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Let E be an abelian variety defined over a number field K. Let p be a prime
number. Let (K, E)p~ be the p-Tate-Shafarevich group of E and SclassEp~(K) the
p°°-Selmer group of E. Thirty years ago, Tate proved a local duality theorem for
E and used it to establish a global duality for E, later called Cassels-Tate pairing
[3, 14]. It states that there is a pairing between (K, E)p~ and the p-Tate-
Shafarevich group (K, E *)p. for the dual abelian variety E* of E and that this
pairing is nondegenerate modulo the maximal divisible subgroups. In terms of
the Selmer groups, it states that there is a pairing between SclassE(K) and Sclass(K)
which is nondegenerate modulo the maximal divisible subgroups.

Let ( g) be a compatible system of l-adic representations of Gal(K/K) which
are ordinary at p. Let Tp be a Gal(K/K)-invariant lattice of Vp and define
A = Vp/Tp. R. Greenberg has recently defined the concept of a poo-Selmer group
for such an A. This concept is a generalization of the classical Selmer group for
an abelian variety with good, ordinary reduction or multiplicative reduction at
p (Theorem 5). We will prove a local duality theorem (Theorem 1) for such an A
and use it to construct a Cassels-Tate type pairing for Greenberg’s general
Selmer groups (Theorem 2).

Let K~ be any Z.-extension of K. Greenberg [5, 6] also defines a (strict)
Selmer group SstrA(K~) for a compatible system as above. Greenberg uses
SstrA(K~) and its nonstrict version to formulate his motivic Iwasawa theory. We
will give an application of the general Cassels-Tate pairing to the study of
SstrA(K~) (Theorem 3).

After fixing some notations and conventions in Section 1, we will state the
main theorems in Section 2. Theorem 1 will be proved in Section 3. The proof of
Theorem 2 will be sketched in Section 4. We will also discuss some examples
there. In Section 5 we prove the result on Greenberg’s strict Selmer groups.

1 wish to thank my advisor, R. Greenberg. He suggested this problem to me,
and his encouragement and helpful conversations were essential to the com-
pletion of this work. 1 would like to thank M. Flach for sending his work [4] on
the similar subject to us (see Section 2 for details) and would like to thank J. S.
Milne for referring us to McCallum’s related work [9] and for his well-written
book [10] on this subject.
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1. Notations and Conventions

We will use the following notation throughout this paper.
Let 1, p be two primes of Q. Let K/Q be a finite Galois extension,

G = Gal(K/Q). Let G. = Gal(K/K). For a prime v over 1, let K, be the com-
pletion of K at v and let GKv = Gal(K,IK,). For àny p-primary abelian group M,
denote Mn for ker{pn: M ~ M} unless defined otherwise. Mdi, is used to denote
its maximal divisible subgroup, and Mcot ~ M/Mdi, is used to denote the

cotorsion part. MA is the Pontryagin dual of M. If M is moreover a discrete GF-
module, where F = K or Kv, then for any integers r, s, the maps M, 4 Mr+s
and pn : Mr+s ~ Ms induce maps ~r,r+s:H1(F, M,) ~ H1(F, Mr+s) and

Thus we have ~s,r+s ° 03C0r+s,s = pr on

H1(F, Mr+s). Let I, be the inertia subgroup of GKv’ let g, = GKv/Iv be the Galois
group for the maximal unramified extension of Kv. Let Frob, be the Frobenius
element which generates g,, as a profinite group. Thus H1(gv, MIv) =
MIv/(Frobv - id)M1v. It can be regarded as a subgroup of H1(Kv, M) by the
inflation map. We say that M is unramified at v if MI- = M.
The subject to study in the following will be a discrete GK-module A such that

A xé (Qp/Zp)d as an abelian group. So An ~ (Z/pnZ)d. Define q5r = lim ~r,r+s
when s ~ oo. For each v|p, we fix a GKv-submodule F+v A ~ A that is divisible.
We use 03B5~ to denote the natural map Hl(Kv, F+v A) ~ Hl(Kv, A) induced by
Fv A q A. Let TA be the Tate module of A and define A* = Hom(TA, Qp/Zp(1)).
We also choose F+03BDA* = Hom(TA/F+03BD A, Qp/Zp(1)) for each v|p. It is a divisible
GKv-submodule of A*. It follows that under the pairing between

Hom(TA, Qp/Zp(1)) and A*, TF’ and F+v A* are the exact annihilators of each
other. Thus for any n, A"/FÛ An is dual to F’ Ai under the pairing An x A*n ~
Q/Z(1). It can be easily checked that the operations F+v ( - ), ( - )n, ( - )* on A are
interchangeable, so we will ignore the order in which they are performed.

2. Statement of the main theorems

Let A be a divisible GK-module as above. Consider a compatible system V = {Vl}
of l-adic representations of Gk (e.g., the 1-adic homology of a motive) such that Pp
is ordinary in the sense of [5]. Thus, for each v 1 p, there is a canonical subspace
Fv Yp of Yp that is invariant under the action of GKv . Let Tp be a GK-invariant
lattice in Yp . Let A = Vp/Tp. Let Fv A be the image of FÛ Y in A. Then A is an
example of such a GK-module. The results below can be easily reformulated in
terms of the compatible systems. But the setting here is purely Galois

cohomological and might be applied to other situations.
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DEFINITION 1. For each natural number n and prime v of K, define

Here in each case the map is the composition of maps through H’(K,, A).

The subgroup E,,, of H1(Kv, A*n) is defined in the same way. For v p, choose
F’A* = Hom(TA/F,,A, Qp/Zp(1)) to be the divisible subgroup of A* that is GKv-
invariant.

THEOREM 1. {Ev,n} form a right exact duality system in the following sense:
(1) (right exactness) From the exact sequence

we have the induced exact sequence

for r, s large.
(2) (local duality) Ev.n and E’v,n are exactly the annihilators of each other under

the Tate pairing

for n large.
If A is unramified at a finite prime v, and v 1 p, then (1) and (2) are true for all r, s

and n.

Let A = Epoo, where E/K is an abelian variety with good, ordinary reduction
or multiplicative reduction at p. By Theorem 5, Ev.n = E(Kv)/pnE(Kv) if we

regard the latter as a subgroup of H’(K,, En) via the Kummer sequence

Thus (2) in the theorem is just the local Tate duality for E. In this case, (1) in the
theorem is the trivial fact that the sequence

is exact. This exactness is an essential property of E used to construct the
Cassels-Tate pairing.
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Let

be the strict Selmer group over K defined by Greenberg.

THEOREM 2. Assume that A is unramified at almost all primes of K. Then there
is a canonical pairing

whose kernel on either side is precisely the maximal divisible subgroup. If moreover
there is a GK-module isomorphism

such that (ria)(a) = 0 for a E A, then this pairing induces a skew-symmetric pairing
on SstrA(K).

A classical example of A in Theorem 2 is A = Epoo where E is an elliptic curve
over K with good, ordinary reduction or multiplicative reduction at p. For any
abelian variety E with such reduction at p, fix a divisor D on A rational over K,
and let 0,: E ~ E* be the induced isogeny. Restricted to Epco, the map q5, gives a
map ~p : Ep~ ~ E*p~ such that (~p(a))(a) = 0 for a E A. The map ilp is actually an
isomorphism for almost all p since 0, has finite kernel. Thus the conclusion of
Theorem 2 is true for A = Epoo for almost all p. See Section 4 for more details and
other examples.

Let K~ be any Zp-extension of K. Let

be the strict Selmer group over Koo defined by Greenberg in [5]. We have the
following application of Theorem 2.

THEOREM 3. Let p ~ 2. With the same setting as in Theorem 2 and with the
additional assumption that SstrA(K~) is A-cotorsion and that A(K (0) is finite, we
have

corank  corankZp SstrA(K)(mod 2).

If A = Epoo, where E is an elliptic curve over 0 with complex multiplication
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and with good, ordinary reduction at p, and if K~ is the cyclotomic Zp-extension
Q~ of Q, then the conditions in Theorem 3 are satisfied by Proposition 2 of [6],
Theorem 4.4 of [11] and Proposition 6.12 of [8]. Further, by Theorem 5,

SclassEp~(K) = SstrEp~(K) in this case. Thus a consequence of Theorem 3 is

corankz corankz  (Q)(mod 2).

There are other applications of Theorem 2 and Theorem 3. We plan to discuss
them in a subsequent paper.
M. Flach [4] has proved a result similar to Theorem 2. The generalization

given here, excluding the skew-symmetric property, was obtained before we
knew his work. The skew-symmetric property was proved by combining the
methods used in his paper and McCallum’s paper [9]. There are differences
between the two generalizations. Flach’s result generalizes the Cassels-Tate
pairing for an abelian variety with any kind of reduction at p while the approach
here only generalizes for an abelian variety with good, ordinary reduction or
multiplicative reduction at p though these are the most interesting cases in
connection with Iwasawa theory. On the other hand, as indicated before, the
setting and method here is purely Galois cohomological and might be applied to
other cases. Flach’s work is based on the theory of Fontaine and Bloch-Kato [1]
which was not known to us before. In particular, the local theory had been
formulated in his case. The approach here is self-contained, starting from the
local theory. Once the local theory is established, the global result can be proved
by a method analogous to that used to prove the classical case. In both cases, the
idea of the classical proof given in [10] is adapted to the generalized situations.

3. The local theory

We prove Theorem 1 in this section. The proof is divided into three parts. The
right exactness is proved in Section 3.1. To prove the local duality, we first
shown in Section 3.2, that E"," and H1(Kv, A*n)/E’v,n have the same order. Then it
is proved in Section 3.3 that E"," and E’v,n annihilate each other under the Tate
pairing

Now the local duality follows since the Tate pairing is nondegenerate.
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Recall that for each n we define

If v is an archimedean prime of K, then GKv | = 1 or 2, hence H 1 (Kv, A) is finite
and H1(gv, AIv)div = 0. Thus Ev,n = ker(H’(K,, An) ~ H1(Kv, A)).

If A is nonarchimedean and is unramified at v, then AIv = A. Hence H2(gv, -)
being zero implies that H1(g,, A) is divisible. Since H°( g", AIv) = H°(K", A), we
have

Thus H1(gv, A.) = Ev.n for all n if v is nonarchimedean and does not divide p.

3.1. Proof of the right exactness

We will prove the following more general result.

PROPOSITION 1. Let D be a divisible subgroup of Hl(Kv, A) and define

Then from the exact sequence 0 -+ Ar -+ Ar+s pr As -+ 0, we have the induced
exact sequence,

for r, s large.

We start with a simple lemma.

LEMMA 1. If M is a cofinitely generated torsion Zp-module, then for any m and
any n  IM/Mdivl we have p"M = Mdiv and pnMm+n = (Mdiv)m.

Proof. This is clear since M ~ Mdi, ~ M/Mdiv and Mn+m ~
(Mdiv)n+m ~ M/Mdiv for n  |M/Mdiv|. 0

Proof of Proposition. Choose r, s  N with pN  IHO(Kv, A)IH’(K,, A)di,l-
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Then prH°(Kv, A) = pSHO(Kv, A) = HO(K,, A)di, . In the commutative diagram,

we have exact columns and exact upper row. Thus we have the induced
commutative diagram for cohomology groups,

with exact columns and exact central row. From this diagram we can extract the
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commutative diagram with exact columns,

Now the lower row is exact because of the divisibility of D. Since

is exact, the middle row Jr  is zero. So

~r,r+s(Jr) ~ ker(03C0r+s:Jr+s ~ J,,). Applying the snake lemma to the left half and
right half of the diagram, we have

and that 03C0r+s:Jr+s ~ J, is onto. Hence |~r,r+s(Jr)| = |ker(03C0r+s:Jr+s ~ Js)|. Thus

the middle row must be exact at Jr+s, hence Jr  Jr+s  JS ~ 0 is
exact. D

The first part of Theorem 1 follows if we let D = H1(gv, A1v)div when v 1 p and
let D = 03B5~ (H1(Kv, Fv A)di,) when v |p.

If A is unramified at a finite prime v and v t p, then E,,,, = H’(g,, An) for any n
by the remark after Definition 1. Since the sequence

is exact for all r and s, the sequence
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is exact for all r and s. This completes the proof of the right exact property.

Next we prove the duality property in the theorem. When v is archimedean, it
has been proved in [5, p. 129]. So in the following we will assume that v is a finite

prime of K.

3.2. A characteristic formula

Let n be any positive integer.

LEMMA 2. IHO(Kv, A)n| = IHO(Kv, A)/pnH°(Kv, A)II(H°(K", A)div)n|.
Proof. Since H’(Kv, A) is cofinitely generated over Zp, we have

HO(Kv, A) = HO(KV, A)di, EB X for some finite X. So HO(Kv, A)n = (HO(Kv,
A)div)n EB Xn. Since X is finite, |Xn| = |X/pnX|. Since HO(Kv, A)di, is divisible,
HO(KV, A)lp’HO(Kv, A) = XlpnX, hence the lemma. 0

We will prove the following result which will be used in the proof of the local
duality.

PROPOSITION 2. (characteristic formula)

Proof. First consider v 1 p. Let D = H 1 ( gv, A1v)div, by definition we have the
exact sequence,

Thus |Ev,n| = IH’(K,, A)/pnHO(Kv, A)~Dn|. Being cyclic, gv has cohomological
dimension 1. So

Similarly,
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Hence |H1(Kv, An)1 = |Ev,n~E’v,n| = |H1(Kv, A:)I by Tate’s characteristic formula.
Now consider vi p. Let D = 03B5~(H1(Kv, Fv+ A)div). From the exact sequence of

Zp-cofinitely generated abelian groups

By Tate characteristic formula,

Hence

By the definition of E,,,,

Since |H°(Kv, An)1 = IHO(Kv, A)nl = |H°(Kv, A)/pnH°(Kv, A)|p by
Lemma 2. On the dual side, for A*, we have

I - |H°(Kv, 

Since An/F+v An is dual to F+vA*n under the pairing An x A*n ~ Qp/Zp(1), Tate’s
duality theorem says that H°(Kv, An/F+v An) is dual to H2(Kv, F: A:). This
implies that corankZp H Kv, A/F+v A) = corank H2(Kv, F+v/A*). Similarly,
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corank H°(Kv, A*IF’A*) = corank H2(Kv, F’A). Thus

This completes the proof of Proposition 2.

3.3. Proof of the local duality

We consider two cases.

3.3.1. The case when v 1 p

Consider the following commutative diagram,

Since A is cofinitely generated over Zp, so is A1v. Thus H1(gv, AIv) ~
AIv/(Frobv - id)A1 v is cofinitely generated over Zp. So by Lemma 1, for large n
with n  max{|H1(gv, AIv)/H1(gv, A1v)divl, |AIv/(AIv)div|}, we have pnHl(gv, Alv) =
H1(gv, A1v)div and pnH1(gv’ A1v)2n = (H’(g,,, A1v)div)n. Also the exact sequence
0 - (A1v)2n ~ AI- p2" (A1v)div ~0 and A1 v = (A1v)div EB (A1v)cotgive surjective
map H1(gv, A1 v) ~ H1(gv, (A1v)div) and injective map H 1 ( g", (A1 v)div) ~
H 1 ( gv, A1v). Thus H 1 ( g", (A1 v)2") ~ H 1 ( g", A1 v)2n is onto. Therefore in the dia-
gram (1), the diagonal map 0394:H1(gv, (AIv)2n) ~ H1(Kv, A)n has image
(H1(gv, A1v)div)n. Thus by the definition of Ev.n,
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where ô is the boundary map. Similarly,

From Proposition 2|Ev,n| = |H1(Kv, A*n)|/|E’v,n|. Therefore, to prove that Ev.n and
E’v,n are the exact annihilator of each other under the pairing
H1(Kv, An) x H1(Kv, A*n) ~ Qp/Zp, We only need to show that they annihilate
each other, that is, that the composition map Ev,n ~ H1(Kv, An) ~
H1(Kv, A*n) ^ ~ (E’v,n) ^ is zero, where for a finite group X, X ^ is the Pontryagin
dual of X. By our descriptions of Ev,n and E’v,n above, this means that the
composition map

is zero. As (Hl(gv, (A*)Iv2n) E9 HO(Kv, A*)) ^~ Hl(gv, (A*)Iv2n) ^ EB HO(Kv, A*) ^,
the proof can be accomplished in the following four steps,

(1) The map HO(Kv, A) ~ H1(Kv, An) ~ H1(Kv, A n H°(Kv, A*) ^ is

zero.

For n large we have p"H°(Kv, A) = HO(Kv, A)div. Hence we have the commu-
tative diagram of exact sequences,

Thus im(ê: Ho(Kv, A) ~ H 1 (K", An)) = im(~ : H’(K,, An) ~ H 1 (K", An)) ~ X. The
same applies to A*. So we only need to show that the map

HO(Kv, A.) a H1(Kv, An) ~ H1(Kv, A*n) ^  H°(Kv, A:)A is zero. But the

map fits into the commutative diagram,



137

where the vertical maps are from Tate’s local duality. To prove that the top row
is zero, consider the commutative diagram of exact sequences

In the induced cohomological diagram we have the commutative square

from which we get

Hence the top row is zero and (1) is proved.
(2) The map

is zero.

For the same reason as in (1), we only need to prove that the map

is zero. But the map fits into the commutative diagram,
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where the bottom row is exact. This proves (2).
(3) The map

is zero.

This is clear since

is already zero, as shown by Greenberg in [5, p. 113].
(4) The map

is zero.

As in (1), we can replace H°(Kv, A) by H°(Kv, An) and the rest of the proof is
the same as for 2).

If A is unramified at v, then E",n = H1(gv, An) for all n by the remark after
Definition 1. Also, E’v,n = Hl(gv, A*n) for all n. Thus the result follows from the
fact that H1(gv, An) and H1(gv, A*n) are the duals of each other under the local
Tate pairing.
Now the proof of local duality for v  p is completed.

3.3.2. The case when v p

Now we assume that v 1 p. We define the maps 0,,, On 8n, 03B5~ to be the natural

maps in the following diagram,
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Let D+ be the maximal divisible subgroup of HI(K", Fv A), and set D = 03B5~(D+).
By definition, Ev,n = (~n)-1(D).
As in the case when v  p, we first express Ev,n as the image of a proper map.

Since H1(Kv, F+v An) is finite, H1(Kv, F+v A)n is finite. Hence H1(Kv,F+v A) is

cofinitely generated as Zp-module. By Lemma 1 pnH1(Kv,F+v A)3n=D+2n, for.
pn  |H1(Kv, F+v A)/D+|. Thus in the following diagram

where the left column is surjective, the image of the diagonal map A is the same
as the image of the map D+2n 03B5~ D2n. Let B = ker(D+ 03B5~ D), then B is

cofinitely generated over Zp, hence Bcot def B/Bdiv is finite. Putting X = D+ /Bdiv,
we have the following commutative diagram of exact sequences,

where 8’ is induced from 03B5~. Since B xé Bdiv O Bcot, D+ ~ Bdiv ~ X by the
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property of divisible groups, for pn  |Bcot| we have

Now choose n such that

p[n/2]  max{|H°(Kv, A)/H°(Kv, A)div|, |H1(Kv, F+v A)/D+|, |Bcot|},

and consider the following commutative diagram of exact sequences

The left column is zero, and Bcot ~ X.-[n/21 since n - [n/2]  [n/2]. Let

d ~ Dn+[n/2] and choose x E X such that -’(x) = d, then pn+[n/2]x ~ ker(03B5’) =
Bcot Ç Xn - [n/2J Hence XEX2n. This shows that 9’(X2n) - Dn + [n/21
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and by diagram (3),

That is

where A is defined to be the diagonal map in the diagram (2). From our choice of
n and Lemma 1 we have pnHO(Kv, A) = HO(Kv, A)div. Thus we have the exact

sequence

of Z/p2nZ-modules. But D2n is a free Z/p2nZ-module, hence the above sequence
splits. Therefore we have exact sequence

Therefore from the inclusions D2n ~ im(0394) ~ Dn+[n/2] obtained above we have

Thus

Therefore
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From property (1) of Theorem 1, 1t2n,n: Ev,2n: Ev,2n ~ Ev,n is surjective. So the
image of ~n,2n: Ev,n -+ Ev,2n is pn Ev,2n, Hence

Since Ev,n = ~-1n(D) = ~-1n,2n(~-12n(D)) = ~-1n,2n(Ev,2n) and Ev,n = ~-1n,2n(~n,2n(Ev,n)),
from the above inclusions we have Ev,n = ~-1n,2n(im(03B52n°03C03n,2n)). Thus Ev,n can be
described as the image of u in the following diagram 

where P is the pullback of ~n,2n and e2n ° 1t3n,2n. On the dual side E’v,n is the image
of Q’ in the pullback diagram

By Pontryagin duality, (P’) ^ is determined by the pushout diagram

By local Tate duality for finite modules, this diagram is naturally equivalent to
the pushout diagram
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Our goal is to prove that Ev,n and E’v,n are the exact annihilator of each other
under the pairing H1(Kv, An) x H1(Kv, A*n) ~ Qp/Zp, that is, 03C3(P) is the kernel of
the map 03B1:H1(Kv, An) ~ Q. As by
Proposition 2, we only need to prove that a 0 a = 0 in the following diagram

From the commutative diagrams

and

we have e2n o 03C03n,2n = 03C03n,2n "93n and 4J2n,3n 0 b2n = 03B43n o 4J2n,3n. Thus we only
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need to show that îJ. 0 Q = 0 in the commutative diagram

Next, we complete the diagram by taking the obvious pullback R and pushout S
and get the commutative diagram

We can attach the upper-right square to a commutative diagram with exact
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rows and get

A diagram chase shows that iM(U) 9 im(1t2n.n: Hl(Kv, A2n) -+ Hl(Kv, An)). Thus
the projective system

is equivalent to the projective system

with surjective row. Hence  is surjective by the property of pullbacks. Similarly,
from lower-left square of the commutative diagram (4) we get commutative

diagram with exact rows
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Another diagram chase shows that ker(a) 2 ker(~n,2n: H’(K,, An)-+
H’(K,, A2,,». Thus the injective system

is equivalent to the injective system

with injective row. Hence  is injective. Therefore, to prove that lJ. 0 t1 = 0 we only
need to prove that R is sent to zero in S following any path in the diagram (4).
We will show that 73 0 p 0 Ô3. - 02.,3- ’ &#x26; = 0.
From the upper half of the diagram (4) we get the diagram

in which the outer rectangle and the right square are commutative. It follows
that

Thus

Thus im(~2n,3n°) ~ im(e3n) + im(~n,3n) in the group 1H(Kv, A3n) in the lower
half of the diagram (4). So we only need to show that the subgroup
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im(e3n) + im(~n,3n) of H1(Kv, A3n) in the lower half of diagram (4) will go to zero
in S via (fi - ) ° b3n. But if k E im(e3n)’ then 03B43n(k) = 0, hence (( o 03B2) 03B43n)(k) = 0.
On the other hand, let k ~ im(~n,3n). From the commutative diagram of exact
sequences

k = ~n,3n(u) = ~2n,3n(~n,2n(u)) for some u E H’(K,, An). By the commutativity of
the lower half of the diagram (4),

Now we have finished the proof of the local duality, hence finishing the proof of
Theorem 1.

3.4. Cocyle property of Ev,n

Let Ev,n be defined as before. Let Z,,,, be the subgroup of elements in Z1(Kv, An)
representing elements in E,,,,. The following is a version of Theorem 1.1 and will
be used to prove Theorem 2.

PROPOSITION 3. The exact sequence

induces the exact sequence



148

Proof. We have the following diagram

where the d’s are the differential maps and the y’s are the quotient maps from
cocycle groups to cohomology groups. By the commutativity of the square in
the lower-right corner and that 1tr+s.r: Ev,r+s - Ev,r is surjective (Theorem 1.1),
Zv,r = B1(Kv, Ar) + pSZv,r+s. Since ps : B 1 (Kv, Ar+s) - B1(Kv, Ar) is surjective, we
have Zv,r=ps(B1(Kv,Ar+s)+Zv,r+s)=psZv,r+s. This proves the required sur-

jectivity. The injectivity of Zv,s ~ Zv,r+s is clear. Also im(Zv,s ~ Zv,r+s) ~
ker(Zv,r+s ~ Zv,r). So we only need to prove the inverse inclusion. From the
above diagram,
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But

where a is the boundary map from ZO(Km Ar) to Z1(K", As). By the definition of
Ev,s, ôH°(K", Ar) 9 E",S, hence oZO(Km Ar) ~ Zv,s. This proves the proposition.

4. The global theory

Because of the space limitations, we will only give the construction of the pairing
on SA(K) and give an indication of the proof of Theorem 2. The full details will
be included in [7].
Assume that v is unramified at A for almost all v. For such a v with v  p, we

show in Section 1 that Ev,n = H1(gv, AIv). Thus the restricted direct product
03A0’vH1(Kv, An) of H1(Kv, An) relative to the subgroups Ev,n is equal to the
restricted direct product P1(K, An) of H1(Kv, An) relative to the subgroups
H1(gv, AIv) defined by Tate [14]. This implies that the image of the localization
map

is contained in 03A0’vH1(Kv, An). Similarly, H1(K, A*n) ~ 03A0vH1(Kv, A*n) has its

image contained in 03A0’v H l(Kv, A:) relative to E’v,n.

DEFINITION 2. Define the p(strict) Selmer group SÂn(K) to be the kernel of
the map

Here one can take a direct sum instead of a direct product because of the above
remark. In H1(K, A), define
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This is the strict Selmer group over K defined by Greenberg.
Let N be an integer such that (1) and (2) in Theorem 1 hold for all primes v of

K and all r, s, n  N. Such N exists since A is unramified for almost all primes of
K. Theorem 2 is a consequence of the following result,

THEOREM 4. Assume that A is unramified at almost all primes of K. For each
pair r, s  N, there is a canonical pairing

whose kernels in the two sides are precisely the images of the induced maps
03C0r+s,r: SstrAr+s (K) ~ SstrAr(K) and 03C0r+s,s: SstrA*r+s (K) ~ SstrA*s(K). If moreover there is a GK-
module isomorphism 

such that (pla)(a) = 0 for a E A, then this pairing induces a skew-symmetric pairing

in the sense that

It can be verified that the pairing , &#x3E;r,s is compatible with the direct systems
{SstrAr(K)} and {SstrA*s(K)}, hence induces the required pairing ,&#x3E; on the direct
limits. 

The pairing ,&#x3E;r,s is constructed as follows. For any positive integer n, the
pairing en: An  A*n ~ Qp/Zp(1) induces the local Tate pairing

Fix a pair r and s with r  N, s  N. Let b E SstrAr(K), b’ E SstrA*s(K). Choose a
/3 E Zl(K, Ar) representing b and /3’ E Zl(K, Ai) representing b’. Lift /3 to a

cochain 03B2s ~ C1(K, Ar+s) with pS/3s = fi. The coboundary d/3s of fi, takes values in
As, hence is an element of Z2(K, A,). Thus d/3s Us /3’ represents an element of
Z3(K, Qp/Zp) and therefore an element in H3(K, K ). But this last group is zero
by [10, I.4.18], so d03B2s ~ s03B2’ = d03B5 for some 2-cochain 03B5 ~ C2(K, K ).
Now for each v, let /3v E Z 1 (Kv, Ar), 03B2s,v E C1(Km Ar+s) be the images of fi and fis

under the localization (restriction) maps. Thus ps03B2s,v = /3v. By Proposition 3,
/3v E Zv,r and we can find 03B2v,s ~ Zv,r+s such that ps03B2v,s = 03B2v. Thus
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Hence (03B2v,s-03B2s,v)~s03B2’v+03B5v ~ Z2(Kv, K ) and represents an element of

H2(Kv, K ). We define

In the special case when b is divisible by p’ in the sense that there is an element
bs~H1(K, Ar+s) such that 03C0r+s,r(bs)=b, where 03C0r+s,r:H1(K, Ar+s)~H1(K,Ar) is
the map induced by ps: Ar+s ~ Ar, we could choose 03B2s to be a cocyle and choose
e = 0. Then we actually have

where 03B2v,s represents bv,s, /3s,v represents bs,v.
It can be verified that the pairing , &#x3E;r,s is well-defined. The proof of the non-

degeneracy in Theorem 4 is analogous to the proof used for the classical case.
Here, we use the idea in [10] with some modifications. The key for the
generalization is the observation that the proof of the classical case in [10] uses
only the following properties of an abelian variety E, together with some general
facts from Galois cohomology:

(1) The local Tate duality for E.
(2) The sequence

is exact.

(3) Epco is unramified at almost all primes v of K.

The proof of the skew-symmetry of the pairing is similar to those used in [4] and
[9].

Let E be an abelian variety over K. We say that E has ordinary reduction at p
if for each v of K over p, there is a divisible GKv-submodule F: Epoo of Ep~ such
that corankZp F+vEp~ = (1/2) corankzpEp~, I, acts trivially on Ep~/Fv+ Ep~ and
such that (Ep~/Fv+Ep~(Kv) is Ep~/Fv+Ep~ or is finite. It is the case if E has good,
ordinary reduction or multiplicative reduction at p. The following result shows
that SÂr(K) is a generalization of the classical Selmer group for an abelian
variety.
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THEOREM 5. Let A = Epoo, where E is an abelian variety over K with ordinary
reduction at p. We have sclass(K) = Sstr(K).

Proof. Recall that Scl"’(K) is defined to be the kernel of the map

and SÂr(K) is defined to be the kernel of the map

where 03B5~ : H1(Kv, F+vA) ~ H1(Kv, A) is the natural map. So we only need to show
that E(Kv) ~Zp Qp/Zp = H1(gv, AIv)div for v  p and that E(Kv) ~Zp Qp/Zp =
(im(ëj)diyfor v | p.

Let v  p. By Lutz’s theorem, E(Kv) ~Zp Qp/Zp = 0. On the other hand,
H1(gv, AIv) = AIv/(Frobv - id)AIv. In the exact sequence

ker(Frob, - id) = A(Kv) and is finite. Hence corankz ker(Frob, - id) = 0. There-
fore corankZp H1(gv, AIv) = corankZp AIv/(Frobv - id)AIv = 0 and H1(gv, AI")div =

Now consider v ) p. We have the following diagram,

We will first prove that im 03B4 ~ im 03B5~, hence iM 03B4 ~ (im 03B5~)div since

im ô = E(Kv) ~Zp Qp/Zp is divisible. Then we will show that im b and im 03B5~ have
the same Zp-corank. Thus im 03B4 = (im 03B5~)div. For any

P 0 (1/pt) E E(Kv) ~Zp Qp/Zp, choose Q E E(Kv) with ptQ = P. Then b(P 0 (1/pt))
is the cocyle a in Z1(Kv, A) such that a(g) = g(Q) - Q for any g ~ GKv. Since the
natural map A ~ A/F+v A, x-k, is a GKv-homomorphism, we have

03C3(g)=g(Q)-Q. Since Iv acts trivially on A/F: A, this shows that a(g) = 0 for
a E Iv. Thus from the inflation-restriction sequence
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this 03C3 represents an element in H1(gv, A/Fv A). If GKv acts trivially on A/F: A,
then 03C3(g) = 0 for all 03C3 ~ GKv. Thus a represents an element in im eoo. Let

(A/Fv+A)(gv) be finite. It follows that H1(gv, AIF’A) is finite. Then this group
must be zero because H1(gv, A/F+v A) = (A/F+v A)/(Frobv - id)(A/F+v A) is divisible.
Therefore 03C3 represents zero in H 1 (K", A/F: A), and u represents an element in
lm e 00.
Next we compare the Zp-coranks of E(Kv) ~Zp Qp/Zp and im 03B5~. By

[13, VII.6.3] and its generalization to an abelian variety,

corankZp E(Kv) Q9zp Qp/Zp = [Kv: Qp] dim E where dim E is the geometric di-
mension of E. From the exact sequence

and Tate characteristic formula, we have

By the basic properties of such an abelian variety,

By local Tate duality between Fv A" and A: / F: A* (see the proof of Proposition
2 for details), corankZpH2(Kv, F+v A) = corankZpHo(Kv, A*/F+v A*). Since E is
isogenous to its dual abelian variety E*, the restriction of this isogeny to A sends
A onto A* with finite kernel. Hence the reduced map sends A/F+v A onto
A*/F+vA* with finite kernel. This implies that corankZpH°(Kv,A/F+vA)=
corankZpH°(Kv, A*IF’ A*). Thus corankZp03B5~ = [K,: Op] dim E, as is required.

a

To obtain nontrivial examples of GK-modules where Theorem 2 can be
applied to, consider a compatible system V = {Vl} of 1-adic representations of
G = Gal(Kj K) which are ordinary at p and suppose that there is a GK-invariant,
nondegenerate and skew-symmetric pairing on vp with values in Op. Let Tp be a
GK-invariant lattice of Vp that is its own annihilator 1;,1. under the induced
pairing on Vp with values in Qp/Zp. This requirement is equivalent to the
existence of the isomorphism ~ on A = Vp/Tp in Theorem 2. If Vp= TP(E) ~Zp Q ,
where Tp(E) is the Tate module of an elliptic curve E/K, then Tp(E) is such a
lattice. For an odd number r, let Sym(Vl) be the rth symmetric power of V,. It is
easy to see that the system Symr(V) = {Symr(Vl)} with the induced represen-
tation is also a compatible system of 1-adic representations which are ordinary at
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p. Let

be the skew-symmetric pairing defined on Vp. For decomposable tensors

{x1..., xj and {y1,..., yr} in Symr(Vp) define

Extending by bilinearity we get a GK-invariant pairing ,&#x3E;r defined on Symr(Vp).
By [12, p.404], this pairing is also nondegenerate. Since r is odd,

Hence this pairing is also skew-symmetric.
Let {v1, ... , vd} be a basis of Vp such that Tp = ~di=1 Zpvi. Let

a = min{ Then  Since Tp =
T~p, a = 0. Thus there is a vi, say V2, such that v1, V2) e Z p. Multiplying V2 with a
unit in Zp if necessary, we have v1, v2&#x3E;=1. Letting H1 = Zpv1 0 ZpV2, we have

Tp = H1 0 Hi and the same can be applied to H t. Finally we get a Zp basis {vi}
of Tp such that v2i-1, v2i&#x3E; = - v2i v2i-1,&#x3E; = 1 and vi, vj&#x3E; =0 for any other
choices of i and j.

Symr(Tp) is a lattice in Symr(Vp) and is GK-invariant. It has a basis of the form

where
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It can be easily verified that

It follows that if p  r + 1, then Sym,(Tp) is its own annihilator under the pairing

Thus we have

THEOREM 6. If Vp satisfies the conditions in Theorem 2, and r is odd with

p  r + 1, then the same conditions are satisfied by Symr(Vp). Consequently, let

5. Infinité extensions

The aim of this section is to give a proof of Theorem 3.
Let K~ be any Zp-extension of K with p ~ 2. We have made the following

restrictions on A in Theorem 3:

(1) A is unramified at almost all primes of K.
(2) There is a GK-module isomorphism ~:A ~ A* such that (~a)(a) = 0 for

aEA.

(3) The strict Selmer group SstrA(K~) of Greenberg is A-cotorsion.
(4) A(K (0) is finite.

Let Kn be the unique extension of K contained in Koo of degree p". For each
prime À of K 00’ let I03BB denote the inertia group for some prime of K lying over À.
Let gl = G(K~)03BB/I03BB. Let 0393 = Gal(K~/K) and rn=Gal(Kn/K). Then {H1(Kn, A)j is
a direct system of abelian groups with an action of the inverse system {0393n}. Thus
H1(K~, A) = lim H1(Kn, A) is a r-module. It is clear that the system {SstrA(Kn)} is a
submodule of the {0393n}-module {H1(Kn, A)I. Therefore lim SstrA(Kn) is a r-

submodule of H1(K~, A). 

PROPOSITION 4. If A*(K~) is finite, then
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where

is the strict Selmer group defined by Greenberg in [5].

Proposition 4 applies to our situation since assumptions (2) and (4) combine
to show that A *(K (0) is finite.

Proof. Let A. be a prime of K~ over a prime v of K, and let vn be the prime of Kn
lying below Â. We only need to show that

for u  p and

for vi p when n ~ 00. For v  p, (K~)03BB/Kv is unramified, so g03BB has profinite order
prime to p. Thus H1(g03BB, Alz) = 0. Hence the proof in this case is clear. Suppose
vi p. As H1((Kn)vn, F+v A) is cofinitely generated over Zp, pmH1((Kn)vn, F+v A) =
H1((Kn)vn, F+v A)div for m large. From the proof of Corollary 1 in [5, p. 111],

Hence the order of the first group is bounded when n - oo. Therefore

is finite. Since H1((K~)03BB, F+v A) is divisible [5, p. 111], this quotient must be
zero. D

By our assumption and Theorem 2, there is a skew-symmetric pairing on
SstrA(Kn) which is nondegenerate modulo its maximal divisible subgroup. We will
use it to prove Theorem 3.

Since, by the assumption, SstrA(K~) is a cofinitely generated Z -module, the
image of Dn = SstrA(Kn)div in SstrA(K~) becomes stabilized for large n, denoted it by
D~. Thus we have the exact sequence of {0393n}-modules

which gives the exact sequence of A-modules
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We first consider the direct system {Tn}={SstrA(Kn)/Dn} with direct limit

THEOREM 7. With the same assumption as in Theorem 3, the Zp-corank of T~ is
even.

First we need a lemma.

LEMMA 3. Let N be a finite abelian p-group with p ~ 2. Let ,&#x3E; be a
nondegenerate skew-symmetric pairing on N. Then N has a maximal isotropic
subgroup B that is a direct summand of N. Thus N ~ B x N/B and N/B ~ B.

Proof Let N = Zx1 ~ ··· ~ Zxr, with Zxi~Z/paiZ for i = 1, ... , r and
a1  a2  ···  are The pairing gives an isomorphism N ~ Hom(N, Q/Z). Thus
the image of x1 in Hom(N, Q/Z) is of order pal. This implies that there is an
xi e {x1, ... , xr} such that x1, xi1&#x3E; is of order pa l . Thus changing a generator of
Zxi1 if necessary, we might assume that (Xb xi1&#x3E; = 1/pa1(mod 1). Thus the pairing
is nondegenerate on H1 = Zx1~Zxi1. Hence H1 ~ H~1 = 0 and this in turn
shows that the restriction of the pairing is nondegenerate on Hi . We have
N = H1 Q Hi . Repeat the above procedure to Hi . At the end we get a

orthogonal decomposition N = H1  and the

matrix of the pairing with respect to b2i - h b2i is of the form r o n Let
B = ~si=1 Zb2i-l, then the size of B is half of N and B ~ B1, so B = Bl. Thus B is
a maximal isotropic subgroup. From the construction, B is a direct summand of
N. 

By the fundamental theorem of finitely generated abelian groups, N can be
uniquely expressed as a direct sum  with

a  b  ···  z. We call (a, b,..., z) the index of N. Let {An} be a direct system of
finite abelian p-groups with bounded number of generators. For each n, let

(an, ... , zn) be the index of An. Then {03B1n} for 03B1 = a, ... , z are sequences of non-

negative integers. We say that {An} is homogeneous if each of thèse sequences
either goes to infinity or remains bounded as n goes to infinity. For a
homogeneous system {An}, the number of sequences {03B1n} that is convergent to
infinity is called the corank of {An} and is denoted by corank({An}).
PROPOSITION 5. Let {An} be a homogeneous direct system of finite abelian p-
groups with corank d. Let Aoo = lim An. Then

(1) d  corankZp(A~),
(2) if the bounded sequences have bound less than M, then for n large we have

(An)M ~ (Z/pMZ)d x Bm where (An)M= ker(pM: An ~ An) and Bn has exponent less
than M.

Proof. Let in: An ~ Aoo be the natural map. Since in(An) is a quotient of An the
index of in(An) is less than the index of An. Thus d = corank({An}) 
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corank({in(An}). But the last term is precisely the Zp-corank of A. This proves
(1). (2) is clear.

PROPOSITION 6. Let {An} be a direct system of finite abelian p-groups with a
bounded number of generators. Let A~ = lim An and let in:An ~ A~ be the
canonical map. The following statements are equivalent:

(1) the exponents of ker(in) are bounded. 
(2) {An} is homogeneous and corankzp(Aoo) = corank({An}).
Proof. (1)~(2). Let (an, ... , z’n) be the index of in(An). Since in(An) ~ in+1(An+1),

each sequence {03B1’n}, oc = a,..., z is a monotonely increasing sequence of non-
negative integers. Hence it either has infinity as limit or is bounded. Thus it is
homogeneous and corank({in(An)}) = corankp(A~). Since ker(in) have bounded
exponents, there is integer N such that ker(in) ~ (An)N for any n. Thus we have
surjective maps An ~ An/ker(in) ~ in(An), and in(An) ~ An/ker(in) ~ An/(An)N . Let
(a"n, ... , z"n) be the index of An/(An)N. It is clear that 03B1"n = max{03B1n - N, 0},
lXn = a,..., z since the index of (A")N is (min{03B1n, N},..., min{zn, N}). Note that if
A and A’ are finite abelian p-groups with indices (a,..., z) and (a’,..., z’) and if
we have a surjective map A ~ A’, then 03B1  03B1’ for oc = a,..., z. Thus we have

03B1n  03B1’n  03B1"n  a" - N. This shows that a" - an is bounded. Hence the sequences
{03B1n} and {03B1’n} both go to infinity or both remain bounded. This implies that {An}
is homogeneous and corank({An})=corank({in(An})=corank(A~).

(2)~(1). Suppose ker(in) have unbounded exponents. Let d be the Zp-corank of
Aoo. Choose M such that pM is larger than the exponent of the cotorsion part of
A~ and such that M is a uniform bound for the bounded sequences from {03B1n},
03B1 = a, ... , z. Then (A~)M  (finite group of exponent  M) and
(An)M ~ (Z/pMZ)d x (finite group of exponent  M) for n large. Let H ~ (A~)M be
a subgroup isomorphic to (Z/pMZ)d and choose N such that iN(AN) ~ H and
such that (An)M ~ (Z/pMZ)d x (finite group of exponent  M) for n &#x3E; N. Since
ker(iN) is finite and ker(iN) = lim ker(iN,N+n), where iN,N+n:AN~ AN+n is the

natural map, ker(iN) = ker(iN+n) for n large. Since ker(in) have unbounded
exponents, we can find N1 &#x3E; N such that ker(iN) = ker(iN,N1) and such that
ker(iNJ has exponent greater than M. Thus ker(iN1) contains a copy of Z/pMZ.
Now ker(iN)=ker(iN,N1) implies that iN,N1(AN)~ker(iN1) = 0. So iN,N1(AN) EB
ker(iN1) ~ AN1. Since

is contained in iN,NI(AN), AN, contains at least d + 1 copies of Z/pMZ. So
(AN1)M ~ (Z/pMZ)c x (finite group of exponent  M) with c &#x3E; d. But by the
choice of N, (AN1)M ~ (Z/pMZ)d x (finite group of exponent  M). This is a

contradiction. D
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LEMMA 4. Assume that A(K (0) is finite. The natural maps in: Tn -+ Too have
bounded kernels.

Proof. The kernel of H1(Kn, A) ~ 1H(K~, A) is H1(0393pn,A(K~)) ~ A(K~)/
(03B3pn-1)A(K~) which has bounded order for all n. Hence the kernel of the
induced map f,,: SstrA(Kn) ~ SstrA(K~) has bounded order. By the remark made
before Theorem 7, fn(Dn) = Doo for n large. Thus the kernel of in is

(ker(fn) + Dn)/Dn for n large. Hence it also has bounded order. 1:1

Proof of Theorem 7. From Theorem 2, there is a nondegenerate skew-
symmetric pairing defined on T". By Lemma 3, we can find a maximal isotropical
subgroup Mn of T" such that we have a (noncanonical) decomposition
Tn ~ Mn x TNIM,, as abelian groups.
By assumption, SstrA(K~), hence Too are finitely cogenerated over Zp. This

implies that the finite subgroup of Too has a uniform bound for the number of
generators. In particular, the images of 1;. ~ Too have a uniform bound for the
number of generators. Since by Lemma 4, the kernels of Tn - Too also have a
uniform bound for the number of generators, the T.’s have a uniform bound for
the number of generators. Thus by Proposition 6, {Tn} is homogeneous and
corank{Tn} = corankz T~. Since Mn is a maximal isotropic subgroup of Tn under
the pairing , &#x3E;n, we have Tn/Mn ~ Hom(Mm Qp/Zp) ~ Mn as abelian groups.
By Lemma 3, Tn ~ Mn x Tn/Mn as abelian groups. Thus the index of 7§
is two copies of the index of Mn after proper permutations. In particu-
lar, corank{Tn}=2corank{Mn}. Thus by Proposition 6, corankzp T~=
2 corankzp M~, and hence is even. D

LEMMA 5. Let p be odd. Let Y be a rn-module which is a finite dimensional Qp-
space. Then dimu pY =- dimQp Y/(y -1)Y (mod 2), where y is a generator of F..

Proof. From the exact sequence

we have dimQp (Y/(03B3-1)Y)=dimQp(Y0393n). Since Qp[0393n]~Qp[T]/(Tpn-1)~
the Qp[0393n]-module y is completely reducible and Y ~
for some ci  0. Since each dimQp(Qp(03BCpi)) is even for i  1, we

have 

hence the result.

LEMMA 6. Let X be a rn-module which is a finitely generated Zp-module. Then
rankZp X ~ rankZp(X/(03B3-1 )X) (mod 2).
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Proof. From Lemma 5 we have

From the exact sequence

So

Now we can give a proof of Theorem 3. From Theorem 7,

corankZp SstrA(K~) ~ corankz, D~ (mod 2). By the remark before Theorem 7,
D 00 = Dn for n large, where Dn = SstrA(Kn)div. Thus

corankz p D~ = corankz p Dn = corankz p SstrA(Kn). As SÂr(K") is a Zp[0393n]-module of
finite Zp-corank, Lemma 6 implies that

Consider the inflation-restriction sequence
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