image of IP (9x by the
compactification S - P 1, and compute its analytic local cohomology at infinity
(see (2.8)). Then we get the assertion using the theory of monodromical D-
modules (see (2.9)).

It should be noted that Theorem (0.3) is essentially of algebraic nature, and the
local analytic version of (0.3) does not hold. For example, (03A9Xan, Df) [1] is not
quasi-isomorphic to Deligne’s vanishing cycle sheaf, because D f is analytically
equivalent to the natural differential d using ef .

1. Monodromical D-modules of one variable

In this section, we gather some elementary facts from the theory of monodrom-
ical algebraic -9-modules of one variable, which should be well known to
specialists.

(1.1) Let S denote the affine line C with coordinate t (i.e., S = Spec C[t]). Let
S* = SB{0} with a natural inclusion j : S* ~ S. Let DS be the sheaf of algebraic
differential operators on S [1], [5]. We denote by R the global sections of -9s,
which is the Weyl algebra C[t, ôt]. Let Mcoh(DS) be the category of coherent -9s-
modules, and Mfi.(R) the category of finite R-modules. We have an equivalence
of categories

by the global section functor r(S, *).
Let Sa" denote the underlying complex analytic space of S. We have a functor

by M ~ Man := OSan ~OS M, where the pull-back by the natural morphism
Sa" ~ S is omitted. Then the de Rham functor DRS is given by
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using the coordinate t to trivialize 03A91S (see (2.1.2) below).

(1.2) For M E Mcoh(DS), let M(S) = r(S, M), and

Then

and we have isomorphisms

In fact, tôt is bijective on M(S)" for 03B1 ~ 0, because tôt = a on GrKM(S)" with
KiM(S)" = Ker(t~t-03B1)i+1 (similarly for a,t).

(1.3) DEFINITION. We say that M~ Mcoh(DS) is monodromical if M is generated
by M(S)" (03B1~C) over -qs. Let Mcoh(DS)mon denote the full sub-

category of Mcoh(DS) consisting of monodromical DS-modules. Then

M E Mcoh(DS)mon is called meromorphic (resp. microlocal) type if the action of t
(resp. ôt) on M(S) is bijective.

REMARK. The condition of monodromical DS-module is equivalent to that
any element of M(S) is annihilated by a polynomial of tôt. So it is stable by
extensions in M coh( !?fis).

(1.4) LEMMA. For M E Mcoh(DS)mon, we have a natural isomorphism

and M(S)" is finite dimensional over C. In particular, the functor M ~ M(S)03B1 is

exact.

Proof. The injectivity of (1.4.1) is clear using the action of tôt on M(S). Since the
condition of monodromical DS-module is equivalent to the surjectivity of

the surjectivity of (1.4.1) follows from (1.2.3), taking the global section of (1.4.2).
We have dimcM(S)a  oo, because M(S)" is finitely generated over C[N] with
N = - (tôt - a).

REMARK. By (1.2.3) and (1.4.1), M~Mcoh(DS)mon is meromorphic (resp.
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microlocal) type if and only if

is bijective.

(1.5) LEMMA. Let M ~Mcoh(DS) such that supp M c {0}. Then M is monodrom-
ical, and M(S)" = 0 except for negative integers a.

Proof. The assumption is equivalent to that any element of M(S) is annihilated
by a sufficiently high power of t. Then we can check the assertion using
~itti = 03A00ji (tat +j).

REMARK. For M as above, M is a finite direct sum of  in the proof of (1.8) by
(1.2.3). This is a special case of Kashiwara’s equivalence (see [1]).

(1.6) LEMMA. Let A be a subset of C such that 0 E A and the natural morphism
A -+ C/Z is bijective. Let A’ = 039B~{-1}. Let CC be the category whose object is a
famil y of C-vector spaces V03B1(03B1 E A’) with morphisms u : V0 ~ V-1, v : V-1 ~ VO, and
N: V03B1 ~ V03B1 (a E 039BB{0}) such that ~03B1~039B’ V" is finite dimensional, and vu, uv and N
are nilpotent. Then we have an equivalence of categories

by associating M(S)", ~t, t and tô, - a to M E Mcoh(DS)mon.
Proof. This follows from (1.2.2-3) and (1.4.1).

(1.7) COROLLARY. We have an equivalence of categories

where the left-hand side is the category of monodromical -9s-modules of mero-
morphic (resp. microlocal) type, the right-hand side is the category of finite
dimensional C-vector spaces with an automorphism T, and the functor is defined by
M - ~03B1~039B M(S)" with T = exp( - 2nitô,).

REMARK. Using (1.6), we can show that the category Mcoh(DS)mon is equivalent
to the category of regular holonomic DSan,0-modules (for which an equivalence of
categories similar to (1.6.1) holds). The terms ’meromorphic’ and ’microlocal’ are
originally used in this case (see [8]).

(1.8) PROPOSITION. Let M~Mcoh(DS)mon. Then M is regular holonomic [1].
Proof. Since the action of t~t-03B1 on M(S)" is nilpotent, we may assume

03A303B1~039B’ dim M(S)" - 1 by (1.6), taking the graduation of a finite filtration on M
(because regular holonomic D-modules are stable by extensions [loc. cit.]). Then
we can check that M is isomorphic to one of the following:
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depending on the a such that M(S)03B1 ~ 0. So we get the assertion.

REMARK. We can show that a regular holonomic DS-module is monodrom-
ical, if and only if its restriction to S* is finite over Us* (i.e., a vector bundle with
connection [2]). In fact, we may assume that M|S* is a vector bundle by (1.10)
below. Then the assertion is reduced to case where the action of t on M is

bijective using the localization of M by t (because Mcoh(DS)mon is stable by
extensions in M,.,(-9s), see Remark after (1.3)). Then the assertion follows [2]
(see also (1.11) below).

(1.9) PROPOSITION. For M~Mcoh(DS)mon, there exists uniquely
M’ E Mcoh(DS)mon of meromorphic (resp. micro local) type with a morphism M ~ M’
(resp. M’ ~ M) inducing an isomorphism on S*.

Proof. By (1.6) there exists uniquely M’~Mcoh(DS)mon with a morphism
M ~ M’ (resp. M’ ~ M), such that

for i &#x3E; 0. Then the morphism induces an isomorphism on S* by (1.5).

REMARK. In the standard notation (see [1]), M’ is denoted by j* j*M
(resp. j! j*M). Here j* is really the direct image as Zariski sheaf (because M’ is the
localization of M by t), but j! is not. In factjt is defined by Dj*D with D the dual
functor (see [loc. cit.]). We have

See also (1.12) below for (1.9.3).

(1.10) COROLLARY. For M~Mcoh(DS)mon, the restriction of M to S* is a free
OS*-module of rank 1,,c-A dim M(s)a. In particular, Man|S* is a vector bundle with
connection [2], and DRS(M)[-1] Is. is a local system.

Proof. It is enough to show the first assertion. We may assume M mero-
morphic type by (1.9). Then M(S) is a free C[t,t-1]-module of
rank I:aeA dim M(S)03B1 by (1.2.3) and (1.4.3), and the assertion follows.

(1.11) PROPOSITION. Let L be a local system on S* with complex coefficients,
L~ the group of multivalued sections of L with the monodromy T, and L03B1~ the
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exp(-203C0i03B1)-eigenspace of Loo with respect to 1;, where T = TsTu is the Jordan
decomposition. Then there exists uniquely M E Mcoh(DS)mon of meromorphic (resp.
microlocal) type with an isomorphism

where DRs is as in (1.1.3). Furthermore, we have a canonical isomorphism

for a E A, such that - (tôt - a) corresponds to N: = (log Tu)/203C0i.
Proof. By (1.9) it is enough to show the assertion for M meromorphic type. By

(1.7), there exists uniquely M~Mcoh(DS)mon of meromorphic type with the
isomorphism (l.11.2). Then Man is identified with a OS[t-1]-submodule of
j*«(9s* ~CL) generated by

for u e Li with a E A (see [2]), because (1.11.3) satisfies the same relation as the
element of M(S)03B1 corresponding to u E Li by definition of M (and Man |S* and
(!Js* Q9c L have the same rank). In particular, Man|S* = OS* ~C L, and the

assertion follows.

REMARK. This proposition shows that we have an equivalence of categories
between the category of monodromical DS-modules of meromorphic type and
the category of local systems on S*, in a compatible way with (1.7.1). Note that
the isomorphism (1.11.2) depends on the choice of the branch of log t (i.e., the
choice of a lift of 1 to a universal covering of S*).

Proof. By (1.10), DRS(M)[-1]|S* is a local system, and it is enough to show
(1.12.1). Using a filtration defined in the category of monodromical éos-modules
of microlocal type, we may assume 03A303B1~039B dim M(S)03B1 = 1. Then it is isomorphic to
M(03B1)=DS/DS(t~t-03B1) if M(S)03B1 = C for 03B1~039BB{0} (see the proof of (1.8)). In the
other case, we can check that M is isomorphic to DS/DS(t~t). Then we can check
the assertion (see also [8]).
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2. Algebraic Gauss-Manin system

(2.1) Let f:X ~ Y be a morphism of smooth complex algebraic varieties. The
direct image f f M of a DX-module M is defined by

where 03C9X is the dualizing sheaf, and " denotes the dual line bundle. See [1], [6],
[10], etc. Note that, if f is an open embedding, If M is defined by the sheaf
theoretic direct image. In the case Y is the affine line S, the direct image If M will
be more explicitly expressed later (see (2.6)).
We denote the cohomological direct image JfP Jf M by Jj M. For M = (9,, the

direct image ~f OX (or ~pfOX) is called the Gauss-Manin system of f [7].
For a DX-module M, let

where 03A9X(M) denotes the de Rham complex as in [1], [2], and an is defined as in

(1.1.2). By [1] we have:

(2.2) PROPOSITION. If M is regular holonomic, the cohomological direct images
~pf M are regular holonomic, and we have a natural isomorphism

(2.3) COROLLARY. Assume f smooth with relative dimension r, and ~pf OX is a
locally free OY-module of finite rank (i.e., a vector bundle with integrable connection
[2]). Let LP be the local system defined by the horizontal sections of (~pf OX)an. Then
we have natural isomorphisms

Proof. The first assertion follows from the Poincaré lemma. Then the second
follows from (2.2.1) using DRX(OX) = CXan [dim X], because (9x is regular
holonomic by definition [1].
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REMARK. If we assume that RP+1*Cxan is a local system, the corollary follows
also from the relative version of [4] using a desingularization of the divisor at
infinity of a compactification of f, because we may replace Y by its Zariski-open
subset.

(2.4) LEMMA. Let f : X ~ Y be as in (2.1), and assume Y is the affine line S with
coordinate t as in Section 1 so that f is identified with a function on X. Let
0 = at-id, and

Then we have a natural isomorphism

where an is defined as in (1.1.2).
Proof. This follows from ô, -1 = etot e - in DanS.

(2.5) PROPOSITION. For f : X ~ S as above, assume Xan contractible and purely
n-dimensional. Then we have a natural isomorphism

Proof. This follows from (2.2) and (2.4).

REMARK. We can apply (2:2) also to the direct image of (9x by X ~ pt and the
direct image of ~pf (9x by S - pt. In this case, (2.2) means the commutativity of the
direct image with the functor An in (1.1.2), and follows also from [4] and [2] (see
also (1.9.2) above) respectively.

(2.6) Let f : X ~ S be as in (2.4), and M a -9x-module. We define a structure of
éox-module on M Q9c C[~t] by

for g~OX, 03B6~0398X and U E M. It has also the action of R = C[t, ôt] (see (1.1)) by

which commutes with the action of -9,. Then M ~C[~t] is identified with the
direct image of M by the embedding i f by the graph of f, and u Q9 G: is identified
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with ~it03B4(t - f ) Q u. Here 03B4(t - f ) is the delta function with support f f = tl, and
satisfies the relation

which gives (2.6.1-2).
Since the direct image of a -9-module by a smooth projection with fiber X is

given by the sheaf theoretic direct image of the relative de Rham complex shifted
by dim X (see for example [1]), the direct image ~f M is expressed as

factorizing f into the closed embedding i f and thé projection. This can be also
obtained by using induced D-modules [9]. Note that, if f is an affine morphism,
the derived direct image Rf, can be replaced by f*.

(2.7) PROPOSITION. For f : X ~ S as above, assume X = C". Then we have a
natural quasi-isomorphism (0.4) in the introduction.

Proof. By (2.6.4), ~fOX is expressed by f*(nx ~CC[~t])[n], where the

differential of 03A9:X Oc C[ô,] is given by

See (2.6.1). Then we have a short exact sequence of complexes

where the differential of Qx is D f . Then we get the assertion taking the exact
functors f* and F(S, *).

(2.8) PROPOSITION. Let S = pl with a natural inclusion j’ : S ~ S. Let M be a
regular holonomic DS-module, and K = Cone(03B8: M ~ M) for 0 as above. Let U be a
Zariski-open subset of S on which M is locally free over OU, and denote the local
system DRS(M)[-1] luan by L. Then we have a canonical isomorphism

for t~ Uan( c C) such that Im t = 0 and Re t » 0. Furthermore,

Proof. Let V = {t~C:|t|&#x3E;R} ~ Uan for R sufficiently large, and V’ =
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V ~ {~}. Then (j’M)" 1 v, is an extension of Man|V as regular holonomic DV’-
module such that the action of the local coordinate s(=t-1) is bijective, and
such an extension is unique by [2]. So Hi{~}((j’*K)an) is uniquely determined by
Man|V, or equivalently, by L|V (see [loc. cit.]). Since V is homotopy equivalent to
(s*)an, we may assume U = S*, and M is a monodromical DS-module of
microlocal type by (1.11). Then

by the same argument as the proof of (2.4). So it is zero for any i by (1.12.2), and
we may replace Hi{~}((j’*K)an) in (2.8.1-2) by Hi(San, (j’*K)an) using the long exact
séquence :

By GAGA, we have

where the last isomorphism follows from the exactness of j’. Moreover,

using (1.2.3) and (1.4.3). So the assertion follows from the isomorphism (1.11.2).
Here we identify L, with L~ by taking a lift of t to a universal covering of S*, at
which log t is real valued.

(2.9) Proof of Theorem (0.3). Let K f be as in (2.4), and j’ : S ~ S as above. By
GAGA and (2.7), we have

We have the long exact sequence (2.8.4) with K replaced by K f. Let F = f -1(t)
for t as in (2.8.1). Then it is enough to show a canonical isomorphism

by (2.5.1), because we can check H0(03A9·, Df) = 0 so that the morphism

is injective. Then, applying (2.8) to M = ~pf OX, the assertion (2.9.2) follows from
(2.3).
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(2.10) REMARKS. (i) If f is weighted homogeneous, ~pfOX (p * 1-n) and
~1-nf OX/OS are monodromical DS-modules of microlocal type, and the decom-
position (1.4.1) by the action of t~t is induced by the grading of Q’ compatible
with f as in [3]. This implies that the isomorphism (0.2) is compatible with the
action of monodromy as in [loc. cit.].

(ii) In Theorem A of [3], b does not induce an isomorphism for k = 0. The
definition of D f should be replaced by (0.1) in this paper, which is denoted by D f
in [loc. cit.].

(iii) In the proof of ( 1.8) of [3], it is better to use Coim 0394 instead of 03A9 = Ker A.

(2.11) EXAMPLE: f = x2y+x. This is a generalized weighted homogeneous
polynomial admitting negative weights, and the spectral sequence as in [3] does
not converge. In fact, the Eo-complex is isomorphic to the Koszul complex
(QB d f 039B), and is acyclic, but the general fiber F = f -1(t) is isomorphic to C* so
that H°(F, C) = 0, H1(F, C) = C. We can check H2(03A9, Df) = C as follows.
We have fx = 2xy + 1, fy = x2, and

Let ~:03A92 ~ C be a map defined by ~(xiyjdxdy)=(-1)ij!/(2j-i+1)! for

2j +1  i, and 0 otherwise. Then 0 induces the isomorphism H2(03A9·, Df) = C.

Added in the proof. We are informed that a similar result is obtained by B.
Malgrange and P. Deligne independently using the theory of Fourier

transformation.
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