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Introduction

Let K be a semi-simple abelian algebra of degree 3 over a global field k. In [22],
I.1. Piatetski-Shapiro and S. Rallis constructed the triple L-functions for
irreducible cuspidal automorphic representations of GL,(K ® A,) by means of
Rankin-type integrals following P. B. Garrett [3]. The purpose of this paper is to
determine the location of the poles of these L-functions. To describe our main
result, assume, for simplicity, K=k@® k @ k. Let a be the standard idele norm:
A; — R’. Given three irreducible cuspidal automorphic representations z,, 7,,
and n; of GL,(A,), let w be the product of the central quasi-characters of these
representations. Let ¢ be the 8-dimensional representation of the L-group
GL,(C)® obtained by the tensor product of the standard representations of
GL,(C). The triple L-function L(s,I1,0) is the L-function associated to
IT=n, ®n, ® n; and o¢. This is defined by the Euler product:

L(s, 11, o) = [ [ L(s, I1,,, o).

If k, is non-archimedean and IT, is of class 1, then
L(s, T, 6) =det(lg— A4, ® 4, ® A5-q, %)~ 1,

where ¢, is the order of the residue field of k,,, and A, is the Langlands class of m; ,,
(i=1,2,3). Then our main theorem in the case K=k @ k @ k can be stated as
follows.

THEOREM 2.7. Suppose that K=k ® k ® k, and L(s,I1, ) has a pole some-
where. Then the following two assertions hold:

(a) Let IT', @' be the objects obtained by twisting 7, by 0*°, so € C. Then > =1,
o’ # 1, and L(s,IT', 6) has a simple pole at s=1, for some s,eC.
(b) Assume that w? =1, w # 1, and L(s, 1, 6) has a pole at s = 1. Let K be the

*Partially supported by NSF Grant DMS-8610730.
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quadratic extension of k corresponding to w by class field theory. Let 0 be the
generator of Gal (K/k). Then there exist quasi-characters ¥y, X, and y3 of
AgZ /K™ such that ©, =7(y,), n, = n(x;), T3 = n(x3), and yx,x3 = 1. Moreover,
the triple L- function is equal to

Cx(S)Lk(s, x1 *xLk(s, 22 *23)Lk(s, x3 '15)-

Note that our results are consistent with “the Langlands philosophy”. Assume
that for each 7;, there is a 2-dimensional complex representation p; of Gal (k/k)
such that L(s, w;) = L(s, p;). Then our main theorem implies that, up to twist by
o’ for some s, € C, L(s, I1, 6) has a pole if and only if p, ® p, ® p; has a trivial
constituent.

A significant point of this result is its possible application to the construction
of the lift GL, x GL, —» GL, of automorphic representations by means of “the
converse theorem”. The author hopes to treat this problem in the future.

Let us now describe the contents of this paper. Section 1 is devoted to the
theory of Eisenstein series on symplectic group Sp,. Assume, for simplicity, k is a
number field. Consider the representation space I(w,s) of the representation
Ind?"we® induced from a quasi-character w of the parabolic subgroup

A *
P, = 0. ‘4L € Sp,

of Sp,. Let f® be a meromorphic section of I(w, s), which roughly means that
[ belongs to I(w, s) for each se C and is meromorphic in s. In order to make
use of the Rankin-Selberg convolution, we require that the family { f*°} has the
following properties:

(i) E(h; £*) has finite number of poles.
(ii) The family {f®} is stable under the intertwining operator M, with
respect to the longest Weyl group element wy,
(iii) The family {f®} is the restricted tensor product of families of mero-
morphic sections { £} of induced representations I(w,, s) on Sp,(k,).
(iv) The family {f®} contains all holomorphic sections.

Moreover, to get a good local functional equation, we need a normalization
M, of the local intertwining operator such that

(v) M}, oMk =const.
(vi) The family {f®} is stable under the normalized intertwining operator
M.
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We shall construct this normalized intertwining operator, and the family
{ £} in Section 1.2. A function f in this family is called a good section. Our
normalized intertwining operator is different from Langlands’s normalization
[16, Appendix 2]. In Section 1.3 we shall determine the location of the poles of

the Eisenstein series E(h; f®) associated to a good section f©. In Section 1.4 we
. . . . n—
calculate the residue of the Eisenstein series E(h; f©) at s =

Section 2 is devoted to the theory of the triple L-functions. We shall define the
local L-factor and e-factor, and give the functional equation for the triple L-
functions. The location of the poles is then determined. The key lemma is that if
w =1, then L(s, I, o) does not have a pole at s =1 (Proposition 2.5). The main
theorem will be proved by showing that the base change of IT to GL,(Ax)? is not
cuspidal.

The author would like to thank D. Blasius for his suggestion to use the base
change which simplified the proof. The author would like to thank Prof. F.
Shahidi for some comments. The author also would like to express his gratitude
to H. Hijikata and H. Yoshida for their kind advice and constant
encouragement.

Notation

The n x n zero and identity matrices are denoted by 0, and 1,, respectively. If X
is a matrix, det X stands for its determinant. For a function f on a group G and
x e G, we denote by p(x)f the right translation of f by x, i.e., p(x)f(g) = f(gx).
When G is locally compact, the Schwartz-Bruhat space of G is denoted by £(G).
If G is an algebraic group defined over a field k, the group of k-valued points of G
is denoted by G(k) or G. If = is a representation of G, its contragredient is
denoted by 7. When k is a global field, the adele ring (resp. the idele group) of k is
denoted by A, or A (resp. Ay or A*). We fix a non-trivial additive character  of
A/k (resp. k), if k is a global field (resp. local field). The standard idele norm:
A — R is denoted by || or a. When k is a local field, the normalized absolute
value: k* — R is denoted by | or o. When k is a global (resp. local) field, a
quasi-character y of A™ (resp. k™) is called principal if y = «* for some s, C.
When k is a global function field, the order of the coefficient field of k is denoted
by q. When k is a non-archimedean local field, ¢, @, and ¢ are the maximal order
of k, a prime element of (), and the order of the residue field of k, respectively.
The multiplicative Haar measure d” x of k* is normalized so that Vol(¢ *) = 1.
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1. Analytic theory of Eisenstein series

1.1. Definitions
Let H, be the symplectic group Sp,:
H, = Sp,

= {h € GLG

0, —1,)\, 0, -1 &
n n h — n n .
" <1n 0») <1n On) J
We define parabolic subgroups P, and B, of H, by
A *
Pn = On tA_ 1 EH,, 5
A *
B, = 0, ‘4! epP,
Let M,, (resp. T,) be a Levi factor of P, (resp. B,) given by
A 0,
= {(a ")
A 0,
{2
We denote by U, (resp. N,) the unipotent radical of P, (resp. B,):
v, ={( B)B=8
n 0,. 1,, - ’
A *
N, = 0, ‘At €H,

Let P, and B, be the opposite parabolic subgroups of P, and B,
respectively. We denote by U, (resp. N, ) the unipotent radical of P, (resp. B, ).

A is upper triangular}.

AeGL,,},

Ais diagonal}.

A is unipotent upper triangular}.
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Let x; (1 < i < n) be the character of T, given by

51

Let Norm(7,) be the normalizer of T, in H,. We denote the Weyl group
Norm(T,)/T, by Wy,. We shall often use the same symbol for an element of
Norm(T;) and its image in Wy, Let @y (resp. @,,,) be the set of roots of H,
(resp. M,) with respect to T,. We denote by N, the unipotent group associated to
aroot ae ®y . Each N, is isomorphic to k in the natural way (by the coordinate).
We denote by w, the reflection determined by a. Let a; be the simple root:

% =Xx—X4q, (1<i<n—1)

o, = 2x

n n*

Let Q, be the complete set of representatives for Wy /W, obtained by
choosing the unique element of minimal length in each coset. For each subset
I={iy,iy...,0} of {1,2,...,n}, we define an element w, of Wy _ by

Xy = Xjseens Xk = Xj, 5

Xpn—k+1 > —Xjo -+ Xy — X,

where J={j1 jor-rdnoid ={1, 2. c,n} =1, iy <iy <+ <iy, jy <jp < <
j.—x The element w; belongs to Q, and each element of €, is obtained in this way
(cf. [20]). We also denote by Q, a set of representatives of Q, in Norm(T,). The
length I(w;) of w, is given by

Iwy) = #{ae Py, |a > 0, wia < 0}

= Zk: (n+1—i).
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Put

0,

This is the longest element in Q,. For we Norm(T;) and a character y of T, we
put

27 = x(w™ ltw).

Obviously x* depends only upon the class of w in W;; , so we shall use the same
notation " for we Wy, . We often regard a character of T, as a character of B, by
the isomorphism B,/N, ~ T,.

1.2. Local theory

In this subsection, k is a local field. We define the standard maximal compact
subgroup K, of H, as follows.
When k is non-archimedean, we put K,= H,(0). When k =R, we put

A B
K,= eH,
—B A

When k = C, we put

A B
K= 5 =

When k is non-archimedean, we put R=C[¢°, ¢~ °]. When k is archimedean,
we let R be the ring of entire functions on C. Let @ be a quasi-character of k™
and let s denote a complex number. Let I(w, s) = Indfr(wo®) be the space of
functions f on H, which satisfy the following two conditions:

A'B=B'A, A'A + B'B = 1,,}.

A'B=B'A, A'A + B'B = 1,}.

(i) f is right K, -finite.
. A *
(ii) For any p= 0. 41 eP,,

f(ph) = w(det A)|det A2 f(p),
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We say that a function f®(h) on H, x C is a holomorphic section of I(w, s) if
the following three conditions are satisfied:

(1) For each seC, f*“(h) belongs to I(w, s) as a function of he H,,.
(2) For each he H,, f“(h) belongs to R as a function of seC.
(3) f9(h) is right K ,-finite.

We say that a meromorphic function f®(h) on H,x C is a meromorphic
section of I(w,s), if there is a(s)e R such that o(s) # 0, and a(s)f®(h) is a
holomorphic section of I(w, s). Note that a holomorphic section of I(w,s) is
determined by its restriction to K, x C. We say that a holomorphic section f®(h)
is a standard section if its restriction to K,x C does not depend on seC.
Obviously the space of holomorphic sections is generated by standard sections
over R.

For a quasi-character y of T,,, we define Indj"(x) to be the space of right K-
finite functions f(h) on H, such that

f(bh) = x(b)o52(b) f (h),
where dp_ is the modulus quasi-character of B,. Put

10 = [T ot~ 2,

i=1

Then I(w,s) = Indfr(x,). We define holomorphic sections, meromorphic
sections, and standard sections of Indj"(y,) similarly.

For we Norm(T,) and a quasi-character y of T,, we define the intertwining
operator

M, = M(w, ): Indgr(y) - Indjr(x")

by

M, f(h) = f f(w™ nh)dn.

N,AwN;w™!

Here the Haar measure dn is determined as follows. For each ae®y , the Haar
measure dn, on N, is given by the self dual measure on k with respect to y by the
natural isomorphism N, ~ k. Then the measure dn is the product measure:
dn = I1dn,. The integral is absolutely convergent if y belongs to some open set
and can be meromorphically continued to all y (cf. [8], [25]).

If lw,) +(w;)=Uw,w,), then M,, M, =M, .. When w=w, is a reflection
with respect to a simple root a, then M(w, ) can be regarded as an intertwining
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operator on SL, as follows: let 1,: SL, — H, be a homomorphism corresponding

0 -1
to o. We may assume w =1, <( 1 0)) Then for any f eIndj*(x),

st on=m((] 5). te) ez (121)

as a function on SL,. Since M(w, y) commutes with right translations (or actions
of Hecke operators), it follows from (1.2.1) that the whole property of M(w, x) is

0 -1
reduced to that of M (( ) 0
unique standard section ¢, of I(w,s) such that ¢, i|x, = 1. Similarly, there
exists a unique standard section ¢} ; of Indj"(x?) such that ¢ |x, = 1, for any
weQ,. Note that ¢3% = ¢, _s.

>, z;"x>. When w is unramified, there exists a

0 -1
Let us recall some known results concerning SL, ~ H,. Let w= ( 1 O)’

M, = M(w,®) = M(w, w,s): I(w, s) > I(w ™1, —s). Then:

(1.2.2) L(s, w)~*M,, is holomorphic.
(1.23) Mw™ !, o Yo M(w, w)=¢€(s, o, ¥) " 1e(—s, 0™ 1, )~ 1 id.
(1.2.4) If w is unramified, and ¥ is of order 0,

S, W
Mw¢w,s = S+’ ) ¢w",—s.

(1.2.5) If k is non-archimedean and w = 1, the kernel and the image of M(w, 1, 1):
I(1, 1) - I(1, —1) are the Steinberg representation and the trivial representation,
respectively.

(1.2.6) If k is non-archimedean and w =1, the kernel and the image of
M(w, 1, —1):I(1, —1)> I(1, 1) are the trivial representation and the Steinberg
representation, respectively.

(1.2.7) If w =1, then Res,;_, M(w, 1, s) is a non-zero scalar multiplication.

If weQ,, then the restriction of M,, to I(w,s) = Indj"(x,) is well defined
(except for countably many values of s). If 1 is a holomorphic section of I(w, s),
then M, f* is a meromorphic section of Ind¥"(x¥). We denote this restriction by
M, =M(w, w)=M(w, w, s), too. If w is unramified, we Norm(T,) n K,,, and  is
of order 0, then there exists a meromorphic function c,,(s) = ¢, (®, s) such that

M, (bo,) = Cu(8)as:

L 1)
o= Il TG o+ 1

wa <0
a>0
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where ¢, ) is a Wy _-invariant inner product on X*(T,) ®z C, and & = 2a/{a, a) is
the coroot of a.
In [20], the common denominator of ¢,,(s) is calculated. Here we proceed in a

slightly different way. Let w=wy, I = {iy, i,,...,i}. Put

N(w)) = {ae®y, |a >0, wa < 0}
= {2xn—m+1 | 1 < m < k}

U{xmt+Xpopsr 1 <r <k i—r+1<m<n—r}
We divide N(w,) into a disjoint union [ 1"2) N (w,):

{2%, - me1 |l <m <k}, ifr=0
<, ifr>k
N,w) = {Xn+Xp_psili,—r+1<m<n—r}, f1<r<k, i,>2r
{Xm+Xn_ps1lr<m<n—r}
U{xm+ x| () < m<n—r}, fl<r<k, i, <2r—1.

Here

p (r):{min{mln—kﬂ <ML, j,<ip_meq), fl1<r<n—k

r+1, ifn—k+1<r<[%].
Put
( 1
L<s+%,w>, ifr=0
d'(s) = ¢
L2s+n+1-2r, 0?), iflsrs[g],
\
( +1
L<s+n2 —k,co), if r=0
@ (s)={ LQ2s+n+1-2r, 0?), ifk<r<[g:|
LQ2s+i,—2r+1, w?), if1<r<k, i, =2r
\LQ2s—n+r+p,()—1, w?), if1<r<k, i <2r—1,

n/2

/2] (/2]
d(s) = l;[od'(s), a,(s)= [ a.(s).

r=0
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Then we have
(r/2] L(£4&, xs»)

CW(S) - rI=_IO aeNr(wy) L(<&a Xs> + 1)
w21 i (5)
B r=0 d'(s)

_ a0

Tods)

Thus d(s) is the smallest common denominator of ¢, (s), weQ,. Note that

min(k.[n/2]) g" (5)
o d'(s)’

cu(s) =

Now, even when w is not unramified, we define c,(s), d(s) etc. by formally
substituting .

DEFINITION. The normalized intertwining operator
Mfzo = M*(w()a CU) = M*(W07 , ‘//): I((,O, S)—DI(CU_ ]9 _S)

is given by

n—1 [n/2]
Ml =¢(s——— o, ¥ | [ #@s—n+2r, 0 y)- M,

r=1

LEMMA 1.1

M*(wo !, @71 §) o M¥(wo, @; §) = (= 1)""-id,
M*(wo, @™ 5 ) e M*(wo, @; ¥) =id.

Proof. The second formula is just a reformulation of the first formula. We will
prove the first formula. When n=1, this is (1.2.3). Since

81(_57 (1)71, lp)S’(S-i— 1’ , ‘/’) = CD(— 1)9
the right-hand side of (1.2.3) is equal to

gis+1, o, ¥) y

wo(—1) 76 oY) id.
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For general n, take a minimal expression of w, in Wy_ by simple reflections
Wo = WWy W,
By using (1.2.1) and (1.2.3) successively,

Mo My, =M, 100 My-1oM,-1M,, °M,, o---oM,,

£ )+ Y) L

=0 I =G

oedy,

a¢d’M..

g(s+(n+1)/2, o, §)

gs—mn—1)/2, o, ¥)

. 02125+ n+1-2r, 0, ) d
e €Q2s—n+2r, 0% Y)

_1 -1 -1 -1
:w(—l)"“s'(s—iz—, , l/l) 8’<—s—n2 , 0 1 z/z)

[n/2]
x []e€@s—n+2r, 0% ) ' (—=2s—n+2r, 0™ % )~ -id.
r=1

=o(—1)"

Hence the lemma.

DEFINITION. A meromorphic section f®(h) of I(w,s) is a good section of
I(w, s) if for any weQ,,

[d(s)c(s)] ™' M, f©

is holomorphic.

In particular, if w is unramified, d(s)¢,, ; is a good section of I(w, s).

LEMMA 1.2. f® is a good section of I(, s) if and only if M%_f© is a good section
of lw™?, —s).

Proof. It will suffice to prove that for each w,€Q,, there exists an entire
function &(s) with no zeros such that

Ld(@, s)ey(@, )17 M, fO(h)
= e@)d(@™", —s)cy, (@1, =917 "M, o M, fOR). (1.2.8)

We shall proceed by induction on I(w;). Obviously, (1.2.8) holds when (w;) = 0.
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Suppose l(w,) > 0. There are two cases:

(1) jn—k =n
@) jo-k=m<n.

In case (1), put I' =1u{n}, J'=J—{n}. Then

Iwp)=1lw)+1,  Uwy)=1w,) -1,
Wy =W, Wy, MWJ=MW,"°MW_,,’

Wp =W, ‘W, M, =M, °M,,

—n+1
L<——s+ r12+ +k,w‘1>

> =9 —n+1 4
L{ —s+ 3 +k+1, @

1
L<s+n; —k, w)

1 .
L<s+n; —k—1, w>

-1

(@™, —s)=c, (07"

’

ey (@, 8) = ¢y, (@, 5)

On the other hand, by (1.2.1) and (1.2.3),

Mwu,. ° Mwl' = MW,:,. ° Mwly. ° M

Wi

-1 -1 _ -1
=C-z—:’<s+n2 —k,w,a//> 6'<—s—n21+k,w‘1,z//) ‘M,,,

where C is some non-zero constant. We have

[d(, s)c,, (@, )17 'M,, f©

L<s+n+1 —k—1, w)
2
1
L<s+% —k, w>

— , n_l ’ —1 - )
x C lg <S+T—k,w, t//)e (—s—n—2—+k,w Y W)‘Mwanon,rf()'

= [d(, s)cy, (w, 5]
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By the induction assumption, this is equal to
1 —
L s+"*2L —k—1,w>L<1—s—"—§—1+k,wl>
&4(s)
1 -1
L<S+n; —k,w) L<s+n—2——k,w)
1
L<s+n+ —k, w)
2
-1
L(—s—nT+k, co_‘)

x[d@™!, =)y, (@™, —s)]7'M,, oM, cM¥% O
=& (d™", —s)e, (@1, =917 'M,, o M} f©.

X

Here ¢,(s) is some entire function with no zeros.
In case (2), put I'=I—{m}u{m+1}, J'=J—{m+1} U {m}. Then

wr)=Iwp+1,  lwy)=1Uw,)—1,

Wy=Ww, "Wy, M, =M, °M,,

Am

Wy =W, W, M, =M, °M,,.

199

By a calculation similar to case (1), (1.2.8) for I is reduced to (1.2.8) for I'. Thus

the lemma follows.
The following lemma is crucial for our theory.

LEMMA 1.3. Every holomorphic section of I(w, s) is a good section.

REMARK. If k # C, and w is unramified, this lemma is nothing but [22,

Theorem 4.2].

Proof of Lemma 1.3. Here we assume k is non-archimedean. We may assume w
is ramified. If w? is ramified, then d(s)=c,,(s)= 1, for any w e Q,. Take a minimal

expression of w by simple reflections:

W=W W, W, MW=MW1°MW2°"'OMW.-'

Each M, (1<i<r) is holomorphic by (1.2.1) and (1.2.2). So the lemma is

obvious in this case.
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Now we assume o is ramified and w?=1. Let w=wy, I ={iy, i, ..., i;}. Recall

[n/2]
a,(s) = d(s)c,,(s) = [ al(s).

r=0
It suffices to prove
min(k,[n/2]) -1
Il a(v(s)] M, f® (1.2.9)
r=0

is holomorphic. Put
min(k,[n/2])

A, (s) = l:[o a,(s).

We proceed by induction on I(w). If [(w) =0, (1.2.9) is obviously holomorphic.
(I) When i, =n:put I'’=1—{n}, w = w;.. Then

M, = ]\4w,"0 M, Aw(s) = Aw'(s)'

Since M,, is entire, the holomorphy of (1.2.9) for w is reduced to that for w'.
(I) - When i+2=i,;+1<i,,, for some 1<r<k—2: put i,=m,
I'=sI—{m+1}u{m+2}, I"=1—{m} u{m+2}, w =wp, w = w;.. We reduce the
holomorphy of (1.2.9) for w to that for w'. By definition, we have

A ()4, () 1 ={2s+m—2r+2){2s+m—2r+1)"1,

M(W’ Xs) = M(Wam’ X:}’) ° M(W’, Xs)

Since {(2s+m—2r+1)"'M(w,,, x*') is entire, it will suffice to prove that

2/ —1
2s= —m+2r—2 (modT—Z) are not poles of (1.2.9). We now prove
0gq

that the residue vanishes. By (1.2.7),

{2s+m—2r+1)""M(w,,, )
is holomorphic at these points. The residue is

RCSZSE *m+2r72(Aw(s)_lef(S))
=" M(W,,, 1)°ReS35= i 20— 2[{25+m—2r +2)A,,(s) " 'M,, ]
:c,.M(Wzm’ X:')O[Aw'(s); 1Mw’f(8)]255 —m+2r—2»
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for some non-zero constants c, ¢’. By (1.2.6), it is sufficient to prove that
[Aw’(s)_le’f(s’]ZSE—m+2r—2 (1'2~10)
is left 1, (SL,)-invariant. We first observe

Aw'(s)— le'f(S)
={2s+m—2r+3){(2s+m—2r+2)" Ay(s) T MW, , 1 IMW", 1) f©.

Since {(2s+m—2r+3) and {2s+m—2r+2)"'M(w,,, %) is holomorphic at
2s = —m+2r—2 (mod MZ), this is equal to
logg

¢ [LQ2s+m=2r+2)" "MWy, s X Vasz -m+ 20— 22 AwlS) T MW", 1) f©,
for some non-zero constant ¢”. By the induction assumption,

As)” MW", £) f©
is holomorphic. Moreover this is left 1, (SL,)-invariant since

w1l (SLow” = M,,
By (1.2.7),

[L@s+m—2r+2)" "MW, > 2 Vos= —m+2r—2
is a scalar multiplication. Thus (1.2.10) is left 1, (SL,)-invariant.

(ITI) When i,=n—1,i,_, =n—2: this case can be treated by the same technique
as in the case (II) by putting

I'=1—{n—1}u{n}, I"=1—{n-2}u{n}.

(IV) When i, < n— 1. This case can be treated by a similar technique as in the
case (II) by putting

I'=I1-{ijuli+1}, I"=I-{i}u{i+2}.

Now we may assume i,=n—1, by (I) and (IV). Moreover, we may assume
k < [%], since otherwise the assumption of (II) or (III) holds. To see this, assume
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k > [4] and neither the assumption of (II) nor that of (III) holds. Then
=n—1,5_,<n=3,...,,<n=2k+2m—1,...,i;<n—2k+1<0.

This is a contradiction.

(V) When k<[5]: put I'=I—{n—1}, w'=w,... Then

Mw = M(wa,.— 12 X:J“"w’) ° M(Wa,.’ X;v,) ° M(W,a Xs),
A, (s) = A, A5) {(2s +n—2k).

By the induction assumption, 4,,(s)"'M,, f* is entire. Since both M(w,_, x)
and {(2s+n—2k)"'-M(w,,_,, x=") are entire, 4,(s) "M, is entire. Thus the
proof for non-archimedean local field is complete.

Appendix 1. Proof for Lemma 1.3 for archimedean case

In this appendix, we give a proof for Lemma 1.3 for an archimedean local field k.
We may assume that o is unitary.

SUBLEMMA 1. If w=wy, then (1.2.9) is holomorphic.

Proof. If k=R, and w=1, this is proved in [22 §4 Appendix 1]. Their proof is
valid for k=R, w=sgn. If k=C, we have to show that the first part of
[22 §4 Appendix 1, Theorem (p. 106)] holds for our situation, i.e., we have to
show that

a, (o, s)7! f () o(z)|det zz|s~®* V2¢y(det z) dz (1.2.11)
ym

is entire for any ¢ € #(Sym"(C)). We may assume that w(z)=z* or (z), k > 0. But
the case w(z) =(z)* is reduced to the case w(z) =z* by taking complex conjugate.
Put

0 19 19
0z, 20z, 20z,
1 0 0

a:det 56212 6222

1.0 0
20z, 0z,
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Then it is known that

d(|det zz|5(det 2)*) = [ (s +k+ %) -(|det zz|%(det z)* 1)

i=

Repeating partial integration, we have

m n—1 s 1
l_[ <S+k+]+l n )f (o(z)'detZz|sf(n+l)/2(detz)kdz
j=1i 2 Sym"(C)
=(—1n™ f O"p(z)|det zz|*~ @+ V/2(det z)* T ™ dz
Sym"(C)

for Re(s)> 0. Since the right-hand side is absolutely convergent for
—k—m—1
Re(s)>n—2L, we have

i=0

n—1 i\ —1
[1r <s +k— 1) j @(z)|det zz|*~®* V2(det z)* dz
i 2 Sym"(C)

is entire. So (1.2.11) is entire.

Let Q (resp. Q') be the maximal parabolic subgroup of GL, given by
_)fay =
€= {< 0 “2)

’ al *
resp. Q' = {( >
< 0 a,

Let Iy(w,s) (resp. Ip(w, s)) be the representation of GL, induced from the
character of Q (resp. Q') given by

a, eGL,_,, azekx}

a,ek”™, azeGLn_l})

a *
(01 a )Hw(det a,)|det a,|*"|a,| e~ Lins

2

a; *
(TCSP- (0 ; ) o (det ay)la; [ DI det a,| “’").
2

We define standard sections, holomorphic sections, and meromorphic sec-
tions as usual. We define the intertwining operator M,,: Iy(w, s)— Ip(w ™!, —5)
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(resp. M. 1y (w, s)— I (w ™", —s)). Here

n—2 -1 n—2 -1
SUBLEMMA 2. L S=—50 M(w,s)and L S=—5 0 M(w', s) are

holomorphic.
Proof. This can be proved in the same way as [22, §4]. (See also [12 §5].)

SUBLEMMA 3.

MW, o~ 1o M(w, w)
_2 -1 ___2 -1
:w(—l)"“8/<s—nT,w, ¢> a’(—s—nz , w1 x//> -id.

Proof. This can be proved in the same way as the proof of Lemma 1.1.

We now return to the proof of Lemma 1.3. Let w = w; be an element of Q,. We
prove that

[d(c, s)c(e, 17" M, f(s)

is holomorphic. M, can be considered as an intertwining operator of

i —1
1 <w, s+ i 3 ) on Sp,_;, +,. We may assume i; =1 by replacing n by n—i, +1

and I by {i,—i;+1|1<r<k}. We proceed by the induction on d(w)=n—k.
When n=k, this is Sublemma 1. Assume n—k > 1. Put

m = max{r|i, <n—k+r},
I'=I1u{n—k+m},

’

w = wp.

Then #I'=k+1, {w)=Iw)+k—m+1 and

w=w,w W

An'"An—1 An—k+m' " *
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Put

W(O) =W,

w(r):W,zwan—k+m+rv1  Wokrm+ 1 Wan—k+m™s 1<r<k—m+1.
Then

Mwm = M(wa..—um,-,’ X;v"_”)o Mwma I<r<k—-m+1

( L2s+n—k—m—r,w?
L2s4+n—k—m—r+1,0?’

—1
Cwm(s) = Cw(r— 1)(s) X< L (S + n—z—‘ - k, CU)

L(errH_1 —k,w)
L 2

1<r<k—m

r=k—m+1

We have
n+1
L ——k
Cpls) = LQ2s+n—2k o) <s+ 2 ’w>c ()
YT LRs+n—k—m, 0?) n+1 W
L s+—2——k,w

It is easy to see that
M(W,,_, x5 0)0 -0 M(Wey_y o X5)
is an intertwining operator on GL, _,. By (1.2.3) and Sublemma 3,
M(Way oo 2D 220 M(We,_y, 23 )° M(Wq,, 2)° M,
=o(— 1)6'<S+n—;1 —k, w, t//>_1s’<—s— n—2—1 +k, w1, l//)gl

x &(2s+n—2k, 0, Y) te(—=2s—n+k+m+1, 0% )M,

By (1.2.2), Sublemma 2, and the induction assumption,

n—1 i\ .
L\ —s— 2 +k,CL) M(Wa,.,X:),

L(—2s—n+k+m+1,0 3 M(w,,_,. . x¥W)o--0 M(Wg, _, x5 *™)

205
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and
[d(wa S)er((l), S)] N le'

are holomorphic. Thus we have
n—3 -1) ! -2y-1 -1
L —S—T+k,w L(—2s—n+2k+ 1,0 %) '[d(w,s)c,(w,s)] M,

is holomorphic.
On the other hand, put

ln—k

W, =

w = ww,.

Then M, =M, oM, . Here, as in [22 §4], M, is an intertwining operator on
certain induced representation of GL,. As in [22 §4], we can prove

=

LQ2s+i,—2r+1, o*) " 'M,,
1

r

is holomorphic (cf. [22, Remark 4.1]). As for M,,,, by Sublemma 1,
n+1 ~11k2]
L S+T-—k,w [] L@s+n—2k+2r,0*) " 'M,,
r=1
is holomorphic. Putting together, we can easily deduce
k
[ L@s+n—2r, 0¥ [d(w, s)c, (o, 5] M,

r=[k+1/2]

is holomorphic. Since

-3
L(—s—nTJrk, w“)L(—2s—n+2k+l, ™ ?)
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has no poles in Re(s) < —2+k+1%, and

k
[T L@s+n—2r, v?

r=[k+1/2]

has no poles in Re(s) > —4 +k, it follows that
[d(w, s)c,,(w, )] 'M,,

is holomorphic. Thus Lemma 1.3 is proved.

REMARK. Our definition of good section is different from that of [22]. But we
can prove that “germs” of good section of I(w, s) at s=s, are generated by the
following two families:

(1) germs of holomorphic sections of I(w, s) at s=s,,

(2) {M¥ f®|f® is a germ of holomorphic section of I(w ™!

, —S) at s=50}.

In fact, we may assume o is unitary and Re(sy) >0, by Lemma 1.2. Since
d(w, s) does not have zero at s=s,, any good section of I(w, s) is holomorphic at
s=s5,. [t is easy to see that when k is non-archimedean, our definition agrees to
that of [22] because there are essentially finite number of singularities.

Appendix 2. An interpretation of the normalizing factor

We give an interpretation of the normalizing factor d(w, s) in terms of Arthur’s
conjecture [1]. Let G be a reductive group, P be a maximal parabolic subgroup
of G, M be a Levi factor of P, N be the unipotent radical of P, and A4 be the
maximal split torus of the center of M. Let n be an irreducible discrete
automorphic representation of M. Then, according to Arthur’s conjecture, 7 is
associated to a homomorphism

@ % x SLy(C) > EM.

Here % is the conjectual Langlands group. Let .4 be the Lie algebra of “N.
Decompose 4" as in Shahidi [24].

r

Ly = ]

Consider the induced representation Ind§né®. Here & is as in [24]. Let Ad:,- be
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the adjoint action of “M on L4;. If = is cuspidal and ¢, is trivial on SL,(C), then
the normalizing factor should be given by

l__[l L(1 +is, @, °Advry).

(cf. Shahidi [24], Langlands [15].) Consider the general case where ¢, ° Adw,. is
not trivial on SL,(C). In this case, decompose ¢,°Ad.,. into irreducible
representation:

Pr° AdLJV @ (pu ® Symrlj

where ¢;; is an irreducible representation of £, and sym" is the r;;th symmetric
power of the standard representation of SL,(C). Then we claim the normalizing
factor should be

||’:|~¢

mi r.:
]:[ <is+§+ 1, (p,.j>.

In fact, the c-function c,, (7, s) for the longest element w, of the Weyl group is
given by

r L(is, ¢p° Ad"./V,)
Coo(T, 8) = .LI1 L(1 +is, ¢, °Adzy)

oo L0, i ® sym™)
=11 ﬂ y
J= (1 + lS, (pl] ® sym )

. rij
. & ts—5+a, Qi

=1 j=1a= T
tista 0L<ls———’+a+l, (pij>

2

1 i o= 00)

=1j L<1s+ 2"+1 (p,,)

at least up to bad primes. If z is cuspidal, this is the only non-trivial c-function.
This means at least when 7 is cuspidal, our claim is justified, since the
normalizing factor should be the least common denominator of the c-functions.
One can expect that the least common denominator of the c-functions is equal to
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the denominator of the c-function for the longest Weyl element even when 7 is
not cuspidal.

Observe that in our case, G=Sp,, M=GL, n=w, ¢,=0® sym" !,
Adiy, =p,Adry, = A2p. Here p is the standard representation of GL,. Therefore,

¢r°Adey, = 0 @ sym”"!

1
gives L<s + %, w), and

{n/2] )
@r°Adry, = @ (0® @ sym?" ™ %)
j=1

gives T2 L(2s+n+1—2r, »?).

1.3. Eisenstein series

In this subsection, we assume k to be a global field. We will investigate the poles
of Eisenstein series associated to good sections.

Let w be a quasi-character of A*/k™. Put K, =11, K, ,. Let I(w, s) be the space
of functions f(h) on H,(A) which satisfy (1) and (2):

(1) f is right K, -finite.

A *
(2) For any p = 0. t4-1 eP,(A),

f(ph) = o(det A)|det A|*@* V12 f(h).

Clearly, I(w, s) = ®, I(w,, s). We also define holomorphic sections and mero-
morphic sections similarly. We say that a meromorphic section of I(w, s) is a
good section if it is a finite sum of decomposable elements =TI, £ satisfying
following (i) and (ii).

(i) For almost all unramified v, f® =d(w,, 5)P., s
(i) £ is a good section of I(w,, s) for all v.

In other words, the space of global good sections is the restricted tensor product
of the local good sections with respect to d(w,, 5)@,,, .. Note that the product

. 1 .
f9=T1, £¥) is absolutely convergent for Re(s) > n-;— , and can be meromorphi-

cally continued to C.
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We define the Eisenstein series E(h; ) associated to ' by
E(h; fO)="% [O0h).
veP,\H,
This is absolutely convergent for Re(s) > 0, and can be meromorphically
continued to C. The functional equation of E(h; f*)) is given by
E(h; ) = E(h; M, f*).

Here M, is the global intertwining operator:

M,, =& (M),

v

The global intertwining operator M, does not depend on the choice of
representative of woe Wy in Norm(T,).
LEMMA 1.4. Iff® is a good section of I(w, s), then M, f© is a good section of
I(w™ !, —s).

Proof. Let S be a finite set of places of k such that if v ¢ S, then w, is unramified,
Y, is of order 0, and f®=d(w,, 5)¢,,, ;- Then

Mwof(S) = 1_[ d(wv’ S)cwo(ww S)d)w;',—s X n Mwofv(S)

v¢S veS

= l_[ awo(ww S)(ba)"_ 1_sX l—[ Mwof;)(S)
¢S veS

=[ldw, ", =)o —sx ] M¥ L.
ofS ves

By Lemma 1.2, the lemma follows.

—1
LEMMA 1.5. Suppose that n=1, and w=1. Let w=((1) 0>‘ Then the global

intertwining operator M,,: I(1, s) - I(1, — s) is holomorphic at s=0, and is equal to
the scalar multiplication by —1 at s=0.

Proof. Put f©'=I1,¢, ,, and &(s)=|D|?{(s). Here D is the discriminant of k
(resp. D=gq*972, g is the genus of k) if k is a number field (resp. if k is a function
field). Then

© ¢, . (13.1)

(s) __
M.f s+ 1)

Since &(1—s)=¢&(s) and &(s) has a simple pole at s=0, 1, the right-hand side of
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(1.3.1) is holomorphic at s=0, and
M, f© = —fO

Since I(1, s) is irreducible on some neighbourhood of s=0, the lemma follows.

PROPOSITION 1.6. Suppose that k is a number field. If f® is a good section of
I(w, 5), then the pole of E(h; f) are at most simple. The set of possible poles is as
follows.

(1) When w is principal: we may assume = 1. Then the set of possible poles is:

“

1 1
{"f —m|m€Z,0<m<n+1,m¢%—}

(2) When w is not principal, and w? is principal: we may assume w*=1. Then
the set of possible poles is:

- -1
{nzl—mlmeZ,0<m<n—1,m¢n2 }

(3) If w? is not principal, then E(h; f*) is entire.

Proof. As in [22], the constant term E°(h; f) of E(h; /) along U,(A)is given
by

E%(h; f) = f E(uh; /) du

U (kN\UL(A)

= ¥ M

weQ)y,

Let S be as in the proof of Lemma 1.4. Then

M, [ = [l d@, s)@y )b, s x [T M £

v¢S ves

= d(, s)cu(@, ) [] o5,

vgS
X l—[ [d(wv’ S)Cw(ww S)] - le U(S)‘

veS

Therefore the poles of E(h; f*)) comes from the poles of d(w, s)c,(w,s). In
particular, if w? is not principal, E(h; /) is entire.
We may assume w? = 1, without loss of generality. When w =1, (resp. w?=1,
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w # 1), the possible poles of d(w, s)c,,(w, s) are integral or half-integral points in

n+1 n+1 . n—1 n—1
) esp. 73 .

We first prove the proposition for the case n=1orn=2.If n=1, w # 1, then
(2) is obvious since d(w, s)c,,(w, ) are entire. f n=1, w =1, then we have to show
that s=0 is not a pole of E%h; f*)). Note that f® may have a simple pole at
s=0. Let w be as in Lemma 1.5. Then by Lemma 1.5,

lin& SE°h; f)Y=(1+M,) [lin& sf‘s’:|
=0.

Thus E°(h; f%) is holomorphic at s=0.
If n=2, the possible poles of d(w, s)c,,(w, s) are as follows:

1 W) do, el PO o
Wy Q 0 L(S+%)C(23+ 1) { —%, %’ _%’ 0} { —%7 0}
wo {2} 1 Ls+W2s+1) (=% -3,03 {-30}
wy {1} 2 L(s +2){(2s) {-20,3 3} {0, 3}
wa L2} 3 Lis—H@29) 0,443 (0, 4)

Here, L(s)= L(s, w). By functional equation, we may assume Re(s) = 0, so what
we have to prove are reduced to the following two statements.

(132) fw=1,

lim, (s—*(My,+M,)f® =0,

(133) fw? =1,

lims(1+M, +M, +M,)f=0.

s—=0
Proof of (1.3.2)

lim, (s—4°M,,f® = lim M(w, 2)° [s—4*M,,, f].

We know that (s—3)°M,,, /' is holomorphic at s=3. Moreover, by (1.2.1) and
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Lemma 1.5, M(w,,, xy"*) is holomorphic and is equal to the scalar multiplication
by —1 at s=1. Hence (1.3.2).

Proof of (1.3.3). By the same way as above, we can prove
lim s(M,., + M) f© =0.
But the proof that

lim s(1+M,,,) /) = 0

is more delicate. We have
M,, [ = MWw,,, 1) ° M(W,,, x> ° M(W,,, x5/

By (1.2.1) and Lemma 1.5, M(w,,, xs’*) is holomorphic and is equal to the scalar
multiplication by — 1 at s=0. Moreover, by (1.2.1), M(w,,, x) (resp. M(w,,, xs'*) is
essentially the intertwining operator

S RO R BT RS
(I O

on SL,. Moreover, these two are mutually the inverse of the other except for
their singular points. Since the representations I(w,s+%) and I(w, —s—3) of
SL,(A) are irreducible on some neighbourhood of s=0, there is an integer a such
that

M o -1 s+1 and s*M o -1 !
p— s — — —
5 1 0) T2 1 0) 72
are holomorphic, and are mutually the inverse of each other at s=0. In fact, it is
easy to see that a=ord,—,,, L(s, w). We have

lim sM,,, /© = lim [*M(v,,, 1210 [M(wy,, 221 ° [s~"M(w,,, 2005/,

Each term is holomorphic at s=0, so the exchange of limit and the composition
is possible. Hence (1.3.3).

Now we assume n > 3. By the functional equation, it is enough to investigate
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2
the right half plane Re(s) > 0 except for the case n is even and s=0. In particular,
if n is odd, s=0 is not a pole of E(h; ), by [16].

We recall the theory of degenerate Eisenstein series on GL,, (see [12,§5]). Let
0 be the maximal parabolic subgroup of GL, given by

R
~\0 a,
Let I,(s) be the representation of GL, induced from the character of Q given
by

. L 1 . .
the integral or half-integral points in [O, ﬁ—] Note that /' is holomorphic on

a,eGL, 4, azekx}.

a *
! — |det a,|*"|ay| ~ " Dsin,
0 a,

We define standard sections, holomorphic sections etc. as usual. For each
prime v of k, let F§), be the meromorphic section of I, ,(s) which takes value
{(s+%) on the standard maximal compact subgroup of GL, ,.

Taking any finite set S of primes of k, put

FO = [T FS, x [ FY
v¢S veS

where FY), ve S are arbitrary holomorphic sections of I, ,(s). Define degenerate
Eisenstein series on GL, by

E(g; F9)= Y F9>g).
7€0\GL,

Then the possible poles of E(g; F®) are s= +%. Moreover, each pole is at most
simple and the residue is a constant function. The functional equation is given
by

E(g; F®) = E(g; M,,F®).

Here
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M, F® is a meromorphic section of the representation induced from the
character

a *
(01 >H|a1|—(n1)s/n|deta2|s/n
a

of the parabolic subgroup
P N O U
¢= {( 0 a2>

M, F® has at most simple poles at s=%, 5—1.
We return to the proof of Proposition 1.6. Let

a, ek, azeGL,,_l}.

fO=T1ldo, )po, <[] 1

vgS veS

be a good section. We may assume each f;*), veS is a standard section, since
d(w,, s) has no pole in Re(s) = 0.
Let P¥ be the parabolic subgroups of H, given by

{a * * % \
P¥= 0 4 : ; €eH,laek™, AeGL,_,
a
\ 0, * 'A1}

Let t=(t,, t,) € C*. Let I py(,, t), be the space of right K -finite function fﬁ‘t’)f on
H,, such that

Spx(pih) = (a det A)al"* *"Idet A2 (h),

where
a * * *
0 A =* * *
P = o1 0 € P¥.
0" % tA~1

For each veS, let f be a standard section (of two variables) of I pr@,, 1)
defined by

Fpik) = la~ " det A7 1[0t 112 £ 0,
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where p, is as above, ke K, and

ty+(n—1t,
§=—.
n

When v ¢S, let ¢ps , . be the standard section of I px(w,, t) which is identically
1 on K,. Put

7o=T| e+ e (-4 e (4 5) (1+2) T e en-2)|

vgS r=1

X 1—[ ¢P’{,wu,t X l_[ :(t).

vgS veS

Here L,(s) stands for L(w,, s). Put

Eh; fO = Y fO%h)

yePT\H,

= Y X Ouh. (1.3.4)

veP,\H, y,eP{\P,

The inner sum in the last expression is a degenerate Eisenstein series on GL,. In
particular, the residue of this inner Eisenstein series along t; —t, =2 is, up to
non-zero constant, equal to

n+1 n—1)\n=-1)y2]
Lg <5 + T)CS(S“‘"— 1)Lg (S + '2—> [T ¢s@s+n+1-25)
r=1
X[ bw,.s X T £E0h).
véS ves

Here s=t,+3. So, the residue of E(h; f®) along t, —t,=2 is, up to non-zero
constant, equal to

—1
Ly <s + —"2—) C2)E(R; £, if nis even
(1.3.5)
n—1 e
Lg <s + —2—> E(h; f©), if n is odd.
Put

D, = {(tn t;)| Re(ty) > Re(t,) + g, Re(t,) > g}
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Then f® is holomorphic on D,, and the summation (1.3.4) is absolutely
convergent on D, so E(h; f®) is holomorphic on D,. Put

a x * *
pt {0 A * B H| r A B o
=0 ola 0)6 €KL e p)Eina
0 C * D
Then
Eh; fO= Y Y  JOQuoh. (1.3.6)

yeP3\H, 7,€PT\P}

The inner sum of (1.3.6) is

Lg(t, +1){s <t1”‘t2 + g) s <t1 +i; + g)

times an Eisenstein series on H, _ ; associated to a good section of I(w, t,). By the
induction assumption, the poles of this Eisenstein series is

n n .
h=g5—m meZ,OSmSn,n#i ifo=1
(13.7)

n—2 - .
{t2= 5 —m‘meZ,Ongn—Z,nyénzz} fo#l

By the functional equation of the inner Eisenstein series, E(h; f®) is holom-
orphic on the domain

D,= {(tl, t,)| Re(t,) > Re(t,) + g Re(t,)> — Re(t,)+ g Re(t,) > g}

Therefore E(h; f®) can be meromorphically continued to the convex closure of
D, uD,, and the singularities in this domain are given by (1.3.7).

Similarly, by the functional equation of degenerate Eisenstein series on GL,,
E(h; f®) is holomorphic on the domain

D, = {(tl, t,) | Re(t,) > 1, Re(t,) > Ref(t,) + g}

and can be meromorphically continued to the convex closure of D, uD;. The
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singularities in this domain are given by

n
ty—t,=+=,. 1.3.8
foaes) o
By the same reason, E(h; f®) is holomorphic on
D,= {(tl’ t)| Re(t;) < —1, Re(ty) > —Re(t;) + g}

and can be meromorphically continued to the convex closure of D, uD,. The
singularity in this domain is

{tl i, =+ } (1.3.9)

NS

Thus E(h; f®) can be meromorphically continued to the convex closure of
D,uD,uD;yuUD, and the singularity in this domain is the union of (1.3.7),
(1.3.8) and (1.3.9). Therefore (1.3.5) has at most simple poles at

3 n+1 £
s ees s if n is even
2 2

1
12% if n is odd

1 —1
for Re(s) = 0. Here % is a pole only if w = 1. If n is even, Lg <s+ nT> has

—1
neither poles nor zeros for Re(s) = 0. If nis odd, Lg (s + nT) {s(2s) has a simple

pole at s=1 and has no zero at positive integral or half-integral points. Note that
we already know that s=0 is not a pole if n is odd. Thus we have proved
Proposition 1.6.

COROLLARY. Let /' be a global holomorphic section of I(w, s). Let S be a finite
set of places of k such that f'*) is invariant under K ,, v¢ S. Then the set of poles of

ds(e, s)E(h; f*)

is given by Proposition 1.6.

This result is also proved in [14].

If k is a function field, we can prove the following proposition similarly.
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PROPOSITION 1.7. Suppose k is a function field. If f© is a good section of
I(w, s), then the poles of E(h; ) are at most simple. The set of possible poles is as
follows.

(1) When w is principal: we may assume w=1. The set of possible poles is:

1 2 —1
{+n+ N 7./ Z}

-2 logqg

- < —1 —1
v " 1-m+7Z ZlmeZ,Osmsn—l,m;ﬁn }
2 log q 2

(2) When w is not principal, and w? is principal: we may assume w* =1. Then the
set of possible poles is:

{n—l n\/—'lZ

+
2 " log ¢

meZ,Ogmgn—l,m;ﬁngl}

(3) If w? is not principal, then E(h; f*) is entire.

REMARK. Proposition 1.6 or 1.7 implies that the possible poles of Langlands
L-function of irreducible cuspidal automorphic representations of Sp, attached
to the standard representation of the L-group “Sp, ~ SO(2n+1) are

{—n+1, —n+2,...,n—1, n}

or

{—n+1+n——v_lz, —n+2+ L_1Z,...,n—1+an—Vg_qIZ

log ¢ log ¢

>

n+ n—\’_l Z},

log ¢

and all of them are at most simple (cf. [14], [20], [21]).
. . n—1
1.4. Calculation of the residue at s ==

In this subsection, we assume w = 1. Then there exists a class 1 element of I(w, s).
Take ¢ e I(w, s) such that ¢ |x, = 1. Put

E(h, 5) = E(h; ¢,),

1\ (/21
"er ) 11 €@s+n+1-20Eh,s).

r=1

E(h, s)= f<s+
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E(h, s) satisfies the following functional equation:
E(h, s) = E(h, —s).

-1
We will determine the residue of E(h;s) at s =£2—. Let P,, be a parabolic

subgroup of H, given by

{a * * *\

0 A| B A B

= H L, _ S

Py, \0 0 g1 0’6 n|a€eGL,_,, <C D)E Pr
0 C| = D

LetseCand t=(ty, 5,...,1,)e C"= X*(T,) ®z C. Let ¢(h; P,,;s), d(h; B,; t)=
@(h; B,; ty, t,...,t,) be the functions on H,(A) given by

¢(Pk§ P,,,,; s) = |a|s+(n+r+1)/2

¢(bk; B,; s) = fI Ibiln+n+1—i’

i=1

where ke K,
a * *
0 A| = B \
P= 10 0ol o €P,,(A),
‘0 C * D}
b, *
b,
/ ‘: *
0 b,
b= € B,(A).
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Put

Ep (h,s)= Y oUh; Py o)

yeP, \H,

Eg(h,ty= Y ¢Oh; B, 1)

yeB,\H,

For any ae @}, let [ (f) and F * be linear forms and hyperplanes of C" given by
l:(t) = <5(9 t> - 19 l;(t) = <&’ t> + 19
Fr={teC"|lj()=0}, F, ={teC"|l,(t)=0}.

It is easy to see that the residue along # ..., Z 5 _,F 5 . ..., F4, inthe
sense of [9, p. 195] is

n—r r — _1
R e T é(2i)‘Ep",<h, et )
i=2 i=1 ’
where R = Res, - &(s). Put

Ep(hty= [] &K& t)+DEg,(h 1)

acdy;

T &tite+ Dat—t,+1) H &+ D)E;(h, 1).

1<i<js<n

Il

Then it is known that
[T I @I, (0Eg,(h, 1) (1.4.6)
aedy,
is entire and invariant under t —wtw ™' for any we Wy,
—1 -3 —1
The value of (1.4.6) at t—<s+ 3 LS+ nT,‘..,s— n_> is

n—1
@eRy! UZ {1+ Deam

n n+3 . n—1 . n+3 .
xi]—[1<s+ > 1><s+ 7 —l>é<s+ 5 —-l>

x [] @s+n+2—i—j2s+n—i—jE2s+n+2—i—j)

1<i<j<n

x Ep, (h, s).
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So the value of (1.4.6) at t=(n—1,n—2,...,1, 0) is

n—1
QR)y""! 1:[2 =D+ 1@y
x (= Ryml(n—2) [ &)
i=2

«2:0) T[ 11 &i+))

i=2 j=1

x 2 Ress=(,,_1,,2Epn‘o(h, s).

On the other hand, the value of (1.4.6) at t=(s, n—1,n—2,...,1) is

n—1

@Ry [T {G— D+ 1)e@)

i=2

X [T G+j+06+7—DE+))

1<i<j<n—1

2n—1

x L (s—n+i+1)(s—n+i—1)&s—n+i+1)

x E PM_l(h, s).

It follows that Ep ,_(h,s) is holomorphic at s =0, and the value of (1.4.6) at
t=0,n—1,n—-2,...,1)is

R T (- 1)+ ey

X [T G+j+DG+j— D& +))

1<i<j<n—1
(=R =217 1 0 T] &0
X Ep"‘n_ ‘(h, 0).

Thus we get the following proposition.
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PROPOSITION 1.8.

Res;— - 1y2Ep, (1, 5)

n/2]1—1

:%R [T i+ 1] éen—20""En_ (b0,
i=1 i=1

or, equivalently

Resg—(n-1)2 Eano(ha s)

n/2]—1

1 [n/2]
= 5 Ré(n) ]:‘[1 &QRi+Ep,_ (h,0).

—1
LEMMA 19. I <1, %) is generated by class 1 vectors.

Proof. Let y be a character of T, given by
o) =TT I

-1
Then I (1, nT> is a quotient of Indj"y. It is sufficient to prove that Ind4»y is
generated by class 1 vectors. Let P be the standard parabolic subgroup of H,
corresponding to «,. Then

Ind¥ry = Indf(Indj, x).

The restriction of Ind} y to 1, (SL,) is an irreducible tempered representation.
Let M be the standard Levi factor of P and w be the longest element of W,/ \W}, ,
ie.,

By the well-known theory of Langlands quotient, Indf~(Indf y) is generated by
any element f such that M, f # 0. It is easy to check that a non-zero class 1
vector satisfies this condition.
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Let f® be any good section of I(1, s). Put

W= Wo..n

1 0
—1
! 14.7
o 1 ' (147
1
1
It is easy to check that M, f® has at most a simple pole at s=n_ and

Res;— (—1)2 M, f®
is in Indﬁ:ﬂ 1. An easy calculation shows

ReSSZ(nfl)/ZquS(h; Pn.O; S)

/21— 1

[n/2]
=R [] &2i+1) [ &2n—2i)"'¢(h; P,,—y; 0).
i=1 i=1
Thus by Proposition 1.8,

Ress:(n—l)/z Epw(h, (h; P, o; 5)

= %EP,,,,,_,(ha Res - 1)2 My, d(h; P, ; 9)).
PROPOSITION 1.10.
Ress:(n -1)/2 EP,,‘O(h; f(s)) = %EP,,Q,,, . (h; Resg— - 1)/2 wa(s))-

Proof. By Proposition 1.8, this equation holds for a non-zero class 1 vector.
Since both sides are H,-equivariant, it holds for any [,
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2. Triple L-functions

Let k be a global field. Let K be a semi-simple abelian algebra of degree 3 over k.
There are three cases:

Case (1) K=k®kDk.
Case (2) K=k @ K/, k' is a quadratic extension of k.
Case (3) K = k", k" is a cubic extension of k.

Let G be an algebraic group defined over k given by
G = {geGL,(K)|det gek™}.

Thus G is

Case (1) {(g'", g'®, ) e(GL,)? | det gV =det g =det g},
Case (2) {(¢'", g9®)eGL, x R, ;,GL, |det gV =det g},
Case (3) {ge Ry GL,|det gek™}.

As in [22,§0], we take an 8-dimensional representation ¢ of the L-group of
GL,(K). The L-group is the semi-direct product of GL,(C) x GL,(C) x GL,(C)
and W,. W, acts by permuting the three GL,(C) factors. The restriction of ¢ to
GL,(C)x GL,(C)x GL,(C) is 0, ® 0, ® 0,, where o, is the standard 2-dimen-
sional representation of GL,(C). The restriction of ¢ to W, is the permutation of
the three factors.

We denote by Z the connected component of the center of G. Z is naturally
isomorphic to GL,. We embed G into

0, —1 0, —1
GSp, ={heGL6|h<13 03>'h:m(h)(13 03>, m(h)ek"}
3 3 3 3

as in [22,§1]. We denote this embedding by 1.
Let IT be an irreducible cuspidal automorphic representation of GL,(A ® K),
ie.,

Case (1) I=n, ® n, ® 3, where n,, n,, and n; are irreducible cuspidal
automorphic representation of GL,(A,),

Case (2) [1=n, ® n,, where 7, (resp. ©,) is an irreducible cuspidal automorphic
representation of GL,(A,) (resp. GL,(A,)),

Case (3) I is an irreducible cuspidal automorphic representation of GL,(A;).

Let Qp be the central quasi-character of I1, and wp be the restriction of Q; to
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Z(A). Put o = wg. Let #/(I1, ) be the Whittaker model of I, i.e.,

Case (1) #(IL Y)=H"(ny, ) ® W(ny, Y) @ #(m3, ¥),
Case (2) W (L Y)=W (ry, ¥) ® W (ry, Y o tryp),
Case (3) #'(I1, Y) =W (I,  © try ).

If ¢ is a cusp form belonging to IT, then there exists We % (I, ) such that

=2 ({5 1)s)

We assume that W is decomposable: W = I1, W,. Here, v runs over all places of
k. Put

mA *
P = 0, ‘A €GSp; .

By [22, §1], the double cosets P\GSp;/i(G) contains one open coset and the
other cosets are all negligible in the terminology of [20]. We choose a
representative #, of the open double coset and put

R, = {geGlnougn, ' € P}.

We can choose 7, so that

R, = {(8 Z)eGLz(K)Iaek", trigjen = 0}.

Let v be a place of k. Let J(w,, s) be the space of functions f,(h) on GSpa(k,)
which satisfy the following (i) and (ii):

(i) f, is right finite by the standard maximal compact subgroup of GSps(k,).
.. mA *
(i) For p = 0. 41 € P(k,),
3
foph) =@ (m)|m|>** 2o (det A)|det A|>* ', (h).

Observe that if f,eJ(w,,s), then f,ls,,x,) €@, 25s—1). We define holo-
morphic sections and meromorphic sections of J(w,, s) in the same way as in
Section 1. The intertwining operator M, can be defined similarly. We define a
meromorphic section £ is good if

[d(a)v’ 25— l)cw(ww 25— 1)]_1Mw U(S)
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is holomorphic for all we Q5. Obviously this condition is equivalent to say that

(D) [ lspsr 18 @ good section of I(w,,2s— 1) for each Hecke operator ¢ on

GSp;(k,). By Lemma 1.2, f®(h) is a good section of J(w,,s) if and only if

o, (m(h)M¥, fO(h) is a good section of J(w, ', 1—s), where m(h) is the multiplier

of h, and by Lemma 1.3, any holomorphic section of J(w,, s) is a good section.
For each meromorphic section f® e J(w,,s), and W,e % (I1,, ), put

YO, W) = L . 12no @)W, (g)dg.

In [7], [22], it is proved that W (f!;W,) is absolutely convergent for
Re(s) » 0, and has meromorphic continuation to C, and if v is non-archimedean,
Y. (f9; W,)is a rational function of g, *. By [22, Proposition 3.3], for each s, € C,
there exists a holomorphic section f, of J(w,, s), and W, e # (I1,, ,) such that

W (/575 W) # 0.

Put W,(g) = Q,(det g)~ ' W,(g), where Q, is the central quasi-character of I1,.
Then W, e w(I1,, y,). It is proved in [7], [22], that there exists a meromorphic
function &'(s, I1,, g, ,) such that

¥, - (@, (m)ME, 15 W,) = €5, T, 0, y,) V(£ W),

For a non-archimedean place v, we consider the fractional ideal I, of
R,=C[q, " q¢], generated by W (f®; W,) attached to good sections f® of
J(w,,s) and W,e# (I1,,¥,). Then by [22, Appendix 3 to §3], I, admits a
common denominator and 1€ 1,. Thus I, has a generator of the form P(q, *)~ !,
P(X)eC[X], P(0)=1. We let

L(s, 1, 0) = P(q,®) ',
e(s, 1, o, Y¥,) =€(s, I, o, Y, )L(s, T1,, 6)L(1—s, T1,, 6) " 1,

then &(s, I1,, 0, ¥,) is of the form aq®, aeC, beZ, and

¥y - (@fmm)ME, % W) _ ¥ (f9; W,)
L(1—s, 11, o) = s I, o, %)m. 2.1)

When v is unramified, this definition agrees to wusual definition
det(1g —o(g,, Fr)q, ) !, where g, is the Langlands class of IT,. For a holo-
morphic section f,) and W, e #'(I1,, y,), a careful calculation of denominator of
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Y (f9; W,) shows that the denominator divides det(13—oa(g,, Fr)gq, ®) (cf. [22,
Appendix 3 to §3]). It follows that L(s, IT,, )~ " is a divisor of d(w,,2s—1)"!
det(13 —o(g,, Fr)g, ). On the other hand, there are a good section f® of J(w,, )
and W, e # (Il,, y,) such that W (f,*; W,)=det(15 —a(g,, Fr)q, ¥) . This shows
that L(s, IT,,0) ! is a multiple of det(1gz —o(g,, Fr)g, *). Moreover we know

det(IB B G(gv’ Fr)q; S)
’ I —
8(S9 v 05 l/lv) det(ls_o_(gm Fr)flq's}* 1)

Since d(w,,2s—1) ! and d(w, *,1—2s)"! have no common divisor, we have
L(s, T1,, 0)=det(13 —a(g,, Fr)g, ¥) ™', as we expected.

When k, is archimedean, we define L-factor L(s, IT,, o) as follows. The proof of
[7, Proposition 5.1] shows that there is a meromorphic function ofs) # 0 such
that

als)” (T W)

is holomorphic for any holomorphic section f® and W,e % (Il,,,). Though
[7] has dealt with only case (1), it is not difficult to generalize the result to the
case k,=R, K,=R @ C. We have only to use the local functional equation of
Asai-type L-functions instead of the results of [8]. By Weierstrass theorem, there
is a meromorphic function A(s) such that

As)” (S5 W) (22

is holomorphic for any good section f® and W,e % '(I1,,y,) and if A'(s) is
another function with this property, then A(s)A'(s) ! is holomorphic. Obviously,
for each s, € C, there exists a good section £, and W, e #'(I1,, ,) such that (2.2)
does not have a zero at s=s,. By Lemma 1.3 and [22, Proposition 3.3], A(s) has
no zeros. We define L(s, IT,, 6) = A(s). Then (2.1) holds with some entire function
&(s, I1,, a,4,) which have no zeros. Note that L(s,I1,, o) and &(s,I1,,0,¥,) is
determined only up to entire functions which have no zeros.

Let v be any place of k. Assume I, is unitary. We define a non-negative real
number XIT,) as follows.

Case (1) II,=n, ® 7, ® n5: When =; is tempered, put A(n;)=0. When =; is the
complementary series m(ua’, uo = *), (1 is a unitary character of k), put A(m;)=|A|.
Put A(IT,) = Amy) + A(7,) + A7 ).

Case (2) II,=m; @ m,: let A(x;) be as above, and put AI1,)= A(rn,)+2A(r,).
Case (3) I1,=m,: let A(n,) be as above, and put A(IL,)=3A(r,).
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LEMMA 2.1. If 1, is unitary, then L(s,I1,,0) has no poles on the domain
Re(s) > AI1,).

Proof. By an argument similar to [7, Theorem 1], [22, Proposition 3.2], we
can show that if £ is a holomorphic section of J(w,, s) and W, e % (I, ), then
W (f9; W,)is absolutely convergent for Re(s) > A(T1,). Since d(w,, s) has no poles
for Re(s) > 0, a good section £, is holomorphic for Re(s) > 0. This proves the
lemma.

LEMMA 2.2. Assume K is not a cubic extension of k. Assume I, is unitary.
Assume each component is a subquotient of a principal series, and AI1,) < 1/2.
Then L(s,I1,, o) (resp. &(s, I1,, 0, ) agrees to L- factor (resp. e-factor) associated
to the 8-dimensional representation of the Weil group W, determined by I1,, and o.

Proof. By [7, Proposition 5.1], &'(s, IT,, g, ¥,) coincides ¢'-factor determined by
the Weil group. The proof of [7] Proposition 5.1 works for case (2). By the
assumption, IL(s,I1,0) has no poles on the domain Re(s) > A(I1,) and
L(1—s,11,, 6) has no poles on the domain Re(s) < 1 —A(IT,). This proves the
lemma.

REMARK. By Lemma 2.2, we can identify the archimedean L-factors and usual
I'-factors if IT is generated by Hilbert modular forms over a totally real field.

COROLLARY. Assume K is not a cubic extension of k. Assume Il is unitary.
Assume no component is extraordinary, and MI1,) < 1/2. Then the conclusion of
Lemma 2.2 holds.

Proof. For simplicity, we assume K=k @ k®k, II,=n, ,® 7, ,® 73, and
all of my ,, 7, , and 75, are supercuspidal. 7, , = n(x; ,) (i = 1,2, 3) for some quasi-
character g;, of some quadratic extension K;, of k,. Choose global quadratic
extension K; of k such that Kk, =K ,. It is easy to check that there exists global
quasi-character y; of Ag such that v-part of ; is ; , and n(y;) is principal series
outside of v and all archimedean place. Put T1 = 7(y,) ® n(x,) ® n(x3). Then
L(s,T1, o) is L-function associated to 8-dimensional representation of global
Weil group. The conclusion of Lemma 2.2 holds outside v, so does at v.

We now consider the global theory. We say that a meromorphic section of
J(w,s) is a good section if it is a finite sum of decomposable elements
fO=TI1, £, satisfying the following two conditions:

(i) For almost all unramified places v, f,*)|x, = d(w,, 25—1).
(i) f¥ is a good section of J(w,, s) for all v.

Note that the infinite product I1, f® is absolutely convergent for Re(s) > 0,
and can be meromorphically continued to C.
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For each good section f©® of J(w, s), put

Eh f9)y= 3  fO0h).

yeP\GSp;

Then the restriction of E(h; f) to Sps(A) is an Eisenstein series on Sp,(A)
investigated in Section 1.3. In [7], [22], it is proved that if f©=II, f© is
decomposable, then

J E(i(g); f*)p(9)dg = [[ ¥, (S5 W), (23)
Z(A)G(k)\G(A) v

for Re(s) >» 0. Set

(s, 11, 0) = [ | L(s, I1,, o)

and

S(S, H, O') = nS(S, Hu: a, !pv)

Then by Proposition 1.6, (2.1), and (2.3), we have the following propositions.

PROPOSITION 2.3. L(s,I1,6) can be meromorphically continued to C. It is
entire if w? is not a principal quasi-character. If w?>=1, and k is a number field,
then L(s, I1, 6) has possible poles at s=0, 1. If w* =1, and k is a function field with

n./—lZ1 n./—lZ

constant field F ,, then L(s, 1, 6) has possible poles at s e Jlog g & 2 log g

All the possible poles are at most simple.

PROPOSITION 24. L(s, I, 0) satisfies the following functional equation:
L(s, I1, ) = &(s, T1, o)L(1—s, 11, o).

Now we investigate the poles of L(s, I'l, o). By Proposition 2.3, we may assume
®w?=1 and s=0 or 1. By the functional equation, s=0 is reduced to s=1. If
L(s, T1, 6) has a pole at s= 1, then there exists a good section /' of J(w, s) and a
cusp form ¢ belonging to IT such that

J [Res,— E(i(g); f*)]o(g)dg # 0. (24)
Z(AYGH\G(A)

PROPOSITION 2.5. If w=1, then L(s,I1,0) is holomorphic at s=1. In
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particular, if k is a number field, L(s, 1, ) is entire (cf. [22, Theorem 5.1]).

Proof. By Proposition 1.10, the restriction of Res,_, E(h; f*)) to Sp; is an
Eisenstein series associated to a function in the representation induced from the
trivial character of the maximal parabolic subgroup P, ,. It is easy to see that
each coset in (1(G) " Sp;3)\Sp3 /P , is negligible. It follows that (2.4) is identically
Zero.

We now assume that w?>=1, w # 1 and L(s, I1, ¢) has a pole at s=1. Let K be
the quadratic extension of k corresponding to w by class field theory, and 0 be
the non-trivial element of Gal(K/k).

Suppose that K=k", k" is a cubic extension of k. Let I be the base change of
IT to GL,(Ay-k) (cf. [18]). Consider the triple L-function L(s, I, o) of [T over
K. Here, ox is the restriction of ¢ to the semi-direct product of
GL,(C) x GL,(C) x GL,(C) and Wy. Then an easy calculation shows

L(s, Ik, og) = L(s, [1 ® @, o)L(s, 11, o).

Here, & is any extension of w to A;".. Note that G is a Levi subgroup of the quasi-
split simply connected group Spin(8) of either type *D, or D, according as k"/k
is cyclic or not (see Shahidi [23]). Then [23, Theorem 5.1] implies

L(1+2s, o)L(1+s5, II® @, 6) #0

for Re(s)=0. Since w is a non-trivial unitary character of 4,°, this implies the
non-vanishing of L(s, I1, 6) at s=1. So, L(s, I, 6x) has a pole at s=1. But since
op, =1, TIx cannot be cuspidal by Proposition 2.5. It follows that there is a
quasi-character y of Agx such that IT=n(y). By a simple calculation, the triple
L-function L(s, n(y), o) is given by

L(s, m(x), 0) = Lg(s, xlaz)Lik(s, (o Nieg)x ™" x0): (2.5)

Here, 0 is regarded as an element of Gal(k”K/k"), by the natural isomorphism
Gal(k”K/k") -~ Gal(K/k). This equality holds up to bad prime factors. But in fact,
(2.5) is an equality of global L-functions. To see this, observe that

[1&G, 1y, 0, 9,)

ves
has no zero on Re(s) > 0, and has no poles on Re(s) < 1, by comparing the
functional equation as a triple L-function and that as a L-function associated to
8-dimensional representation of the Weil group. By Lemma 2.1,

[1Ls, 11, 0)

veS
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coincides with the product of L-factors of the right-hand side, since A(IT,) =0 for
IM=mn(y). It follows that (2.5) is an equality of global L-functions.

Let us prove yla; =1. First observe that ylyx =1, since @y, =" xlas
Suppose yla; # 1. Then Lik(s, (x° Nyk/x)x~ 'x°) has a pole at s = 1, therefore
we have

2°Nekx =200

Put I =Im(Nyg/k:Agx = Ag). Then the index [Ag:1-K™] is 1 or 3, by the
class fields theory. Let ye Agg, x = Nypg/k(y). Then

21°(x) = x0 ™Y
= x(x)~ "

It follows that

x(x?) = (N k(%))
= 2(¥)°(x) "
= 1(x?).

So y is trivial on I- K™. It follows that |4 = 1, since I- K™ - A = Ag . Thus we
have proved the following theorem.

THEOREM 2.6. Suppose that K = k", k" is a cubic extension of k, and L(s, 1, o)
has a pole somewhere. Then

(@) Let IT', o' be the objects obtained by twisting mt, by a*, s € C. Then w'?> =1,
o' # 1, and L(s,IT', 6) has a simple pole at s=1, for some s,eC.

(b) Assume that w*>=1, w # 1, and L(s, I1, 6) has a pole at s=1. Let K be the
quadratic extension of k corresponding to w by class field theory. Let 0 be the non-
trivial element of Gal(k"K/k"). Then there exists a quasi-character y of
Agk/k"K™ such that TI=n(x) and xlsx = 1. Moreover the triple L-function is
given by

L(S’ TC(X), O') = CK(S)Lk"K(S: X_ IXG)'
Next, suppose that K=k @ k@ k, [I =7, ® n, ® n5. By the assumption,
ww,w3=0w. Let m;, (i=1,2,3) be the base change of n; to GL,(Ag). Put

Mg =1, x ®ny x ® 73 . Then,

L(s, g, og) = L(s, 1 ® w, o)L(s, T1, o).



Poles of the triple L-functions 233
Here, I1 ® @ means (1, ® w) ® ©, ® n;. As is case (3), the left-hand side has a
pole at s=1, and wp, = 1. This time, we can deduce that one of m; x (i= 1,2, 3),
say m, x, is not cuspidal. So there is a quasi-character y of Ag /K™ such that

ny =n(y). Observe that x|, = w; Yw3 1, since the central quasi-character of n(y)
is - y|a;. The triple L-function L(s, I, o) is given by

L(s, T1, 0) = Lg(s, (m3 x ® 1) X 73 k).

Let us now prove that neither n, x nor m; x are cuspidal. Suppose that 7, x or
T3 x> SAY T, g, 15 cuspidal. Then

Tk @ ¥ = 3 k- (2.6)

In particular, m; x is cuspidal, too. Since 7, x and 75 ¢ are 0-invariant,

Tk @ 2= T3 k- (2.7)
Put ¢=y(x®)~!. Since =n(y) is cuspidal, ¢ # 1. By (2.6) and (2.7), we have

T, x ® £ 7, ¢. It follows that ¢ =1. Since ¢’ =¢ ™' =¢, there is a character ¢’ of
A /k™ such that e=¢'° N ,. Taking the central quasi-character of (2.6), we have

(wye NK/k)XZ = (w3° NK/k)_ L
Put I =Im(Ng,: Ag = AJ). Let ye Ag, x = Ngu(y). Then

5(x) = w3(x) " x(y) 2
= w3(x) " x()” a0%) " tey)

= w3(x) " ylx) e (x).
It follows that

@, (x)@,(x)w3(x) = x(x)Ax)03(x) " 1(x) " e (X)ws(x)

= w(x)e'(x).

This contradicts to the assumption w,w,w;=w, since ¢ is not trivial on I.
We have proved that there are quasi-characters y; (i = 1,2, 3) of A{ such that
n; = n(x;)- The triple L-function is given by

L(s, TT, 0)=Lg(s, 212%2%3)Li (s, X3 x2x3) Lk (s, 2105%3)Lk(S, x122%3)-
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In this case, this equality holds for every local L-factor, by Lemma 2.2.
Replacing x; by x? if necessary, we have y;x,x3=1. We have proved the
following theorem.

THEOREM 2.7. Suppose that K=k ® k ® k, and L(s,I1,0) has a pole some-
where. Then the following two assertions hold:

(a) Let IT', o’ be the objects obtained by twisting 7, by &, so€ C. Then w'?> =1,
o' # 1, and L(s,IT', 6) has a simple pole at s=1, for some s,€C.

(b) Assume that w*>=1, w # 1, and L(s,I1, 6) has a pole at s=1. Let K be the
quadratic extension of k corresponding to w by class field theory. Let 0 be the
generator of Gal(K/k). Then there exist quasi-characters y,, X,, and x3 of
AZ /K™ such that 7, =7(y,), 7, =7n(x,), m3=7(x3), and x1x2x3=1. Moreover, the
triple L- function is equal to

Ck(s)L(s, Xleli)LK(Sa Xz_lxg)Lx(& hey IXg 2

Now, suppose that K=k @ k', k' is a quadratic extension of k, [I=7n, ® =,.
Let w, and w, be the central quasi-characters of n; and =,, respectively. By the
assumption, @y - (w,[x;) = .

We first prove K # k'. Assume that K = k'. In this case we have, as in case (3),

L(s, T ® w, 6)L(s, I1, 6) = Lg(s, T, x X T, X 13),

and this has a pole at s=1. Here, [1 ® w means (1, ® w) ® «,. As in case (3), we
can prove that n; g is not cuspidal. It follows that there is a quasi-character y of
K such that n; =n(y). Then

L(s, T1, 0) = Lg(s, (m, ® 1) X m3).

Therefore we have 7, ® y ~ 7. Then n, ® € ~ 7,, where ¢ = y(3*) " '. As in case
(1), we can prove that e2=1, ¢ # 1, £ = ¢ and that there is a character ¢ of A /k*
such that e=¢'c Ng,. Taking the central character of 7, ® y ~ 7%, we have

wyx? = (@y) "

Let I, x and y be as in the case (1). Then
w,(y) = @,0°) "' a(y) ?

= 0,00°) "2 () ey)
= 0,(0°) ' x(x) " e (x).



Poles of the triple L-functions 235

It follows that

0, (X)w,(x) = g(x)o(x)w,(yy°)
= y(x)o(x)x(x) " '&'(x)

= w(x)e'(x).

This contradicts to the assumption ;- w,|s; = w, since & is non-trivial on I.
Thus we have proved K #k'.

Suppose K #k'. Let m g (resp. m, x) be the base change of m,; (resp.n,) to
GL,(A)) (resp. GL (A, x))- In this case we can prove that at least one of 7, x and
T, k is not cuspidal as in case (1). We first prove that actually «, y is not cuspidal.
Suppose that 7,  is cuspidal. Then =, x is not cuspidal, so there is a quasi-
character y of Ag such that n; =7(y). Then the triple L-function is given by the
Asai-L-function of m, x twisted by y:

L(s, I, 6) = Lg(s, Ty ks X)asai-

Let 5 be the character of Ag /K™ corresponding to k'K/K by class field theory.
Then

L (s, (nz x ® 3) X ng,x) = L (s, T3 k> Dasailk (S, T2 k5 M) asai-

Since Lk(s, 5 x» XM)asai 18 the triple L-function for n(yn) x m,, it does not have a
zero at s=1, s0 L (s, (n, x ® x) x 5 k) has a pole at s=1. As in the case K=K/,
this is impossible.

Thus 7,  is not cuspidal, so 7, =n(y) for some quasi-character y of A;x. The
triple L-function is given by

L(s, T, 0) = L(s, 7y X 7y |az DLAS, 7y X 7 |az)s

up to finite number of Euler factors. Here, K’ is the quadratic extension of k,
contained in k'K different from K and k'.

It follows that m; ~ n(x ™ '|5;) or m; ~7(x ™ ![;), but the latter is impossible for
the following reason. First we observe the central quasi-character of =(y),
n(x " 'laz) and n(XVIIA,?) are xla; Ok 2 Hay -, and X_1|A,‘x TWg ks Te-
spectively. Here, w, g (resp. wg-,) is the character of A /k"™ (resp. A*/k™) of
order 2 corresponding to k'K/k’ (resp. K'/k) by class field theory. If
ny ~7(x " '|az), we have

0 (X)w,(x) =y~ 1(x)wl<'/k(x)X(x)wk'K/k'(x)

= wK'/k(x)'
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This contradicts to the assumption o;-(w,
my =y ag)

Suppose m; ~a(y ! a;)> and 7, ~n(y). Then an easy calculation shows that
the triple L-function is equal to

A;) =, so one cannot have

Cr()Lg (s, (x~ %) A;)Lk'x(s’ 1 00).

Here, 0 is regarded as an element of Gal(k'K/k’), by the natural isomorphism

Gal(k'K /k') ~ Gal(K/k). As in case (1), this equation holds for all place v.
Thus we have proved the following theorem.

THEOREM 2.8. Suppose that K=k @ k', k' is a quadratic extension of k, and
L(s, 1, 6) has a pole somewhere. Then the following two assertions hold:

(a) Let IT', o’ be the objects obtained by twisting T1 by a*°, so€ C. Then > =1,
o' # 1, o' does not correspond to k'/k by class field theory, and L(s,11', 6) has a
simple pole at s=1, for some sye€C.

(b) Assume that w*=1, w# 1, o does not correspond to k'/k by class field
theory, and L(s,I1, 6) has a simple pole at s = 1. Let K be the quadratic extension
of k corresponding to w by class field theory. Let 0 be the generator of Gal(k'K/k').
Then there exists a quasi-character y of Agg/k'K™ such that n; ~n(y ™~ "|5;), and
7, =7(y). Moreover, the triple L- function is equal to

Cx(S)Lk(s, G a)az) Lk (s, 1~ 20).

References

1. J. Arthur: On some problems suggested by the trace formula, Lecture Note in Math. 1041.
2. A. Borel: Automorphic L-functions, Proc. Symp. in Pure Math. 33(2) (1979), 27-61.
3. P. B. Garrett: Decomposition of Eisenstein series; Rankin triple products, Ann. of Math. 125
(1987), 209-235.
4. P. B. Garrett: Integral representation of certain L-functions, attached to one, two, and three
modular forms, preprint.
5. S. Gelbert and H. Jacquet: A relation between automorphic representation of Gl(2) and GI(3),
Ann. Sci. Ec. Norm. Sup 4e seri¢ 11 (1978), 471-542.
6. R. Godement and H. Jacquet: Zeta functions of simple algebras, Lecture Note in Math. 260.
7. T. Ikeda: On the functional equation of the triple L-functions, J. Math. K yoto Univ. 29 (1989),
175-219.
8. H. Jacquet: Automorphic forms on GL, II, Lecture Note in Math. 278.
9. H. Jacquet: On the residual spectrum of GL(n), Lecture Note in Math. 1041 (1984), 185-280.
10. H. Jacquet and R. P. Langlands: Automorphic forms on GL,, Lecture Note in Math. 114.
11. D. A. Kazhdan and S. J. Patterson: Metaplectic forms, Publ. IHES 59 (1984), 35-142.
12. S. Kudla and S. Rallis: On the Weil-Siegel formula I, J. fiir die reine und angew. Math. 387 (1988),
1-68.
13. S. Kudla and S. Rallis: On the Weil-Siegel formula 11, J. fiir die reine und angew. Math. 392
(1988), 110-124.



Poles of the triple L-functions 237

14. S. Kudla and S. Rallis: Poles of Eisenstein series and L- functions, preprint.
15. R. P. Langlands: Euler products, Yale University, New Haven.
16. R. P. Langlands: On the functional equations satisfied by Eisenstein series, Lecture Note in Math.

17.

18.
19.

20.
21.
22.
23.
24.

25.

26

544.

R. P. Langlands: The volume of fundamental domain for some arithmetic subgroups of
chevalley groups, Proc. Symp. in Pure Math. 9 (1966), 143—148.

R. P. Langlands: Base change for GL, Annals of mathematics studies, Princeton Univeristy Press.
L. E. Morris: Eisenstein series for reductive groups over global function fields I, II, Can. J. Math.
34 (1982), 91-168, 1112-1182.

I. I. Piatetski-Shapiro and S. Rallis: L- functions for the classical groups, Lecture Note in Math.
1254, 1-52.

1. I. Piatetski-Shapiro and S. Rallis: e-Factors of representations of classical groups, Proc. Nat.
Acad. Science 83 (1986), 4589-4953.

I. 1. Piatetski-Shapiro and S. Rallis: Rankin triple L-functions, Comp. Math. 64 (1987), 31-115.
F. Shahidi: On certain L-functions, Amer. J. of Math. 103 (1981), 297-335.

F. Shahidi: On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of
Math. 127 (1988), 547-584.

A.J. Silberger: Introduction to harmonic analysis on reductive p-adic groups, Math. Notes No. 23,
Princeton Univ. Press.

. J. Tate: Number theoretic background, Proc. Symp. in Pure Math. 33(2) (1979), 3-26.



