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This paper is about Whittaker models of umramified principal series represen-
tations of p-adic groups, and their connection with the geometry of complex flag
manifolds.

Let G be a split reductive group over a local field F, with Iwasawa

decomposition G = NAK. Here N is a maximal unipotent subgroup, A is a
maximal F-split torus, and K is a certain maximal compact subgroup. Let 1 be
the complex torus of unramified (quasi-)characters of A. Then the free abelian
group A/A n K is canonically isomorphic to the group X(9-) of rational
characters of J. If a E A, we let Àa be the corresponding rational character. For
i e J, we can form the (unitarily) induced principal series representation

1(i) = IndGNA03C4.

A Whittaker model of I(03C4) is an intertwining map W03C4: I(03C4) - IndGN03C3, where J lies
in an open A-orbit in the space of characters of N. In [Ro], Rodier proved that,
for each J, the space of such intertwining maps is one dimensional.

Let 03A603C4+ be the K-spherical function in 1(i), normalized by the condition
03A603C4+(e) = 1. There is a well-known formula, due (in increasing levels of generality)
to Shintani, Kato and Casselman-Shalika for the function W03C4(03A603C4+) on G. Clearly
this function is completely determined by its restriction to A, and there it is
really a function on A/A n K ~ X(J). The formula says, roughly speaking (we
are ignoring a normalizing factor), that as a function of 1:, W(03A603C4+)(a) is given by
the character of the irreducible representation V(03BBa) of the Langlands dual W of
G with highest weight 03BBa, provided this is a dominant weight. Here "dominant"
is referring to a Weyl chamber in X(J) determined by the choice of N. If Àa is not
a dominant weight, then W03C4(03A603C4+)(a) = 0 for all r c- 9-.
The Borel-Weil theorem says that V(03BBa) may be realized on the space of global

sections of a certain line bundle determined by 03BBa on the flag manifold X of g. In
this paper we show, among other things, that the values of various Iwahori-
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spherical functions in the image of W03C4 are given by Lefschetz traces of i on
various cohomology groups of sheaves on X.
To be more precise, let B be the Iwahori subgroup of G determined by the

choice of N. We set M(i) = I(03C4)B. This is a representation of the affine Hecke
algebra H associated to G. Recall (c.f. [L]) that as a vector space, H is the
tensor product of two subalgebras

Jeo Q9 0,

where H0 is the Hecke algebra of the finite Weyl group W of G and 0 is
isomorphic to the coordinate ring of J.
We consider certain functions 03A603C4+, 03A603C4J- and 03C4w belonging to M(i). Here J is a

subset of the simple roots E, and w E W. The 03A603C4J±’s are eigenfunctions of
parabolic subalgebras of H0, and the 03C4w’s are eigenfunctions of 0. The spherical
vector 03A603C4+ equals 03A603C403A3,+, and we abbreviate 03A603C4_ = 03A603C403A3,-.
To each subset J there corresponds a flag sub-manifold XJ in X. In (5.1) and

(5.4) below, the values of W03C4(03A603C4J-) are expressed in terms of global sections of line
bundles on X J, and the values of W03C4(03A603C4J-) are given by Lefschetz numbers on the
0-cohomology of line bundles on Xj. Finally, the values of W03C4(03C4w) are given by
the formal characters of local cohomology groups supported on the Schubert
cell corresponding to w. These cohomology groups are the duals of Verma
modules, and they are the individual terms in the "Cousin resolution" of V(03BBa),
found by Kempf, which is dual to the BGG resolution (see [K]). The spherical
vector can be written (see [C])

and the Cousin resolution is a geometric interpretation of this formula.
Our approach is to first explicitly compute W03C4(03C4w)(a), using the results of

Casselman-Shalika ([C-S]). This leads to a formula (3.2) for W03C4(03A6)(a) for an
arbitrary 03A6 E M(i). This general formula is a bit complicated, but becomes more
explicit if 03A6 is some (Dï,. Here there is some overlap with independent work of
Jian-Shu Li [Li], who also computed W03C4(03A603C4_), as well as some other interesting
Whittaker functions occuring when there are différent root lengths. Curiously,
the formula for W03C4(03A603C4_) is very similar to Macdonald’s formula for the zonal
spherical function.
Next we compute, in section 5, the characters of the various cohomology

groups mentioned above and compare them with our explicit formulas. The
most involved one is for 03A603C4_. It is easy to make a sign error, so we do that
computation in two ways, first using the Borel-Weil-Bott theorem, and then
using the Atiyah-Bott fixed point theorem for holomorphic vector bundles. The
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former method decomposes the alternating sum of the ô-cohomology into
irreducible representations. This means that, up to a normalizing factor,
W03C4(03A603C4_)(a) has been written as a linear combination of irreducible characters of
W. The second proof is similar to that used by Macdonald ([M]) to derive a well-
known formula for the Poincare polynomial of a Coxeter group. Our two
formulas for W03C4(03A603C4_)(a) (the explicit and the cohomological) may be viewed as a
"twisted" version of Macdonald’s, in which the cohomology groups do not
disappear into an Euler characteristic. To handle O) ± for a proper subset J c E,
we use a factorization of the Whittaker map (see §4) corresponding to
induction in stages.

Next, we apply our explicit formulas to prove two injectivity theorems for W03C4.
The first, (8.1), gives necessary and sufficient conditions for

to be injective. Earlier, these were found for GLn by Bernstein-Zelevinsky,
([B-Z]) and for the case of regular r by the author ([RI]).
The second theorem (8.2) says, at least if the R-group is trivial, that a nonzero

function in W03C4(M(03C4)) cannot vanish on A. This is perhaps surprising because an
Iwahori invariant Whittaker function is seemingly determined by its values on
aw, a E A, w E W. However, in the theorem, we have the additional condition that
the function belongs to an irreducible representation. This is some justification
for only computing the values of our Whittaker functions on A. In fact, finding
their values on some aw, w ~ 1, can be difficult.
To prove these two theorems, we need more information about the unrami-

fied principal series than seems to exist in the literature, e.g., criteria for the
generalized eigenspaces in the Jacquet module of I(r) to be indecomposable. In
our proof of this, it is clear that the spherical and generic constituents of I(i)
coincide if and only if 1(i) is irreducible. This last fact has been proven earlier by
Barbasch-Moy and Li. It is not always true if the R-group if nontrivial. Here, we
have worked out the connection between the R-group and different Whittaker
models. This issue arises if G is not of adjoint type. The necessary modifications
(of [C-S] and our earlier work), not serious, are found in section 7.

1. Notation and background

We begin with a list of most of the notation to be used throughout this paper,
some of which was mentioned in the introduction.

First of all, F is a nonarchimedian local field and G is the group of F-rational

points of a reductive algebraic group G defined and split over the ring of integers
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(9 of F. We use similar notational distinctions between other groups over (9 and

their F-rational points. Next, we have

P = a Borel subgroup of G defined over (9

N = the unipotent radical of P

A = a maximal split torus of P

ô = the modulus of P

K G«9)
B = the inverse image in K of P(k), where

k = the residue field of F

q = the number of elements in k

W = the normalizer of A in K

1 = the length function on W

6 = the sign character of W

wo = a fixed representative of the longest element in W

No = NnK

Ao = AnK

,à ’ the roots of A in N

A- - {a~A: |03B1(a)|F  1 03B1~0394+F}
1 = the group of unramified quasicharacters of A.

The group 1 is a complex torus, isomorphic to C x Q Y, where Y is the rational
character group of A. Using this identification, we have an isomorphism
between A/Ao and the group X(1) of rational characters of 1 under which
a E A corresponds to the weight 03BBa defined by

The action of W on A induces actions on J and X(J) such that for a E A, r e 1
and w E W, we have

The torus J is also a maximal torus in the complex Lie group g whose Weyl
group is isomorphic to W and whose root system A is the co-root system of G. In
this viewpoint, the Weyl chamber X+(J):= (03BBa:a~A-} determines a Borel
subgroup e of g containing 1, along with positive roots and simple roots 0394+
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and 1, respectively, of 1 in é0. We also set d - = A - A +. Usually we will think
of X(J) multiplicatively.
For an element w E W, we set

We also have the ubiquitous rational functions

Finally, for an element 03C4 E i, we set

We next discuss the unramified principal series representations of G, for which
the best published introduction is still [Car]. For 1: E f/, we set

This is the space of functions on G which are right invariant under some
compact open subgroup of G and transform under left multiplication by P
according to the character 03B41/203C4. The group G acts by 03C0(g)f(x) = f(xg), for
f e 7(r) and g, x e G. This "extends" to an action of the algebra of locally constant
compactly supported functions on G by

where the Haar measure dg gives B volume one.
We are only interested in the subalgebra H of compactly supported functions

on G which are bi-invariant under the Iwahori subgroup B. It is known that
taking B-invariants gives a bijection between the G-subquotients of I(i) and the
Je -subquotients of

In particular, every subquotient of 7(r) is generated by its Iwahori-fixed vectors.
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We also know that if I(03C4) and I(03C41) have a common subquotient, then i and ri
belong to the same W orbit in J.
We have the following "standard" basis {03A603C4w: w~W} of M(03C4), where 03A603C4w is

defined by

support of 03A603C4w = PwB

This makes sense because

For more than typographical reasons, we will often suppress the r on 03A6w.
Any intertwining map I(03C4) ~ I(03C4w) is determined by its effëct on M(i). If i is

regular, there is a unique

which can be defined as follows. First, A03C4xy = A03C4xy ~ A03C4x if ~(xy) = ~(x) + t(y).
Second, for a simple reflection s = s03B1 we have ([C, (3.4)]),

Each operator A03C4s extends holomorphically to the complement of ker a in J.
More generally, if w e W has a minimal expression w = s03B1n ··· Sa.l’ ai e 03A3, with the

property that Sa.l 1 ··· s03B1i03B1i+1 ~ 039403C4’ i, then the operator

is holomorphic at i’. It is easy to check that within each coset W03C4y, there is a
unique R,-orbit (under left multiplication) of elements w with the above

property. They are also characterized by the condition w-10394+03C4 = 0394+03C4w. We say
that such w’s are "minimal in their coset".
We turn now to a more detailed description of the affine Hecke algebra Jf,

taken from [L]. By [I-M], Jf has a linear basis {Taw:a~A/A0, w~W), where
Taw is the characteristic function of Baw B. We can also write
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where Jfo consists of the functions in e supported on K, and 0398 is the

subalgebra linearly spanned by the elements

where a, and a2 are any two elements of A - such that a = a1a2-1. It turns out
that 0,,, is well-defined and moreover the correspondence 03B8a ~ 03BBa induces a ring
isomorphism 0 L--- C[J]. In particular, elements of 1 are algebra homomorph-
isms 0 -+ C. The two subalgebras .1fo and 0 do not commute.
The action of .1fo on M(i) is independent of 1:, and is just the regular

representation of .1fo. More precisely, if s is a simple reflection in W, we have

In particular, 03A6w0 always generates M(i) over .1fo.
The action of 0 is more subtle, and will be discussed later. For now, we

mention only that the projection of M(i) into the Jacquet module I(03C4)N of I(03C4)
induces an isomorphism of A/Ao representations

where A acts on M(i) via a 1-+ 7c(6J (c.f. [R]).
We come now to Whittaker models. Let Q be a quasi-character of N which is

centralized by no element of A outside the center of G. This amounts to saying
that 6 belongs to an open A-orbit in the space of such characters. If G is of
adjoint type, there is only one such orbit. We take the Haar measure on N such
that the volume of No is one. For every i E J, there is a unique-up-to-scalar
intertwining map

This can be defined (see [C-S (2.3)]) by

where the integral is taken over a sufficiently large compact open subgroup N*
of N, which depends on f~I(03C4) and g E G. In other words, if we take an

exhaustive sequence of compact opens N(0) z N(1) ~ ··· in N, then, given f and
g, there is an integer mo such that the integral over N(mo) equals the integral over
any N(m), m  mo.
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It follows from [C-S, (2.1)]that for fixed g E G, the functions r ~ W03C4(03A603C4w)(g) are
polynomial functions on 1. We denote these C[J]-valued functions on G by
W(03A6w). They will be computed in section 3.
For each a E 0 +, let x03B1:F+ ~ N be the root group which is dilated by A

according to the character a. We say 6 is "unramified" if (J 0 xa has conductor (9,
for every simple root a. From now until section 7, we will assume J is

unramified. In this case, we have the following formula ([C-S, (4.3)], see also (7.1)
below) for the twisting of the Whittaker map by an intertwining map.

Also, in the unramified case, it is easy to see that a B-invariant function

F E IndN6, when restricted to A, has support in A -. We don’t need it, but a little
more work shows, for a E A and w e W that

2. Spécial Iwahori invariants

We recall some facts about the action of O on M(i), which can be found in [R].
For any i, the semisimplification of M(i) is ~w~W03C4w. If i is regular, 0 acts
diagonalizably, and there is the following formula for the 0-eigenvectors. Let

where the ay,w E C(J) are defined recursively by ax,z = 0 if x  z, ax,x = 1, and
sz &#x3E; z (s = s03B1) implies

It turns out ([R, (6.3)]) that for any y E W, ay,w is holomorphic on

Jw:= {03C4~J : w-10394+03C4 ~ 0394-}, and for each 03C4~Jw, f03C4w~M(03C4) affords the 0-

character 1:W. Finally, if r is regular, we have the relation ([R, (4.5)])
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(The product equals 1 if R( y -1 ) n w0394+ is empty). This implies that

By continuity, (2.1) remains true if 03C4~Jw and y is minimal in its coset W y. In
certain circumstances (see (6.3) below), all 0-eigenvectors are linear com-

binations of the f"s. Note that 03A603C4w0 = f’wo.
By [C-S, (2.1)], for any g~G, the function

is holomorphic (in fact polynomial) on Jw. We denote this element of C[Jw] by
W(fw)(g).
We will need the inverse transpose of the matrix [ay,w]. This is the matrix

[by,w] of rational functions defined for regular r ~J by

or equivalently by the equation

(2.2) PROPOSITION. The functions by,W belong to C[f/w] and are given
recursively by by,w = 0 if y  w, bw,W = 1, and sy &#x3E; y (s = sa, a E 03A3) implies

Proof. The homomorphicity follows from that of the ay,w’s, since the eigen-
values of the matrix [ay,w] are all one. The two simple equations for by,w are
proved in [R, (4.4)]. For the complicated part, we take 03C4 regular in 1 and
compute A03C4s03A603C4w in two ways.

First, by (2.1), we have

On the other hand, we can use the formula (1.1), and write the result in terms of
f03C4sz’s. It remains to compare the coefficients of f when sy &#x3E; y. D



18

3. Explicit formulas

In this section we compute 11/ on the 0-eigenvectors fw, use this to give a
somewhat explicit formula for 11/ on the standard basis elements 03A6w, and finally
derive a better formula for W(03A6_).

(3.1) PROPOSITION. For all w E W and a E A-, we have

Proof We will show that both sides agree for r e Jw on which no root takes
the value 1 or q±1. First we use (1.3), which says

but we also know from (2.1) that

and moreover, the Whittaker map is easily computed on f03C4w0 (see [C-S, (4.1)] or
(4.1) below). We have

Putting it together, we get

and some easy manipulations finish the proof.

where the by,w E C(J) are given in (2.2).

The by,w’s are complicated, but 1 believe they have deep meaning for the
unramified principal series. In [R], they are shown to be related to Kazhdan-
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Lusztig polynomials. It seems hopeless to compute the by,w’s in closed form, but
we can give some relations between them in (4.4).

Let

It is easy to check that 03A6_ is an eigenfunction for £0’ and affords the sign
character Tw - 8(w). This means 03A6_ is also an eigenfunction for the intertwining
operators dw, in the following sense.

(3.3) LEMMA. If w is minimal in its coset W03C4w, then

where

Proof. Let s = s03B1 be a simple reflection. Using the formulas for As03A6w, it is
straightforward to compute that

The result follows by induction on the length of w.

(3.4) LEMMA.

for all regular 1: e f/.

Proof. This is because the f03C4w’s are dual to the functionals 03A6~A03C4w(03A6)(1) on
M(03C4), and the coefficient of Ci in 03A6_ is one. D

Analogously, the spherical function

can be written (see [C])

and satisfies
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Let p be the square root of the product of the roots in AB

(3.5) PROPOSITION. For a E A -, we have

Proof. Let 1: E g- be regular. By (3.3) and (3.1), we have

so

where we have put d = 03A003B1&#x3E;0(1 - 03B1-1). We set

If s = Sa is a simple reflection such that sw &#x3E; w, then

from which it follows that Qsw = s· Qw. Thus

for all w E W We arrive at our final formula by moving d inside the sum, using
the relation d = 03B5(w)03C1-1w(03C1d). ~

REMARKS. 1. Although the right hand side belongs to C[J], the factoriza-
tion is occuring in C[] ~ C[H], where  is a maximal torus in the simply-
connected cover of g.

2. We have the following functional equation:

It follows from (8.2) below that this holds with a replaced by an arbitrary g E G.
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4. Parabolic subgroups

In this section, we use induction in stages to consider a different model of the
unramified principal series. In the new model, the Whittaker map is easily
computed on functions with certain support. This leads to a reduction formula
for W(03A6w) for w that differ from the long word wo by something in a parabolic
subgroup of W. Using the Casselman-Shalika formula and (3.5), we can then give
formulas for ir on eigenfunctions of parabolic subalgebras of %, without by,w’s.

For J c X, we let P J = LjNj (Levi decomposition) be the parabolic subgroup
of G containing P whose Levi factor is generated by coroots from J. Put

NJ,0 = NJ n K. Let ôj be the modular function of Pj. The subgroup of W
generated by J is denoted Wj, and WJ is the set of w in W such that w-1J ~ 0394+.
The longest element of Wj is called yo and the longest element of W’ is called WI’
Also, let J’ = - woJ (additive notation) be the dual subset of J.

Let (p, V) be an admissible representation of Lj, and consider the induced
representation 03C0 on IndGPJ K Assume V has a Whittaker map

Set

We have a map qJ 1--+ ~J: IJ - V given by

In [C-S] it is shown that there is a unique intertwining map
: Indp V ~ IndGN03C3 such that

for all ~ E IJ.
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Proof. The left hand side is

The decomposition Pj wi Nj has uniqueness of expression. This implies that the
function n~~(w1n) is supported on Nj’ o? where it is constant. Hence

Finally, the last integral is one if a E A -, zero otherwise.

From now on, we take

We have a G-isomorphism

where ip(g)(p) = ~(pg) for g ~ G, p ~ PJ.
Let {03A6J,y: y ~ WJ} be the standard basis of yB, defined as in section 3. If y ~ WJ,

we W’, then yw~(IndGPJ V)B is characterized by (i) supp(yw) ~ PJwB and (ii)
yw(w) = 03A6J,y. By (4.1), we have (yw1)J = yw1(w1) = 03A6J,y for y E WJ.
(4.2) LEMMA. For all cp E 1(i), we have () = W(~).

Proof. We know the two sides agree up to a constant independent of ~. Recall
that yo and wo are the longest elements of Wj and W, respectively. Then
Wo = Yowl SO

Hence the constant is one. D

Putting everything together, we get the following reduction formula

(4.3) PROPOSITION. For all a E A - and y E WJ, we have
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REMARK. For later use, we observe that if 03C3 is taken to be ramified, the
calculation of (4.1) will still lead to the equation

For each J ~ 03A3, we define two elements of M(i)

These are eigenfunctions for the subalgebra of /o generated by {Ts03B1:03B1~J’},
affording the (q-analogues of the) trivial and sign characters, respectively.

(4.4) PROPOSITION. For regular 1:, we have 

Equivalently, we have the relations

Proof. For a simple reflection s in J, we have sywi  yw 1 ~ sy  y. Hence

(1.1) and induction on the length of ye Wj imply

Also, bw1,yw1 (03C4y) equals one if y = 1, zero otherwise, and this implies the result.
n

Using either of these propositions and the formulas in section 2, we now have

(4.5) PROPOSITION. For aEA - and J ~ 03A3, we have

where pl is the square root of the product of the roots in 0394+J.
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5. Flag manifolds

Let e be the complex reductive Lie group whose root datum is dual to that of
the p-adic group G. We assume here that W is simply connected. The torus 1
from before is a maximal torus in e. Let R be the Borel subgroup containing 1
corresponding to the dominant chamber in X(J) determined by A -. Then A + is
the set of roots of J in Lie(f!4), and £ ce A + is set of the corresponding simple
roots.

Let X = g/B be the flag manifold associated to ie. If 03C8 is a finite dimensional
holomorphic representation of f!4, we set

This is the unique g-equivariant homomorphic vector bundle on X whose fiber
over gé3 is the conjugate representation g03C8. Conversely, any W-equivariant
holomorphic vector bundle on X is of the form E(03C8) where gi is the fiber over -4.
More generally, for every subset J of 03A3, we let X J be the 2J orbit in X through

-4, where 2J is the Levi subgroup generated by the roots in J. Then

X, - £fj/é3 n Yj is the flag manifold of 2J. If 03C8 is a holomorphic represen-
tation of -4 n 2J, we let

We identify this with the unique homogeneous holomorphic vector bundle over
Xi whose fiber over e affords 03C8.
The ~-cohomology groups

are finite dimensional holomorphic Yj representations, and in particular, may
be viewed as elements of C[J] = R[J], the representation ring of 1.

Finally, let p 1 be the square root of the product of the roots A§ of 1 in
11 n Yj. As before, w, is the longest element of the Weyl group W having the
property that w-110394+J ~ 0394+. We can now state

(5.1) THEOREM. As elements of R[J], we have, for every a E A-,

Proof. The reduction formula (4.3) makes it sufficient to prove this for J = 1.
We use the Dolbeault isomorphism



25

where 03A9r is the bundle of holomorphic r-forms on X and the right side is the
cohomology of the sheaf of germs of holomorphic sections of the bundle
E(03C8) Q 03A9r. Let u be the nilradical of Lie(B). As a é3 module (under the adjoint
action), u is isomorphic to the cotangent space T*eX of X at é3. Hence,
03A9r ~ E(Aru), and

For the first proof, we need a

(5.2) LEMMA. As a virtual representation of g,

depends only on the J action on 03C8, not on the full B-action.

Proof. [BT, (1.10)].
Thus we can replace 03C8 by its semisimplification. We denote the virtual

representation in (5.2) by F(03C8). It follows from the Borel-Weil-Bott theorem (c.f.
[DM]) that the restriction to 1 of F(03C8) is given by

where D’ = 03A003B1~0394+ (1 - a). Also, as a ff representation,

where ôs is the product of the roots in S.
Thus,

so



26

The inner sum is 03A003B1~0394+(1 - q -103B1), so we have

by (3.5).
Now for the second proof. By continuity, we may assume 03C4 is regular. Let

h:X ~ X be left multiplication by 03C4-1, and let )7 be the bundle morphism

given by left multiplication by i. The fixed point set of h is {wB: we W}, so the
Atiyah-Bott fixed point theorem ([A-B, (4.12)]) says the Lefschetz number of i
on H’(X, E(03C103BB) Q or) is given by

where hw is the endomorphism of the fiber of E(03C103BB) Q nr over wB and
dhw E End(TwX) is the derivative of h at wB. We have

Hence

Now finish as in the first proof. ~

(5.3) COROLLARY. There exists 03B5 &#x3E; 0 such that for all a ~ A(03B5):=
{x ~ A:|03B1(x)|F  8  03B1 ~ 0394+F}, we have

where ch V(tf¡) is the character of the representation of W with highest -4-dominant
weight 03C8.

Proof. We can find e such that a E A(E) implies ÀabsP -l is dominant for all S.
Then Bott’s extension of the Borel-Weil theorem says F(03BBa03B4S03C1) =
(-1)|0394+| V(03BBa03B4S03C1-1). The claim now follows from the first proof of (5.1). 1:1
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(5.4) THEOREM. As elements of R[J], we have, for every a E A-,

Proof. First, note that as J-representations we have

where 0394+J denotes the positive roots in the span of J.
Let, as before, yo be the longest element of lSJ. The space of sections

0393(XJ, E(yowlî)lxj) affords the irreducible 2J representation with 1In2J-
highest weight w103BB. Since wo = y0w1, the reduction formula (4.3) reduces us to
the case J = 1. But here wi = e, and the result is just [C-S] combined with the
Weyl character formula. D

We now review the Cousin resolution of r(X, E(woÀ)), following [K]. First, if
A is a topological space, B - A is a closed subset, and S is a sheaf on A, then
r B(A, S) denotes the sections of S with support in B. The higher derived functors
of the functor S H rB(A, S) are the "local cohomology groups" HB(A, S). They
are called ’local" because if B ~ C - A where C is open in A, then restriction
induces an isomorphism

We will consider these groups when B is a Bruhat cell in the flag manifold X, A is
an appropriate open set in X, and S is the sheaf of germs of holomorphic
sections of the line bundle E(w003BB) (we give the sheaf and the bundle the same
notation).
For w ~ W, let X w be the B-orbit in X through wé3. We let Uw denote any 1-

stable Zariski open set in X such that Xw g Uw - X - ôXW. In other words, Xw
is supposed to be closed in Uw . For example, we could take

If w = wo, we have no choice but X xo = U Wo. Let 03BB be a B-dominant weight and
set p = woÀ (so E(03BC) has global sections). Evidently the restriction gives an
injection
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The main theorem in [K] says this can be continued to a resolution of r(X, E(03BC))
by (é3, g)-modules whose i th term is

Mainly we are interested in the 1 action on these spaces, which is induced by
the action of 1 on Xw, UW, and E(03BC). It is further shown in [K] that

HiXw(Uw, E(p» is nonzero only when i = codim(X,,,,) = l(wwo), in which case its
formal character is

We can now give our final cohomological interpretation of our earlier

formulas. Set w = Cww0fww0. By (3.1), we have

so we get

(5.5) THEOREM. As elements of the quotient field of R[J], we have, for every
aEA-,

6. More on the unramified principal series

Recall that for 1: E ff, the R-group is Rt = {r ~ W: ir = i, r0i - 0394+03C4}. It is

known that Rt is isomorphic to the component group of the centralizer of i in W.

By a theorem of Steinberg, RT = 1 if g is simply connected. In the general case,
we let  be the simply connected covering group of g,  be the maximal torus
in ig which projects onto J, and Z be the kernel of Ô - 1. Since Z is contained
in the center of g, the map ~03C4: R-c -+ Z given by ~03C4(r) = (ir)(i -1 ), where T is a fixed
lift of i in , is a group homomorphism.

(6.1) LEMMA. xt is injective. In particular, Rt is abelian for unramified characters
of A.
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Proof. Choose a representative r’ ~  of r. If îr = î, then r’ belongs to the
centralizer of T in ig which is connected, so r’ projects into the identity
component of the centralizer of i in e. This implies r = 1. D

Set

These roots, along with Ro control the submodule structure of M(i), in ways
that are not completely understood. The influence of RT is shown in the

following.
For r E R03C4, we set r = [1/Cr(03C4)]A03C4r. (It is easy to see that Cr(03C4) ~ 0.) We have

a representation R03C4 ~ EndJff(M(!) given by r~r (see [Ke])), hence for each ~
in the group of characters 03C4 of Rt, the image M~(03C4) of

is an H - direct summand of M(i) and there is a decomposition

It follows from the next result that each M~(03C4) is nonzero.

(6.2) LEMMA. Assume all roots in S, have the same sign. If y is any element of W
such thatfy’ is defined, then p~f03C4y is nonzero.

Proof We have

The coefficient of f03C4y in p~f03C4y is nonzero, and the f r-ly’s are linearly independent,
hence the assertion. D

(6.3) PROPOSITION. Assume all roots in Sr have the same sign. Then each M~(03C4)
is an Jf invariant subspace having unique irreducible submodule Un(i) and unique
maximal proper submodule N~(03C4).

Proof. We first show that we can assume the stronger condition that |03B1(03C4)| - 1
has the same sign for all a e 0394+ for which this is not zero. Suppose S03C4 consists of
positive roots. We can find (c.f. [R1 (8.2)]) w E W such that |03B1(03C4w)|  1 for all

positive roots a. We may and do take w to be minimal in its coset W03C4w.



30

(6.4) LEMMA. For w as above, the intertwining map

is an isomorphism.
Proof. First note that the minimality of w in W w implies w0w-10394+03C4 ~

w00394+ ~ 0394-, so that the 0-eigenvector f03C4ww0 is defined. Moreover, (2.1) says that

The conditions S03C4 ~ 0394+, |03B1(03C4w)|  1 for all 03B1~0394+ imply that R(w-1)~
±S03C4 = 0, so f03C4ww0~im A03C4w. Thus A03C4w is surjective, hence an isomorphism since
M(i) and M(iw) have the same dimension.

If S03C4 ~ 0394-, we instead choose w so that |03B1(03C4w)|  1 for all positive roots, and
the analogous lemma completes the proof in this case.
We now turn to the proof of (6.3). If V is an irreducible submodule of I(03C4) then

Frobenius reciprocity says that 03C403B41/2 appears in the Jacquet module VN. By (1.2),
1 appears as a e-eigencharacter in vB. If all |03B1(03C4)| - 1 have the same sign or are
zero, Theorem (8.3) of [RI] says the multiplicity of i as an eigencharacter in
M(i) is exactly IRtl. Since R, is abelian, IRtl = |R03C4|. It follows that the socle U~(03C4)
of M~(03C4) is irreducible for all il. The same is true for the socle of each M~(03C4-1), so
M~(03C4) also has a unique irreducible quotient. D

We have shown that each M~(03C4) contains a unique-up-to-scalar 0-eigenvector
of weight c, and this vector in fact lies in the irreducible submodule U~(03C4). By
(6.2), this vector is p~f03C4z0, where zo E WT is chosen so that z-100394+03C4 ~ 0394-.

Another consequence of (6.2) is

(6.5) PROPOSITION. Let xo = zo 1w0. Then

is defined. Moreover,

and

Proof It is straightforward to check that xo is minimal in its coset W03C4w0x0.
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Since f03C4w0w0 generates M(Two), the image of sl"’O is generated by si"Of "0 = f03C4z0,
so p~(im A03C4w0x0) is generated by p~f03C4z0 E U,,(1:). D

Write U+(03C4) (respectively U_(03C4)) for U,(,r) (resp. U03B5(03C4)). These two spaces
coincide if 8 is trivial on R03C4. The notation M±(03C4) and p± have analogous
meaning. By [C], we have r03A6+ = 03A6+, which means 03A6+ ~M+(03C4).

(6.6) PROPOSITION. The following are equivalent:

03A6± ~ U±(03C4) ~ 03A6~ generates M~(03C4) ~ S03C4 ~ 0394~.

Proof. We first show that in either case, we have 03A6_ = 03B5(r)03A6_. This means
03A6_~M_(03C4).

(6.7) LEMMA. If all roots in St have the same sign, then

for all r E Rt . Neither side is zero. Finally, we have

Proof. It seems crazy to use Whittaker models for this, but 1 see no other way.
We may assume S03C4 ~ 0394+. By [C-S, (4.3), (5.4)], we have

hence the first equation. For the nonvanishing, observe that |03B1(03C4)| = 1 for every
oc c- R(r-’). To finish the lemma, use the fact that a set {a1,..., all of complex
numbers which does not contain zero or one and is closed under taking inverses
has the property that 03A0ai = (- 1)’.

Using (3.3) and (6.7), we compute

To finish the proof of (6.6), use (3.3) and [C] to check that
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The assertion now follows easily from (6.5). D

As we have seen, it is useful to know the number of linearly independent 0-
eigenvectors in a subquotient of M(i). We can give the answer for M±(03C4), with r
appropriately chosen in its orbit.

(6.8) PROPOSITION. Assume S03C4 ~ 0394±. Then every generalized 0-eigenspace in
M±(03C4) is indecomposable. I n other words, every 0-eigenvector in M±(03C4) is a scalar
multiple of some p±f03C4z where z-10394+03C4 ~ 1B -.

Proof. This follows from (6.7) because HomH(M(03C4), M(iw)) is one dimen-
sional since an intertwining map is determined by its values on 03A603C4± (whichever
generates M±(03C4)), and the respective K-types have multiplicity one in M(03C4w).
(This argument is taken from [Ro2].) D

7. Whittaker models and the R-group

Let lV° be the set of principal characters of N. We want to relate the A-orbits on
0 to characters of R03C4. Let A and À be the weight lattices of 1 and
respectively. We have a surjective map 0/A ~ À/A defined as follows. For
K E lV° and a E E, let x(a) be the conductor of K 0 xa : F + ~ N, where xa is the root
group for a. Also let À(l be the fundamental dominant weight in À which is dual
to a. The map is then

Next, /039B  Î via the map associating a weight to its character of In turn
the injection ~03C4:R03C4 ~ Z from (6.1) induces a surjection xi: É - Rt . The result is a
surjective map

given by

This map can also appear in the following disguise.

LEMMA (7.1). Let rc-R, and choose a reduced expression r = SI ... s,,, where
each Si is the reflection for the simple root ai. Then
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Proof. This is straightforward from the definitions.

Note that

is the restriction to R, of an X(J)-valued cocycle ( on W, given by the same
formula. In more detail, 03B6s03B1 = 03B103BA(03B1), (xy = (x03B6y)03B6x, and 03B6r(03C4) = 03BA(r) for ex E L, X,
YE W and r ~ R03C4.
We return to Whittaker models. Let W03BA03C4:I(03C4) ~ IndN(x) be the Whittaker map

corresponding to K as in section 1. Every A-orbit on the set of principal
characters has a representative which is trivial on No (but maybe trivial on an
even larger group), and we assume K has this property. If K happens to be
unramified, we omit the superscript.

(7.2) PROPOSITION. Let 1:Eff and WE W Then

if w is minimal in W03C4w.

if |03B1(a)|  q-03BA(03B1) for all ex ~03A3 and is zero otherwise.

Proof. Exactly as in (3.1) and (3.5), we see that (1) ~ (2) ~ (3). Let s = S03B1 for

a EL. The proof of (1) reduces, by induction on the length of w, to showing

In turn, this is proved by evaluating both sides on 03A6sw0 + 03A6w0, as in [C-S, (4.3)].
Thus, everything boils down to the following lemma, which is the analogue of
[C-S, (4.2)].

(7.3) LEMMA.



34

Proof. By the remark following reduction formula (4.3), we may assume
G = SL2(F), with Weyl group {e, s}. The proof of (4.1) shows that W03BA(03A6s)(e) = 1,
so we are left with W03BA(03A6e). By matrix multiplication,

in which case

Thus,

In fact the integral is zero for i &#x3E; 1 - x(a), so the sum is actually finite. (Compare
with the definition of W03C4.) Moreover,

if 1  i  - 03BA(03B1) and equals -q-03BA(03B1) for i = 1 - x(a). Thus

This completes the proof of the lemma and the proposition. D

By uniqueness of Whittaker models, there is only one summand I~(03C4) on
which W03BA03C4 is nonzero. This is determined by x as follows.

(7.4) PROPOSITION. W03BA03C4 is nonzero on I~03BA(03C4).
Proof. Pick ~~03C4 and f~I~(03C4) such that W03BA03C4(f) ~ 0. Then for all r~R03C4, we

have

by (7.2) and (6.7).
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8. Injectivity results

(8.1) THEOREM. Let K be an arbitrary principal character of N. Then the
Whittaker map

is injective if and only if and S03C4 ~ 0394+.
Proof. Choose, as before, z0 ~W03C4 maximal in the Bruhat order. If St ç 0 +,

then W03BA03C4(p~03BAfz0) = W03BA03C4(fz0) ~ 0 by (7.2). It follows from (6.3) that 1Y: does not
vanish on the socle of I03BA, hence is injective on that space.

Conversely, suppose 11/’: is injective on I~03BA(03C4). By (6.2),
W03BA03C4(fw) = W03BA03C4(p~03BAfw) ~ 0 for all w E W with the property that w-10394+03C4 ~ 0394-. This
means, by (7.2), that R’(w-1) ~ - S03C4 = ~ for all such w. Choose w so that

|03B1(03C4w)|  1 for all positive roots a. Now suppose 03B2~ - S03C4 ~ 0394+. Then w-103B20
so 1  |w-103B2(03C4w)| = |03B2(03C4)| = q, a contradiction. D

(8.2) THEOREM. Let 6 e N° be unramified. Suppose F belongs to W03C4(M+(03C4)) and
F vanishes on A. Then F = 0.

Proof Choose w E W such that S03C4w ~ 0394+, and take w to be minimal in its
coset W03C4w. By (8.1), we know that W03C4w is injective on M+(03C4). By (1.3), ’if:;w 0 A03C4w is
a nonzero multiple of W03C4, so im W03C4 ~ im W03C4w. We may therefore assume
S03C4 ~ 0394+.
For a~A-, we have aBa-1 ~ B = (Nw0 ~ B)A0aN0a-1, which means the

inclusion N0  B induces a bijection

Thus, for F E (IndN6)B, and al E A -, we have

Since 0 is generated by {Ta:a~A-}, it follows that the space

is stable under 0. Since JA(i) is finite dimensional, it contains a 0-eigenvector.
Now (6.8)) says, if S03C4 ~ 0394+, that all 0-eigenvectors in M(i) are multiples of f03C4z,
for z-1039403C4+ ~ 0394-, and moreover, each eigenspace has multiplicity one. However,
no W03C4(f03C4z) vanishes on A, by (7.3)(2) and (3.1), so JA(03C4) must be zero. This
completes the proof. D
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