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Introduction

If X is a compact Kâhler manifold with trivial canonical line bundle, then the

parameter space of the Kuranishi family of X is locally isomorphic to an open
set in H(I)(X, A), where A is the holomorphic tangent bundle ([Ti], [To], [Go-
Mi]). On the other hand, for the CR-structure case, the deformation theory was
also successfully developed by ([A2], [A3], [Mil]), and the versal family in the
sense of Kuranishi was established. Therefore it is reasonable to try to obtain a
corresponding result, namely, "an analogy of Tian-Todorov theorem".
For this purpose, we recall the Tian-Todorov’s approach in ([Ti], [To]). The

Tian-Todorov’s approach consists of the following two parts.

Part 1. As the canonical line bundle is trivial, the deformation equation, which is
holomorphic tangent bundle valued, can be reduced to the equation on scalar
valued differential forms.

Part 2. By using the Hodge structure on compact Kâhler manifolds, we see that
the obstructions vanish.

On the other hand, contrast to compact Kâhler manifolds, in our case, Hodge
structure is not simple. We see this more precisely. Let (M, ° T") be a compact
strongly pseudo convex CR-manifold. Furthermore we assume that (M, ° T")
admits a normal vector field, namely there is a global vector field ( on M
satisfying;

This manifold (M, ° T", 03B6) is called a normal s.p.c. manifold. For this normal s.p.c.
manifold, Tanaka already studied Hodge structure. Namely he set

and he introduced d’, d"-operators on these spaces. So he had a double complex
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(BP,q, d’, d"). However, his double complex does not seem so efficient for our
problem. For example, on Bp’q,

Therefore the Tian-Todorov’s argument completely breaks down. Nevertheless,
because of ingenuity and simpleness of Tian-Todorov’s argument, we would
like to adopt their method for our deformation problem. For this purpose, in
this paper, we introduce a new subcomplex (FP,q, d’, d") of

(r(M, (C()* A A P(°T")* A A q(OT")*), d’, d"). And we see that our Fn - 2,q comes
from Eq bundle, which is introduced in the successful line of deformation of CR-
structures ([A2], [A3]). Then on FP,q, 

Furthermore for Fp’q, we show

(1) the CR-analogue of Tian-Todorov lemma (Section 4 in this paper),
(2) the key equality; for u in Fn - 2,q,

(Section 6 in this paper).

With (1) and (2), following the Tian-Todorov method, we have the following
theorem.

MAIN THEOREM. Let (M, °T") be a normal s.p.c. manifold with dimRM  7.
And we assume that its canonical line bundle K = ~n(T’)* is trivial in CR-sense.
Then the obstructions of deformations in Zl appear in Jn - 2,2. That is, if Jn- 2,2 = 0,
then for any deformation of CR structures in Z1 is unobstructed. Here

Though, at present, we have no example indicating whether Jn - 2,2 = 0 is a
useful condition, as will be proven in Section 9, if d’d"-lemma holds in the double
complex (Fp’q, d’, d"), the main theorem provides the complete analogue of Tian-
Todorov’s theorem (i.e. smoothness of the versal family of CR structures in the
sense of Kuranishi). Therefore the above theorem seems a CR-analogue of Tian-
Todorov’s theorem.

1. Deformation theory of CR-structures

Let X be a complex manifold and let r be a COO exhaustion function which is
strictly pluri-subharmonic except a compact subset. Let
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and we assume that the boundary of Q, b03A9 is smooth. Then, naturally we can
put a CR-structure over bQ. Namely we set

Then we have

This notion is generalized as follows. Let M be a COO orientable real odd

dimensional manifold. Let E be a subbundle of the complexified tangent bundle
C Q TM satisfying:

This pair (M, E) is called an abstract CR-structure or simply a CR-structure. For
our pair (bn, ° T"), we set a COO vector bundle isomorphism

where 03B6 is a real vector field supplement to ° T" + ° T". And by using this
decomposition, we set a Levi form L by: for X, Y in ° T",

where [X, ¥Je, means the C( part with respect to (1.1). We recall deformation
theory of CR-structures which is developed in [A2]-[A4], [A-M], [Mil]. We
assume that we are given a complex manifold X, a strongly pseudo convex
domain Q, and the boundary bS2, a CR-structure °T" induced from X over M,
and we set a COO vector bundle decomposition (1.1).

DEFINITION 1.1. Let E be a subbundle of the complexified tangent bundle
C Q TM satisfying:

Then, the pair (M, E) is called an almost CR-structure. As E is a subbundle of
C Q TM, we have a projection map from E to ° T" according to (1.1). If this
projection map is isomorphism, then we call (M, E) an almost CR-structure
which is at a finite distance from (M, ° T") or simply an almost CR-structure.
Then, we, immediately, have the following proposition.

PROPOSITION 1.2 (Proposition 1.6.1 in [A2]). An almost CR-structure OT"
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corresponds to an element 0 of r(M, T’ Q (’T")*) bijectively. The correspondence
is that: for 0 in r(M, T’ Q (° T")*),

where And we have

PROPOSITION 1.3 (Proposition 1.6.2 in [A2]). An almost CR-structurePT" is
an actual CR-structure if and only if 0 satisfies the non-linear partial differential
equation P(~) = 0.

Here P(03C8) is defined as follows. For 03C8 in r(M, T’ ~ ("T")*),

where ê, means the T’-valued tangential Cauchy-Riemann operator on M (for
precise definition, see [Al], [A2]) and (1/2)[03C8, 03C8] corresponds to R2(03C8) in
[A1], [A2].

2. The complex (Ep+q=n0393(M, A P(T’) * A A q(OT")*), d) on a s.p.c. manifold

Let (M, E) be an abstract strongly pseudo convex CR-structure with

dimRM = 2n - 1  7. Then as is proved in [Al], the vector bundle T’ is a CR-
holomorphic vector bundle, and so we can introduce the canonical line bundle
A P(T’)* like in the complex manifold case.
We study First, we can introduce d"-operator from

by: for u in

where means the : 

part of du accord-

ing to the following canonical decomposition.

As is shown in
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We use the notation

So

Therefore

Hence we have a d"-differential complex

Let ( be a supplement real vector field to 0T" + 0T". Then by using this vector,
we have a C°° vector bundle decomposition

By the same way, we can introduce a d" operator on

Namely, for u in
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where

of du according to the vector bundle decomposition

Similarly, for u in we set

where (du)(C03B6)*~~p+1(0T")*~~q(0T")* means the (C’)* A A p+1(0T")* A A "(OT")* part
of du according to the above decomposition. So we have that for u in

By a direct computation, we have

where 0 is a 1-form defined by 03B8|0T"+0T" = 0 and 0(Ç) = 1. We see the relation
between these operators. For u in

And so

By comparing the type, we have the following relations. Namely, from

From
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From part,

From part,

From part,

A CR manifold is called a normal s.p.c. manifold if and only if there is a vector
field ( on M satisfying

In this paper, we assume that (M, °T") is a normal s.p.c. manifold and we adopt
this vector 03B6 as a supplement vector to ° T" + ° T". And so from this, it follows
that - dO is an element of r(M, (0T")* A (° T")*).

3. The double complex

We use the notation

Then, as is shown, we have d’, d"-operators on AP,q(M), and we have a double
complex (Ap,q(M), d’, d"). On AP,q(M), we put an inner product ,&#x3E;. Let

{e1,..., en-1} be an orthonormal base of ° Tx’ where x in M, with respect to the
Levi metric. Then

Like the case for Bp’q in [T], there is a unique * operator on this complex.
Namely,
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satisfies

And by the same way as for Bp’q in [T], we introduce operators L and A. We
define L: A p,q(M) -+ Ap+1,q+1(M) by Lo = - dO A ~, for 0 in A p,q(M). Let A be
the adjoint operator of L with respect to ,&#x3E;. Let ô’ be the adjoint operator d’
and let ô" be the adjoint operator of d". Then we have

(see Lemma 12.3 in [T]).

(see Lemma 12.1 in [T]).

And like the case for Bp’q,

does not vanish.

4. A CR analogue of Tian-Todorov’s lemma

Let (M, ° T") be a normal s.p.c. manifold with a real vector field ( satisfying
(2.6.1) and (2.6.2) and with dimRM = 2n - 1  7. In this section, we will assume
that the canonical line bundle KM = A "(T’)* is trivial in CR-sense, that is there
exists a nowhere vanishing section cv E r(M, A "(T’)*) satisfying d"cv = 0. If M is a
real hypersurface of a complex manifold X, then the above assumption implies
the existence of a nowhere vanishing CR-section Qer(M, A n(T’XIM)*)’ since
the projection operator p’: CTXIM-+ T’X|M induces an isomorphism

satisfying d" 0 (p’)* = (p’)* - ôb. And moreover, by the Lewy extension theorem, it
is equivalent to the existence of a nowhere vanishing holomorphic n-form on an
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inward collar neighbourhood of M, if M is a strongly pseudo-convex boundary
of an isolated singularity. Obviously Gorenstein singularity is this case.

In this situation, we will consider a bundle isomorphism

Note that

holds. We will denote iq|0T"~039Bq(0T")* by the same symbol iq. 
Now we have the Lie bracket, on r(M, 0T" Q (0T")*), given by

for X, Y E r(M, ° T"). And then, a Lie bracket is induced on

r(M, (C()* A An - 2(l T")* A (’T")*) by [03B1, 03B2] := i2[i-1103B1, i-1103B2].
The main purpose of this section is to obtain a CR-analogue of Tian-

Todorov’s lemma (cf. [Ti], [To]) analyzing this induced Lie bracket.
First of all, in order to simplify the argument, we will obtain a local frame of

CTM normalized at a reference point in M.

LEMMA 4.1. For any point p E M, there exists a local frame el, e2, ... , en-lof
°T" around p satisfying

Proof. Let f1, f2,..., fn-1&#x3E; be a moving frame of °T" such that [fi, fj] = 0
(i, j = 1, 2,..., n -1 ). Note that such a local frame always exists because M is
realized locally as a real hypersurface of a complex manifold (cf. [A3] and [Ku]).
Set ei : = 03A3n-1s=1 qsifs where qsi is a C~-function. Then (1) holds if and only if

Hence, if qij satisfies

then (1) holds.
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and

Since (M, ° T") is strongly pseudo-convex, (cik) is a positive-definite hermitian
(n-1)-matrix. Hence we can find a unitary matrix (Uik) satisfying
03A3n-1s=1 03A3n-1l=1 usicslulk = 03B4ik (i, k=1,..., n-1). (2) holds if qsi(p) = usi
(s, i = 1, 2,..., n-1) and ft(qri)(p) + 03A3n-1s=1 ats(p)usi =0 (i, t, r = 1, 2,..., n-1).
Therefore (1) and (2) hold if qik (i, k =1, 2, ... , n-1) satisfy qik(p)=uik,
fs(qik)(p) = 0, fs(qik)(p)=-03A3n-1j=1 aisj(p)ujk (s=1, 2,..., n-1). Thus Lemma 4.1

follows from the following:

CLAIM. For given ~1, X2, ..., X2n - l, there exists a local COO -function q satisfying
ei(q)(p)=~i (i = 1,2,...,n-1), ei(q)(p)=~n+k-1 (k=1,2,...,n-1) and

03B6(q)(P)~2n-1.
In fact, since el, e2, ... , en-1, el, e2,’ ..., en-1, 03B6 form a local frame of CTM,

(~ ~xi)p (i=1, 2,...,2n-1) is a linear combination of (e1)p, (e2)p, ..., (en -1 1)p, (e1)p,
(e2)p,..., (en-1)p, (p’ Hence it is enough to find a C~-function q with preassigned

derivatives a8q (p) i = 1,2,..., 2n-1), and clearly it is possible. 0

If we write 03C9 = 03C9(C03B6)* A eT A e*2 [~ ··· A e*n-1 with this local frame, then we
have

LEMMA 4.2. ek03C9(p) = 0 (k = 1, 2, ... , n-1).
Proof.

Because of (2.6.2) and Lemma 4.1, we have Lemma 4.2. D

Throughout this section, by el, e2, ..., en-1 we denote a local frame of °T" as
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in Lemma 4.1, and use the abbreviations e*I = e*i1 ~ e*i2 ~ ··· ~ e*ip and

e*K=e*k1 A e*k2 A ... ~ e*kq for I = (i1, i2, ... , ip) and K = (k1, k2,..., kq) respectively.

LEMMA 4.3. If

then

where

Proof.

LEMMA 4.4. If

where 03C3(I) (resp. 03C3(K)) denotes the sign of permutation changing (i, l’) into 1

(resp. (k, K’) into K).
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Proof

By Lemma 4.1,

Next,

By Lemma 4.1,

LEMMA 4.5. For

and
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Proof.

By Lemma 4.1, we have Lemma 4.5. D

Before proving a CR-analogue of Tian-Todorov’s lemma, we recall the inner
product between T’ Q A q(’T")* and A P(T’)* A 1B r(OT")*: by

for.

Note that

PROPOSITION 4.6 (A CR-analogue of Tian-Todorov’s lemma). If a,

PEAn-2,I(M) and satisfy d’03B1=d’03B2 = 0, then

Proof. Write

and

Then
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and

By Lemma 4.5, at p~M,

Hence, at p E M,

On the other hand,

By Lemma 4.4, at p E M,
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Now, since

Therefore, at p E M,

Thus we have Proposition 4.6. D

Next, we will consider the compatibility of 0, and d" via iq.



72

LEMMA 4.7. If

then

where 03C3(K) denotes the sign of permutation changing (k, K’) into K.
Proof. By the definition of ab,

By Lemma 4.1,

PROPOSITION 4.8. For ~~0393(M, °T" ~ (’T")*),

Proof. Write



73

Then, by Lemmas 4.2, 4.3 and 4.4, at p E M,

On the other hand, by Lemmas 4.7 and 4.3, at p E M,

Thus we are led to a new subspace Fp,q = {u~Ap,q(M)|d03B8 ~ (03B6]u=0} (cf.
Section 5 for the details). We will conclude this section by proving the following
proposition indicating the naturality of considering the new subspace Fp’q.

PROPOSITION 4.9. If ex, 03B2~Fn-2,1, then i-1103B1~03B2~Fn-3,2.
Proof. Write

and

As in the proof of Proposition 4.6,
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Since

Since

5. The new double complex (Fp’q, d’, d")

In this section, we introduce a new double complex (FP,q, d’, d"). Namely, we set

Then by (2.4) and (2.5), for u in Fp’q,

So our (Fp’q, d’, d") is a double complex. We study this complex. First, we have

In fact, from (2.2), this follows. We see cohomology groups.

LEMMA 5.1. The map from

satisfying: ik=jk" because of p + q  n and p or q  n - 2. Without loss of
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generality, we can assume

we have

Hence we have our theorem.

We set a vector bundle Fp’q by:

We note that the condition de A (03B6 J u) = 0 is equivalent to dO A u = 0 because de is
an element of r(M, (° T")* A (° T")*) ((M, 0T") is normal). Then obviously,
Fp’q = r(M, Fp’q). We note that our F n - 2,q = iq(Eq), where iq is defined in Section 2
in this paper, and Eq is introduced in [A3]. So if p  n - 2 and q  2, or p  2
and q  n - 2, then

and

In fact, if p  n - 2 and q  1, or p  1 and q  n - 2, we first show

While by Lemma 5.1, there is a v in

satisfying
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We set u - d"v. Then, obviously

and

So we have injectivity. Second we show

For u E Fp’q, we assume

By the same way as in the proof of injectivity, by Lemma 5.1, there is a w in
r(M,(C()* A A p(0T")* ~ ~q-2(0T")*) satisfying

So u = d"(v - d"w). Obviously v - d"w is in Fp,q-1. Hence we have injectivity.
By the same way as in [A3], we have an a priori estimate for (Fn - 2,q, d")

complex (at q=2). So we have the Kodaira-Hodge type decomposition
theorem. Namely, we have the operators Nd-., Hd" from L2(M, Fn-2,2) to

L2(M, Fn - 2,2), satisfying:

Finally, in this section, we set the projection from An-2,q(M) to Fn-2,q.
Namely we set that for u in An-2,q(M), we put

where L, A are introduced in Section 3. In fact, by (3.4),
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And ALu is orthogonal to Fn-2,q with respect to the inner product ( , ), defined

by the Levi metric.

6. The key equality

For v in Fn - 2,2, we show the key equality. Namely, we have

Key equality : For v in F"-2,2

Proof. By the definition of Dd’"

where (l5"d"V)Fn-2.2 means the projection of l5"d"v to Fn-2,2 and (03B4"03C5)Fn-2,1 means
the projection of l5"v to Fn-2,1. And by the result in the last part of Section 3 in
this paper,

and

Hence we must compute

and

The computation

(because on Fp’q)
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By

Hence

(because

(because on
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Hence

Because

Namely,

Because

Therefore we have our equality.

Next by using this equality, we have

THEOREM 6.1. If for u in Fn-2,2, d’u = 0 holds, then

Proof. In fact, for u in Fn-2,2,
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Hence

Namely,

We show d’Hd--u = 0, d"d’Nd"u = 0 and d"*d’Nd--u = 0. For this, it is sufficient to
see

and

First, we see (6.1). For any a in Hd--,

Second, we see (6.2). For any oc in Hd--,

While we have

LEMMA 6.2. For 03B1 in Hd,, and for v in Fn-1,1,

Proof.
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We show (v, d’03B4"03B1) = 0 for v in Fn-1,1 and a in Hd". As oc is an element of Hd",

Namely,

So

Hence

By

So

By

Namely,

Hence

So
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Hence

Hence we have our lemma.

Hence at the same time, we have

As Fn-1,1 = An-1,1(M), d"*d’Nd"u = b"d’Nd--u. So (6.5) means (6.6) b"d’Nd"u = 0.
With (6.6) in mind, we show

COROLLARY 6.3. If u in Fn-2,2 and d’u = 0, then

Proof. We compute d’d"*Nd"u. Namely,

Hence we have our corollary.

7. A subcomplex

Let Zq be a subspace ofFn-2,q given by Zq = {03B1~Fn-2,q|d’03B1=0}. Then by (5.1)
d"Zq c Zq+ 1. The following proposition indicates the possibility of considering
deformations of CR structures relying on this subcomplex (Z’, d") of (Fn-2,., d").
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PROPOSITION 7.1. If 03B1~Z1 then i2P(i1Iex)EZ2.
Proof. Recall that P(~) = ~b~ + (1/2)[~, 0] for 0 E r(M, of" Q (° T")*). Then by

Propositions 4.6 and 4.8, we have

Hence Proposition 7.1 follows from Proposition 4.9 with

Let

In Tian-Todorov’s approach, ~~-lemma for a compact Kâhler manifold plays
an essential role. We call a (Fp,q, d’, d")-version of OD-lemma the d’d"-lemma.
That is

d’d"-LEMMA. If 0 E FP,q is d"-closed and d’exact, or d’-closed and d"-exact, then
it is d’d"-exact.

PROPOSITION 7.2. If d’d"-lemma holds, then

(1) the natural homomorphism (Ker d") n Z1 ~ Hj,,(M, 1B n-l(T’)*) is surjective,

Proof. (1) Since (Ker d") n F n - 2,1 ~ H1d"(M, 1B n-I(T’)*) is surjective (cf.
Section 5), it is enough to show that (Kerd")nZI=(Kerd")nFn-2,1. Let
~ E (Ker d") n F" - 2,1. Then d’~ E (Ker d") n d’Fn-2,1. Since d’d"-lemma holds,
d’~ E d’ d"Fn- 2,0 = {0}. (Note that FP’o = {0}.) Therefore 0 E (Ker d") n Zl.

(2) Is clear from the definition of Jn - 2,q. D

8. Main theorem

Our main theorem is as follows:

MAIN THEOREM. Let (M, 0T") be a normal s.p.c. manifold with

dimRM = 2n-1  7. And we assume that its canonical line bundle KM = An(T’)* is
trivial in CR-sense. Then the obstructions of deformations in i-11(Z1) appear in
jn - 2,2 . That is, f jn-2,2=0, then any deformation of CR structures in i-11(Z1) is
unobstructed.

Proof. Suppose that a Z1-valued polynomial ~(k)(t) in t = (t1, t2, ... , tr) satisfy-
ing P(i-11~(k)(t)) ~ 0 mod ntk + 1 is given, where m denotes the maximal ideal of
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Then, by Proposition 4.8 and [Al] Theorem 4.10,

By Proposition 4.6,

Hence the (k + 1)th order homogeneous term of i2P(i-11~(k)(t)) is in

(Kerd")nd’Fn-3,2. Since Jn-2,2=0 by the assumption, we have

Therefore, if we set ~k+1(t) to be the (k+1)th order homogeneous term of

-d"*Nd"i2P(i-11~(k)(t)) and set 0 (k + 1)(t) = ~(k)(t) + ljJk + 1 (t), then ~(k+ 1)(t) is Z1-
valued by Theorem 6.1 and we have

By the same argument as in [A3], we can prove the convergence of

0(t) = limk~+~~(k)(t) with respect to the Folland-Stein norm ~ ~’m (cf. [A2]), and
we omit it. D

9. Smoothness of the versal family

If KM is trivial in CR-sense and if d’d"-lemma holds in (Fp’q, d’, d"), then from the
Main Theorem together with Proposition 7.2, we have a holomorphic map

such that

and the infinitesimal deformation map

is an isomorphism.
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Also in this case, the argument of Section 3 in [Ak-Mi] works well and then
the family 03C8(t) is versal in the sense of Kuranishi.
On the other hand, from the Main Theorem of [Mi2], we infer that all versal

families of strongly pseudo convex CR structures (in the sense of Kuranishi) of
dimR  7 are realized as families of real hypersurfaces of a canonical family of
tubular neighbourhoods of M. In particular, their parameter spaces coincide
with each other.

Hence we have

COROLLARY 9.1. Suppose that dimRM  7. If KM is trivial in CR-sense and if
d’d"-lemma holds in (FP,q, d’, d"), then all versal families (in the sense of Kuranishi)
of strongly pseudo-convex CR-structures are unobstructed.
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