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Introduction

The theory of the Infinitesimal Variation of Hodge Structure (abbreviated as
IVHS) developed by Carlson and Griffiths in [CG] together with the method of
symmetrizers introduced by Donagi [Do] and refined by Green [Gre] gives a
powerful tool for attacking the generic Torelli problem. By a result of Cox,
Donagi and Tu [CDT] the generic Torelli problem can be reduced to the
variational Torelli problem. In this article we show using the methods of Donagi
and Green a variational Torelli theorem for smooth cyclic coverings of

sufficiently high degree with ample branchlocus. We arrive at this result by using
a new way of recovering the variety in question from its IVHS.

This paper contains parts of the author’s 1990 dissertation [Iv] at the

University of Bonn. My advisers were F. Hirzebruch and E. Viehweg, who also
posed me the problem treated here. It is a pleasure to thank both of them for
their invaluable advices.

1. Notations and discussion of the main results

All varieties and schemes are supposed to be define’d over the field C of complex
numbers. The notation used by us will essentially be the same as in [Ha]. As a
standard reference for the theory of IVHS we refer to [CGGH] and [PS].

DEFINITION 1.1. A pair ( Y, Y) is called a polarized variety of dimension n, if
Y is a smooth, projective variety of dimension n and Y is an ample, invertible
sheaf on Y Two polarized varieties (Y, Y) and (Y’, .!ce’) are isomorphic, if there is
an isomorphism 03C4: Y ~ Y’ such that the equivalence class [Y] of fil in the
Néron-Severi group NS( Y) = DIV(Y)/(numeric equivalence) is the same as the
class [03C4*Y’].

DEFINITION 1.2. A morphism g : Y ~ S is called a smooth family of polarized
varieties of dimension n with respect to a relatively ample sheaf fil cw on Y, if OY
and S are connected varieties and the morphism g is smooth, proper and has
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connected smooth fibres ôJJs = g-1(s) of dimension n. We regard the fibres Ys,
s E S, as varieties polarized by the restriction of Ye to Ys.

Let g : Y ~ S be a smooth family of polarized varieties of dimension n with
respect to the relatively ample sheaf f£ OJI on ú.!f. We choose a basepoint s E S.
Let Y=g-1(s) be the fibre over s and (Hz, F., Q) the polarized Hodge
structure induced by the kth primitive cohomology of (Y, YY|Y) with Hz =
Hk( Y, Z)/(Torsion). The polarized variation of Hodge structure defined by the
kth primitive cohomology of the fibres of this family induces a holomorphic
period map ~0393 : S ~ rBD, where D is the appropriate period domain and r is a
discrete subgroup of the isometry group Gz = Aut(Hz, Q) containing the

monodromy group im{03C01(S, so) - GZ}.
We denote by z the equivalence relation on S given by isomorphy of

polarized varieties. For (p,(s,) = qJr(S2) with s1, S2 E S one would like to conclude
that the fibres ôJJS1 and Ys2 of g are isomorphic as polarized varieties. Hence the
aim is the injectivity of the map

induced by çr on the set theoretic quotient S/ ~ . This is the global Torelli
statement one would like to get for the family g : Y ~ S.
By using the differential of the period map this problem can be attacked with

the technique of IVHS as proposed by Carlson and Griffiths in [CG]. But the
application of this method has a weaker result: one gets the global Torelli
statement just for an open dense subset of S.
By definition generic Torelli for the family g : Y ~S and the group r asserts

that on the complement So c S of a proper analytic subvariety the map
S0/ ~ ~ 0393BD induced by (Pr is injective. The open set So c S can be chosen in
such a way that So and S0/~ are smooth varieties, the natural map

03C00:S0 ~ S0/ ~ is a smooth morphism and the map S0/~ ~0393BD inherits the
structure of a holomorphic map ([CDT, Thm. in §2 and §3]).

DEFINITION 1.3. Variational Torelli holds for the family g : Y ~ S with
respect to the equivalence relation ~ , if the following condition is true:

On the complement So c S of a proper analytic subvariety of S for all s E So
the isomorphy class of the polarized variety (úJJs, YY|Ys) is uniquely deter-
mined by the algebraic part of the IVHS induced by (Ys, YY|Ys).

By a result of Cox, Donagi and Tu [CDT, Thm. in §3] it suffices to check the
variational Torelli condition for concluding the generic Torelli for the family
g : Y ~ S. Hence the following implication holds

Variational Torelli ~ Generic Torelli.

Now we fix a smooth projective variety Y of dimension n with an ample
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invertible sheaf Y. Let N &#x3E; 2 be a natural number and SE HO(Y, !fJN) a section
with smooth, reduced zero divisor X = {s = 01.
The section s defines by the injection !fJ-N 4. (9y an (9y-algebra structure on

~N-1i=0 Y-i. The smooth variety

together with the natural morphism f : Z ~ Y is called a cyclic covering of Y with
respect to YN ~ OY(X).
The variety Z has two natural polarizations: on one hand there is the

canonical polarization and on the other hand there is the polarization given by
f * Y. We will work with the second one. In the case of multicanonical coverings,
1.e. S = coy, both polarizations coincide by the adjunction formula

In Theorem 6.1 we state the following variational Torelli result.

MAIN RESULT. Let (Y, .P) be a polarized variety and N be a sufficiently large
positive number. Then for each cyclic covering f : Z ~ Y with respect to

’pN = OY(X), where X is a smooth, reduced divisor on Y, the polarized variety
(Z, f*Y) is uniquely determined by the algebraic part of its IVHS.

Beside the technical assumption that the degree of the covering has to be large
enough, the main requirement is that we take into consideration IVHS’es

together with a fixed operation of the Galois group, where the isomorphisms of
the IVHS are compatible with this operation.
An important ingredient, which we use for recovering the variety Z from its

IVHS in the proof of Theorem 6.1, is the I(1,1)-criterion (see Proposition 5.1).

2. Prolongation bundles and primitive De Rham cohomology

It is well known that prolongation bundles play an important role in the theory
of IVHS (see e.g. [Gre]). The usefulness of prolongation bundles in this context
relies on a relation between primitive cohomology and prolongation bundles
proved by Ogus [Og]. Fix a smooth projective variety Y The interpretation of
the primitive cohomology group Hp0(Y, 0" by a cohomology group depending
on a prolongation bundle (see (2.3.1)) gives a way of handling the primitive
cohomology groups of Y in the framework of IVHS.

Since the relation with this result in [Og] seems not to be documented in the
existing literature on IVHS, we will recall in this chapter Ogus’ way of looking at
primitive cohomology in the setup needed by us.
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Let J0394 be the ideal sheaf of the diagonal 0 of Y x Y and Y(2) the subscheme of
Y x Y defined by the ideal sheaf J20394. For a locally free invertible sheaf IR on Y
one defines the sheaf P(Y) by

Here pi and P2 denote the projections pi: Y x Y ~ Y By [At] there is a natural
short exact sequence of 19y-modules

Hence P(Y) is a locally free sheaf of rank n + 1 on Y The previous sequence
induces by dualizing and tensoring with IR the short exact sequence

The (9,-module 03A3Y(Y) is called the prolongation bundle of Y. For simplicity we
will denote 03A3Y(Y) also by Ey. By [At] the extension class to the sequence (2.1.2)
for Y is given by the element - 203C0i · ci(S) E H1(Y, 03A91Y) and hence for k E Z - {0}
the 19y-modules 03A3Y(Y) and 03A3Y(yk) are canonically isomorphic.

Let s ~ H0(Y, Y) be a section with smooth and reduced zero divisor

X = f s = 01 and U = Y- X the open complement of X with the natural
embedding j : U ~ Y. By defining f~f (D 1 (D s for a local section f in 19y one
gets an 19y-linear short exact sequence

The sequence (2.1.3) induces by dualizing and tensoring with 2 the short exact
sequence

DEFINITION 2.2 ([Gre]). For a coherent sheaf F on Y and a global section s
of 2 the Jacobi system J1’:.F of F is defined by

The map H0(Y,03A3Y @ 2-1 ~F) ~ H°(Y, F) is induced by the sequence (2.1.4).
For simplicity we will denote JY,!F also by J,.
We define Px(2) to be locally free Wy-submodule of the sheaf j*P(Y), which is

generated by P(Y) and elements of the form ds03B1 s03B1~T03B1, where s03B1 is a local
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equation for X and Ta is the fibre coordinate of Y. The 19y-module
(PX(Y) (&#x26; Y - 1) - is denoted by 03A3YX&#x3E;. By [EV2, Appendix B, Prop. B.1] the
natural exact sequence

splits. This splitting will be used in Lemma 3.2.
We recall now Ogus’ interpretation of the primitive cohomology of a smooth,

projective variety by means of the primitive De Rham complex. Let £f be an
invertible ample sheaf on Y As the Hodge filtration on the cohomology groups
Hi(Y, C) can be given by the filtration bête of the De Rham complex (03A9Y, d) one
gets by [Og] an analogous statement for the primitive cohomology with respect
to Y. Let

with the natural morphism n : L0 ~ Y be the A 1-bundle one gets by deleting the
zero section from the total space of Y. Let (nio’ dL.) be the De Rham complex
on Lo. The subcomplex of terms of degree 0 of the complex (n.nio’ n.dLo) is
called the primitive De Rham complex of Y with respect to the sheaf Y. It can be
identified with the complex ( A 03A3VY, d), where the differential d is induced by the
differential of the primitive De Rham complex.
For a complex of sheaves H on Y let

be the ith hypercohomology group of Jf* on Y and K[r] the complex of
sheaves shifted r places to the left, i.e. at the ith place of the complex K[r] one
puts Ki+r. One denotes by {Fpk} the filtration bête of the complex .Yî., i.e. at
the qth place of the complex FpK one puts Kq for q &#x3E; p and elsewhere 0.
The following sequence of complexes is exact

Here Qy is the De Rham complex on Y with differential d, the complex 03A9Y[-1]
is the De Rham complex shifted to the right with differential - d and 1B 03A3VY is the
primitive De Rham complex. The maps Q and p are given by the maps ap and pp
in the following exact sequence
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of wedge products induced by the prolongation bundle sequence (2.1.2).
For the fibre bundle n: Lo - Y the exact sequence of complexes (2.2.2) induces

the Gysin sequence

where the connecting homomorphism H i - 2(Y, 03A9Y) ~ Hi(Y, Q00FF) is given by cup-
product with a multiple of the class c1(Y) ~ H1(Y,03A91Y). By the Hard Lefschetz
theorem one gets for 0  i  n the following short exact sequence

For 0  k  n the primitive cohomology group

of Hk(Y, C) is denoted by Hk0(Y, C). Furthermore one defines for 0  p + q  n
the primitive cohomology group Hp0(Y, 03A9qY) by

By the Poincaré lemma there is a natural quasi-isomorphism of complexes
Cy - 03A9Y and therefore we identify the cohomology groups Hi(y, C) and
Hi(Y,03A9Y).

PROPOSITION 2.3. For 0  k  n the sequence (2.2.4) induces a natural

isomorphism

This isomorphism is compatible with the Hodge decomposition of Hk0(Y,C) and
hence induces for p, q with p + q = k the following isomorphisms

The spectral sequence

induced by the filtration bête degenerates in El.
Proof. For a proof see [Og, Theorem 1.9].
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3. Hodge theory of cyclic coverings

Let Y be a smooth, projective variety of dimension n and Y an invertible sheaf
on Y Let f : Z ~ Y be a cyclic covering with respect to YN ~ l’9y(X), where X is a
smooth reduced divisor on Y We denote the divisor (f*X)red by X’. The Galois
group of Z over Y is a cyclic group of degree N. We may choose a generator Q of
G and a primitive root of unity (, such that cr is operating on the direct summand
Y -’ i of f*l’9z as multiplication by (i. If f*F is locally free for a sheaf F on Z and
the group G operates on f*F, we denote by (f*F)i the eigenspace for 03B6i.

Pushdown of sheaves

A standard way of interpreting a cohomology group Hi(Z, F) for a sheaf F on
Z is by application of the Leray spectral sequence. Since for finite morphisms we
have Rif*F = 0 for i &#x3E; 0, one gets natural isomorphisms

for i &#x3E; 0. For later use we apply the functor f* to some standard sheaves on Z.
By [EV1] one gets the following lemma.

LEMMA 3.1. The following formulas hold for p  1:

Since we are interested in the primitive cohomology of Z with respect to f* 2,
we examine the application of the functor f* to the sheaves ^ p03A3Z and ^ p03A3^Z with
£z = P(f*Y)v Q f*Y. The sheaf Xy = P(Y) ’ Q9 2 on Y is denoted by E Y .
The following lemma shows that the application of the functor f* to the sheaves
A P£z and A p03A3^Z behaves very well.
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LEMMA 3.2. The following formulas hold for p  1:

Proof. By application of wedge products to the exact splitting sequence (2.2.1)
we get for p &#x3E; 1 the exact splitting sequence

Since by [Viel, Lemma 1.6] the relation f*03A9pYX&#x3E; = 03A9pZX’&#x3E; holds, one gets the
equality f * = ^p03A3^ZX’&#x3E; by application of the functor f * to the
sequence (3.2.2). For p  1 this implies

It can be checked simply that for p = 1,..., n + 1 the cokernel of the natural
embedding ^ p03A3vZ ~ ^ p03A3vZX’&#x3E; is isomorphic to the (9x,-module

This gives the exact sequence

By applying f, to (3.2.3) one gets the exact sequence

where l’ = P(Y|X) 0 Y-’. For a affine covering {U03B1} of Y the sheaf l’can be
represented on V03B1 = f -l(U a) as

where T03B1 is a fibre coordinate of S on Ua and x 1, ... , x. are local coordinates of
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Z on V03B1. The natural operation of G on 1 ’ is given by

Therefore the maps in the sequence (3.2.4) are G-equivariant. Since ^p-103A3vX is a
G-invariant sheaf, we get

The map a in (3.2.4) induces an isomorphism on the part, which is not G-
invariant. Hence the first assertion follows. Now we prove the second assertion.

An application of the duality theory for finite flat morphisms (vgl. [Ha, Kap. III,
Ex. 6.10]) to the morphism f gives

By putting the first result into this equation the second assertion follows. D

IVHS of cyclic coverings

For the abstract definition of an IVHS of weight k we refer to [CGGH] and
[PS].

Let 5£ be an ample invertible sheaf on Y To avoid different cases we suppose
from now on for the sake of simplicity that the dimension n of Y is bigger than 1
(Case of curves is analogous). Now we examine the IVHS of weight k induced by
the polarized variety (Z, f*Y). The vectorspace Hà(Z, Tz) is defined to be the set
of v ~ H1(Z, Tz) with the property v ~ c1(Y) = 0 in H2(Z, (9z). Another interpre-
tation is the following

where the map (*) is induced by the prolongation bundle sequence of the sheaf
f*Y. For p = 1,..., k the canonical map

decomposes as a result of the eigenspace decompositions of the vectorspaces
H10(Z, TZ), Hk-p0(Z,03A9pZ) and Hk-p+10(Z,03A9p-1Z) into a direct sum
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with

where for 0  i, j  N - 1 the map 03B4p,i,j is given by

Here we use the following notation

Now we define the notion of an IVHS-isomorphism of cyclic coverings. Let
( Y, 2) and ( Y’, 2’) be two polarized varieties of dimension n. Let f : Z ~ Y and
f : Z’ ~ Y’ be cyclic coverings with respect to 2N = OY(X) and Y’N = (9y, (X’).
Here X is a smooth reduced divisor on Y and X’ is a smooth reduced divisor on

Y’. The IVHS of weight k induced by (Z, f*.P) respectively (Z’, f*Y’) is denoted
by

and

with

REMARK 3.3. To simplify notation we here just use the algebraic part of the
IVHS and call this the IVHS. Recall that in some geometric situations a
polarized variety can be reconstructed from the algebraic part of its IVHS. For
such a situation Donagi introduced in [Do2] the notion of Variational Torelli.

DEFINITION 3.4. An IVHS-isomorphism

is called an IVHS-isomorphism of cyclic coverings, if for p = 1,..., k and 0  i,
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j  N - 1 the following diagram

is commutative. In this diagram the vertical isomorphisms are induced by 03C8.
Now we take a closer look to the maps ô,,i,j. The ampleness of the invertible

sheaf S gives by [EV2, (2.8)]

By Lemma 3.1 and Lemma 3.2 one gets

and

For i = 0,..., N - 2 the isomorphism (3.4.1) is induced by composition with the
isomorphism

and isomorphism (3.4.2) is induced by the isomorphism in Proposition 2.3.
For p = 1,...,k, 0  i  N - 2, 1  j  N - 1 and 1 + j  N - 1 we denote

by p,i,j the following map of cohomology groups on Y

induced by cupproduct and contraction of sheaves. The corresponding maps
03B4p,i,j play an important role, because for i + j  N - 1 the OY-module structure
of the pushdowns under f* of the respective sheaves is easier to control (compare



212

[Kn, 3.2]). The compatibility of the Leray spectral sequence with cupproduct
and contraction gives the following statement.

LEMMA 3.5. For p=1,...,k, 0iN-2, 1jN-1 and i+jN- 1 the
following diagram is commutative

The vertical isomorphisms are induced by the isomorphisms in (3.4.1) and (3.4.2).

REMARK 3.6. The cohomology group H1(Y, 1:y ~ Y-N+1) vanishes, if N is a
sufficiently large number. Hence we get in this case the following equalities

Jacobisystems

By the ampleness of Y the global vanishing theorem for integral parts of 0-
divisors [EV2, (2.8)] gives here Hq(Y, 03A9pYX&#x3E; ~ Y-i) = 0 for 1  i  N - 1 and

p + q ~ n. Hence we get an isomorphism Hq(Y, 03A9pY) ~ Hq(Z, 03A9pZ) for p + q ~ n.
The interesting part of the cohomology H*(Z, C) of Z is therefore in the middle
part Hn(Z, C). Now we are going to interpret the summand

of the Hodge structure H"(Z, C)/im H»(Y, C) as well as the summand

of the cohomology group H1(Y, Tz) with the help of Jacobi systems (see
Definition 2.2). This allows at least for big N and certain i and j a good control of
the maps bp,i,j and hence 03B4p,i,j in Lemma 3.5.

PROPOSITION 3.7. Let .9’ and e be locally free sheaves on Y There exist maps
induced by the prolongation bundle sequence (2.1.4)
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and

such that the following diagram is commutative for p = 0,..., n-1:

The map (*) is induced by composition of cupproduct and the contraction map

The map (**) is induced by multiplication of global sections. The map ~(F) is
injective.
By supposing additional assumptions we get the following statements:

(1) The condition HS(Y, ^n-s03A3vY Qx YN(p-s) ~ G) = 0 for s = 1,..., p-1 implies
the injectivity of 03C8p(G).

(2) The condition Hs+1(Y, ^ n-s03A3vY ~ YN(p-s) ~ G) = 0 for s = 0,..., p -1 im-
plies the surjectivity of 03C8p(G).

(3) If H’(Y, 03A3Y ~ F) vanishes, then ~(F) is an isomorphism.

Proof. For a locally free sheaf G on Y and p E N with 0  p  n we denote by

(K*, d.) with Ki := (^n-p+i+103A3vY) for i  0

the Koszul complex, which is induced by the surjection 1:y ~ Y-N - (0y. The
complex K. is exact except at the first place, where we have ker do =
03A9n-pYX&#x3E; ~ G. Hence 03A9n-pYX&#x3E; ~ G and K. are quasiisomorphic as complexes.
In particular we get KP = Coy Qx yN(p + 1) Q G. We denote by ap the composition
of the following natural maps:
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The map a is induced by the natural inclusion of complexes
Kp[- p] = FPK* c. K’. For the kernel of ce we have

For the composition of fi and the map

induced by Kp-1[-p + 1] q K*IFPK» the relation im(03B2·03B3) c ker a holds. The
map induced by ap on

is denoted 03C8p(G).
Since the group HS( Y, Kp-s-1) is zero for s = 1,..., p -1, we get by the second

spectral sequence for the hypercohomology an isomorphism between

H°(Y, Kp-1) and Hp-1(Y,K/FpK). This implies the first assertion. Since the
group Hs+ 1(J: Kp-s-1) is zero for s = 0,..., p-1, we get Hp(Y, K./FPK.) = 0
and hence the second assertion follows. The map 0(57) is induced by the exact
sequence (2.1.4), which immediately gives the third assertion. The commutativity
of the diagram follows by a simple argument using the second spectral sequence
of the hypercohomology as in [Iv, Proposition 5.7] (compare [FI, §2]). D

We remark that the vanishing conditions in Proposition 3.7 can be controlled
with the help of the prolongation bundle sequence (2.1.2). The maps ~(F) and

03C8p(G) where F and G are certain negative powers of the invertible sheaf E9 are
of special interest.

DEFINITION 3.8. For i = 0, ... , N -1 the map 03C8p(Y-i) is denoted by 03C8p,i
and for k = 0,..., N - 2 the map ~(Y-k) is denoted by ~k.
To simplify in the situation of Definition 3.8 the control of the vanishing
conditions in Proposition 3.7 we introduce the numbers rY,Y and sy

DEFINITION 3.9. The natural numbers rY,Y and sY,Y are defined by

and
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The numbers rY,Y and s1’:2’ depend just on the polarized variety (Y, 2). As an
immediate corollary of Proposition 3.7 one gets the following statement.

COROLLARY 3.10. For N ~ N and i ~ {0, ... , N - 1} it holds

(1) If i  N - rY,Y holds, then 03C8p,i is an isomorphism for p = 0,..., n.
(2) If k  sY,Y holds, then ~k is an isomorphism.

DEFINITION 3.11. We denote by (J) the invertible sheaf 03C92Y ~ 2N(n+l).

Now we state Green’s generalized Macaulay-Duality [Gre, Thm. 2.15] in the
form we are going to apply it. The sheaf (J) has a similar role as the canonical
sheaf in the Serre duality.

PROPOSITION 3.12 (Macaulay-Duality). Let lff be a locally free sheaf on Yand
a ~ Z. If the following vanishing assumptions hold

then

and the pairing

induced by cupproduct is nondegenerate.
Proof. [Gre, Thm. 2.15]. 0

REMARK 3.13. The fourth assumption in Proposition 3.12 can be skipped,
because by [Wa, Thm. 1] it follows from H°(Y, TY (D y-N) :0 0 that ( Y, ,pN) must
be isomorphic (P", (9(l» or to (P1, O(2)). Hence in this case we must have N = 1
respectively n = 1 and this are uninteresting cases for us.

REMARK 3.14. Let 8 be a fixed sheaf on Y If N is sufficiently large, then the
vanishing conditions in Proposition 3.12 are fulfilled.
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PROPOSITION 3.15. Let N be a sufficiently large natural number. For k  0
the following map is an isomorphism:

4. Symmetrizer

For C-vectorspaces U, Y, W and a linear map q: U ~C V ~ W the C-

vectorspace

is called the symmetrizer space of the map q. The natural linear map

is called the symmetrizer map of q or just the symmetrizer of q (see [Do]). Let Y
be a smooth projective variety of dimension n and Y an ample invertible sheaf
on Y We now state a theorem by Green [Gre, Thm. 2.21], which we apply to our
situation in Proposition 4.2.

THEOREM 4.1 (Green’s generalized symmetrizer lemma). Let 49 be a locally
free sheaf on Y and M a locally free invertible sheaf on Y generated by global
sections. If N is a sufficiently large number then the complex

induced by the Koszul complex for the evaluation map
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is exact in the middle and right place.
Proof. This is the statement of [Gre, Thm. 2.21] in the dual form. D

Now we prove the symmetrizer result we need for the proof of our variational
Torelli result in Theorem 6.1. For the definition of the number rY,Y see

Definition 3.9.

PROPOSITION 4.2. Let k be a natural number with k  rY,Y such that the

following properties are fulfilled for j E {0,1}:

(1) The sheaf roy Q yk is generated b y global sections.
(2) Hq( Y,  = 0 for q = 1, ... , n - 1.

(3) H0(Y, 03A3Y y Q9 03C9-1Y 1 Q9 g-k- j) = 0.

Let N be a sufficiently large natural number and s ~ H0(Y, ’pN) a section with
smooth reduced zero divisor X = {s = 01. Put i = N - k. For the natural map

induced by cupproduct and contraction the following statements hold

1. The symmetrizer space B( b) is canonically isomorphic to H°(Y, ccy 1 Qx 2i - j)
and the symmetrizer mapb1 = s(b) is

2. The symmetrizer space B(03B41) is canonically isomorphic to

HO(Y, 03C9-2Y ~ Y2i-N-j) and the symmetrizer map 03B42 = s(03B41) is

Both maps 03B41 and 03B42 are given by multiplication of global sections, where 03B41 is

additionally composed with the map H°(Y,YN-j)~H1(Y,TY-X&#x3E;Y-1)
induced by the prolongation bundle sequence (2.1.4).

REMARK 4.3. The map £5 in Proposition 4.2 corresponds to the map n,j,i in
Lemma 3.5. The map n,j,i is the starting point for our proof of Theorem 6.1.

Proof. For the first assertion we have to show the exactness of the natural
sequence
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at the left and middle place. Since we have by the third assumption

the Jacobisystem J03C9-1 ~Yi-j vanishes. Since N is sufficiently large, by appli-
cation of Corollary 3.10 we have to show the exactness of the sequence

at the left and middle place. Here we have put

We also use Je 0 !eN = 0. By N » 0 and the second assumption the Macaulay-
Duality (Proposition 3.12) holds for H°(Y, E Q ’pN). The application of Propo-
sition 3.12 and 3.15 gives that the sequence (4.3.2) is dual to the following
sequence

The exactness of sequence (4.3.3) at the middle and right place follows from
Proposition 4.1, because of N » 0 and the first assumption. Hence the first
assertion is true. Since in the previous proof we firstly choose k and then N, we
see that the sheaves JI = my Q 5£k and S = Wy 1 ~ Y-k-j are not depending
on N and therefore we can achieve the necessary vanishings in Proposition 4.1.
The proof of the second assertion is similar. We have to show for the sequence

the exactness of the dual sequence. The first and third assumption gives
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Therefore we get J03C9-2Y ~ Y2i-N-j = 0. Since N is sufficiently large, it is enough to
show for the sequence

the exactness at the left and middle place. Here we have put vit = 03C9Y Q9 YN - i

and og = 03C9-2Y (8) Y2i-2N-j. The application of the Macaulay-Duality in Propo-
sition 3.12 to the sequence (4.3.5) gives by the Propositions 3.12 and 3.15 that the
sequence (4.3.5) is dual to (4.3.3). The first assumption and Proposition 4.1
implies the exactness of the sequence (4.3.3) at the middle and right place. Hence
the second assertion follows. D

REMARK 4.4. The somewhat technical assumptions in Proposition 4.2 are
caused by the fact that we have to choose both k and N sufficiently large. On the
other hand k has to be small enough in comparison to N. The interpretation of
the assumptions in Proposition 4.2 is that we have firstly to choose k sufficiently
large and then N.

5. The I(1,1)-criterion

In the theory of IVHS an important step in proving variational Torelli theorems
consists in recovering the algebraic variety in question from certain bilinear
maps. Here we give a criterion applicable in such a situation. It might also be of
general interest.

Let Y be a smooth projective variety of dimension n and 5’ and W two very
ample invertible sheaves on Y We use the following conventions:

Let pi and P2 denote the projections P - P1 and P - P2. The linear systems 1.,971
and |G| induce morphisms ~|F|: Y ~ P1 and glql: Y- P2. We get the following
commutative diagram
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Here à denotes the diagonal embedding and i the composition of ~|F| x ~|G| and
A. Let I(l, 1) be the kernel of the natural map V ~C W ~ H’(Y, 57 Q G) and let
OP(a, b) be the invertible sheaf p*1OP1(a) ~ p*2OP2(b). There exist natural isomor-
phisms Sk1V~ H°(Pi, (9pt(k1)) and Sk2W ~ HO(1fD2, (9P2(k2)). For this reason we
identify SkIV with HO(PL, OP1(k1)) and Sk2W with H0(P2,OP2(k2)). Now we state
a sufficient condition for the fact that the variety Y as a subvariety of P is a
scheme-theoretic intersection of the divisors D ~ I(1,1). The ideal sheaf of Y in P is
denoted by JY.

PROPOSITION 5.1. (I(1,1)-Criterion). If 57-n ~ G (8) ccy 1 is nef and big, then
the natural map

is surjective.

REMARK 5.2. The application of Proposition 5.1, we have in mind, is the
following. Suppose G is sufficiently ample in comparison to F. Then the
embedding i: Y ~ P can be reconstructed from V and W and the map

V ~C W ~ H0(Y, F ~ G), since the kernel of the multiplication map

V ~C W ~ H°(Y, F ~ G) is I(1,1)=H0(P,JY,(1,1)). Hence the surjective
evaluation map I(1,1) Q OP(-1, -1)  JY determines the ideal sheaf JY of Y

We recall for later use that by Mumford’s definition a coherent sheaf 09 on Pr is
called m-regular, if Hi(Pr, tff(m - i)) = 0 for all i &#x3E; 0. By [Mul] an m-regular
sheaf tff is also (m + l)-regular and one has a surjective multiplication map

Now we state some lemmas, we are going to use in the proof of Proposition 5.1.

LEMMA 5.3. Ripj* JY(a, b) = 0 for a, b &#x3E; 0, i &#x3E; 0 and j = 1, 2.

Proof. The natural surjection OP(a, b) ~ Fa ~ Gb induces the map

which factorizes over the surjections

and
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Hence (5.3.1) is surjective. The assertion for i = 1 and j = 1 follows from

Since the restriction of p 1 to the diagonal is an isomorphism, we get

Rip1* ~ (Fa Q Gb) = 0 for i &#x3E; 1. For i &#x3E; 1 and j = 1 the assertion follows from

Finally for symmetry reasons the assertion is true for j = 2.

LEMMA 5.4. If F-n (D W ~ úJy 1 is nef and big, the natural map

is surjective for all k 1  0.

Proof. The first thing we show is the 0-regularity of the sheaf p1*JY(1,1). By
Lemma 5.3 the following sequence is exact

This implies for i &#x3E; 0 an exact sequence

Since the map H0(P1, OP1) ~C W ~ H0(Y,G) is an isomorphism and the

cohomology group H1(P1, OP1) vanishes, we get H1(P1, p1*JY(1,1)(-1)) = 0.
Now we check the case i &#x3E; 1. Since 3F -" 0 e Q roi 1 is nef and big, the sheaf

is also nef and big for i  n + 1. By the Kawamata-Viehweg
vanishing theorem [Vie1] and [Ka] we get Hi-1(Y,F1-i Q9 e) = 0 for i &#x3E; 1. As

the group Hi(P1, OP1(1 - i)) vanishes for i &#x3E; 1, the 0-regularity of the sheaf
p1*FY(1 , 1) follows. Hence the natural map

is surjective for 1 &#x3E; 0. This implies by induction on k1 the surjectivity of the map
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for k 1 &#x3E; 0. In the commutative diagram

the surjectivity of the map (*) implies the surjectivity of (**). This is the assertion.
a

Choosing ko. We choose a number k0 ~ N such that the following three
conditions hold:

(1) ko s min{k 1 ffy(k’, k") is generated by global sections for k’, k"  k},
(2) the map SkH°(Y, F) ~ H°(Y, Fk) is surjective for k  ko,
(3) Fk0+1 ~ W - n ~ 03C9-1Y is ample.

LEMMA 5.5. For k1 &#x3E; ko the natural map

is surjective for k2  0.
Proof The proof is analogous to the proof of Lemma 5.4. We show the 0-

regularity of the sheaf p2*JY(k1 + 1, 1). Since by Lemma 5.3 the sheaf

R1p2*JY(k1 + 1, 1) vanishes, we get a short exact sequence

This implies for i &#x3E; 0 the exact sequence

Since by the choice of ko the natural map

is surjective, this implies in connection with H1(P1, (9pJ = 0 the vanishing of the
group H1(P2, p2*ffy(kl + 1,1)(-1)). By Kodaira’s vanishing theorem the ample-
ness of  implies Hi-1(Y,Fk1+1 ~ GI-i) = 0 for 1  1 K n.
Since the group Hi(P 2’ OP2(1 - i)) is zero for i &#x3E; 1, the 0-regularity of the sheaf
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p2*JY(k1 + 1, 1) follows. This gives for 1 &#x3E; 0 the surjectivity of the map

The assertion follows similar as in Lemma 5.4. D

PROOF OF PROPOSITION 5.1. The following commutative diagram

implies by the choice of ko that it is sufficient to show for two natural numbers ki
and k2 with kl, k2  ko the surjectivity of the following map

In the natural commutative diagram

the maps (*) and (**) are surjective by Lemma 5.4 and 5.5. By application of the
Leray spectral sequence the other vertical maps are isomorphisms by Lemma
5.3, respectively by the property Rip1*Op(k1, k2) = 0 for i &#x3E; 0. This implies the
surjectivity of (***) and the assertion follows. D
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6. A variational Torelli theorem

In this section we prove our variational Torelli theorem for cyclic coverings of

high degree. For the notion of IVHS-Isomorphism of cyclic coverings we refer to
Definition 3.4.

THEOREM 6.1. Let (YI, 21) and (Y2, IR 2) be two polarized smooth projective
varieties of dimension n with polarization given by the ample invertible sheaves Y1
and 22. If N is a sufficiently large natural number, then for cyclic coverings

with respect to YNi = OYi(Xi), where X is a smooth, reduced divisor on Y, the
following variational Torelli property holds:

If there is an IVHS-isomorphism of cyclic coverings

then there exists an isomorphism

with a* 22 = 21 and 03C3*X2 = X1. As a conclusion this gives an isomorphism of
polarized varieties between (Z1, f*1Y1) and (Z2,f*2Y2).

Proof of theorem 6.1. Choose a k &#x3E; 0, such that the sheaf 03C9Yi ~ Yki is very
ample for i = 1, 2 and the assumptions of Proposition 4.2 are fulfilled. We use
the following notation for i = 1, 2:

The assumption (6.1.1) gives isomorphisms of vectorspaces

and hence the following commutative diagrams, where the vertical isomorph-
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isms are induced by these isomorphisms (see Definition 3.4):

and

Step 1: Construction of the isomorphism 6: YI ~ Y2

We apply Proposition 4.2 (Case j = 0) to the diagram (6.1.3). This gives the
following commutative diagrams, where the vertical maps are isomorphisms of
vectorspaces:

and

By Proposition 4.2 we get for i = 1, 2 canonical isomorphisms

We have chosen N sufficiently large. By Proposition 5.1 we can hence

reconstruct for i = 1, 2 the embeddings Yi c. P(Ui) x P(Ci) from the kernel of the
linear maps Ui ~C Ci ~ Bi in diagram (6.1.6). By (6.1.2) we obtin isomorphisms
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Hence the diagram (6.1.6) induces the following commutative diagram:

The maps pi and p, are the natural projections. The isomorphism a is induced
by the corresponding isomorphism in (6.1.2). Furthermore for i = 1, 2 the
morphisms Yi ~ P(Ui) are embeddings, because we have chosen 03C9Yi ~ Yki very
ample. Since the ideal sheaves of YI and Y2 are carried over by a into one
another, the morphism (1, which we get by restricting a in (6.1.8) to Y,, is an
isomorphism. Since my, ~ Yki is very ample for i = 1, 2 and we have for N

sufficiently large

for 1  j  n, by [Mu2, Thm. 2] the map Ui @C Ci ~ Bi in (6.1.6) is surjective.
For sufficiently large N the sheaf úJy¡ 1 Q yy-k is very ample for i = 1, 2. Hence
the natural morphisms P(Bi) ~ P(Ui Oc Ci) and x - P(Bi) are embeddings. The
diagram (6.1.6) induces the following commutative diagram:

For i = 1, 2 the morphism P(U;) x P(Ci) ~ P(Ui Q9c Ci) in diagram (6.1.10) is the

Serge embedding. Therefore the isomorphism 03C3 is the restriction of a in (6.1.9) as
well as the restriction of fl in (6.1.10) to Y,.
By restricting the equation 03B2*OP(B2)(1) = OP(B1)(1) to YI we get
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We repeat the whole construction in Step 1 by using Proposition 4.2 (Case j = 1)
and diagram (6.1.4). Since the same vectorspaces U1 and U2 appear in diagram
(6.1.4), we get in particular

By (6.1.11) and (6.1.12) the assertion a* 22 = 21 follows.

In Step 1 we have seen that the isomorphisms U1 ~ U2 and Bi - B2 in (6.1.2)
are induced by J. By (6.1.5) we obtain the following commutative diagram:

The map H°(Yi, YNi) ~ Ti with i = 1, 2 in (6.1.13) is the natural map induced by
the prolongation bundle sequence (2.1.4) for the sheaf !RN. Since we have chosen
N sufficiently large, the maps Ui ~C Bi ~ H°(Yi, YNi) in (6.1.13) are surjective.
For the Jacobi systems J  : = ker{H°(Yi, YNi) ~ Ti} this implies an isomor-
phism JY1,YN1 ~ J induced by 6. By [Gre, S. 153-154] the assertion

03C3*X2 = X1 follows. Q
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