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Introduction

We shall first explain the moduli space of principally polarized abelian varieties
with level (n, 2n)-structure. For a positive integer n, we define subgroups of the
modular group F,(’) = Sp2g(Z):

Let 6g denote the Siegel upper half-space of degree g on which 0393g(1) acts by the
map: 1: - (J 0 L = (ai + b)(ci + d)-1. We denote by Ag(n, 2n) the quotient space
of 6g by 0393g(n, 2n), which we call the moduli space of principally polarized
abelian varieties with level-(n, 2n) structure. For the moduli theoretic meaning of
this space, we refer to [13].

If n  2, then we have the holomorphic map of 6g to the projective space PN,

N = ng - 1, defined by 03C4~(···, 03B8[a] (ml 0), ...), where 03B8[a](n03C4|0) are theta
0 0

constants and a runs over a complete set of representatives of n-1Zg modulo Zg.
It induces

Igusa ([7], [8]) proved that 03A6n is an immersion for n  4 and 4| n. Moreover

Mumford proved ([11], [13]) in a purely algebraic situation that 03A6n is an

immersion for all n  4. In this paper we treat the map 03A62. Very few facts about
the injectivity of 03A62 is known. The main result of this paper is:

THEOREM. If x~Ag(2,4) corresponds to the period matrix of a hyperelliptic
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curve of genus g, then (D2 1(03A62(X)) = {x}; hence 03A62(x) is a non-singular point of the
Zariski closure of 03A62(Ag(2,4)).

For a good application of the above result, we refer to B. van Geemen’s works
[3] and [4]. As another application, we have the following:

THEOREM. If g  3, then 03A62 is injective.

The contents of this paper are as follows. In Section 1 we discuss the local

injectivity of the map 03A62, and in Section 2 we prove our main result. In the last
section 3 we prove the injectivity of (D2 for g  3.

1. Local injectivity of 03A62 and irreducibility of a point of Gg

Let m = m" denote an element in 1/2 - 12g (m’ and m" E 1/2 - 7Lg). Then wem
define the theta function 0[ml(,r | z) of characteristic m and of modulus i E 6g by

where z is a variable in Cg and e(*) = exp(2n 1 *). 03B8[m](03C4) = 03B8[m](03C4|0) is
called a theta constant of characteristic m. We call an element [m] in 1/2 ’ · Z2g/Z2g
a theta characteristic. We say that a theta characteristic [m] is even or odd

according as e(2tm’m") = e(m) = + 1. The number of even theta characteristics is
M = 2g-1(2g + 1). Since 03B8[m](03C4| -z) = e(m)03B8[m](03C4 | z), it follows that [m] is odd
if and only if 03B8[m](03C4 | z) is an odd function. Moreover [m] is odd if and only if
03B8[m](03C4) ~ 0; cf. [8], Th. 6.

We shall recall the transformation formula of theta functions: if 03C3 = a b isf ’f c d
an element of Fg(l), then we have

where
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and x(Q) is an eighth root of unity depending only on (7 and on the choice of the
square root sign in det(ci + d)1/2; the correspondence m - (J 0 m gives rise to an
action of 0393g(1) on 1/2 · Z2g/Z2g. For details we refer to [8].
A point 03C4 ~ Gg is said to be reducible if there exists u E 0393g(1) such that

Otherwise it is said to be irreducible. Let (A,, 8,) denote the principally polarized
abelian variety associated with 03C4 ~ Gg, i.e., At = C/(03C4, 1g)Z2g and 0, is the zero
divisor of the theta function 03B8[0](03C4 | z). Then i is reducible if and only if (At’ 8t) is
a product of principally polarized abelian varieties of smaller dimension. For
1: E Gg, we denote by f(03C4) the 29 x (1 2g(g + 1) + 1) matrix:

where a runs over 1/2 ’ Zg/Zg and 1  i  j  g. Since the theta series satisfies the
heat equation:

f(03C4) is a non-zero constant multiple of

As a criterion for irreducibility, we have the following, which is a combination of
[2] Cor. 3.23 or [18] Lem. 1.6 and [16] Th. 1.

PROPOSITION 1.1. Let i E 6g; then the following are equivalent:

(1) 03C4 is irreducible.

(2) The theta divisor et on A, is irreducible.
(3) rank 2(1:) = tg(g + 1) + 1.
(4) rank f(03C303BF03C4) = 1 2g(g+1)+1 for all 03C3 ~ 0393g(1).
The following two propositions are proved by A. Seyama [19]. Let (A, e) be a

principally polarized abelian variety with an irreducible theta divisor 0. Then
the restriction homomorphism:

{03C3 E Aut(A)|03C3-10398 is algebraically equivalent to 0398} ~ Aut(A2)

is injective, where A2 is the kernel of 2· 1 A. This fact yields
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PROPOSITION 1.2. Let 1:E6g be irreducible; then the point r mod rg(2,4) in

Ag(2,4) is non-singular.

If i E 6g is of the form:

then theta constants enjoy the following vanishing property:

with e(m 1 ) = e(m2) = -1

where m’l and m"1 (resp. m’2 and m2) are the first gl (resp. the last g2) coefficients of
m’ and m". Conversely we have the following:

PROPOSITION 1.3. Let! E 6g. Assume 1: satisfy the property (P). Then there

2. Main results

We define two holomorphic maps:

and
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by

and

where [m] runs over the set of even theta characteristics. They induce the maps:

By the addition formula of theta functions; cf. [8] IV Th. 2, we have a
commutative diagram:

where v is the Veronese map and L is an appropriate linear transforma-
tion. Since the map 03A84:Ag(4, 8) = S,/F,(4,8) - PM induced by the map
1 ~ (···, 03B8[m](03C4| 0), ···) is an immersion; cf. [8] V Cor. of Th. 4, it follows that any
fiber of 03A82 is a finite set.
Now we shall utilize the Satake compactification Ag(2, 4) of Ag(2, 4); cf. [1]. It

is known that Ãg(2,4) is a complete, normal algebraic variety and contains

Ag(2,4) as an open algebraic subvariety and that the boundary
Ag(2, 4) - Ag(2, 4) is a finite disjoint union of Ak(2, 4)’s with 0  k  g - 1. The
action of 0393g(1)/0393g(2, 4) on Ag(2, 4) can be extended on Ag(2, 4) naturally.
Moreover the maps (D2 and 03A82 can be extended to Ag(2, 4) naturally. Let Bg(2, 4)
denote the Zariski closure of Bg(2, 4) = 03A62(Ag(2, 4)); then (D2 induces the map
Ag(2, 4) - Bg(2, 4), which we denote the same letter.
PROPOSITION 2.1. The map 03A62: Ag(2, 4) ~ Bg(2, 4) is a finite surjective morph-
ism, Bg(2,4) is a Zariski open subset of Bg(2, 4) and (D2 (Bg(2, 4)) = Ag(2,4).

Proof. It is well known that (D2 is a proper algebraic morphism. By Prop. 1.1
and 1.2, we see that (D2 is a locally immersion at every irreducible point of

Ag(2, 4); hence we have dim Bg(2, 4) = dim Bg(2, 4) 29 (g + 1). It follows that (D 2
is surjective. Since 03A62(Ag(2, 4) - Ag(2, 4)) is closed in Bg(2, 4), it suffices to show
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03A6-12 (Bg(2, 4)) = Ag(2, 4). Let P denote any point of Ag(2, 4). Then there exists
03C3 ~ 0393g(1) such that 03C3-1 · P is a special point defined by a sequence in 6g:

where {03C41n}n converges to 03C410 ~ Gg1, fm03C42n ~ 00 and the other entries remain
bounded. Let 03C4~Gg such that 03A62(03C4) = 03A62(P), where T is the point in Ag(2,4)
induced by i; hence we have BJI 2(T) = BJI 2(P), The point BJI 2(P) E ¡pM is given by

Suppose g2 = g - g1  1. Then we have

lim 03B82[03C3-103BFm](03C4n|0) = {03B82[(03C3-103BFm)1](03C410|0) if(03C3-103BFm)’2 ~ 0 mod 1
otherwisc

where (03C3-1 03BF m)’1 (resp. (03C3-1 03BF m)’2) is the first g (resp. the last 92) coefficients of
(03C3-1 03BF m)’ and (03C3-1 03BF m)"1 is the first g 1 coefficients of (03C3-1 m)"; cf. [8] V Lem. 28.

We put u (C d)* Let a , b’, c’, d’and a , b , c", d denote matrices of size g x g 1
and g x g. such that a = (a’, a"), etc. Then we have

If 0[m](,r 0) ~ 0 then the corresponding coordinate of 03A6(P) is different from 0. In
particular we must have (03C3-1·m)’2 ~ 0 mod 1. Thus we see that

ta"m’ + tc"m" ~ 1 2 · diag(ta"c") mod 1 is independent of m for which

03B8[m](03C4 | 0) ~ 0. By the Lemma below, we have a" = c" = 0 mod 2. This contra-
dicts that a is contained in 0393g(1); hence g2 = 0. Thus we see that P is contained
in Ag(2, 4). Since 03A62:Ak(2, 4) ~ Bk(2, 4), 0  k  g, has finite fibers, we see that
(D2: Ag(2, 4) - .8g(2, 4) is a finite morphism. ~

REMARK. The essential part of the above proof is given by Geemen [3].

REMARK. Combining with Th. 2.4 below, we see that the degree of 03A62 is in fact
one.

The following lemma is proved by Igusa; [9] Lem. 7.

LEMMA 2.2. Let r be an even positive integer. Let 1: denote any point of 6g and 03BE
an element of z2g; suppose that tçm mod 1 is independent of m in r-1 z2g for which
03B8[m](03C4 0) ~ 0; then 03BE ~ 0 mod r.
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LEMMA 2.3. Let i denote any point of 6g and 03C3 an element of r g(2). If there
exists a non-zero constant c satisfying

for all m E 1/2 - 7L2g, then u is contained in r g(2, 4).

and

Hence, by the transformation formula, we get

03B82[m](03C3·03C4|0) = K(a)2 det(c1: + d)e(- tm’tbdm’ + tm"tacm")03B82[m](03C4 | 0).

By the assumption, we see that - tm,tbdm’ + tm"tacm" mod 1 is independent of m
for which 03B8[m](03C4 | 0) ~ 0. Since tbd and tac are symmetric, it follows that

-tm’tbdm’+tm"tacm" ~ (’diag(’b’d), tdiag(tac’))m mod 1, where b = 2b’ and

c = 2c’. By Lem. 2.2, we have diageb’d) = diageac’) --- 0 mod 2; hence

diagebd) --- diag(’ac) -= 0 mod 4. Thus we have shown that

Since 0393g(2, 4) is a group, 03C3 is contained in 0393g(2, 4). D

Following [14], we shall recall the definition of the period matrix of a
hyperelliptic curve. Let C denote a hyperelliptic curve of genus g defined by an
equation:

We denote by {Ai, BJ the standard homology basis on C; cf. [14] III §5 and {03C9i}
the normalized basis of the space of the holomorphic 1 forms on C; hence we
have
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We call i a standard period matrix of C associated with the branch points
B = {a1,..., a2g+1, ~}. Let 5g denote the subset of 6g consisting of points
which are rg(l)-equivalent to period matrices of hyperelliptic curves and let
bg(2, 4) = bg/rg(2,4).
THEOREM 2.4. If x is a point of .5g(2,4), then 03A6-12(03A62(x)) = {x}.

Proof. Let i denote a point of 6g such that i induces x. By definition, there
exists a hyperelliptic curve C defined by an equation: y2 -
(x - al)(x - a2) ··· (x - a2g+1) such that the standard matrix io associated with
{a1,..., a2g+1, ~} is 0393g(1)-equivalent to i, i.e., 03C303BF03C4 = 03C40 for some

03C3 = (a b) ~ 0393g(1). Let i’ be anothcr oint of Gg such that 2(03C4) = 2(03C4’); hence

2(03C4) = 2(03C4’). By the transformation formula, we have

which does not depend on m. Therefore we have 2(03C40) = 2(03C3· 03C4) = 2(03C3· ’1:’).
By Th. 1 in [17], we see that 03C3·03C4’ is also the standard period matrix of a
hyperelliptic curve defined by an equation: y2 = (x - a’1)(x - a’2) ··· (x - a’2g+ 1).
Since

we get, by III Cor. 8.13 in [14],

for all k, 1 and m ; hence io = u -,r = (03C3’ 03BF 03C4’) for some 6’ E rg(2) by III Lem. 8.12 in
[14]. Since rg(2) is a normal subgroup, we have 03C30 = 03C3-1·03C3~0393g(2).
Moreover we have 2(03C4) = 2(03C4’) = 2(03C30 03BF 03C4’). By Lem. 2.3, we see 03C30 E 03A6g(2, 4).

n

3. The injectivity of 03A62 for g  3

In this section we discuss the injectivity of the canonical map:

LEMMA 3.1. Assume that 03A6(k)2 is injective for 1  k  g - 1 and that 03A6(g)2 is

injective on the irreducible points. Then (D(g) is injective.
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Proof. We shall prove that 03A6(g)2 is injective on the reducible points. Let i and r’
be two points in 6g such that (g)2(03C4) = (g)2(03C4’). Suppose i is reducible; hence
there exists an element 03C3 ~ 0393g(1) such that

Since (g)2(03C4) = (g)2(03C4’), by the transformation formula, we have a non-zero
constant c such that

for all m E 1/2 ’ Z’9. It follows that the 03B8[m](03C3 03BF 03C4’)’s satisfy the vanishing property
a1 b’

(P) in Section 1. By Prop. 1.3, we get an element 03C3’ = ( d, in 0393g(1) such that

and that a’ij = b’ij = c’ij ~ d’ij ~ 0 mod 2, where

etc. Then we have

Since the canonical homomorphism Sp2g(Z) ~ Sp2g(Z/2Z) is surjective, there
exists 03C3i~0393gi(1), i = 1, 2, such that U’ = al 1 ~ 03C32 mod 0393g(2), where
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Since a’ 0 m ~ (03C31 ~ a 2) 0 m mod 1, we have

On the other hand we have

Thus we have

where c1 and c2 are non-zero constants independent of m. By these equalities, we
have (gi)2(03C4i) = (gi)2(03C3-1i 03BF 03C4’i), i = 1, 2. By the assumption we have 03BCi~0393gi(2, 4)
such that 03C3-1i 03BF 03C4’i = 03BCi 03BF 03C4i, i = 1, 2. Then we have (03BC1 ~ 03BC2)03BF(03C3 03BF 03C4) =
(a 0 03C32)-1 03BF (a’ 0 (J 03BF 1:). Since both of (Ill 0 03BC2) and (a 0 03C32)-103C3’ are elements of
0393g(2), a-l 03BF ((03BC1 ~ 112) -l 03BF (a 0 03C32)-1 03BF 03C3’) 0 a is also contained in 0393g(2); hence it
is contained in 0393g(2, 4) by Lemma 2.4. Thus we have shown the injectivity of
03A6(g)2. ~

THEOREM 3.2. 03A6(g)2 is injective for g  3.
Proof 03A6(1)2 is injective by Th. 2.4. Hence by Lemma 3.1 and Th. 2.4, 03A6(2)2 is

injective. By Lemma 3.1 and Th. 2.4, the injectivity of 03A6(3)2 cornes from the
following lemma, which is proved in [6].

LEMMA 3.3. Let i and i’ be two points in (; 3 such that i is the period matrix of a
non-hyperelliptic curve. If 2(03C4) = 2(03C4’), then 1: = 6 03BF 03C4’ for some a ~03933(2, 4).

Proof. We shall give a sketch of the proof. Since 1: is the period matrix of a

non-hyperelliptic curve, no even theta constants 03B8[m](03C4) vanishes. The number
of even theta characteristics is M + 1 = 2g-1(2g + 1) = 36. We recall that the
map: 03A84:G3/0393g(4, 8) ~ P35 defined by 03C4 mod 0393g(4, 8) ~ (..., 03B8[m](03C4), ···) is in-
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jective. Since 2(03C4) = 2(03C4’), we have a non-zero constant c such that

82[m](i) = c2. 82[m](i’) for all m E 1 /2 . Z2g; hence 03B8[m](03C4) = c03B5(m)03B8[m](03C4’) with
e(m) = + 1. Using a set of generators for the group 03933(2, 4)/03933(4, 8); cf. [7], we see
that there exist a non-zero constant d independent of m, an element u E r 3(2, 4)
and 29 even theta characteristics [mi], 1  i  29, satisfying 03B8[mi](03C4) =
d03B5(mi)03B8[mi](03C3 03BF 03C4) for 1  i  29. Therefore we have 03B8[mi](03C4’) = (d/c)03B8[mi](03C3 03BF 03C4)
for 1  i  29. By theta relations; cf. e.g., [15] II Th. 18, we have

9[m](i’) = (d/c)03B8[m](03C3 03BF 03C4) for all even theta characteristics [m]. Hence, by the
injectivity of BJI 4, there is an element J1 E 03933(4, 8) such that i’ = 03BC 03BF (03C3 03BF 03C4). Then
J1 0 6 E F3(2, 4). This completes the proof. D

REMARK. The extended morphism

to the Satake compactification Ag(2, 4) of Ag(2, 4) is also injective for g  3. This
is pointed out by the referee. 1 appreciate here the unknown referee’s kind
advice.
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