
COMPOSITIO MATHEMATICA

YU I. MANIN
Notes on the arithmetic of Fano threefolds
Compositio Mathematica, tome 85, no 1 (1993), p. 37-55
<http://www.numdam.org/item?id=CM_1993__85_1_37_0>

© Foundation Compositio Mathematica, 1993, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1993__85_1_37_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


37-

Notes on the arithmetic of Fano threefolds

YU. I. MANIN

Steklov Mathematical Institute, 42 Vavilova, Moscow 117966, Russia

Compositio Mathematica
e 1993 Kluwer Academic Publishers. Printed in the Netherlands.

Received 7 May 1991; accepted 17 October 1991 

0. Introduction

0.1. Notation

This paper is a continuation of the series of works [FraMaTschi], [BaMa],
[MaTschi] devoted to counting points of bounded height on algebraic varieties.
We start with recalling some basic notions and notation.

Let V be an projective variety defined over a number field k, L an ample sheaf
on Jt: hL a height function on V(k) w.r.t. L. We normalize it in such a way that it
coincides up to exp(0(1») with HL(x)[k:Q], where HL(x) is an extension invariant
height, defined e.g. in [Se], p. 11. (In the Introduction to [FraMaTschi] we
erroneously chose HL(x) although in the text actually used hL(x)).

For a subset U c V(k), put

03B2U(L) = inf {s 1 Zu(L; s)l converges}.
Put also

If U is finite, then 03B2U(L) = - oo; otherwise

03B2U(L) = lim sup(log Nu(L; H)/log H).

0.2. Arithmetical stratification

A Zariski closed subset Z c V(k) is called accumulating (over k, w.r.t. L), if
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For every E there exists a sequence of Zariski open subsets

such that for every i, ViBVi+1 is the minimal accumulating subset in Vi. We shall
call this sequence the arithmetical stratification, and the numbers 03B2i = 03B2Vi(L) its
growth orders.
We can say that a variety V has many points if 03B2V(L) &#x3E; 0 for some (and

therefore all) ample L. The calculation of its arithmetical stratification and its
growth orders is then the first natural problem. Of course, afterwards we hope to
obtain some analytic continuation properties of ZVi(L; s) and more precise
information about NVi(L; H), for example, asymptotic expressions of the type
CH03B2i(log H)ti. But this usually involves very subtle arithmetical problems,
whereas the structure of the stratification, especially over sufficiently large
ground fields, may be guessed (and sometimes proved) using algebro-geometric
techniques.

In particular, we can state the following conjectures.

RATIONAL CURVE CONJECTURE (RCC). If 03B2U(L) &#x3E; 0 for a Zariski open
subset U (-- V, then U contains an open subset of P1k.

One can construct Enriques and K3 surfaces containing infinitely many k-
rational curves (it suffices to furnish one such curve and an infinite automorph-
ism group). In [BaMa], we conjectured that arithmetical stratifications for such
a surface must be infinite: unions of rational curves of maximal L-degree are
consecutive accumulation subsets.

Over functional ground fields of characteristic zero, the multidimensional
Mordell conjecture is proved for manifolds with ample cotangent sheaf

[Mar-Des]. They do not contain rational curves.

LINEAR GROWTH CONJECTURE (LGC). If V is a Fano variety (i.e. the
anticanonical sheaf is ample), then the arithmetical stratification is finite, and for
sufficiently large ground fields the last growth order for - KV equals 1.

In [FraMaTschi], LGC was proved for homogeneous Fano varieties. It was
also remarked that the circle method, when it gives asymptotic formulas,
establishes LGC for certain Fano complete intersections (see e.g. [Shl]).

In [BaMa] and [MaTschi], LGC was proved for certain two-dimensional
Fano varieties (del Pezzo surfaces).
We can use LGC in order to pinpoint (parts of) accumulating subvarieties in a

Fano variety V. In fact, let W c v be a Fano subvariety. We will say that
- K, 1 W is too small, if
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in the Néron-Severi space of W, where a  1, and Z is effective. For example, if V
is a del Pezzo surface, and W is an exceptional curve on it, then

Kv W = (1 /2)K w, so that - K, 1 W is too small.
If LGC is valid for W, then

Therefore W must be contained in an accumulating subvariety (of some V, of the
arithmetical stratification w.r.t. - Kv), if LGC is valid also for V.

0.3. Results

In this paper, we discuss from this viewpoint Fano threefolds. After summing up
the necessary preliminaries in Section 1, we prove in Section 2 the following
lower linear bound:

0.4. THEOREM. Let V be a Fano threefold over a number field k. Then for every
Zariski open dense subset U there exists a finite extension k’ of k such that if k"
contains k’, then NU~k"(-K; H) &#x3E; c·H for some c &#x3E; 0 and large H, so that

The proof is heavily based upon the classification theory of Fano threefolds,
developed by Fano, Iskovskih, Shokurov, Mori and Mukai, and its main

interest lies in exhibiting several different reasons for existence of many points
on members of various deformation families. Actually, it establishes a stronger
inequality NU(-KV; H) &#x3E; c. H(log HY, with some t  0.

In the course of the proof, we also register Fano subvarieties W with too
small - K v |W for most of the families and make conjectures about the structure
of the arithmetical stratification. In many cases, the growth order for these
(conjecturally) accumulating subvarieties (with respect to - KV) is known, and
usually equals 2. Therefore, in order to prove that these varieties are accumulat-
ing, it suffices to establish that 03B2U(-KV)  2 for the complement U.

Section 3 is devoted to a discussion of known methods of estimating Pu(- K)
from above.

1. Preliminaries on Fano varieties

1.1. Definition and examples

In this paper, a Fano variety V is a smooth proper variety over a field k whose
anticanonical class -KV is ample. Here are some examples.
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(a) Let V(n; d1,..., ds) be a smooth complete intersection of hypersurfaces of
degrees d1, ... , ds in pn. Then the anticanonical sheaf on V is isomorphic to
(9(n + 1 - L di). Therefore, V is Fano iff n + 1 - 03A3di &#x3E; 0.

(b) Let G be a semisimple linear algebraic group, P a parabolic subgroup.
Then the generalized flag space PB G is Fano. There exist also flag spaces without
k-points (e.g. quadrics); they are defined by k-rational conjugacy classes of
parabolic subgroups. Every homogeneous Fano variety is a flag space: see

[Dem2].
(c) Two-dimensional Fano varieties are called del Pezzo surfaces. Over an

algebraically closed ground field, they form 10 deformation families: (a) P’; (b)
P1  P1; (c) Sa = the result of blowing up 1  a  8 points of p2 in sufficiently
general position: cf. [Ma].

In the next section, we shall summarily describe all 104 deformation types of
Fano threefolds, discovered by prolonged efforts of Fano, Iskovskih, Shokurov,
Mori, and Mukai.

1.2. Basic invariants

(i) Index r = r(V) of a Fano variety is the maximal integer such that Kv is
divisible by r in Pic( V). Generally, the index is not stable with respect to ground
field extensions. For example, r(pn) = n + 1, whereas non-trivial (having no k-
points) forms of this V have index 1.

Unless stated otherwise, we shall usually give values of index over a closure of
the ground field.
We have r(V(n; d1,..., ds)) = n + 1 - d1 - ··· - ds, while the dimension is

n - s. The circle method works well if "the number of variables is large in
comparison with degrees and number of equations", that is, if index is close to
the dimension. Algebro-geometric structure of Fano varieties also tends to
simplify for larger values of index.

In particular, for del Pezzo surfaces we have r(P2) = 3; r(P1 x Pl) = 2;
r(Sa) = 1.

(ii) Rank p = p(Y) = rk Pic(V). It can also jump after a field extension, so that
we shall usually give its values over a closed ground field. Over C it coincides
with B2 . If dim V(n; d1,..., d2)  3, 03C1(V) = 1 according to Lefschetz.

Furthermore, 03C1(Sa) = a + 1.
(iii) Degree of V is d = d(V) = ( - Kv)dim V (self-intersection index). Usually it

is more convenient to use the reduced degree 03B4(V) = d/rdim(V). For example, the
projective degree dl ... d, of V = V(n; dl, ... , ds) is just 03B4(V).

(iv) Mori invariant b(V). Here we shall from the start extend the ground field
to its closure. Put

b(V) = min{b| through every geometric point of V passes a rational curve C
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According to a deep theorem of Mori, 2  b(V)  dim(V) + 1. Upper bound is
achieved for Pn.

Clearly, b(V) is divisible by the index.
We shall now state some properties of growth orders.

1.3. PROPOSITION. Let V be a homogeneous Fano variety having a k-point.
Then V has no accumulating subvarieties w.r.t. any L. V(k) is dense, and

03B2U(-KV) = 1 for every dense Zariski open subset U if k is sufficiently large.
Proof. Represent V as PBG where G is a semisimple linear algebraic group, P

a parabolic subgroup. According to a theorem of Rosenlicht, G is k-unirational
so that G(k) is dense (see e.g. [BoSp]). Hence V(k) is dense. Assume that

flu(L)  03B2V(L) for some dense U and ample L.
Cover V by a finite family of translates Ugi, gi E G(k). Since gt(L) éé L for every

i, we have 03B2Ugi(L) = flu(L). Hence 03B2V(L) cannot be larger.
The statement 03B2U(-KV) = 1 is proved in [FraMaTschi] using Langlands’

deep theory of Eisenstein series, in the case when G contains a Borel subgroup
defined over k. D

REMARKS. (a) Actually, Langlands’ theory can be used to show an asymptotic
formula of the type

where a(L) is a rational number defined in [BaMa], PL a polynomial, 11 &#x3E; 0.

(b) Let V be quasihomogeneous, i.e. having a dense orbit U with respect to an
action of a linear group G on V. Then the argument above shows that U(k) is
dense, and U has no accumulating subvarieties with respect to any L.

1.4. PROPOSITION. Let f : W ~ V be a birational morphism of Fano varieties,
U c W an open subset disjoint with the exceptional locus of f Then

Proof. We have - Kw = f *( - Kv) - E where E is an effective divisor disjoint
with U. Hence hE(x) &#x3E; const &#x3E; 0 for xe U, and

for some positive constants A, B. D

1.5. PROPOSITION. Let V be a Fano variety over a number field k, b(V) its
Mori invariant. Then for every Zariski dense open subset U there exists a finite
extension k’ of k such that f k" contains k’, then
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Proof Choose k’ in such a way that U contains a k’-point and a rational curve
C with (C·-KV)  b(V) passing through this point and splitting (i.e. birational
to P1) over k’. Then

1.6. PROPOSITION. Let U, V be two open subsets in some Fano varieties 0, V.
Then

Proof. This follows directly from the definition of fi via the height zeta
function, because KOxj1 = p*1(KU) + pi(Kj1). D

1.7. REMARK. Clearly, the Prop. 1.6 can be stated more precisely: we actually
prove that NU~k’(-KV, H) &#x3E; const. H2/b(V). Similarly, in Prop. 1.5 we prove
that

Therefore, when V is homogeneous, we may gain a power of logarithm.

2. Linear lower bound for Fano threefolds

In this section, we review the classification of Fano threefolds. The following is
the most concise statement implying the lower bound 03B2(-K)  1 (stated in the
Introduction) with the help of Propositions 1.3-1.6. We shall check it case by
case making comments about possible accumulating subvarieties on the way.

2.1. THEOREM. Every Fano threefold V over a closure of the ground field
becomes isomorphic to a member of at least one of the following families:

(i) A generalized flag space PBG.
(ii) A Fano variety with b(V) = 2.

(iii) A blow up of varieties of the previous two groups.
(iv) A direct product of P’ and a Fano surface.

REMARK. A similar statement is valid in dimension 2.

Proof. Call a Fano variety minimal, if it is not a blow up of a Fano variety
along a smooth center. Clearly, it suffices to check, that over a closed ground
field of characteristic zero minimal Fano threefolds either are homogeneous, or
have b(V) = 2. D
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All Fano varieties with p = 1 are minimal; their list is given in [Is 1, 2] (cf. also

[Mu]). Besides, there are minimal varieties with p = 2, 3: their deformation
families are described in [MoMu 1,2,3] together with information about admis-
sible blowings up. Here is a summary of the relevant information, with the
notation we shall use in the sequel.

A. Varieties V with r  2, p = 1. In this group, there are two homogeneous
members, p3 with r = 4, and quadric Q3 with r = 3. The remaining five

deformation families have r = 2; they are classified according to the value of the
reduced degree 03B4 = (-K/2)3, 1  03B4  5. Denote by V03B4 a member of the

corresponding family. Rational curves C with (C. - K v) = 2 are called lines in
[Isl-4]. We shall call them ( - K)-conics. According to the Proposition 1.4 of
Chapter III, [Is2], every V, is covered by ( - K)-conics, so that b(V) = 2. Since
KV is divisible by two, there are no rational curves C with too small - Kv C.

CONJECTURE. If V belongs to the group A, and the ground field is sufficiently
large, then 03B2V(-K) = 1 and V contains no accumulating subvarieties.

We shall denote by 03A3(V) the scheme parametrizing ( - K)-conics on K

B. Varieties with r = 1, p = 1. The families {Wd} are classified by the degree
d = ( - K)3, taking values 2, 4, 6, 8, 10, 12, 14, 16, 18, 22. Actually, for d=4
general W4 are smooth quartics in P4, ((4; 4) in notation of 1. la), but they admit
flat specialization W4, which can be realized as a double cover of a quadric
Q3 ~ p4 ramified along the intersection of Q3 with a quartic.

In this family, rational curves with (-K·C) = 2 are called conics, whereas
those with (-K·C) = 1 are called lines.
A basic result due to Shokurov says that lines always exist (and form one-

dimensional family, whose base may well be reducible and non-reduced), and
conics on a Wd cover Wd, so that b = 2 in this group. Not all details of proofs are
spelled out in the literature 1 was able to trace; especially the so called

hyperelliptic families W’4 and W2 need some more attention; cf. below. The first
basic reference is [Is2], Chapter III and Chapter II, sec. 2. Shokurov’s approach
was carefully worked out by Miles Reid (see [Re2], [Mu]); conics on a general
W2 are investigated in [CeVe].

CONJECTURE. 1 n the group B, over a sufficiently large ground field the

accumulating subvariety is a union of lines and has the growth order 2 w.r.t. - K;
the complement to it has no accumulating subvarieties, and has the growth order 1.

C. Varieties with p = 2, 3. Here we refer to [MoMul]. In this paper, all varieties
with a given value of p are listed in the Table number p. We shall denote the i-th

variety in this table by p ’ i, writing p by Roman numerals, so that III.11 means
the eleventh family with p = 3.
There are 12 minimal families in the Tables (they are easily detected by the
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word "none" in the last column meaning that no divisor can be blown down to a
smooth curve): II: 2, 6, 8, 18, 24, 32, 34, 36; III: 1, 2, 27, 31. We exclude II.35, on
which a plane can be blown down to a point.
Among these families, the following consist of homogeneous varieties: IL32

(complete flags in a projective plane), II.34 = P1 x P2, 111.27 = P1  P1  P1.
Two more are quasihomogeneous: II.36 = PP2(O~O(2)) and

111.31 = PP1 P1(O~O(1, 1)). Undoubtedly, for them and their forms there

should exist a theory of height zeta functions as precise as that of Eisenstein
series. For the time being, we see at least that b = 2 for them because they are
line bundles.

The remaining families of this group consist of conic bundles over P2 or
¡pl x P’: see [MoMu2], Theorem 1.6. Therefore, they have Mori invariant 2.

CONJECTURE. Among the conic bundles in the group C, over sufficiently large
ground fields, the accumulating subvarieties are unions of lines, and have the
growth order 2, whereas the complement has the growth order 1.

This completes the proof of the Theorem 2.1 (and 0.4). In particular, we could
have omitted mentioning direct products, but since more precise results can be
obtained for them, we notice that all Fano threefolds with 03C1  6 are direct

products, and hence have p  10. D
In this proof of the lower bound 03B2  1, we tried to minimize the algebro-

geometric information quoted from the classification theory. In the rest of this
section, for the sake of a future finer theory, we shall give some more details
about the geometry of lines, conics, centers of admissible blowings up, and
definition fields. 1 thank Prof. J. P. Murre for extensive list of references.

In addition, we recall the known facts about (uni)rationality which can be
used to ascertain that V(k) is dense whenever it is non-empty, and about
birational automorphisms.

2.2. DEFINITION. (a) A variety V over a field k is called split if
Pic(V) = Pic(V~k).

(b) An extension k’ :D k is a splitting extension, f V Q9 k’ is split over k’.

It seems that most algebro-geometric arguments we use for counting points
fully work only for split Fano varieties: cf. e.g. [MaTschi], where we treat split
del Pezzo surfaces (for them, all exceptional curves are defined over the ground
field).

2.3. Group A

Let V be a Fano variety with r  2, p =1. It is split over k, iff - Kv is divisible
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by r over k. For r = 4, that is, V = a k-form of P3, we have

Forms are classified by elements of Br(k) of order 4, and their theory over
number fields is well understood. Certainly, quadrics (r = 3) can be treated
similarly.

1 do not know anything about splitting fields for r = 2. Iskovskih describes in
[Isl, 2, 4] standard models for % corresponding to either 1 - K,I, or |H| where
|- Kvl = I2HI. The latter are defined over k only for split K Let 9 - K (resp. 9H) be
the corresponding map. Then we have:

(i) 03B4 = 1 case. ~-K: V, - W is a double covering of the threefold W which is a
cone over the Veronese surface F4 in P5. It is ramified along a smooth divisor D,
which is an intersection of W and a cubic hypersurface not passing through the
vertex of W. Every such covering is a Vi.

If Yl is split, ~H: V1 ~ p2 is a rational map with one indeterminacy point and
irreducible elliptic fibers.

(ii) 03B4 = 2 case. If V2 is split, 9H: V2 ~ P3 is a double covering ramified at a
smooth quartic D. Every such covering is a V2.

In [We2] it is proved that 03A3(V2) is a connected surface, which is smooth iff D
does not contain lines; Alb(03A3(V2)) is isomorphic to the intermediate Jacobian of
V2 of dimension 10.

(iii) 03B4 = 3 case. If V3 is split, 9H defines an isomorphism of V3 with a smooth
cubic V(4; 3).

’L(V3) is (generically?) smooth and irreducible.
Alb(E(V3» is isomorphic to the intermediate Jacobian of W of dimension 5

([CIGr], [AltKl]).
(iv) ô = 4 case. If V4 is split, qJH defines an isomorphism of V4 with a smooth

intersection of two quadrics V(5 ; 2, 2).
03A3(V4) is isomorphic to the Jacobian of a curve of genus 2, which is

simultaneously the intermediate Jacobian of V4 ([New], [Rel]).
(v) b = 5 case. There is only one isomorphism class of split V5. Its |H|-model

in p6 can be described as a birational image of a smooth quadric Q3
corresponding to the linear system |2E-C|, where E is hyperplane section of Q3,
C a non-plane cubic curve on it.
Another description of V5 identifies it with a section of the Grassmannian of

lines in P4 by a general codimension 2 hyperplane.
03A3(V5) is (a form of) P2 ([Is2], Chapter III, Prop. 1.6).
Our lower bounds for point count in this group was based exclusively on the

fact that every V, over a closed field is covered by ( - K)-lines, i.e. rational curves
of ( - K)-degree 2.
One can in principle quantitatively control the size of the set of k-rational lines
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on Ya, and, by implication, the subset VO(k) c V(k) consisting of points lying on
rational lines.

PROBLEM. Count points of bounded height in Vo(k).

PROBLEM. Count v(k)B vo(k). One can try to obtain a lower bound by using
birational automorphisms ([Is3], [Pul], [Pu2]). ,

EXERCISE. Look at the proofs of (uni)rationality of these varieties in order to
understand the ground fields over which this is true: V4, Vs (rationality); V2, V3
(unirationality). General VI, V2 are not rational: this is proved in [Beau]. No V3
is rational ([CIGr]). 1 do not know whether V, is unirational.

2.4. Group B

Since r = 1, p = 1 in this group, all Wd are split. Another property of these
varieties can be read off Mori-Mukai tables: no blowing up of a member of this
group can be Fano. (Members of group A have a lot of Fano blowings up).
For a variety W of this class, we denote by r( W) the base scheme

parametrizing lines in W, and by S( W) the subscheme of lines in W.
(i) d = 2 case. Here ~-K: W2 ~ P3 is a double solid ramified along a smooth

sextic surface.

Arithmetical genus of r( W) is 6865; the ( - K)-degree of S(W) is 1248; every
line intersects 625 lines. This is proved in [Mar], where it is also conjectured that
for general W2, r( W) is smooth and irreducible.
For a generic W2, 03A3(W2) is a smooth irreducible surface, and Alb(E(W2» is

isomorphic to the intermediate Jacobian of W2 of dimension 52. This is shown in
[CeVe], where also the "non-generic" cases are described in some detail.

(ii) d = 4 case. We denote by W4 a smooth quartic embedded in P4 by |-K|.
This family admits a flat specialization on which |-K| ceases to be very ample
and gives instead a double covering W’4 of a quadric Q ramified at a smooth
surface of degree 8.

Collino ([Co]) shows that 0393(W) is always one-dimensional in Char(k) ~ 2,3.
On W4, pa(F(W)) = 1600, deg(S(W)) = 320: see [Te].
For general W4, r( W) is a smooth irreducible curve ([Co], [BarVe], [BIMu]).
Tennison also considers the special case of the Fermat quartic

xô + ... + x3 = 0. Here r( W) is reducible and non-reduced: it consists of forty
plane Fermat quartics of genus 3, each of multiplicity 2; they intersect only
pairwise, and every component intersects 12 of the remaining components. In
Char(k) = 3, F(W) becomes two-dimensional ([Co]).
For a general W4, the base scheme of conics ’L(W) is two-dimensional ([Te])

and smooth ([CoMuWe], Prop. 3.6). In Char(k) ~ 2,3 this dimension cannot be
larger ([CoMuWe]). In [Le] it is shown that Alb(03A3(W)) is isomorphic to the
intermediate Jacobian of W, which is of dimension 30.
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[CoMuWe] is devoted to the numerical study of ’L(W4), in particular, 972
conics pass through a general point of W4.
On W4, 0393(W) has arithmetical genus 801; 03A3(W) has degree 320; every line

intersects 81 lines ([Mar]).
There are two more cases with nice anticanonical models:

(iii) d = 6 case: W6 = V(5; 2, 3).
For a general W6, lines are parametrized by an irreducible smooth curve (see

[BIMu]). It has genus 271; the surface of lines is of degree 180; every line
intersects 31 lines ([Mar]).

(iv) d = 8 case: W, = V(6; 2, 2, 2).
For a general W8, lines are parametrized by a smooth irreducible curve of

genus 129, the surface of lines has degree 128. Every line intersects 17 lines
([BIMu] and [Mar]).

Alb(03A3(W8)) is isogenous to J(W8) (G. Welters, thesis).
(v) W10 ~ P7 which is a section of the Grassmannian of lines in P5, embedded

into P9, by P7 (general case); W’10 c P7, a section of a cone over V5 in P7 by a
quadric (specialization) (see [Gu1] about this special subfamily).
Here pa(0393(W)) = 71, deg(S(W)) = 100; every line intersects 11 lines ([Mar]).
(vi) W12 ~ P8.
(vii) W14 ~ P9: a section of the Grassmannian of lines in P5, embedded into

P14, by P9 (see [Gu2]).
For a generic W14, Pa(r(W)) = 26, every line intersects 6 lines ([Mar]).

Markushevich also investigates a more special family of W14 consisting of
generic intersections of five Schubert varieties 03C31 in the relevant Grassmannian.

For them, r( W) consists of fifteen irreducible components each of which is a
smooth rational curve. It has 40 double points, where the components are
pairwise intersecting.

(viii)-(x) W16 ~ P10; W18 ~ P11; W22 ~ P13.
EXERCISE. Study the ground fields over which the following (uni)rationality
statements can be proved: Wl 2, Wi 6, Wi s, some W22 are rational; some W4, W’4,
W6, W8, Wl o, W14 are unirational but irrational (the latter statement is known for
general W10). We gave above information about lines on irrational W’s taken
from [Mar].

2.5. Group C

In this group, families of conics conjecturally correspond to conic bundle
structures, whereas families of lines conjecturally correspond to discriminant
curves on the conic bundle bases. It is worth checking this, because the geometry
then is much simpler than in group B.
One can try to estimate U(k) from above, where U is the complement to lines,

by looking arithmetically on the families of non-split conics.
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Using sieves, Serre in [Se2] proved that most fibers of such a family remain

non-split, i.e. have no k-points.
What we need, is an estimate of the "volume" of split conics, that is, the

coefficient c(s) in the asymptotic

as a function of a height of the base point s.

2.6. Remarks

(i) In the Group B, the conjecturally accumulating surface of lines S( W) is used
to calculate the intermediate Jacobian, i.e. essentially the middle motive of W
For K3 surfaces, deleting rational curves leads to a mixed motive, extension of
W by Tate motives. Can one establish a direct connection between counting
points and motives? (Over finite fields, this is of course achieved via étale

cohomology).
(ii) Let k be a field of functions on a curve over an algebraically closed

constant field. J. Kollàr asked me whether a Fano variety over k always has a k-
point.
A natural framework for this problem is the class of C,-fields k. For rational

surfaces S, in my Moscow ICM talk it was conjectured that S(k) ~ 0. Using the
classification theory, Colliot-Thélène was able to prove this for the cases 1 left
open. The same approach partially works for Fano threefolds V. One knows that
V(k) is non-empty for:

(a) Fano complete intersections of any dimension.
(b) Homogeneous Fano varieties (Springer’s theorem: cf. J.-P. Serre, Cohom-

ologie Galoisienne, Ch. III, 2.4).
(c) Fano threefolds admitting a structure of a conic bundle over k.
(d) Fano threefolds containing a rational curve or surface defined over k.
It would be interesting to investigate bad cases systematically. This will

probably involve some understanding of splitting fields.

3. Non-minimal threefolds and exceptional heights

3.1. Non-minimal Fano threefolds

In the tables of [MoMu], there are many Fano threefolds that can be obtained
by blowing up minimal homogeneous models. Since for the latter the linear
growth conjecture is known in a strong form, one can try to deduce it for

blowings.
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In 3.2, we list some Fano blowings of P3 and Q3.
In 3.3, we prove by a direct count the linear growth conjecture for pn blown

up along a Pm (over 0). In [MaTschi], we succeeded to treat similarly P2 blown
up along 4 points. Hopefully, such methods can be applied to some more
cases listed in 3.2, which was our motivation for including them.

Finally, in 3.4 we make some comments on heights with respect to the
exceptional divisors, motivated by the previous discussion.

3.2. Fano blowings up of P3 and Q3

In the following list, a notation of the type X(Z) - Y means that Y is obtained
from X by blowing it up along Z. The list is far from complete.

p3 (point) ~ II.35 (strict transform of the twisted cubic passing through the
blown up point) - III.16.

P3 (line) ~ II. 3 3 (conic) ~ III.18
P3 (conic) ~ II.30.
p3 (plane cubic) ~ 11.28.
p3 (twisted cubic) ~ II.27.
P3 (elliptic curve, intersection of two quadrics) - II.25.
P3 (intersection of a quadric and a cubic) ~ II.15.
P3 (intersection of two cubics) ~ 11.4.
p3 (a curve of degree 6 and genus 3, intersection of cubics) ~ IL 12.
P3 (a curve of degree 7 and genus 5, intersection of cubics) ~ 11.9.
Q3 (point) - 11.30 (a point) - III.19.
Q3 (line) -+ II.31.
Q3 (conic) ~ IL29.
Q3 (elliptic curve of degree 5) ~ II.17.
Q3 (rational quartic spanning P4) ~ IL21.
Now we will treat the first two items of this list.

Put k = Q. Consider a morphism n : V - pn , blowing up a projective subspace
p, c Pn, m  n - 2. Let X be the exceptional divisor on Y, U = VBX. We put
A = [03C0*(O(1))], ~ = [t9(X)], the square brackets denoting classes in Pic(V) which
we write additively. Choose an ample sheaf L on V, [L] = aA - be, and a Weil
height hL on E We shall consider hL, hA, ht and make the respective point counts
only up to exp(O(1)).
The following theorem is a generalization of Serre’s result for n = 2, m = 0

([Sel]).

3.3. THEOREM. Up to exp(O(1)) we have
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In particular, - Kv = (n + 1)A - (n - m - 1)~ is a linear growth point.
Proof Let (xo,..., xm; xm+ 1,..., xn) be a coordinate system in which pm is

given by xm+1 = ··· = xn = 0. For a point x~ V with 7r(x) = (xi)~Zn+1prim, put
d = gcd(xm+1,..., xn). Then the height h2039B-~(x) can be calculated as Weil’s
height of a point with projective coordinates (xixj|j &#x3E; m). But the gcd of these
coordinates is exactly d. It follows easily that h~(x) is equivalent to

(represent h~ as h2Alh2A-e). It follows that if ho (resp. hl) is the height of
(xo: ... : xm) (resp. (xm+1:···: xn))’ then

On the other hand, there are about hm0hn-m-11 points with given values ho and h 1.
It follows that

We split (3.1 ) into three parts. Part 03A31 + 03A32 is taken over dh1  ho. For a fixed
h1  h0, there are about hohl1 1 values of d. We incorporate this into the

respective summand of (3.1) which then becomes hm+10hm-n-21.
Furthermore, in this domain ho + dh is equivalent to ho. Hence it suffices to

sum over ha-b0hb1  H, which, together with h1  h0, gives
h1  min{h0, H1/bh-(a-b)/b0}. The bound dividing two different minima is

ho = H1/a. Hence we can put

The sum 03A33 is taken over dh &#x3E; ho, where ho + dh is equivalent to dhl, so that
summation can be taken over the domain W = (ho  dh1, da-bha1  H}. We
present the result in the form

Now all three sums can be calculated directly. We obtain 03A31 ~ H(n+1)/a.
However, the behaviour of 03A32,3 varies in the different regions of the Pic-plane
(a, b). The reason is that when we sum up one or two inner sums, we get a power
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of hl which may be  -1, -1 or &#x3E; -1, depending on whether (n - m - 1)a is
, =, or &#x3E; (n + 1)b. We leave the rest to the reader. D

3.4. Exceptional heights

We will supplement the direct calculation above by certain qualitative argu-
ments. They are centered around a vague notion that the linear growth
conjecture for non-minimal Fano varieties is connected with the fact that

exceptional heights are small, at least in average.
Concretely, let f : V’ ~ V be a birational morphism of Fano varieties, isomor-

phic outside a divisor E ~ V’, C = f (E). Let U c VBC, U’ = f(U), Kv = K,
K,, = K’. We have - K’ - -f *(K) - D, supp(D) c E. We put hn = ht(D) etc.

3.4.1. PROPOSITION. Assume that 03B2U(-K) = 1. Put for 8 &#x3E; 0, N ~ oo,

(notice that the number of summands is NU(- K; N) which equals approximately
N). Then

Proof. This is essentially Abel summation. Clearly, 03B2U’(-K’)  Pu(- K).
Hence equality means that the series 03A3x~U’ h-K’(x)-(1+03B5) converges for all E &#x3E; 0.

This series can be rewritten as

We may and will assume that h-K(f(x)) takes values 1, 2, 3, .... Put

Then (3.2) equals

and the statement becomes clear. D

Notice that exceptional heights can be small only in average.
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In fact, the discussion in [MaTschi], 2.3, shows that on split del Pezzo
surfaces of degree  6, exceptional heights infinitely often are comparable with

ample heights, because the sum of all exceptional curves is proportional to the
anticanonical class.

On the other hand, the argument in [MaTschi], sec. 4 shows, that exceptional
heights can be infinitely often smaller than an arbitrarily small power of an
ample height.
Here is an intuitive reason, explaining why for most points x, an exceptional

height hE should be small. Let us use an Arakelov definition of hE(x) representing
it as a product of local heights

Here.9 denotes a divisor on an 0,-model Il of V’, inducing E on its generic
fiber V’, and h03B5,v(x) is an exponentiated local intersection index of 6 with the
section x: Spec(Ok) ~ V’ corresponding to x.
Now, if we were in a geometric situation (imagining Spec(O,) as, say, a curve),

for most x’s the local intersection index would vanish, because on a blowing
down of V’ the non-vanishing of an intersection index would mean that x
should pass through a subset of codimension &#x3E; 1.

Can one make this argument quantitative and applicable in Arakelov

geometry?
Note finally that a different type of statement about smallness of exceptional

heights plays a crucial role in the latest proof of Mordell’s conjecture (Bombieri’s
version of the Vojta-Faltings argument).

It is based upon a refinement of an earlier Mumford’s inequality. Let V be a
smooth projective curve.

3.4.2. LEMMA. (a) The diagonal divisor A c V x V can be blown down iff
g = genus of V  2.

(b) There exists a map j: V(k) ~ F with finite fibers of bounded cardinality into
an Euclidean space F such that for some constant c and all (x, y) E (V x VB0394)(k) we
have

where the norms and the scalar product are taken in F.
Moreover, |j(x)| as a function of x up to 0(l) coincides with the logarithm of an

ample height function.

It would be quite interesting to try to extend Mumford’s argument to

multidimensional manifolds with ample tangent bundle.
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