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Abstract. Let Q be a volume element on an open manifold, M, which is the interior of a compact
manifold M. We will give conditions for a non-compact supported Q-preserving diffeomorphism to
decompose as a finite product of S2-preserving diffeomorphisms with supports in locally finite
families of disjoint cells.

A widely used and very powerful technique in the study of some subgroups of
the group of diffeomorphisms of a differentiable manifold, Diff(M), is the

decomposition of its elements as a finite product of diffeomorphisms with

support in cells (See for example [1], [5], [7]).
It was in a paper of Palis and Smale [7] that first appeared one of those

decompositions for the case of a compact manifold, M. They proved that for any
finite open covering of M, any diffeomorphism of M close to the identity can be
decomposed as a finite product of diffeomorphisms with supports in such open
sets. They used this decomposition to prove the structural stability of some
elements of Diff(M).

There is not such a general result for diffeomorphisms preserving a volume
element. But, there is a decomposition in some cases. In particular, if M is a
compact n-manifold and S2 is a volume element on M, Thurston in [9] stated
that any element in the kernel of the flux homomorphism (0,: Diff03A90(M) ~
Hn-1(M; R)/F) decomposes as a finite product of diffeomorphisms preserving Q
and with supports in cells, and gave a sketch of a proof. This fact allowed him to
transfer his result that ker 0, is simple when M is a torus to a similar result for an
arbitrary compact manifold M. (Banyaga [ 1 ] gave the same result for symplectic
diffeomorphisms).

It is clear that when the manifold M is not compact and the diffeomorphism f
has not compact support it is not possible to decompose f as a finite product of
diffeomorphisms with supports in cells. In this case, the best we can expect is a
decomposition as a finite product of diffeomorphisms with supports in disjoint
unions of locally finite families of cells. Mascarô [4] proved that this is true for

any volume preserving diffeomorphism of M = Rn for n  3, and used it to give
a lattice of the normal subgroups of Diff03A9(Rn).

The authors were partially supported by the CICYT grant n. PS87-0115-C03-01.



102

This note is mainly devoted to give conditions for a non-compactly supported
volume-preserving diffeomorphism, f, of a manifold M that is the interior of a
compact one M to decompose as a finite product of volume preserving
diffeomorphisms with supports in locally finite disjoint union of cells.
We thank the referee for his suggestions on clarifying some parts of this paper.

0. Uniform topologies

The topology on Diff’(M) that has proved adequate for our purpose is the Coo-
uniform topology. Thus, Section 0 is devoted to the definition and elementary
properties of this topology.

DEFINITION 1. Let M, N be differentiable manifolds and let d be a metric on N
compatible with the topology of N.
We define the C’-uniform topology on Ck(M, N), k = 0, 1,... as follows:
As a basis of neighbourhoods of f~ Ck(M, N) we take the sets

On the other hand, there is a natural embedding

where Jr(M, N) represents the space of r-jets from M to N, given by
(jr)(f)(m) = (jrf)(m) the r-jet of f at m. If we consider the C’-uniform topology
on the space CO(M, Jr(M, N)); then, the Cr-uniform topology on Ck(M, N), for
0  r  k, is the topology induced by the above embedding (See [6] for more
details).
We define the Coo-uniform topology on Coo(M, N) as the direct limit of the Cr_

uniform topologies.

In this work we consider the Coo-uniform topology on Diff’(M).

NOTE. (i) The Cr-uniform topology depends on the compatible metric d chosen
on N.

(ii) It is clear that the C"O-uniform topology is finer than the C’-compact
open topology and coarser than the Coo-Whitney topology.

(iii) With this topology, Diff’(M) is not a topological group but if

h E DiffQ(M) is any fixed element, the right translation

defined by rh(f) = fh is continuous.
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Since the path-component of the identity in Diff03A9(M) with respect to the Co-
uniform topology is not a normal subgroup we will denote by Diff ï(M) the
normal subgroup of DiffQ(M) generated by the path-component of the identity.

Let f be any element of Diff’(M), we will say that f is Q-isotopic to the identity
if there is a differentiable map F : M x [0, 1] ~ M x [0, 1] such that for any
t E [o, 1 ] the map Ft:M ~ M  {t} ~ M {t} = M preserves the volume element
Q and F 1 = f and Fo agrees with the identity.
We denote by Diff ô (M) the normal subgroup of Diff’(M) of all elements Q-

isotopic to the identity. Clearly, we have Diff03A91(M) c Diff ô (M) and these two
subgroups are different in general.

1. Decomposition of some diffeomorphisms of X x R+

Let X be a closed manifold, R+ the interval [0, oo) and Q a volume element on
X x R+. We denote by Diff03A9(X x R+, rel X x {0}) the group of all diffeomorph-
isms of X x R + that are the identity on a neighbourhood of X x {0} and preserve
the volume element Q.

Notice that any element of Diff’(X x R+, rel X x {0}) is Q-isotopic to the
identity.
We will prove here that if X has trivial first real homology group, then, any

element of Diff"(X x R +, rel X x {0}) can be decomposed as a finite product of
diffeomorphisms with supports in disjoint unions of locally finite families of
cells.

Let us consider on X x R + the metric compatible with the product topology
given by

where d’ denotes a fixed metric on X.

THEOREM 1. Let X be a closed connected (n - l)-manifold with trivial first real

homology group. Then any element f E Diff03A91(X x R+, rel X x {0}) can be decom-
posed as f = f1 ··· fm with f E Diff03A91(X  R+, rel X x {0}) having support in a
locally finite union of disjoint cells, for any i = 1,..., m.

Proof. Without loss of generality we can assume that f is an element of the

path-component of the identity with respect to the C°°-uniform topology.
We carry out the proof in three steps:

Step 1. Reduction to the case where f is close to the identity.
Let (X: [0, 1] ~ Diff03A91(X  R+, rel X x {0}) be a uniform path between f and the

identity and let U(id, 03B5, d) be any neighbourhood of the identity. Then, if we
denote by at = oc(t), let b be the Lebesgue number of the covering,
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{03B1-1(U(03B1t, 03B5, d))}. We take a partition 0 = s,  s,  ...  s. = 1 such that

|si-si-1|  03B4 for any i = 1,..., m. Thus, for any i = 1,...,m the elements 03B1sl,

aSI-l lie in some U( at, 8, d).
Therefore, we could write

where (Xs-1 1 is the identity and for any i = 1,..., m, (asl 0 (03B1sl-1)-1) is an element of
U(id, 03B5, d). Furthermore, we could define a path from the identity to

(03B1sl  (03B1sl-1)-1) inside U(id, e, d) as follows:

where y(t) = 03B1(tsi + (1 - t)si-1)  (03B1(si-1))-1.

Step 2. By Step 1 we could assume without loss of generality that there is a
uniform path in U(id, E, d ) from f to the identity.
We will prove that f = f, , f2 with f E Diff03A91(X x R +, rel X x {0}) and isotopic

to the identity by an Q-isotopy with support in a locally finite union of disjoint
compacts for i = 1, 2. We will also get fl, f2 near the identity.

Let a : [0, 1] - U(id, 8, d) be the uniform path between f and the identity. It
defines an Q-isotopy, F:(X  R+)  [0,1] ~ X x R ’, by F((x, s), t) = 03B1(t)(x, s).

Inductively, we construct a sequence of positive numbers 0  /Li  03BB2  ···,
such that:

(i) F((X  [0, À’2i + 1]) x [0, 1]) c X x [0, 03BB2i+2) for any i = 0, 1, 2,.... 
(ii) F((X x [03BB2i+1, 00) X [0, 1]) ~ X X (03BB2i, oc) for any i = 1, 2, 3, ....

It is clear that we can take 03BB1 = 1 and E  03BBi+1 - îi  2e.

Since X  {03BB2i+1} is compact and F is continuous there is a connected

open neighbourhood, V2i,l, of X  {03BB2i+1} such that F(V2i+1  [0, 1])
c X x (03BB2i, 03BB2i+2) for any i = 0, 1, .... So, for any i, we can extend the above
embeddings [3] to Q-isotopies

such that:

(i) F’ agrees with F on a neighbourhood of X x {03BB2i+1}.
(ii) For any t~[0, 1], Fr t agrees with the identity on a neighbourhood of

X x {03BB2i, 03BB2i+2}.
(iii) For any t E [0, 1], Fit~ U(id, 8, d ).

So, they define an Q-isotopy H:(X  R+)  [0,1] ~ X  [R+, with support in
iX  (03BB2i, 03BB2i+2) and such that Ht is in U(id, 03B5, d) for any tE[O, 1].
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For any m we can consider the diffeomorphism qJm: X x [0, 03BB2]
~ X X [03BB2m, 03BB2m+2] given by

Then we have

If we define f1 = H1 we have f1 ~ Diff03A91(X  R+, rel X x (0)) and with

f2 = f  f-11 we get the desired decomposition.

Step 3. Decomposition of the elements obtained in Step 2.
We could assume that f is an element of Diff"(X  R+, rel X x {0}), Q-isotopic

to the identity by an isotopy f near the identity and with support in

mX x (03BBm-1, 03BBm) with 03BB1 = 1 and 8  03BBm+1 - 03BBm  2e.

To get the decomposition of f we will apply the Fragmenting Lemma of the
Appendix to any restriction of f to X x [03BBm-1, 03BBm]. But being careful in choosing
the triangulation at the beginning of the proof of Fragmenting Lemma we will
obtain the same number of volume preserving diffeomorphisms on each
compact X x [03BBm-1, Âj. Therefore, they define volume preserving diffeomorph-
isms of X x R+.

Furthermore, because we can assume 03BB1 = 1 and 8  |03BBm - Âm-11  28 we

also get that any element in the decomposition is an element of (Diff03A91(X x R +,
rel X x {0}). For these reasons, we construct the following triangulation.

Let us have the triangulation of M1 = X x [0, 03BB1],

and let {Uki, V7: i~Ik for k = 0, 1,..., nl be the open coverings associated to the
above triangulation T, defined in Appendix. Let

(We could assume that f is an element of the neighbourhood of the identity
given by e2).
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On each compact, Mm = X x [03BBm, 03BBm+1], we consider the triangulation given
by:

and the open coverings associated to the above triangulation

We have for any i~Ik, k = 0,...,n and m E N, that

Therefore, if f is an element of U(id, 82, d ) we have f(~m(Vki)) c ~m(Uki) for any
i e 1 k, k = 0,..., n and m E N.
For any m E N we have the flux homomorphism

and, using Lefschetz duality theorem [8], we have

So, since H,(X; R) = 0, we have that each restriction of f to X x (03BBm-1, Âm), fm,
is in the kernel of the flux homomorphism, and we can apply the Fragmenting
Lemma of the Appendix to any compact X x [03BBm, 03BBm+1] with the above

triangulation and open coverings to get fm = f0m ··· fnm with

supp(fkm) ~ i~m(Uki).
Since the number of diffeomorphisms that we get in the above decomposition

depends only on the dimension of X  R+, they define elements

fk ~ Diff03A91(X x R+, rel X x {0}) such that. f = f0 ··· fn, and each fk has support
in a locally finite family of disjoint cells.

Thus, we have proved that if X is a closed n-manifold with n  2 and

H1(X; R) = 0 then Diff?(X x R+, rel X  {0}) is generated by the elements with
support in disjoint unions of locally finite families of cells.

2. Décomposition of some diffeomorphisms of M

Let M be the interior of a compact n-manifold M with non-empty boundary,
ôM. Let ~1,...,ôk M be the connected components of aM and let Q be any
volume element on M.



107

First of all we recall the generalization of the flux homomorphism given by
McDuff [5]. It is a homomorphism

defined as follows: let f~Diff03A90(M), then ~(f) = f*(03C9) 2013 w where 03C9 is a (n - 1)-
form such that d03C9 = Q. It is related to the flux by the following commutative
diagram

where ce is induced from the inclusion.

The flux homomorphism plays an important role in the problem of extending
a family of volume preserving embeddings gt:M0 ~ M, with Mo a compact
submanifold of M, to a family of volume preserving diffeomorphisms which are
the identity outside some neighbourhood of ~t~Igt(M0). This is not possible in
general as can be seen in the following example.
On M = Sn-1  (-~, ~) we consider the volume element S2 = ev 039B d03BB where

w is a volume element on Sn-1. Let ft:M ~ M be the translations

f (x, 03BB) = (x, Â + t). Clearly they preserve the volume element Q.
Let Mo = S" -1 x [1,2], and we consider the embeddings £ |M0 ~ M. There is

no extension to a Q-preserving isotopy such that it is the identity near

Sn-1 x {0} u S" -1 x {4}, because if there was such extension, ft, the Q-volume of
S" -1 x [o, 1 ] and ft(Sn-1 x [0, 1]) = Sn-1 x [0, 1 + t] must be the same, and it is
not true. That is due to the fact that there is some "mass’ passing through
Sn-1 {0}.

The flux of ft can be interpreted as a measure of this mass.
The obstruction to constructing a volume preserving isotopy f equal to f in a

neighbourhood of Mo is the element of Hn-1(M, Mo; R) whose value on an n-
chain c with boundary in Mo is the integral

where f is a (possibly non volume-preserving) extension of Ir lM 0 ([2], [3]).
Thus if ft~ker ~ for any t E l, we have
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and such obstruction does not exist.

Now, we prove the following decomposition

THEOREM 2. Let M be an n-manifold as above with n  3 and H1(~iM; R) = 0
for any i = 1,..., k. Then, for any isotopy f E Diff03A91(M) n ker 0, f, can be written
as a finite product of elements of Diff03A91(M) with support in locally finite families of
cells.

Proof. We take a collar of aM given by an embedding am x [0,1] ~ M
identifying am  {1} with ôM. Let us call Mo = M - (ôM x (0, 1]).
We will divide the proof in three steps.

Step 1. Decomposition of f as a product f = f1  f2, with f2 E Diff03A9co(M) and
f1 E Diff03A91(M, rel Mo).

Since f E Diff03A91(M) there is a uniform path {ft} between f and the identity such
that each f preserves Q. Let us consider the family of embeddings ft|: M0 ~ M,
since Mo is compact, there is some 0  03BC  1 such that the image of Mo by the
isotopy is included in

Since f E ker 0, there is no obstruction to extend ft|: M0 ~ M’ to a volume
preserving isotopy that is the identity near îim x {03BC} ([2], [3]). Then, there is a
compactly supported Q-isotopy gt : M - M such that for any t E [0, 1], gt agrees
with ft on Mo.
We define f2 = g 1 and we have f2 E Diff03A9co(M).
On the other hand, if we define f1 = f  f-12 we have that f1 is the identity on

Mo. Furthermore, the path u: [0, 1] ~ Diff03A9(M) given by u(t) = ft  f-12 1 is a

uniform path between fi and f-12, and since f 2 1 is an element of

1:)iff’ (M) c Diff03A91(M), we have fi E Diff?(M).

Step 2. Decomposition off1 as a finite product of elements of Diff03A91(M) with
support in disjoint unions of locally finite families of cells.
Since the support of fi is included in UiaiM x [0, 1), the restrictions

define elements fi1 ~ Diff03A91(~iM x [0, 1), rel GiM x {0}) for any i = 1,..., k.

Therefore, since H1(~iM; R) = 0 for any i = 1, ... , k we can apply Theorem 1
getting the desired decomposition of f1.

Step 3. Decomposition of f2 as a finite product of elements of Diffn(M) with
support in locally finite families of cells.
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If we can prove that f2 E ker ~c the result will follow from the Fragmenting
Lemma of the Appendix. Therefore, since f = f1  f2 and f E ker 4J we have
4(fi) + 4J(f2) == 0.

Since we have a decomposition off1 as finite product of diffeomorphisms with
support in a locally finite family of disjoint cells, by [2] we know thatf1 is in the
commutator subgroup of DiffQ(oiM x [0, 1), rel aiM x {0}). Therefore, since the
image of the flux homomorphism is a commutative subgroup, we have

4J(f1) = 0.
Now, we consider the commutative diagram (*) and since

the map ce is a monomorphism. Then, 0 = ~(f) = cjJ(f1) + cjJ(f2) = ~(f2) =
11 0 cjJc(f2) implies f2 E ker 4c .

Appendix. The Fragmenting Lemma

Because we have not been able to find in the literature a proof of the
Fragmenting Lemma stated in [9] we have written here a modification for the
volume preserving case of the Banyaga’s symplectic case [1].
We use the infinitesimal definition of the flux homomorphism, it is based on

the Banyaga’s definition for the symplectic case.
Let M be a connected smooth n-manifold, n  3. And, let Q be a volume

element on M.

We denote by Diff03A9co(M) the universal covering of the group Diff03A9co(M). The
map

defined by c(f, {ft}) = ~10i(t)03A9 dt is a group epimorphism. _

If we denote by r the image by c of the subgroup 03C01(Diff03A9co(M)) of Diff03A9co(M),
then, on the quotient, we get the epimorphism

The details of the proof of the above facts and some interesting properties of the
flux homomorphism, as well as the equivalence between the infinitesimal and
geometric definitions of flux, can be found in ~2~.
We will need the following result in the proof of the fragmenting lemma.

LEMMA. Let {ft}t~I be an isotopy in ker 0,. Then, for any t E l, the (n - l)-form
i(t)03A9 is exact.
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Proof. We consider the following commutative diagram

Since p-1(ker ~c) = 03C01(Diff03A9co(M))· ker given the isotopy in ker 0, there
is a unique lifting {t}t~I such that 0 = Id, and c(t)~0393, for any t~I. The map
t H c(t) is a path in r, which is a discrete subgroup (since Q is a volume form);
so the above map is constant.

Then c(t) = c(0) = 0 for any t E I, and we get that, {t}t~I E ker c.
By definition of the universal covering, we can get, for any t E I, an isotopy

{Fs,t}s~I in ker representing f (i.e. ft = (ft, {Fs,t})).
But, for any tEl, the map given by:

is an isotopy between the paths s ~ Fs,t and s ~ st. So, we get
c(st) = c(Fs,t) = 0.

Then, for any tel, the (n - 1 )-form

is exact, where Xst is the family of vector fields given by

So, there is a uniparametric family of (n - 2)-forms {03B1t} such that

Finally, we get (t)03A9 = dPt, where fi, = ~03B1t ~t.
Following Banyaga [1], now we introduce the concept of covering associated
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to a triangulation. Given a triangulation of M,

we will associate an open covering by cells  = {Vki}i~Ik, for k = 0, 1,..., n. We
will construct it by recurrence on the skeleton.

Let v° be an open cell containing AP and such that v° n VJ = 0 if i ~ j.
Now, let us suppose that we have construct the cells {Vli}i~Il, for 1 = 0,
1,..., k - 1 which cover the (k-1)-skeleton and such that

is a retract of 0394ki. Let Ok be an expansion of ki, then let Vki be a tubular
neighbourhood of ki such that Vk n vy = QS if i ~ j.

FRAGMENTING LEMMA. Let M be a closed, connected n-manifold, n  3,
and let Q be a volume element on M. Let  = {Wi} be a finite covering of M by
open cells. Then every isotopy f E ker 0, can be written as a finite product of
isotopies f E ker 0, with support in the cells of 11/’.

Proof. First, we consider a triangulation of M,

such that the star of each simplex 0394ki is contained in some cell of W.
We construct two open coverings associated to the above triangulation,

U = {Uki}i~Ik and 1/ = {Vki}i~Ik, for k = 0, 1,..., n, such that vk c Uk and each
open set Uki is contained in some cell of W.
Each simplex 0394ki is covered by {Vjr: 0394jr c 0394ki}. We denote Vk = UiElk vk.
Let us assume that ft e ker cPc is in a small neighbourhood of the identity.
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Inductively, we will construct diffeomorphisms f(k)t E ker 0,, for 1  k  n, such
that

(1) f(k)t = f(k-1)t near M - Uk,
(2) f(k)t = ft near ~jk Y’.

Since f(n)t = ft, if we define f(-1)t = Id and g(k)t = (f(k-1)t)-1 0 f(k)t, for any

k = l, ... , n; then the result follows immediately from the fact that

f = g(1)t ··· g(n)t, and each diffeomorphism g(k)t has support in Uk.
First of all, we construct f(0)t, for any t E l.
Since f E ker ~c, by the previous Lemma, the (n - 1)-form i(t)03A9 is exact for

any tel, then let {03B2t}t~I be a uniparametric family of (n - 2)-forms such that
i(t)03A9 = d03B2t, for any t~I.

Let 03BB be a Coo real valued function with support in Uo, that is 1 on a

neighbourhood of V*’ = UtelJ;(VO). Let us consider the uniparametric family
of (n - 2)-forms {03BB· 03B2t}t~I, and let {03C8t}t~I be the isotopy we get by integrating the
equation

It is clear that 03C8t e ker 0,, it has support in U° and 03C8t = f near V°, for any t E l.
So, we define f(0)t = 03C8t, and it satisfies the desired conditions.

Let us suppose now that we have constructed the diffeomorphisms fF), for
j  k, satisfying all above conditions; sincef, is in a small neighbourhood of the
identity, we can get each f(j)t such small that if we define V*jt = ~t~Ift(Vji) and
Uti = M - ~t~If(j-1)t(M - Uji), then we have Vti c Uti for j  k.
We construct f(k)t in the following way.
Since f(k-1)t and f, are in ker ~c, then there are two uniparametric families of

(n - 2)-forms such that:

notice that we can choose Pt1 and 03B22t to coincide on ~jkft(Vj) for any t~I, since
we have that f(k-1)t = ft near ~jk vj.

Let (2b 03BB2) be a partition of unity subordinated to the open covering
{(M2013V*k), U*k}. We consider the uniparametric family of (n - 2)-forms
{03BB1 · Pt1 + 22 . 03B22t}, and integrating, as above, the equation

we get an isotopy {03C8t} in ker 0, equal to f on ~j~k vj and equal to f(k-1)t on
M - Uk. Then, we define f(k)t = t/1 t.
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In the general case, if we suppose that the isotopy {ft} is not close to the

identity, we can write (ft) as a finite product of small isotopies in ker ~c and the
result follows.

Notice that the same proof works in the case that M is a compact manifold
with boundary and {ft} is an isotopy of M that is the identity on a

neighbourhood of aM.
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