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Introduction

This work began as an attempt to generalize the following result of Dayton [4]:
If A is a reduced G-algebra containing Q and B is the seminormalization of A
then there is a functorial isomorphism 0: Pic(A) ~ B/A. (Recall that a G-algebra
is a graded commutative ring A = ~n0 An, where A o is a field and A is finitely
generated as an Ao-algebra.)
We extend this result to a more general situation, where A may not be graded

or finitely generated or even reduced, and B may not be the full semi-

normalization of A. To describe our result more precisely, let A ~ B be an
extension of commutative rings containing 0 and suppose that this extension is
subintegral (Swan [9, §2]). Our main result is to construct in this situation a
natural group homomorphism 03BEB/A: B/A ~ J(A, B), where J(A, B) is the group
of invertible A-submodules of B, and to prove the following

(5.6) MAIN THEOREM. Let A be an excellent 0-algebra of finite Krull
dimension and let A - B be a subintegral extension. Then the homomorphism
03BEB/A: B/A ~ f(A, B) is an isomorphism.
The assumption of excellence and finite dimension is needed to carry out our

proof of the Main Theorem by induction on dimension. However, the conclu-
sion of (5.6) holds without these assumptions. The assumption that A contains
is needed because we use the exponential and logarithmic series, and in fact the
conclusion of (5.6) need not hold without this assumption. See the Final Remark
at the end of the paper for more details.

Suppose A is a reduced G-algebra containing U and B is the semi-

normalization of A. Then A is excellent and of finite Krull dimension, the
extension A ~ B is subintegral and f(A, B) = Pic(A) (2.5). So (5.6) gives
B/A ~ Pic(A) in this situation. Furthermore, our map ÇB/A differs from the map

*This work was supported by the NSERC grant of the first author. It was done while the second
author was visiting Queen’s University, Ontario, whose hospitality is gratefully acknowledged.
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03B8-1 of [4] by a group automorphism of B/A (Section 7), whence (5.6) also yields
Dayton’s result as a special case.
The grading of A appears to play a crucial role in Dayton’s work, and indeed

enters explicitly into the definition of 0. We started out by noticing that many of
Dayton’s introductory remarks do not require the grading, or can be suitably
modified. This led us to ask how far we could get without requiring the ring to be
graded.
The most natural way to obtain a map from an additive group to a

multiplicative group seems to be with an exponential map. Roughly speaking
03BEB/A(b) = Âeb ~ A[b], where b~B and Â is a suitable completion. The most
obvious completion is the b-adic one. However, this completion is not always
available, for example, if b is a unit. Therefore, we define ÇB/A(b) to be the
reduction of A[[T]] ebT ~A[b][T] modulo T = 1. One might hope that 03BEB/A(b)
is invertible with inverse 03BEB/A(-b). Obviously 03BEB/A(b)03BEB/A(-b) ~ A, but in

general we do not have equality. For example, if b is an indeterminate over A,
then 03BEB/A(b) = 0. The heart of the matter then is to prove the equality
03BEB/A(b)03BEB/A(-b) = A for suitable b, and for this it suffices to show that

1 E ÇB/A(b)ÇB/A( - b). An important step towards our solution of this problem is to
find an elementwise characterization of a subintegral ring extension, which is
perhaps a result of independent interest. We define an element b of B to be

subintegral over A if there exist c1,...,cp~B such that bn + 03A3pi=1 (ni)cibn-i~A for
all n » 0. This condition is shown to be independent of the overring B to which b
belongs (see (4.3)). We then prove

(4.17) THEOREM. For an extension A ~ B of 0-algebras the following two
conditions are equivalent:

(i) every element of B is subintegral over A,
(ii) the extension A ~ B is subintegral.

In order to prove (4.17) and also to deduce the invertibility of ÇB/A(b) from
(4.17), we first prove in Section 3 the invertibility of ÇB/A(b) in a universal
situation.

Once one knows that ÇB/A(b) is invertible it is not difficult to prove that

03BEB/A: B/A ~ J(A, B) is a homomorphism. The proof that ÇB/A is an isomorphism
is then obtained by reducing modulo the conductor and using induction on
Krull dimension. Factoring out by the conductor yields in general a nonreduced
ring, but this causes us no problems, since we prove our result even for

nonreduced rings.
Two easy examples will help motivate our work. First let A =

k[X, Y]/((Y - X2)(Y - X3)), where k is a field of characteristic zero, and let B be
the seminormalization of A. Then Spec(A) consists of two affine lines, intersect-
ing normally in one intersection point and tangentially in the other, and Spec(B)
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consists of two affine lines meeting normally in each of two intersection points.
To describe the extension A ~ B algebraically, let A be normalization of A. Then
A = k[t] x k[u], the inclusion A ~ A being given by X ~ (t, u) and Y ~ (t2, u’).
By [8, 1.3],

Calculations with the units-Pic sequence [1] (which we leave for the reader) now
show that Pic(A) = k ~ k* and Pic(B) = k*. Furthermore one can show that
B/A ~ k. Clearly A cannot be graded in any nontrivial way. This suggests that
even in the nongraded case, B/A may still be related in some way to Pic. On the
other hand, let A = k[[T2, T3]], which has seminormalization B = k[[T]]. Then
Pic(A) = 0, since A is local, but B/A = k. However, since the origin is the only
singular (or non-seminormal) point of Spec(k[T2, T3]), one would expect the
isomorphism Pic(k[T2, T3]) ~ k[T]lk[T’, T3] to be reflected somehow at the
local level. These examples can be understood in terms of our Main Theorem
and the exact sequence (2.4). In the first, A* = B* = k*, J(A, B) ~ B/A = k,
Pic(A) = k ~ k*, and Pic(B) = k*. In the second B*/A* ~ k, J(A, B) àé B/A = k,
and Pic(A) = 0.
We remark that analysis of all aspects of the problems discussed above is

quite easy in the case of an elementary subintegral extension A z B, i.e. in case
B = A[b] with b2, b3 E A. However, difficulties arise already in the case of a two-
step extension, i.e. a composite of two elementary subintegral extensions. A
generic two-step example, which was the starting point of and illustrates our
theory, is described in Section 6.

1. Notation

The sets of integers, nonnegative integers, positive integers and rational numbers
are denoted, respectively, by Z, 7L +, N and Q.

For an indeterminate T and for d~Z+ let

By a ring A we always mean a commutative ring with 1, and A* denotes the
group of units of A.

Nil(A) denotes the nilradical of A, i.e. the ideal of all nilpotents of A. Put
Uni(A) =1 + Nil(A). Then Uni(A) ~ A* is the group of all unipotents of A.
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Suppose now that Q ~ A. Then for a E Nil(A),

are finite sums of elements of A, hence belong to A. Further, we have

Thus

are isomorphisms of groups and are inverses of each other.
Note that if A’ is a subring of A containing Q then

2. Invertible modules

Let A 9 B be an extension of (arbitrary commutative) rings. In this section we
discuss the group f(A, B) of invertible A-submodules of B. This group is well
known if B = S-1A with S a multiplicative set of nonzero divisors in A

[2, Ch. 2, §5]. We do not know a reference for the more general case that we
need in this paper. Some of our lemmas generalize results of [4, §1] to the
nongraded case.

(2.1) DEFINITION. The set of all A-submodules of B is a commutative

semigroup under multiplication, with identity A. The invertible elements of this
semigroup, called invertible A-submodules of B, from an abelian group denoted
J(A, B).

Let A’ ~ B’ be an extension of rings and let 9: B ~ B’ be a ring homomorph-
ism such that g(A) g A’. If 1 E J(A, B) then clearly A’~(I) c-,f(A’, B’). Therefore
writing J(~)(I) = A’~(I) the assignment (A g B) ~ J(A, B) becomes a functor
from the category of ring extensions to the category of abelian groups.

(2.2) LEMMA. Let I~J(A, B). Then:

(1) There exists m1,...,mr~I, n1,...,nr~I-1 such that 03A3ri= 1 mini = 1. Conseq-
uently, I = (m1, ... , mr)A and 1 B = B.

(2) I-1 = (A:I) = {x~B|xI ~ A}.
(3) 1 is a projective A-module of finite type, and of rank one.
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(4) If J is any A-submodule of B then the multiplication map 1 QA J ~ IJ is an
isomorphism. In particular, 10 A B --+ 1 B = B is an isomorphism.

Proof. Parts (1), (2), (3), except for the assertion about rank, are proved as in
[2]. We prove (4) first in the case J = B. If 03A3ri=1 mini = 1 as in (1) then we get a
surjection f: Ar ~ I, sending the ith element ei of the standard basis of Ar to mi,
which is split by g(m) = (mn1, mn2,..., mnr), for m E I. Tensoring with B we get a
commutative diagram

of B-linear maps, where p is multiplication, h is defined by h(ei) = mi and 1 is

defined by l(1) = (n1,..., nr). Clearly ( f Q 1)(g Q 1) = 1I~AB and hl = 1B, so g Q 1
and 1 are monomorphisms. Therefore p is a monomorphism. The image of 1À is
IB, which by (1) equals B, so y is onto. Hence y is an isomorphism. Now let J be
an arbitrary A-submodule of B. Since 7 is a projective, hence flat, A-module the
inclusion J ~ B induces an inclusion I ~A J ~ I ~A B and it follows that the
map 7 Q9 A J -+ 1 J is an isomorphism. In particular I Q I-1 ~ A, showing that
rank(I) = 1. D

(2.3) LEMMA. Let 7 be an A-submodule of B, I offinite type and projective of rank
one as an A-module. Suppose also that IB = B. Then 1 c-,f(A, B).

Proof. The multiplication map I ~A B ~ IB = B is a surjection of projective
B-modules of rank one, hence an isomorphism. Since 7 is projective of finite
type, there is a split surjection f : Ar ~ 7. Let the splitting be g: I ~ A". Tensoring
with B we obtain f ~ 1: Br ~ I ~A B = B, split by g Q 1. Suppose
(g ~ 1)(1)=(n1,...,nr). Then letting mi = f(ei) we have 03A3mini = 1. The re-

striction of g Q 1 to I ~ B is just g, so we obtain that niI ~ A for all i. Now,
if we let J be the A-submodule generated by nl, ... , nr, then IJ = A, so

I ~ J(A,B). D

(2.4) THEOREM. There is a functorial exact sequence

Proof. The maps are the obvious ones: 0b = Ab, cl(I) is the class of I in Pic(A)
and the maps i are the natural ones. Note that cl is a homomorphism by (2.2).
Exactness of the sequence is now proved as in [2]. Functoriality is clear except
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perhaps for the commutativity of the square

where qJ: B -+ B’ with g(A) g A’. For 1 EJ(A, B) the A’-homomorphism
g:I~AA’ ~ A’~(I) given by g(m Q a’) = a’g(m) is clearly onto, and both

modules are projective of rank one. Therefore g is an isomorphism. Thus
1 ~AA’ ~ A’ qJ(l) = J(~)(I), proving that the square is commutative. ~

(2.5) REMARK. Two extreme cases are as follows:

(1) if Pic(A) = 0 (e.g. A a local ring or a UFD) then J(A, B) = B*/A*,
(2) if A* = B* and Pic(B) = 0 then f(A, B) = Pic(A). This is the case, in

particular, if A is a reduced G-algebra and B is the seminormalization of A,
thus re-proving Theorem 1.4 of [4].

(2.6) PROPOSITION. Let a be a B-ideal contained in A. Then the natural
homomorphism ~: J(A,B)~J(A/a,B/a) is an isomorphism.

Proof. Since a c (A: I -1) = I, we have a ~ 7 for all 1 E J(A, B). Therefore, by
definition of 0 we have ~(I) = I/a, which shows that 0 is a monomorphism. To
prove the surjectivity of 0, let I’ ~ J(A/a, Bla) and let I = 03C0-1(I’), where
03C0:B ~ B/a is the canonical surjection. Put J’ = I’-1 and J=03C0-1J’. Then
1 J = 03C0-1I’03C0-1J’ ~ 03C0-1(I’J’) = 03C0-1(A/a) = A. We claim now that 1 J = A. To see
this it suffices to show that 1 E 1 J. Let m’i~I’, n’i~J’ be such that 03A3 m’n’ = 1. If
03C0(mi) = mi, 03C0(ni) = n’i, then E mini = 1 + y, with y E a. Multiplying by 1- y we get
X mini(1- y) = 1-03B32. Taking into account that y E I n J so that 03B32 E 1 J, and that
ni(1-03B3)~J, we conclude that 1 E 1 J. Thus 1 EJ(A, B) and I’ = I/a~im(~).

(2.7) PROPOSITION. The natural homomorphism ~: J(A, B) ~ J(Ared, Bred) is
onto, with kernel Uni(B)/Uni(A). If 0 g A, then the kernel is isomorphic, via log,
to Nil(B)/Nil(A).

Proof. Here Area and Bred are the reduced rings of A and B. The proof that 0 is
onto and has the indicated kernel is by diagram chasing using the map between
the exact sequences of (2.4) for the extensions A z B and Ared ~ Bred and using
the fact that A* ~ (Area)* and B* ~ (Brea)* are onto, and that Pic(A) ~ Pic(Area),
Pic(B) ~ Pic(Bred) [1, Ch. 9, Prop. 3.4]. The final assertion is immediate from the
remarks made in Section 1. D

The following lemma is used frequently throughout the paper:

(2.8) LEMMA. Let I, J, J’ be A-submodules of B such that I ~ J(A, B), I ~ J,
I-1 ~ J’ and JJ’ ~ A. Then J = I and J’ = I-1.
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Proof. Since A = II-1 ~ JJ’ ~ A, J~J(A, B) and J’ = J-1. Now,
I-1 ~ J’ = J -1 implies J - 7 and the lemma follows. D

3. A universal setup

The universal construction described in this section is motivated by systems of
subintegrality introduced in the next section. The purpose of this section is to
prove Theorem (3.8), which asserts that the "universal" submodules I, l’ defined
in (3.3) are inverses of each other.
(3.1) NOTATION. Let C = Q[x1,..., xp, y 1, ... , yq, z, w] be the polynomial ring
in p + q + 2 variables over Q and put x0 = y0 = 1. Make C a graded ring by
defining deg(xi) = i for every i, deg(yj) = j for every j and deg(z) = deg(w) = 1. For
a graded subring R of C let R + denote the ideal of R generated by all elements of
positive degree and let R denote the completion of R with respect to R+.

(3.2) LEMMA. Let R ~ S be graded subrings of C. Then R = R n S.
Proof. Every element f of R has a unique expression of the form f = 03A3n0fn

with fn E R homogeneous of degree n. Since this statement also applies to S, f E S
if and only if fn = 0 for almost all n if and only if f E R. D

(3.3) NOTATION. (1) en(z) = 03A3n-1i=0 zili!.
(2) Yn = 03A3pi=0(ni)xizn-i.
(3) Let s, p, N ~ Z+ with N  s + p and let R ~ S be graded Q-subalgebras of

C such that xlzs, ... , xpzS, z ~ S and YnER for all n  N.
(4) Let I =  ez ~ S, I’ =  e-z ~ S.
(5) Let ~ = ~/~z, the partial derivative w.r.t. z, and let D:C ~ C be the

differential operator defined by D = 03A3pi=0 (1/i!)xi ai.
(6) Let A denote the composite

and A’ the composite

(3.4) LEMMA. (1) D(z") = Yn’
(2) 0394 = 03A3pi=0 (1/i!)(-1)ixi0394i and 0394’ = 03A3pi=0(1/i!)xi0394’i, where 0394i = (1-~)i and

A, = (1 + è)i.
(3) If i  1 then the elements 0394i(zn), ài(e 0394’i(zn), 0394’i(en(-z)) belong to

zn-i Q[z].
(4) D«U G) zNQ[[z]]) ~ R.
(5) If f ~ Q[z] such that e-j ~ Q ~ ZN 0 [[Z]] and 0394i(f) ~ zs Q[z] for 1  i  p

then 0394(f)~I. I n particular, A(zn), A(en(z)) E 1 for all n  N.
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(6) If f~Q[z] and ezf ~Q Et) zNQ[[z]] and 0394’i(f) E z’O [z] for 1  i  p then

0394’(f)~I’. I n particular, 0’(zn), 0394’(en(- z)) E l’ for all n  N.
Proof. (1) is clear and (2) is a straightforward verification. (3) and (4) are

immediate from (1) and the definitions of Di, A’ and R. As for (5), we have
0394(f) E ez by (4) and 0394(f) E S by (2) and the hypothesis on 0394i(f), so 0394(f) E 7. The
last part of (5) follows now from (3) by noting that e-zen(z)~~ zn[[z]]. The
proof of (6) is similar. D

(3.5) LEMMA. Let gr(z) = 03A3ri=0(-1)i(ri)0394(zr-i)0394’(zi) and let n  2p. Then

03A3nr=0 (1/r!)gr(z)=1.
Proof. We have

Therefore it is enough to prove that gr(z) = 0 for every r &#x3E; 2p. Let r &#x3E; 2p. Then,
for a given i, r-i &#x3E; p or i &#x3E; p. Therefore, since ôp is the highest power of ô
appearing in A (resp. A’), z divides 0394(zr-i) or 0394’(zi) whence gr(O) = 0. Therefore it
is enough to prove that ~gr(z) = 0. Since ô commutes with A, A’ by (3.4) (2), we
have (in fact, for every r~Z+)

Now, since (r2013i)(ri)2013(i+1)(ri+1) = 0, the lemma is proved. D

(3.6) LEMMA. Let H be an additive subgroup of C. Let T be an indeterminate, let
0 ~ F(T) E C[T] and let d = degTF(T). If there exists an integer m such that
F(m + i) E H for i = 0, 1,..., d, then F(n) e H for every integer n.

Proof. Induction on d. If d = 0 then F is constant w.r.t. T, so that

F(n) = F(m)~H for every n. Now, let d &#x3E; 0 and put G(T) = F(T) - F(T-1).
Then degTG(T) = d-1 and G(m+1+i)=F(m+1+i)-F(m+i)~H for

i = 0,1,...,d-1. So by induction G(n) E H for every n. Now, since F(m) E H, it
follows that F(n) E H for every n. D
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Proof. Let

and F(T) = G(T)G’(T- r)zr. Then F(n) = 0394(zn)0394’(zr-n) by (3.4) (2). So we have to
show that F(n)~II’ for all n. Let i be an integer with 0  i  2p. Then
r - N - i  N whence F(N + i) = 0394(ZN +i)0394’(Zr-N-i) E II’ by (3.4). Therefore, since
degT F(T) = 2p, it follows from (3.6) that F(n) E II’ for all n. D

(3.8) THEOREM. I, I’ ~ J(R, S) and l’ = 1-1.
Proof. We must show that II’ = R. Since

by (3.2), it is enough to prove that 1 E Il’. Let n~N with n  2(p + N). We have

r-u r-n

where

and

We have 0394(en(z))0394’(en(- z))~II’ by (3.4), hr(z) E II’ for r  n by (3.7) and
03A3n-1r=0 (1/r!)gr(z) = 1 by (3.5). Therefore 1 E II’. D

4. Subintegral elements

Recall that an extension A z B of rings is an elementary subintegral extension if
B = A[b] with b2, b3 ~ A. In general, the extension A z B is said to be subintegral
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if B is a union of subrings which are obtained from A by a finite succession of
elementary subintegral extensions, i.e. a union of subrings B’ for which there
exists a finite sequence A = A0 ~ A1 ~··· ~ Ar = B’ of rings with Ai-1 ~ Ai an
elementary subintegral extension for every i, 1 i i  r (cf. [9, 2.8]).

In order to define the map 03BEB/A: BI A -+ J(A, B) (Section 5) in the case of a
subintegral extension A z B of Q-algebras, we need to prove that the A[T]-
module A[[T]]ebT ~ A[b][T] is invertible. As a crucial step towards doing this,
we find an elementwise characterization of a subintegral extension. As remarked
in the Introduction, this characterization may be of some independent interest.
So let A g B be Q-algebras. We define an element b of B to be subintegral over

A if there exist c1,..., cp~B such that b" + 03A3pi=1(ni)cibn-i~A for all n » 0. In (4.2)
we show that this condition on b is equivalent to several other conditions, and is
consequently independent of the overring B to which b belongs. In (4.8) we show
that the set of elements of B which are subintegral over A form a subring of B.
Then, after proving several technical lemmas, we show that an extension A z B
is subintegral if and only if every element of B is subintegral over A (Theorem
(4.17)). For a single element b this result means that b is subintegral over A if and
only if the extension A z A[b] is subintegral (Corollary (4.18)).

Let b E B. By a system of subintegrality for b in the extension A g B we mean a

tuple (s, p, N; co,..., cp) with s, p, N E Z + and co, c 1, ... , cp~B such that

We call s the exponent of this system.
If p = 0 then the system reduces to (s, 0, N; 1) with the familiar condition that

bnc- A for all n  N. A general system of subintegrality is thus an extension of
this special condition and is also in the spirit of an equation of integral
dependence. In the case of integral dependence over A the coefficients are
required to lie in A, whereas the "coefficients" ci in a system of subintegrality are
allowed to be in the overring B. However, these can be chosen to lie in A[b] (see
(4.2) below).
We find it necessary to introduce the exponent s as a device to prove the

crucial technical lemma (4.12). The role of the exponent can be understood as
follows: If we invert b then a system (s, p, N; co, cl, ... , cp) can immediately be
converted to one of exponent zero by replacing ci by cilb’. However, we do not
wish to invert b, since B~B[b-1] need not be an inclusion in general. The
exponent s is a formal way of allowing bs in the denominator.

Let B[[T]] be the formal power series ring in one variable over B and put
W(B) = 1 + TB[[T]]. Let I(b) denote the A[T]-submodule of A[b][T] defined
by I(b) = A[[T]]ebT n A[b][T].
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(4.1) LEMMA. (1) I(b) = A[[T]]ebT n B[T].
(2) 1(a) = A[T] for all a~A. In particular, 1(0) = A[T].
(3) 1(b)I(b’) z I(b + b’). In particular, I(b)I(- b) 9 A[T].
Proof. Obviously, I(b) ~ A[[T]]ebT n B[T]. For the reverse inclusion, it

suffices to note that

This proves (1). (2) is clear, and (3) is immediate from (1) and (2). E

(4.2) PROPOSITION. For an element b of B the following five conditions are
equivalent:

(i) there exists a system of subintegrality for b in the extension A g A[b] of
exponent zero,

(ii) there exists a system of subintegrality for b in the extension A ~ B.

Proof. (i) ~ (ii). Trivial.
(ii) ~ (iii). Let (s, p, N; co, c i , ... , cp) be a system of subintegrality for b in the

extension A ~ B. In the notation of (3.3) let S = [x1zs,...,xpzs, z] and

R = [{03B3n|n  N}]. Then R ~ S are graded Q-subalgebras of C. Let

9:  ~ B[[T]] be the 0-algebra homomorphism given by ~(xizs) = ci T"’ for
1  i  p and g(z) = bT. Then ~(S) ~ B[T]. Further, since

we have

Let I = Rez n S. Then by (3.8) 1 ef(R, S) and I-1 = e-z ~ S. Now,

by (4.1). Similarly, ~(I-1)A[T] ~ 1( - b). Therefore, since I(b)I(- b) g A[T] by
(4.1), we get ~(I)A[T] = I(b) and I(b)I( - b) = A[T] by (2.8).

(iii) ~ (iv). Choose h(T), gi(T) E A[[T]] such that
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Then

Then we have

It follows that (0, p, p; co, ci, ... , cp) is a system of subintegrality for b in the
extension A ~ A[b]. D

(4.3) COROLLARY. An element b of B is subintegral over A if and only if b
satisfies any one of the equivalent conditions of the above proposition. Moreover,
the definition of subintegrality of b over A is independent of the overring to which b
belongs.

Proof. The condition defining subintegrality of b over A implies (ii) and is
implied by (i), which is a condition independent of the overring to which b
belongs. D

(4.4) LEMMA. Let A’ ~ B’ be an extension of 0-algebras and let ~: B ~ B’ be a
0-algebra homomorphism such that (p(A) - A’. If b E B and (s, p, N; co, c1, ... , cp)
is a system of subintegrality for b in the extension A g B then (s, p, N; qJ( co),
~(c1),..., ~(cp)) is a system of subintegrality for 9(b) in the extension A’ ~ B’. In
particular, if b is subintegral over A then 9(b) is subintegral over A’.

Proof. Clear. ~

(4.5) LEMMA. If b, b’ E B are subintegral over A then so is b + b’.
Proof. If f E I(b) n W(B) and f ’ E I(b’) n W(B) then ff ’ E I(b + b’) n W(B) by

(4.1). Therefore b + b’ is subintegral over A by (4.3). ~

We would like to show next that if b, b’ E B are subintegral over A then so is
bb’. To do this and also to prove some other properties of subintegral elements
and systems of subintegrality, we find it convenient to first do the same in a

universal setup and then specialize to the given situation. We have already done
this in the proof of (ii) ~ (iii) of the above proposition. Note that if

R ~ 1 n  NI] as in (3.3) then z is subintegral over R. The universal setup
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in Section 3 is motivated in fact by systems of subintegrality as discussed above.
Thus in the following notation z and w are two generic subintegral elements.

(4.6) NOTATION. Let C = [x1,...,xp, y1,...,yq, z, w] as in (3.1) and let

Yn = 03A3pi=0 (ni)xizn-i as in (3.3). Put bn = 03A3qj=o(nj)yjwn-j. Let N  p, M  q be

integers and let R = [{03B3n|n  N} u {03B4n|n  MI] 9 C.

(4.7) LEMMA. With the above notation zw is subintegral over R.
Proof. Let

Then

and

If i + j = k then degT Hij = k and so we can write Hij(T) uniquely in the form
k

Hij(T) = L ah(h) with ah E Q. Since (h) = 0 for nonnegative integers r  h, we see
h=0

that ah = 0 for h  max(i, j). It follows that H(T) = 03A3p+1h=0 UhZ-hw-h(r) with uhE C
for all h and u0=H(0)=1. Now,

for all n  max(N, M), which shows that zw is subintegral over R. D

(4.8) PROPOSITION. Let B’ be the set of all elements of B which are subintegral
over A. Then B’ is a subring of B containing A.

Proof Since A is clearly contained in B’, it is enough to prove that if b, b’ are
subintegral over A then so are b + b’ and bb’. The assertion about the sum is in
(4.5). To prove it for the product, let (0, p, N; co, c1,..., c p), (0, q, M ; do, d1, ... , dq)
be, respectively, systems of subintegrality for b, b’ in the extension A ~ B. In the
notation of (4.6) let qJ: C -+ B be the Q-algebra homomorphism given by
~(xi) = ci for every i, ~(z) = b, qJ(Y) = dj for every j and qJ(w) = b’. Then g(R) g A
and qJ(zw) = bb’ whence it follows from (4.7) and (4.4) that bb’ is subintegral
over A. D
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(4.9) COROLLARY. Let SE A, b E B. If b is subintegral over A then the element bls
of B[s-’] is subintegral over A[s-’l.

Proof. Since b/1 is subintegral over A[s-1] by (4.4) and 1/s~A[s-1], bls is
subintegral over A[s-1] by the above proposition. D

The next three lemmas are of a technical nature and are needed only to prove
Proposition 4.13.

Let L be the quotient field of C. For e ~ N define an operator 8e on L(T) by
8eF(T) = F(T) - F(T - e). For k E 7L + let 8: denote the application of 8e k-times
with ~0e = identity. Define the T-degree of the zero polynomial in L[T] to be
-1. For d~Z+ put 03B2d(T)=(Td). Note that degTf3d(T)=d and fid(k) = 0 for
nonnegative integers k  d.

(4.10) LEMMA. (1) If F(T) E L[T] and d = degT F(T)  0 then 8eF(T)E L[T] and
degT ’9eF(T) = d -1. In particular, ~ke03B2d(T) = 0 for all k &#x3E; d.

(2) 8:F(T) = 03A3kj=0( -1)j(kj)F(T-je) for all k  0.
Proof. (1) is clear and (2) is immediate by induction on k. D

(4.11) LEMMA. Let d, e, r be fixed positive integers and let 9 = 8e. Put
03BC(T) = (r - d T)le. For k E 7L + let nk(T) = 03A0kj= 0 03BC(T - je) and F k(T) = 03B2k(T)/03BC(T).
Then for all k  i  0 we have

Proof. Induction on i. First, let i = 0 in which case /3i(T) = 1 and we have to
show that ~k(1/03BC(T))= k! dklnk(T) for all k  0. We do this by induction on k.
The assertion is clear for k = 0. Let k &#x3E; 0. Then
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This proves E(k, 0, T). Now, let i &#x3E; 0. We have

by (4.10). Therefore, since

and

we get

(4.12) LEMMA. Let N  p, M a q be integers. Put

and let

Then z is subintegral over R’.
Proof. Replacing M by M + 1, if necessary, we may assume that M is odd. Put
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Then p(n, m) = (j nLm whence p(n, m) E R’ for integers n  N, m  M. Let us now
use the notation of (4.11) with d = 2, e = 3 and r  2N + 3M + 6(p + q) a fixed odd

integer. Then

and

Put Gk(T) = 03B2k(03BC(T))/03BC(T). Then for k  1 we have

Let

Then

Let

Then P(T) = 8p+qJ(T), since 8p+qH(T) = 0 by (4.10). Since r, M are odd, there
exists an integer n such that r = 2n + 3M, i.e. M = ,u(n). It follows that n - 3k and

M(n - 3k) are integers with n - 3k  N and p(n - 3k) a M for k = 0, 1,..., p + q.
Therefore

for these values of k, whence by (4.10)
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Now,

by (4.11), which shows that

Thus we have shown that (Jr/2 E R’ for every odd integer r  2N + 3M + 6(p + q).
Therefore, since (Jr/2 E R’ for every even integer r  2N by hypothesis, we get

(Jr/2 E R’ for every integer r  2N + 3M + 6(p + q). (*)

Now, for i  1 we can write 03B2i(T) = 03A3ij=1 1 aijf3j(2T) with aij ~  and we get

where s = 2p and uj = 03A3pi=j aijxizj+s-2i. Now, it follows from (*) and (4.3) that z is
subintegral over R’. D

(4.13) PROPOSITION. Let b~B. If b2, b3 are subintegral over A then so is b.
Proof. Let (0, p, N; co, CI’ ... , cp), (0, q, M ; do, dl, ... , dq) be, respectively, sys-

tems of subintegrality for b2, b3 in the extension A g B. With the notation of the
above proposition define a Q-algebra homomorphism ç : C ~ B by ~(xi) = ci for
every i, qJ(Yj) = dj for every j, ~(z) = b and ~(w)=0. Then ~(R’) ~ A. By the
above proposition z is subintegral over R’. Therefore by (4.4) b is subintegral
over A. D

The next three results are needed mainly to prove Theorem (4.17).
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(4.14) LEMMA. Let F(T) = 03A3pi=0 xiz-i03B2i(T) and for rE7L+ let

Gr(T) = F(T)F(r- T)zr. Let ~ = ~1. Then

(1) ~2pGr(T) = axlzr - 2p with a E Q, a =1= 0.
(2) If Â E C then 9P ;’F(T) = ;’xpz- p.

Proof. We have Gr(T) = x2pzr-2pH(T)+K(T) with H(T)=03B2p(T)03B2p(r-T),
K(T) E L[T] and degTK(T)  2p. Let a = ~2pH(T). Since H(T)~[T] and
degT H(T) = 2p, we have a~[T] and degT a = 0 by (4.10), i.e. a~ and a =1= 0.
Now, since 9 is L-linear, (1) follows from (4.10), and so does (2) by observing that

~p(Tp) = 1. ~

(4.15) LEMMA. In the notation of (4.6), let R’ = [{03B3n|n  NI]. Then ~2pzn ~ R’
for all n  2N and x3pzn E R’ for all n  3N.

Proof. Let n  2N. Put r = n + 2p. Then, with 9 and Gr(T) as in (4.14), we have

by (4.14) and (4.10). Let m = N + 2p. Then for j = 0,1,..., 2p, we have m - j  N
and r - m + j  N whence

Gr(m-j) = F(m - j)zm-jF(r-m+j)zr-m+j=03B3m-j03B3r-m+j~R’.

Therefore, substituting T = m in (*), we get x;zn E R’. Now, let n  3N and put
r = n + p. Then

by (4.14) and (4.10). Let m = N + p. Then for j = 0, 1,..., p, we have

r 2013 m+j  2N and m - j  N whence

by the first part. Therefore, putting T = m in (**), we get x3pzn E R’. D

(4.16) PROPOSITION. Let b E B and let (0, p, N; c0, c1,...,cp) be a system of
subintegrality for b in the extension A ~ B. Then C2 b"c- A for all n  2N and
c3b"e A for all n &#x3E; 3N.

Proof. In the notation of (4.6) let S = [x1,...,xp, z], R’ = [03B3n|n  NI]
and let ~: S - B be the 0-algebra homomorphism given by (p(xi) = Ci for every i
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and g(z) = b. Then ~(R’) ~ A, c;bn = qJ(x;zn) and c’b" = qJ(x;zn). So the assertion
follows from (4.15). D

Now we are ready to prove that an extension A - B of Q-algebras is

subintegral in the sense described at the beginning of this section if and only if

every element of B is subintegral over A.

(4.17) THEOREM. For an extension A 9 B of 0-algebras the following two
conditions are equivalent:

(i) every element of B is subintegral over A,
(ii) the extension A g B is subintegral.

Proof. (i)~(ii). Let b E B and let (0,p,N;c0,c1,...,cp) be a system of

subintegrality for b in the extension A g B. Call p the degree of this system. We
prove by induction on p that b belongs to a subring B’ of B containing A such
that the extension A z B’ is subintegral. If p = 0 then b" E B for n » 0 and the
assertion is immediate by taking B’ = A[b]. Now, let p &#x3E; 0. By (4.16) c’b n E A for
all n  2N and c3pbn ~ A for all n  3N. Let A’ = A[{cpbn|n  N}]. Given a E A’
there exists finitely many elements, say ul, ... , um, in the set {cpbn|n  N} such
that a E A[u1, ..., un]. Since u2i, uf E A for every i, A[u1, ..., um] is obtained from
A by a finite succession of elementary subintegral extensions. This shows that
the extension A ~ A’ is subintegral. Now, bn + 03A3p-1i=1(n)cibn-i ~ A’ for n » 0

whence b has in the extension A’ ~ B a system of subintegrality of degree less
than p. Therefore, by induction, b belongs to a subring B’ of B containing A’ such
that the extension A’ ~ B’ is subintegral. Now, the extension A ~ B’ is

subintegral by [9, Lemma 2.3] and we are done.
(ii) =&#x3E; (i). Let B’ be the set of all elements of B which are subintegral over A. It is

enough to prove that if A = A0 ~ A1 ~···~ Ar ~ B is sequence of elementary
subintegral extensions then Ar ~ B’. We do this by induction on r. For r = 0 we
have A0 = A ~ B’ by (4.8). Let r &#x3E; 0 and let Ar = Ar-1[b] with b2, b3 ~ Ar-1. By
induction Ar-1 ~ B’. In particular, b2, b3 E B’ whence b E B’ by (4.13). Therefore,
since B’ is a ring by (4.8), Ar ~ B’. D

(4.18) COROLLARY. Let A ~ B be an extension of -algebras. Then for an
element b of B the following three conditions are equivalent:

(i) b is subintegral over A,
(ii) the extension A ~ A[b] is subintegral,
(iii) there exists a finite sequence A = Ao 9 A 1 ~··· g Ar of subrings of B such

that Ai-1 ~ Ai is an elementary subintegral extension for every i, 1  i  r,

and b E Ar.
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Proof. (i) ~ (ii). By (4.8) every element of A[b] is subintegral over A. Therefore
the extension A ~ A[b] is subintegral by the above theorem.

(ii) ~ (iii). Immediate from the definition.
(iii) ~ (i). Apply the theorem to the extension A ~ Ar. D

(4.19) COROLLARY. Let A s B be an extension of 0-algebras and let b E B. If b
is subintegral over A then b is integral over A.

Proof. Immediate from (4.18). D

(4.20) COROLLARY. The seminormalization of a reduced 0-algebra A is the set
of all elements of its total quotient ring which are subintegral over A.

Proof. (4.17) and [9, 2.8]. ~

5. Main theorem

Let A ~ B be an extension of Q-algebras. Assume that this extension is

subintegral. Then by (4.17) and (4.3) I(b)I(- b) = A[T] for every b E B whence

Thus we get a map 1 B/A: B -+ J(A[T], B[T]) given by 1 B/A(b) = I(b).

(5.1) LEMMA. IB/A is a homomorphism of groups and A g ker(IB/A)’
Proof. By (4.1)

and

Therefore I(b)I(b’) = I(b + b’) by (2.8). This proves that IB/A is a homomorphism.
The last assertion is given by (4.1). D

Let 03C3:B[T] ~ B be the B-algebra homomorphism given by Q(T) = 1. Then
a(A[T]) = A whence we have the group homomorphism

Let ~B/A:B~J(A,B) be the homomorphism obtained by composing J(03C3) and
IBIA, i.e. IIBIA = J(03C3)  IB/A. Then A g ker(Y/B/A) by the above lemma whence ~B/A
induces a homomorphism 03BEB/A: BIA -+J(A, B).
To recollect the definition of ÇB/A’ let b E B/A with representative b E B. Then
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ÇB/A(b) is the invertible A-submodule of B obtained by reducing
A[[T]]ebT n A[b][T] modulo T - 1.

(5.2) REMARKS. (1) ÇB/A(b) belongs to the subgroup J(A, A[b]) of J(A, B).
(2) Another description of ÇB/A(b): Let b E B. Choose a system

(s, p, N; co,..., cp) of subintegrality for b in the extension A ~ B, and in the
notation of (3.3) let S = [x1zs,..., xpzs, z] and R = 1 n  NI]. Let

t/J: S ~ B be the -algebra homomorphism given by 03C8(xizs) = ci for 1  i  p
and 03C8(z) = b. Then 03C8(R) ~ A and so we have the map J(03C8):J(R, S) ~ J(A, B).
Let I = ez n S, as in (3.3). Then 7 c-,f(R, S) by (3.8) whence J(03C8)(I) E J(A, B). We
claim that ÇB/A(b) = J(03C8)(I). To see this, let (p:  ~ B[[T]] be the 0-algebra
homomorphism given by ~(xizs) = ciTi+s for 1  i  p and qJ(z) = bT. Then

(p(S) g B[T], (p(R) g A[T] and, as seen in the proof of (4.2) (ii) =&#x3E; (iii), we have

qJ(I)A[T] = I(b). Now, from the commutativity of the diagram

we get J(03C8)(I) = J(03C3)(~(I)A[T]) = J(u)(I(b» = 03BEB/A(b).
(3) In the case when A, B are G-algebras and b~B+, we can give yet another

description of ÇB/A(b), namely ÇB/A(b) = Âeb ~ B, where - denotes completion
with respect to the ideal generated by all elements of positive degree. Let us show
this first for the case when b is homogeneous of positive degree. In this case, we
may replace the ci of (2) by its homogeneous component of degree (s + i) deg(b)
to assume that ci is homogeneous of positive degree for 1  i  p. Then 03C8
extends to a Q-algebra homomorphism : ~ Ê with () ~ A. So by (2) we get
03BEB/A(b) = J(03C8)(ez ~ S) ~ Âeb ~ B. Similarly, 03BEB/A(-b) ~ Âe-b ~ B. Now, since
(Âeb ~ B)(Âe-b ~ B) ~ Â ~ B = A, we get 03BEB/A(b) = Âeb ~ B by (2.8). This proves
the assertion for the case when b is homogeneous of positive degree. The general
case follows now by induction on the number of nonzero homogeneous
components of b and another application of (2.8).

(5.3) LEMMA. ÇB/A is functorial, i.e. if A ~ B, A’ g B’ are subintegral extensions
of Q-algebras and 9: B ~ B’ is a homomorphism of 0-algebras with ~(A) ~ A’
then the diagram
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where ~ is induced b y qJ, is commutative.
Proof. Let bEBIA with representative b E B. It is checked easily that

and

whence we get J(~)(03BEB/A(b)) = 03BEB’/A’(~(b)) by (2.8). D

(5.4) LEMMA. If N is a nonnegative integer and bn~A for all n  N then

ÇB/A(b) = A(eN(b), bN), where eN(b) = 03A3N-1i=0 b’li!. In particular, if b is nilpotent then
ÇB/A(b) = A exp(b).

Proof. The second part is immediate from the first. To prove the first part,
note that the assumption means that (o, o, N; 1) is a system of subintegrality for b
in the extension A g B. The corresponding universal setup is S = Q[z] and
R = [{zn|n  N}]. Let 03C8: S ~ B be the -algebra homomorphism given by
03C8(z) = b. Then 03C8(R) ~ A and by (5.2) (2) 03BEB/A(b) = 03C8(I)A, where I = Rez n S. So it
is enough to prove that I = R(eN(z), ZN). Writing J = R(eN(z), ZN) we note first
that, since eN(z)e-z ~  and zNe - z E R, we have J ~ 7. Next, we show that zn ~ J
for all n  N. This is clear for n  2N and follows for the remaining values by
descending induction on n, since zneN(z) E J for n  N. Similarly, writing
I’ = e-z~S and J’ = R(eN(-z), ZN), we have J’ g l’and zn ~ J’ for all n  N. It
follows that e2N(z)e2N( -Z)E 1 + JJ’ and that e2N(z) E J and e2N( -Z)EJ’. Thus
1 ~ JJ’ ~ Il’ = R by (3.8) whence the equality J = I follows from (2.8). Q

(5.5) LEMMA. Let a ~ Nil(B) be an ideal of B, B’ = Bla and A’ = A/A ~ a. If 03BEB’/A’
is an isomorphism then so is ÇB/A’

Proof. Note that, since A g B is a subintegral extension, so is A’ ~ B’ by (4.17)
and (4.4). Put j = ÇB/A and 03BE’ = 03BEB’/A’. Then, denoting by 9: B -+ B’ the natural
surjection, we have the commutative diagram

given by (5.3). Assume that j’ is an isomorphism.

Injectivity of 03BE. From the diagram we get

ker(03BE) ~ ker(-) = a/A n a.

Therefore it is enough to show that

ker(03BE) n (a/A n a) = 0.
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Let b E ker(03BE) n (a/A n a) where b is the class of b E a. Since b is nilpotent, we have
A = 03BE(b) = A exp(b) by (5.4) which shows that exp(b) E A. Therefore

b = log(exp(b)) E A whence b = 0.

Surjectivity of ç. Since 03BE’, -9 are surjective, it is enough to prove that

ker(J(~)) ~ im(03BE). Let 1 E ker(J(~)). Then qJ(I) = A’ = ~(I-1) whence there exist
c, c’ E a such that 1 +c~I and 1 + c’~I-1. Let b = log(1 + c), b’ = log(1 + c’). Then
b, b’ E Nil(B), exp(b) = 1 + c and exp(b’) = 1 + c’. By (5.4)

Further, since

we have

Therefore

showing that

Now it follows from (*) and (2.8) that 03BE(b) = I, proving that I E im(03BE). D

We are now ready for the main result, which we prove here under the
assumptions that A be excellent and of finite Krull dimension. As indicated in
the Final Remark at the end of the paper, the conclusion of the Main Theorem

holds without these assumptions. For the definition and properties of excellent
rings see [5] or [6].

(5.6) MAIN THEOREM. Let A be an excellent 0-algebra of finite Krull
dimension and let A ~ B be a subintegral extension. Then the homomorphism
03BEB/A: B/A ~ J(A, B) is an isomorphism.

Proof. Put A’ = Ared, B’ = B,,d. Since A g B is a subintegral extension, so is
A’ ~ B’ by (4.17) and (4.4). So by [9,4.1] B’ is contained in the semi-
normalization of A’ (in its total quotient ring). By (5.5) it is enough to prove that
ÇB’A’ is an isomorphism. We use induction on dim(A). If dim(A) = 0 then A’ is its
own total quotient ring whence B’ = A’ and the assertion holds trivially in this
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case. Now, let dim(A) &#x3E; 0. Since A is excellent (or pseudo-geometric), the
normalization of A’, hence also its seminormalization, is a finite A’-module.

Consequently, B’ is a finite A’-submodule of the total quotient ring of A’.
Therefore the conductor of A’ in B’ contains a nonzero divisor of A’ whence

dim(A’/W)  dim(A’) = dim(A). Put A" = A’/, B" = B’IW and let 9: B’ ~ B" be
the natural surjection. Then the extension A" ~ B" is subintegral by (4.17) and
(4.4) whence 03BEB"/A" is an isomorphism by induction. Now, since J(~) is an

isomorphism by (2.6), the commutative diagram

shows that 03BEB’/A’ is an isomorphism. D

(5.7) COROLLARY. The homomorphism 03BEB/A: B/A ~ J(A, B) is an isomorphism
in each of the following two cases:

(1) A is a finitely generated algebra over a field of characteristic zero.
(2) A is an excellent local ring containing 0 (e.g. a complete local ring

containing 0 or a localization of a finitely generated algebra over a field of
characteristic zero).

Proof. In each case A is an excellent Q-algebra of finite Krull dimension. ~

(5.8) COROLLARY (cf. [4]). Suppose A is a reduced G-algebra containing 0 and
B is the seminormalization of A. Then 03BEB/A: B/A ~ f(A, B) induces an isomorphism
BIA -+ Pic(A).

Proof This is a special case of part (1) of the above corollary, since in this case
J(A, B) = Pic(A) by (2.5). D

(5.9) COROLLARY. In (5.6) the injectivity of ÇB/A holds without assuming that
dim(A)  00.

Proof. Let f3 E ker(03BEB/A). It is enough to show that the natural image of f3 in
(B/A)p is zero for every p E Spec(A). Let p E Spec(A) and let y be the natural image
of f3 in (B/A)p = Bp/Ap. By (4.17) and (4.9) Ap ~ Bp is a subintegral extension and
by (5.3) y E ker(03BEBp/Ap). Therefore, since dim(Ap)  oo, y = 0 by (5.6). ~

6. An example

We will illustrate various features of the above theory with the following
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example:

where x, y, t, z are indeterminates. We can obtain B from A by two elementary
subintegral extensions, first adjoin t, then z, so A s B is a subintegral extension.
The ring A is a graded subring of B if we take x, t, z to be of degree one, and y to
be of degree 2. This is a "twisted" (and much more complicated, as we will see)
version of the example k[t2, t3, z2, z3] ~ k[t, z] that is used in [4]. In fact, B can
be regarded as a universal two-step extension of A, in the following sense: let
A’ g B’ be any two step extension of Q-algebras. That is, 0 - A’ and
B’ = A’[b, c] with b2, b3 E A’ and C2,C3EA’[b]. Then we have C2 = ao -alb,
c3 = Po - Plb with ao, al, 03B20, 03B21 ~ A’. Hence setting qJ(x) = al, g(y) = 03B21, qJ(t) = b,
g(z) = c we obtain a -algebra homomorphism ç : B - B’ such that ~(A) ~ A’.
Our first goal is to find an explicit system of subintegrality for z in the

extension A ~ B. We begin by proving some elementary properties of A. Let W
be the conductor of A in B.

(6.1) LEMMA. tizi ~  for all i, j  2.
Proof. We have ti(z2 + xt) E A for i  2, from which it follows that tiz2 E A for

i  2. Similarly using z3 + yt we conclude that tiz3 ~ A for i  2. If j &#x3E; 3 write

j = 2a + 3b, a, b~Z+, so that (Z2 + Xt),(Z3 + yt)b = zi + (lower powers in z, exclud-
ing z1)~A. Multiplying by ti and using induction on j we conclude that
tizj E A, for i  2. Since B is generated as an A-algebra by t and z, the lemma
follows. D

(6.2) LEM MA. For each way of writing n = 2a + 3b, n  2, a,bE7L+, we have
z" + axtzn- 2 + bytzn - 3 E A.

Proof. We have a = (Z2 + Xt)a(Z3 + yt)b E A. By (6.1) the terms in the expansion
of a of t-degree  2 are elements of A. This leaves the sum of terms of t-degree
 1 in A, i.e. z" + axtz" - 2 + bytz" - 3 E A, as desired. D

Now we will make a definite choice for the a and b of (6.2). Namely, for n  2
we will write n = 2qn + 3en with qm En E Z+, En as small as possible. That is, E" = 0 if
n is even and En = 1 if n is odd. Then qn = n/2 if n is even, and qn = (n - 3)/2 if n is
odd.

(6.3) DEFINITION. With the above notation let

Thèse éléments are homogeneous of degree n and Àn E A by (6.2).
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(6.4) LEMMA. Let n  2, and let

Then F~A if and only if F is a 0-linear combination of expressions of the form
zn + axtzn-2 + bytzn-3 with a, b~Z+, 2a + 3b = n.

Proof. If n = 2, then F~A if and only if F is a Q-multiple of 03BB2, so the lemma
is true in this case. Assume now that n  3. The "if" implication follows
from (6.2). To prove the converse, let a be the B-ideal generated by
{x2, xy, y2, t2, xzn-1, yzn - 2, tz" -1 11. Let fi = B/a. Then En’ the degree n part of B,
has Q-basis {zn, xtzn-2, ytzn-3}. All the monomials of degree n in the generators
of A vanish in B", except (Z2 + xt)a(z3 + yt)b for the various ways of writing
n = 2a + 3b, with a, b~Z+. Therefore the image of An in En is spanned by the
images of the latter, namely by

The "only if" part now follows, and the proof is complete. D

(6.5) COROLLARY. (1) zn ~ A, for all n  1.

Proof. Let S = {(a, b)~Z+  Z+ |n = 2a + 3b}. Then it follows from (6.4) by
elementary linear algebra that if Card(S) = 1 then the image of An in Rn is of
dimension one, with basis zn + qnxtzn-2 + 03B5nytzn-3, whereas if Card(S)  2
then the image of An in fin is of dimension two with basis

{zn + qnxtzn-2 + 03B5nytzn-3, 3xtzn-2-2ytzn-3}. Parts (1) and (2) now follow from
(6.4). Since z03BC6 = 03BC7 ~ A, we have 03BC6 ~. If n  8 then for i, j  0
tizj03BCn = tilln + ic- A by (2) and (6.1). Therefore, since t and z generate B as an A-
algebra, it follows that J.ln e w for n  8, completing the proof. D

From (6.5) we conclude that in the extension A ~ B there is no system of
subintegrality for z of the form (s, 0, N ; 1) (i.e. with p = 0). However, the next
lemma shows that there is a system of subintegrality with p = 1.

(6.6) LEMMA. (1) If n  8 then Àn ~ zn + (nxt/2)zn-2 mod W.
(2) z" + (nxt/2)zn-2 ~ A for all n a 8, i.e. (1, 1, 8; 1, xt/2) is a system of

subintegrality for z in the extension A - B. However, z 7 + (7xtI2)z5 ft A.

Proof. (1) If n is even we have equality. If n is odd use (6.5) part (3) to replace
ytzn-3 by (3/2)xtzn - 2 (mod W).
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(2) The first part of (2) follows from (1). The last part follows from the fact that

03BC7 ft A (6.5). D

(6.7) GENERATORS FOR 03BEB/A(z). Now we are ready to describe the invertible
ideal ÇB/A(Z). First we will work out the generic invertible ideal I in the case s = 1,
p=1 and N=8. In the notation of (3.3) let S = [x1z,z] and let

R = [{03B3n|n  8}]. By (3.4) we have A = 1 + x1(~-1) and 0394(en(z))~I for n  8.
Similarly A’ = 1 + x1(1 + ô) and A’(e,,(- z)) E 1-1 for n  8. To find generators for
I, it suffices, as was noted in the proof of (2.2), to find elements mi El, ni~I-1
such that 1 = Y-mini. Such elements are provided by the proof of (3.8), but this
gives a rather large number of generators. In fact, three generators suffice, as we
obtain by the following somewhat different argument: define aEz8Q[z] by the
equation fg + p6 = 1, where f = e16(z), g = el 6( - z) and p = z8. Then

where f’=~f/~z, etc. and 03B1 = x21H ~ z14[x1, z] (since f’- f, g’ + g are in

z15[z] and p’ - p, Q’ + 6 are in z7[z]). Now we claim that x21zi ~ R for i  14.

For we have

and zi+2 + (i+2)x1zi+1 E R. Subtracting and dividing by 8(i - 6), we get x21zi~R,

for i  14. Now we have x21zie-z~, so x21zi~(ez)~S = I, for i  14. Similarly
x21zi ~ (e-z)~S = I-1 for i  14. Hence 03B1~I~I-1~R. Multiplying both sides
of 0394f0394’g+039403C10394’03C3 = 1 + 03B1 by 1- a we conclude that Af [(A’g)(1 - a)]
+ 039403C1[(0394’03C3)(1-03B1)]+03B12=1. Now, 0394f, Ap, a E I and (A’g)(1 - a), (0394’03C3)(1 - a),
a E I-1 by (3.4), so (Ag Ap, 03B1} is the desired set of generators for 7. Of course, in
the above discussion, 8 can be replaced by any integer N  8.
The homomorphism 9: S ~ B[[T]] of (4.2) is given in the present situation by

~(x1z) = (xt/2)T2 and g(z) = zT, and we have ~(R) ~ A[T]. We obtain ÇB/A(Z) by
applying 9 and then setting T = 1. This yields 3 generators for 03BEB/A(z).
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(6.8) REMARK. If n  8 then, in the notation of (6.7),

is an explicit element of 1 n W(R[z]). Applying qJ and recalling from the proof of
(4.2) (ii) ~ (iii) that I(z) = A[T]~(I) we obtain

If we apply the proof of (4.2) (iv) =&#x3E; (i) to this element of I(z)~ W(B) (taking n = 8),
we obtain the system of subintegrality (0, 8, 8; c0,..., c8) for z in the extension
A g B, where ci = (-1)izi (0  i  7) and c8 = - 4xtz6. In (6.6) the use of

exponent of subintegrality 1 permitted us to find a system of subintegrality for z
in the extension A s B with p = 1 rather than p = 8. However, one can check
that the elements zn+03A3pi=1(ni)cizn-s-i, n  8, are the same for the two systems.
The referee has pointed out that another system of subintegrality of exponent 0
for z is (o, 2, 8; 1, - z, - xt), which can be obtained by multiplying (6.6) (2) by
1- n.

The following result is a refinement of (6.5) part (1):

(6.9) LEMMA. There is no way to write z = 03A3mi=1 03B6i, with (i E Band (i E A for
n»0.

Proof. Indeed, we prove the stronger assertion that there is no way to write
z = 03A3mi=1 03B6i, with 03B6i E B, such that for each i there exists ni E N with 03B6nii ~ A. First we
show that if f E B, f = 03A3i 0 fi, (fi homogeneous of degree i) and fn E A then also
fi E A. If f0 ~ 0 we see by induction on i that f E A for all i, in particular fi E A.
If fo = 0 then looking at the term of degree n in fn we conclude that fi E A. Now
suppose that z = 03A3mi=1 03B6i, with (i E Band (ii E A for some ni E N, 1  i  m.

Obviously z = Em 1 (il «i, being the degree 1 part of (,), so by the first part of the
proof we are reduced to the case where all the 03B6i are homogeneous of degree 1.
The only variables of degree 1 are x, t, z. We will complete the proof by showing
that if a, b, c ~ Q, and (ax + bt + cz)" E A for some n  1, then we must have c = 0.
Suppose that c ~ 0. Then we can assume that c = 1. Since A - A[t] =
Q[x, y, t, Z2, Z3 ], (ax + bt + z)n E A for some n  1 ~ n(ax + bt)n-1z E A[t] ~
ax+bt=0~zn~A, which contradicts (6.5). 0

The relevance of (6.9) to the present work is that if one had a subintegral
extension R ~ S, in which every element z E S could be written in the form

z=03A3mi=103BEi with 03B6ni~R for n » 0 then one could define a homomorphism
SIR -+J(R, S) in a more elementary fashion by applying the formula of (5.4) to
each of the 03B6i separately.

It may be of some interest to note that the conductor of A in B equals
(t2Z2, 3XZ6 - 2yz5 + 6x2tz4 - 2y2tz2)B and that fi = (tz, 3XZ2 - 2yz)B. (The de-
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tails of the computation can be found in the original version of this paper,
available as a preprint from the authors.) This is to be contrasted with the
conductor of k[t2, t3, z2, z3] in k[t, z], which is t2z2k[t, z], with radical tzk[t, z].

7. Comparison with work of Dayton

We now compare our results with those of [4] in the reduced G-algebra case. Let
A be a reduced G-algebra with seminormalization B (which is again a G-
algebra). As in [4] let A +, B+ be the ideals generated by elements of positive
degree. In this situation we have A* = B* = k*, where k = Ao, Pic(B) = 0 and by
(2.5) Pic(A) = J(A, B).

In [4] Dayton proves (with notation as above) that if Q s A, then there is an
isomorphism 0: Pic(A) -+ BIA. First let us recall Dayton’s definition of 0: if

M~Pic(A) = f(A, B) and f~M~(1+B+) we will say that f represents M.
(Dayton shows that M-1=(A:f) so f determines M.) For any G-algebra R,
Dayton defines GW(R) to be

If f = 1 + 03A3ni=1 bi (bi ~ Bi) he defines f03C4~GW(B) to be 1+03A3ni=1 biTi. If

M E Pic(A), represented by f~1+B+, then sending M to the class of

f03C4~ GW(B)/GW(A) gives a well-defined homomorphism of abelian groups
03C4:Pic(A) ~ GW(B)/GW(A) [4, 1.11]. As explained in [4] the ghost map

induces a homomorphism of abelian groups

A key point of Dayton’s approach is to show that gh actually maps the image of
i into ~i1(bi/Ai) ~ B/A. (Note that Bo = Ao = k.) The homomorphism 0 is
then defined to be gh 0 t. Theorem 3.6 of [4] then shows that 0 : Pic(A) - B/A is
an isomorphism. The homomorphism gh is given by f(T) ~ 2013 Td(log f(T))/dT
and hence has inverse Tg(T) ~ exp(J - g(T) dT) (j means take the antiderivative
of the power series, without putting in a constant term), where f(T) E GW(B),
g(T) E TB[[T]].
We will now compare Dayton’s 03B8-1 with our homomorphism
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If b~Bd, d  1, represents an element of B/A then in Dayton’s 0 B b is first
identified with bTd E TB[[T]]. Applying gh - 1 as described above we obtain

exp(-d-1bTd)~GW(B). To interpret this as an element of i Pic(A) one has to
find M E Pic(A) and f~M~(1+B+) such that ft represents exp(-d-1bTd) in
GW(B)/GW(A). Then 03B8-1b=M. To compare with our homomorphism, first
note that GW(A) and GW(B) can be identified (by setting T = 1) with the
multiplicative groups of elements of Â, Ê respectively, that are - 1 mod the
maximal ideal (^ denoting completion with respect to A +, B + respectively, as in
Section 3). By (5.2)

If f~M~(1+B+) then ft represents exp(-d-1bTd) in GW(B)/GW(A) so
M=Âexp(2013d-1b)~B=03B8-1(b). By (5.2) our homomorphism sends b to

Â exp(b) n B. Thus our homomorphism differs from Dayton’s 03B8-1 by the group
automorphism Zi1bi~-03A3i1 ibi of BIA, so we have re-proved Theorem 3.6 of
[4]. Our construction of 03BE gives the invertible module M and a system of
generators for it quite explicitly.
The sign is quite harmless. However the i factors are a more serious difference

between our homomorphisms. There seems to be no way to eliminate this
difference and still have a natural homomorphism B/A - f(A, B) even in the
nongraded case.
The following discussion indicates how 03BE compares with e-1 as used in some

of Dayton’s inductive arguments:

(7.1) PROPOSITION. Let a be a B-ideal of A and let 9: B --+ B/a be the canonical
surjection. Consider the following diagram :

where j = 03BEB/A, j is the natural map, and ô is defined to make the diagram
commutative. Then 03B4(~(b)) = (A : b) -1 for b E B with 9(b) E Uni(B/a).

Proof. Let y E Nil(B/a) and let x~B such that 9(x) = y. Then there exists N
such that xn~a ~ A for n a N so by (5.4) we have 03BE(x) = A(eN(x), XN). It

follows that 03BE(x) ~ (A: eN( - x)). Similarly 03BE(-x) ~ (A: eN(x)). Also it is easily
checked that (A:eN(-x))(A:eN(x)) ~ A. Therefore by (2.8) we have

03BE(x) = (A:eN(-x)) = (A:eN(x))-1. On the other hand exp(y)=eN(y)=~(eN(x)),
completing the proof. D
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We remark that (A : eN(x)) is isomorphic to the rank one projective A module
obtained by Milnor’s patching construction ([7, §2]) using the unit eN(qJ(x)) of
Bla.

This result is to be compared with the commutative diagram in the proof of
[4, 3.6] where a similar commutative square is obtained, with our exp replaced
by a more complicated homomorphism involving the ghost map, and our ô
replaced by 201303B4. Also our 03BE-1+A/A gives a natural homomorphism fitting into the
diagram in the proof of [3, 6.3].

FINAL REMARK. The assumption in our Main Theorem (5.6) that A be
excellent and of finite Krull dimension can be dropped. We do this in a

forthcoming paper with Les Reid where we derive the more general result from
(5.6) by proving that subintegrality of an element is essentially a finite condition.
On the other hand, the assumption that A contain Q cannot be dropped. As a
simple example, let K be a field of characteristic 2 and let

Then for

we have

This shows that J(A, B) is not killed by 2, hence cannot be isomorphic to B/A,
which is killed by 2. In this connection the referee pointed out to us the paper
"On the Picard Group of a Class of Non-Seminormal Domains" by Gilmer and
Martin in [Comm. Alg. 18(10) (1990) 3263-3293], where more examples of this
nature can be found.
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