
COMPOSITIO MATHEMATICA

TAMOTSU IKEDA
On the location of poles of the triple L-functions
Compositio Mathematica, tome 83, no 2 (1992), p. 187-237
<http://www.numdam.org/item?id=CM_1992__83_2_187_0>

© Foundation Compositio Mathematica, 1992, tous droits réservés.

L’accès aux archives de la revue « Compositio Mathematica » (http:
//http://www.compositio.nl/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=CM_1992__83_2_187_0
http://http://www.compositio.nl/
http://http://www.compositio.nl/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


187

On the location of poles of the triple L-functions

TAMOTSU IKEDA*

Compositio Mathematica 83: 187-237, 1992.
e 1992 Kluwer Academic Publishers. Printed in the Netherlands.

Kyoto University, Kitashirakawa, Kyoto, 606 Japan

Received 30 July 1990; accepted 11 November 1991

Introduction

Let K be a semi-simple abelian algebra of degree 3 over a global field k. In [22],
I.I. Piatetski-Shapiro and S. Rallis constructed the triple L-functions for

irreducible cuspidal automorphic representations of GL2(K Q Ak) by means of
Rankin-type integrals following P. B. Garrett [3]. The purpose of this paper is to
determine the location of the poles of these L-functions. To describe our main
result, assume, for simplicity, K = k~ k ~ k. Let a be the standard idele norm:
Akx -+ R +x . Given three irreducible cuspidal automorphic representations 03C01, 03C0 2,
and 03C03 of GL2(Ak), let co be the product of the central quasi-characters of these
representations. Let u be the 8-dimensional representation of the L-group
GL2(C)3 obtained by the tensor product of the standard representations of
GL2(C). The triple L-function L(s, Il, u) is the L-function associated to

n = ni (8) 03C02 Q 03C03 and 03C3. This is defined by the Euler product:

L(s, Il, 03C3) = IT L(s, Ilv, u).
v

If k03BD is non-archimedean and TIv is of class 1, then

L(s, 03A003BD, 03C3) = det(18 - Al Qx A2 Qx A3 qv-S ) -1,

where qv is the order of the residue field of kv, and Ai is the Langlands class of ni,,
(i = l, 2, 3). Then our main theorem in the case K = k (D k Et) k can be stated as
follows.

THEOREM 2.7. Suppose that K = k Et) k Et) k, and L(s, ll, n) has a pole some-
where. Then the following two assertions hold:

(a) Let rl’, w’ be the objects obtained by twisting 03C01 by a", So E C. Then 03C9’2 =1,
03C9’ =1= 1, and L(s, Il’, a) has a simple pole at s = 1, for some So E C.

(b) Assume that (02 = 1, 03C9~ 1, and L(s, TI, u) has a pole at s = 1. Let K be the

*Partially supported by NSF Grant DMS-8610730.
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quadratic extension of k corresponding to 03C9 by class field theory. Let 0 be the
generator of Gal (Klk). Then there exist quasi-characters Xl, X2, and X3 of
AKx/ Kx such that 03C01 = n(X 1), n2 = n(X2), n3 = n(X3), and XIX2X3 = 1. Moreover,
the triple L- function is equal to

Note that our results are consistent with "the Langlands philosophy". Assume
that for each ni, there is a 2-dimensional complex representation Pi of Gal (k/k)
such that L(s, ni) = L(s, pi). Then our main theorem implies that, up to twist by
aS° for some so E C, L(s, II, 6) has a pole if and only if p 1 Q p2 ~ 03C1 3 has a trivial
constituent.

A significant point of this result is its possible application to the construction
of the lift GL2 x GL2~ GL4 of automorphic representations by means of "the
converse theorem". The author hopes to treat this problem in the future.

Let us now describe the contents of this paper. Section 1 is devoted to the

theory of Eisenstein series on symplectic group Spn. Assume, for simplicity, k is a
number field. Consider the representation space I(03C9, s) of the representation
IndSPnPn03C903B1s induced from a quasi-character co of the parabolic subgroup

of SPw Let f (s) be a meromorphic section of 1(cv, s), which roughly means that
f(s) belongs to I(03C9, s) for each s E C and is meromorphic in s. In order to make
use of the Rankin-Selberg convolution, we require that the family {f (s)} has the
following properties:

(i) E(h; f(8») has finite number of poles.
(ii) The family {f(s)} is stable under the intertwining operator Mwo with

respect to the longest Weyl group element wo.
(iii) The family {f(s)} is the restricted tensor product of families of mero-

morphic sections {f03BD(s)} of induced representations I(wv, s) on Sp,,(kv).
(iv) The family {f03BD(s)} contains all holomorphic sections.

Moreover, to get a good local functional equation, we need a normalization
MWO of the local intertwining operator such that

(v) M*wo o M*. = const.
(vi) The family {f03BD(s)} is stable under the normalized intertwining operator

M*wo.
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We shall construct this normalized intertwining operator, and the family
{f03BD(s)} in Section 1.2. A function f (s) in this family is called a good section. Our
normalized intertwining operator is different from Langlands’s normalization
[ 16, Appendix 2]. In Section 1.3 we shall determine the location of the poles of
the Eisenstein series E(h; f (s)) associated to a good section f (’). In Section 1.4 we

calculate the residue of the Eisenstein series E(h; ps») at s = n -1.( f(s) ) at s= 
2

Section 2 is devoted to the theory of the triple L-functions. We shall define the
local L-factor and 8-factor, and give the functional equation for the triple L-
functions. The location of the poles is then determined. The key lemma is that if
w = 1, then L(s, fI, 03C3) does not have a pole at s = 1 (Proposition 2.5). The main
theorem will be proved by showing that the base change of II to GL2(A,)’ is not
cuspidal.
The author would like to thank D. Blasius for his suggestion to use the base

change which simplified the proof. The author would like to thank Prof. F.
Shahidi for some comments. The author also would like to express his gratitude
to H. Hijikata and H. Yoshida for their kind advice and constant

encouragement.

Notation

The n x n zero and identity matrices are denoted by On and 1", respectively. If X
is a matrix, det X stands for its determinant. For a function f on a group G and
x ~ G, we denote by p(x)f the right translation of f by x, i.e., p(x) f (g) = f(gx).
When G is locally compact, the Schwartz-Bruhat space of G is denoted by S(G).
If G is an algebraic group defined over a field k, the group of k-valued points of G
is denoted by G(k) or G. If n is a representation of G, its contragredient is
denoted by 7c. When k is a global field, the adele ring (resp. the idele group) of k is
denoted by Ak or A (resp. Ak or A x ). We fix a non-trivial additive character 03C8 of
A/k (resp. k), if k is a global field (resp. local field). The standard idele norm:
A " - Rx + is denoted by Il or a. When k is a local field, the normalized absolute
value: k x ~R+x is denoted by Il or a. When k is a global (resp. local) field, a
quasi-character x of A " (resp. k x ) is called principal if x = as° for some so E C.
When k is a global function field, the order of the coefficient field of k is denoted
by q. When k is a non-archimedean local field, (9, m, and q are the maximal order
of k, a prime element of (9, and the order of the residue field of k, respectively.
The multiplicative Haar measure d x x of k x is normalized so that Vol(O x ) = 1.
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1. Analytic theory of Eisenstein series

1.1. Definitions

Let Hn be the symplectic group Spn :

We define parabolic subgroups Pn and Bn of Hn by

Let Mm (resp. Tn) be a Levi factor of P n (resp. Bn) given by

We denote by Un (resp. NJ the unipotent radical of Pn (resp. Bn):

Let Pn and Bn be the opposite parabolic subgroups of Pn and Bn,
respectively. We denote by Un (resp. Nn ) the unipotent radical of Pn (resp. Bn ).
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Let xi (1 ~ i ~ n) be the character of 1;. given by

Let Norm(Tn) be the normalizer of 1;, in Hn. We denote the Weyl group
Norm(Tn)/Tn ;, by WHn. We shall often use the same symbol for an element of
Norm( Tn) and its image in WHn. Let 03A6Hn (resp. 03A6Mn) be the set of roots of H"
(resp. MJ with respect to 1;,. We denote by Na the unipotent group associated to
a root oc E 03A6Hn. Each Na is isomorphic to k in the natural way (by the coordinate).
We denote by Wa the reflection determined by a. Let 03B1i be the simple root:

Let 03A9n be the complete set of representatives for WHnlWMn obtained by
choosing the unique element of minimal length in each coset. For each subset

1 = {i1, i2,..., ik} of {1,2,.... n}, we define an element w, of WHn by

where J={j1, j2,...,jn-k}={1,2,...,n}-I, i1i2··· 
in -,. The element W¡ belongs to On and each element ofQn is obtained in this way
(cf. [20]). We also denote by On a set of representatives of On in Norm(7§). The
length l(wj) of w, is given by
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Put

This is the longest element in 03A9n. For w~Norm(Tn) and a character x of Tn, we
put

Obviously X’ depends only upon the class of w in WHn, so we shall use the same
notation xw for we WHn. We often regard a character of 1;, as a character of Bn by
the isomorphism BnlNn~ T".

1.2. Local theory

In this subsection, k is a local field. We define the standard maximal compact
subgroup Kn of Hn as follows.
When k is non-archimedean, we put Kn = H n(O). When k = R, we put

When k = C, we put

When k is non-archimedean, we put R=C[qs,q-s]. When k is archimedean,
we let R be the ring of entire functions on C. Let co be a quasi-character of k "
and let s denote a complex number. Let I(03C9, s) = IndPnHn(03C903B1s) be the space of
functions f on Hn which satisfy the following two conditions:

(i) f is right K,,-finite.
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We say that a function f(S)(h) on Hn x C is a holomorphic section of I(03C9, s) if
the following three conditions are satisfied:

(1) For each s E C, f(S)(h) belongs to I(03C9, s) as a function of h ~ Hn.
(2) For each h ~Hn f(S)(h) belongs to R as a function of s E C.
(3) f (s)(h) is right K,,-finite.
We say that a meromorphic function f(s)(h) on Hn x C is a meromorphic

section of 1(cv, s), if there is a(s) E R such that ce(s) Q 0, and 03B1(s)f (s)(h) is a

holomorphic section of I(03C9, s). Note that a holomorphic section of I(w, s) is

determined by its restriction to Kn x C. We say that a holomorphic section f(S)(h)
is a standard section if its restriction to Kn x C does not depend on s~ C.
Obviously the space of holomorphic sections is generated by standard sections
over R.

For a quasi-character x of Tn, we define Inds§(x) to be the space of right Kn-
finite functions f(h) on Hn such that

where bBn is the modulus quasi-character of Bn. Put

Then I(03C9, s) c IndBnHn (Xs). We define holomorphic sections, meromorphic
sections, and standard sections of IndBnHn (Xs) similarly.
For w ~ Norm( Tn) and a quasi-character x of Tn, we define the intertwining

operator

by

Here the Haar measure dn is determined as follows. For each a E 03A6Hn, the Haar
measure dn03B1 on Na is given by the self dual measure on k with respect to t/1 by the
natural isomorphism N03B1~ k. Then the measure dn is the product measure:
dn = II dna. The integral is absolutely convergent if x belongs to some open set
and can be meromorphically continued to all x (cf. [8], [25]).

If 1(wi) + l(w2) = l(wl w2), then M Wl 0 MW2 = Mw1w2. When w = WCl is a reflection
with respect to a simple root a, then M(w, x) can be regarded as an intertwining
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operator on SL2 as follows: let la: SL2 ~Hn be a homomorphism corresponding

a. We may assume w = l((0 -1 1 0)). Then for an E IndBnHn(X),t o W Y ((011 10)). Then for an y ’f Bn (x)

as a function on SL2. Since M(w, x) commutes with right translations (or actions
of Hecke operators), it follows from ( 1.2.1 ) that the whole property of M(w, x) is

reduced to that of M((0 -1) 
i 
* 

. When 03C9 is unramified there exists areduced to that of M ( (01 - 0 ’ ax When co is unramified, there exists a
unique standard section ~03C9,s of I(co, s) such that ~w,s|Kn 1 - Similarly, there
exists a unique standard section ~w03C9,s of IndHnBn(Xws) such that ~03C9w,s IKn ~1, for any
w~03A9n. Note that ~wo03C9,s = ~03C9-1,-s. .

Let us recall some known results concerning SL2~ Hl. Let w =(01 -10),
Mw = M(w, m) = M(w, 03C9, s) :I(03C9, s) ~ I(03C9 -1, - s). Then:

(1.2.2) L(s, 03C9) -1 Mw is holomorphic.
( 1.2.3) M(w -1, 03C9-1)M(w, 03C9) = 03B5’(s, 03C9, 03C8) -1 03B5’( - s, 03C9 -1, 03C8) -1 . id.
(1.2.4) If m is unramified, and03C8 is of order 0,

(1.2.5) If k is non-archimedean and co = 1, the kernel and the image of M(w, 1, 1 ):
I(l, 1) - 1(1, -1) are the Steinberg representation and the trivial representation,
respectively.
(1.2.6) If k is non-archimedean and w = 1, the kernel and the image of

M(w, 1, -1 ):1( 1, -1 ) ~ I(1, 1) are the trivial representation and the Steinberg
representation, respectively.
(1.2.7) If cv = 1, then Ress =0 M(w, 1, s) is a non-zero scalar multiplication.

If w~03A9 n, then the restriction of Mw to I(03C9, s) c Ind’- X,,) is well defined

(except for countably many values of s). If f (s) is a holomorphic section of I(a), s),
then Mwf (s) is a meromorphic section of IndBnHn (Xws ). We denote this restriction by
Mw = M(w, 03C9) = M(w, 03C9, s), too. If w is unramified, w E Norm( Tn) n Kn, and 03C8 is
of order 0, then there exists a meromorphic function cw(s) = cw(03C9, s) such that
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were ( , ) is a WHn-invariant inner product on X*( Tn) ~Z C, and â = 203B1/03B1, 03B1&#x3E; is
the coroot of a.

In [20], the common denominator of cw(s) is calculated. Here we proceed in a

slightly different way. Let w = wI, I = {i1, i 2, ... , ik} . Put

We divide N(WI) into a disjoint unionll [n/2]r=0 Nr,(wI):

Here

Put
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Then we have

Thus d(s) is the smallest common denominator of cw(s), W E On. Note that

Now, even when co is not unramified, we define cw(s), d(s) etc. by formally
substituting co.

DEFINITION. The normalized intertwining operator

is given by

LEMMA 1.1.

Proof. The second formula is just a reformulation of the first formula. We will

prove the first formula. When n =1, this is (1.2.3). Since

the right-hand side of (1.2.3) is equal to
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For general n, take a minimal expression of wo in WHn by simple reflections

By using ( 1.2.1 ) and (1.2.3) successively,

Hence the lemma.

DEFINITION. A meromorphic section f (s)(h) of I(co, s) is a good section of
I (03C9, s) if for any W E Qn,

is holomorphic.

In particular, if w is unramified, d(s)~03C9,s is a good section of I(co, s).

LEMMA 1.2. f (s) is a good section of I(03C9, s) if and only if Mwo* f(s) is a good section
of I (03C9 - 1, - S).

Proof. It will suffice to prove that for each W¡ E an, there exists an entire
function e(s) with no zeros such that

We shall proceed by induction on l(w J). Obviously, (1.2.8) holds when 1(wj) = 0.
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Suppose l(wj) &#x3E; 0. There are two cases:

In case (1), put l’ = I ~ {n}, J’ = J- M. Then

On the other hand, by (1.2.1) and (1.2.3),

where C is some non-zero constant. We have
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By the induction assumption, this is equal to

Here 81 (s) is some entire function with no zeros.
In case (2), put I’=I-{m}~{m+1}, J’=J-{m+1}~{m}. Then

By a calculation similar to case (1), (1.2.8) for 7 is reduced to (1.2.8) for l’. Thus
the lemma follows.

The following lemma is crucial for our theory.

LEMMA 1.3. Every holomorphic section of I(co, s) is a good section.

REMARK. If k ~ C, and co is unramified, this lemma is nothing but [22,
Theorem 4.2].

Proof of Lemma 1.3. Here we assume k is non-archimedean. We may assume (O
is ramified. If W2 is ramified, then d(s) = cw(s) =1, for any w~03A9n. Take a minimal
expression of w by simple reflections:

Each Mwi (1 ~ i ~ r) is holomorphic by (1.2.1) and (1.2.2). So the lemma is
obvious in this case.
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Now we assume m is ramified and W2 = 1. Let w = wI,I = {i1, i2, ..., ik}. Recall

It suffices to prove

is holomorphic. Put

We proceed by induction on l(w). If l(w) = 0, (1.2.9) is obviously holomorphic.

(I) When ik = n : put I’ = I - {n}, w’ = w I’. Then

Since MW«n is entire, the holomorphy of (1.2.9) for w is reduced to that for w’.

(II) When ir+2=ir+1+1ir+2, for some 1rk-2: put ir = m,
l’ =1 - {m + 1} u {m+2}, 1" =1 - {m} u {m +2}, w’ = w]’, w" = W/". We reduce the
holomorphy of (1.2.9) for w to that for w’. By definition, we have

Since C(2s + m - 2r + 1) - 1 M(w,,,_, Xw’) is entire, it will suffice to prove that

203C0~-1Z 2s = -m + 2r - 2 mod 2ni- 1/log q Z are not poles of (1.2.9). We now prove
that the residue vanishes. By (1.2.7),

is holomorphic at these points. The residue is
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for some non-zero constants c, c’. By (1.2.6), it is sufficient to prove that

is left iam(SL2)-invariant. We first observe

Since ((2s+m-2r+3) and ((2s+m-2r+2)-IM(w0153m+l’X:’’) is holomorphic at

2s = -m+2r-2 mod 2n V/ - 1 Z , this is equal to2s = - m + 2r - 2 (mod 203C0~-1log q Z) , this is equal to

for some non-zero constant c". By the induction assumption,

is holomorphic. Moreover this is left iam(SL2)-invariant since

is a scalar multiplication. Thus (1.2.10) is left iam(SL2)-invariant.

(III) When ik = n - 1, ik - l = n - 2: this case can be treated by the same technique
as in the case (II) by putting

(IV) When ik  n -1. This case can be treated by a similar technique as in the
case (II) by putting

Now we may assume ik = n -1, by (I) and (IV). Moreover, we may assume
k  [2], since otherwise the assumption of (II) or (III) holds. To see this, assume
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k &#x3E; [2] and neither the assumption of (II) nor that of (III) holds. Then

This is a contradiction.

By the induction assumption, Aw’(S)-l Mw,f(s) is entire. Since both M(wan, Xw’s)
and C(2s+n-2k)-’-M(w,,,,,-,,Xw«-") are entire, Aw(s)-’Mwf(s) is entire. Thus the
proof for non-archimedean local field is complete.

Appendix 1. Proof for Lemma 1.3 for archimedean case

In this appendix, we give a proof for Lemma 1.3 for an archimedean local field k.
We may assume that cv is unitary.

SUBLEMMA 1. If w = w0., then (1.2.9) is holomorphic.
Proof. If k = R, and w = 1, this is proved in [22 §4 Appendix 1]. Their proof is

valid for k = R, w=sgn. If k = C, we have to show that the first part of

[22 §4 Appendix 1, Theorem (p. 106)] holds for our situation, i.e., we have to
show that

is entire for any ç E Y(Symn(C)). We may assume that w(z) = Zk or (-Z)k k &#x3E; 0. But
the case w(z) = (î)’ is reduced to the case cv(z) = zk by taking complex conjugate.
Put
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Then it is known that

Repeating partial integration, we have

for Re(s) » 0. Since the right-hand side is absolutely convergent for

Re(s)&#x3E;n-k-m-1, we haveRe(s) &#x3E; 
2 ’ we have

is entire. So (1.2.11) is entire.

Let Q (resp. Q’) be the maximal parabolic subgroup of GLn given by

Let IQ(w, s) (resp. IQ’(w, s)) be the representation of GL,, induced from the
character of Q (resp. Q’) given by

We define standard sections, holomorphic sections, and meromorphic sec-
tions as usual. We define the intertwining operator Mw: IQ(W, S) IQ,(W-1’, -S)
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(resp. Mw’: l Q’(w, s) 1---+ 1 Q(w -l, - s)). Here

SUBLEMMA 2. L ( s- n;,W 2 )-1 M(w,s)andL ( s- n;,W 2 )-1 M(w’,s) are
holomorphic.

Proof. This can be proved in the same way as [22, §4]. (See also [12 §5].)

SUBLEMMA 3.

Proof. This can be proved in the same way as the proof of Lemma 1.1.

We now return to the proof of Lemma 1.3. Let w = w, be an element of Qn. We
prove that

is holomorphic. Mw can be considered as an intertwining operator of

I w,s+--y- on Spn-i1+1. We may assume il = 1 by re p lacin g n by n - i + 1w,s+i1 -1 2 
and I by {ir-il + 111  r  k}. We proceed by the induction on b(w) = n - k.
When n = k, this is Sublemma 1. Assume n - k &#x3E; 1. Put

Then #1’=k+1, 1(w’)=1(w)+k-m+1 and
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Put

Then

We have

It is easy to see that

is an intertwining operator on GLk-m. By (1.2.3) and Sublemma 3,

By (1.2.2), Sublemma 2, and the induction assumption,
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and

are holomorphic. Thus we have

is holomorphic.
On the other hand, put

Then Mw=Mw,oMwk. Here, as in [22§4], Mw. is an intertwining operator on
certain induced representation of GL,,. As in [22 §4], we can prove

is holomorphic (cf. [22, Remark 4.1]). As for M,,,, by Sublemma 1,

is holomorphic. Putting together, we can easily deduce

is holomorphic. Since
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has no poles in Re(s)  - n/2 + k + 1/2, and

has no poles in Re(s) &#x3E; -n/2 + k, it follows that

is holomorphic. Thus Lemma 1.3 is proved.

REMARK. Our definition of good section is different from that of [22]. But we
can prove that "germs" of good section of I(cv, s) at S = S0 are generated by the
following two families:

(1) germs of holomorphic sections of 1(cv, s) at s = so,
(2)  {M*wof (s) f (s) is a germ of holomorphic section of I(w -1, - s) at S = S0}.
In fact, we may assume co is unitary and Re(S0) &#x3E; 0, by Lemma 1.2. Since

d(w, s) does not have zero at s = so, any good section of I(w, s) is holomorphic at
s = so. It is easy to see that when k is non-archimedean, our definition agrees to
that of [22] because there are essentially finite number of singularities.

Appendix 2. An interprétation of the normalizing factor

We give an interpretation of the normalizing factor d(w, s) in terms of Arthur’s

conjecture [1]. Let G be a reductive group, P be a maximal parabolic subgroup
of G, M be a Levi factor of P, N be the unipotent radical of P, and A be the
maximal split torus of the center of M. Let 03C0 be an irreducible discrete

automorphic representation of M. Then, according to Arthur’s conjecture, n is
associated to a homomorphism

Here Y is the conjectual Langlands group. Let L % be the Lie algebra of LN.
Decompose LAI’ as in Shahidi [24].

Consider the induced representation IndGM nâ’. Here &#x26; is as in [24]. Let AdLN1 be
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the adjoint action of LM on LNi. If n is cuspidal and Qr, is trivial on SL2(C), then
the normalizing factor should be given by

(cf. Shahidi [24], Langlands [15].) Consider the general case where Qr AdLNi is
not trivial on SL2(C). In this case, decompose Qr 0 AdLNi into irreducible

representation:

where Qij is an irreducible representation of 2, and symrij is the rijth symmetric
power of the standard representation of SL2(C). Then we claim the normalizing
factor should be

In fact, the c-function cwo(n, s) for the longest element wo of the Weyl group is
given by

at least up to bad primes. If n is cuspidal, this is the only non-trivial c-function.
This means at least when n is cuspidal, our claim is justified, since the

normalizing factor should be the least common denominator of the c-functions.
One can expect that the least common denominator of the c-functions is equal to
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the denominator of the c-function for the longest Weyl element even when n is
not cuspidal.

Observe that in our case, G = Spn, M=GLm n=w, Qn=w@symn-1,
AdLNi = p, AdL.H2 = A2p. Here p is the standard representation of GLn. Therefore,

gives and

gives

1.3. Eisenstein series

In this subsection, we assume k to be a global field. We will investigate the poles
of Eisenstein series associated to good sections.

Let w be a quasi-character of A x/k x . Put Kn = 03A0v K,,,,. Let 1(cv, s) be the space
of functions f (h) on Hn (A) which satisfy (1) and (2):

(1) f is right K.-finite.

2 For any p = (A0 * -1) E Pn (A)(2) For any (0,, n tA -1 E Pn(A),

Clearly, l(w, s) = ~v I(wv, s). We also define holomorphic sections and mero-

morphic sections similarly. We say that a meromorphic section of I(w, s) is a
good section if it is a finite sum of decomposable elements f(s) = Ilv fv(s) satisfying
following (i) and (ii).

(i) For almost all unramified v, fv(S) = d(wm s)~wvs.
(ii) fv(s) is a good section of I(wv, s) for all v.

In other words, the space of global good sections is the restricted tensor product
of the local good sections with respect to d(wv, Note that the product

f (s) = riv fJS) is absolutely convergent for Re(s) &#x3E; 
n + 1 and can be meromorphi-

cally continued to C.
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We define the Eisenstein series E(h;  (s)) associated to f(s) by

This is absolutely convergent for Re(s) » 0, and can be meromorphically
continued to C. The functional equation of E(h; f(s)) is given by

Here M Wo is the global intertwining operator:

The global intertwining operator M Wo does not depend on the choice of
representative of Wo E WHn in Norm (Tn).

LEMMA 1.4. If f(s) is a good section of I(w, s), then Mwo f(s) is a good section of
I(w-1, -s).

Proof. Let S be a finite set of places of k such that if v e S, then cov is unramified,
t/1 v is of order 0, and fv(S) = d( wv, S)~wvs . Then

By Lemma 1.2, the lemma follows.

LEMMA 1.5. Suppose that n = 1, and cv = 1. Let w = (0/ 1 1 0) Then the globalLEMMA 1.5. Suppose that n = 1, and w = 1. Let w = 
1 0 

Then the global

intertwining operator Mw: I(1, s) ~ I(1, - s) is holomorphic at s = 0, and is equal to
the scalar multiplication by -1 at s = o.
Proof Put f(s) = 03A0v~1,s, and 03BE(s) = IDIs/203BE(s). Here D is the discriminant of k

(resp. D = q2g - 2, g is the genus of k) if k is a number field (resp. if k is a function
field). Then

Since 03BE( 1-s) 03BE(s) and 03BE(s) has a simple pole at s = 0, 1, the right-hand side of
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(1.3.1) is holomorphic at s = 0, and

Since I(1, s) is irreducible on some neighbourhood of s = 0, the lemma follows.

PROPOSITION 1.6. Suppose that k is a number field. If(s) is a good section of
I(w, s), then the pole of E(h; f(s) are at most simple. The set of possible poles is as
follows.

(1) When cv is principal: we may assume cv = 1. Then the set of possible poles is:

(2) When w is not principal, and W2 is principal: we may assume W2 = 1. Then
the set of possible poles is:

(3) If W2 is not principal, then E(h; ¡(S») is entire.

Proof. As in [22], the constant term EO(h; f(s») of E(h; ¡(S») along Un(A) is given
by

Let S be as in the proof of Lemma 1.4. Then

Therefore the poles of E(h; f(s») comes from the poles of d(w, s)cw(w, s). In
particular, if cv2 is not principal, E(h; f(s») is entire.
We may assume cv2 = 1, without loss of generality. When w = 1, (resp. W2 = 1,
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cv ~ 1), the possible poles of d(w, s)cw(cv, s) are integral or half-integral points in

We first prove the proposition for the case n = 1 or n = 2. If n = 1, w ~ 1, then
(2) is obvious since d(cv, s)cw(cv, s) are entire. If n = 1, co = 1, then we have to show
that s = 0 is not a pole of E°(h; f(s)). Note that f (s) may have a simple pole at
s = 0. Let w be as in Lemma 1.5. Then by Lemma 1.5,

Thus E°(h; f(s)) is holomorphic at s=0.
If n = 2, the possible poles of d(w, s)c,,,, (co, s) are as follows:

Here, L(s) = L(s, w). By functional equation, we may assume Re(s) &#x3E; 0, so what
we have to prove are reduced to the following two statements.

(1.3.2) If w = 1,

(1.3.3) If W2 = 1,

Proof of (1.3.2)

We know that (s-1/2)2 Mw3f(s) is holomorphic at s = 1/2. Moreover, by (1.2.1) and
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Lemma 1.5, M(w«2, xsw3) is holomorphic and is equal to the scalar multiplication
by -1 at s =!. Hence (1.3.2).

Proof of (1.3.3). By the same way as above, we can prove

But the proof that

is more delicate. We have

By (1.2.1) and Lemma 1.5, M(w03B11, xsw2) is holomorphic and is equal to the scalar
multiplication by -1 at s = 0. Moreover, by (1.2.1), M(W03B12’ Xs) (resp. M(W03B12’ xsw3) is
essentially the intertwining operator

on SL2. Moreover, these two are mutually the inverse of the other except for
their singular points. Since the representations I(w, s +1/2) and I(cv, - s -1/2) of
SL2(A) are irreducible on some neighbourhood of s = 0, there is an integer a such
that

are holomorphic, and are mutually the inverse of each other at s = 0. In fact, it is
easy to see that et = ords= 1/2 L(s, cv). We have

Each term is holomorphic at s = 0, so the exchange of limit and the composition
is possible. Hence (1.3.3).

Now we assume n &#x3E; 3. By the functional equation, it is enough to investigate
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the integral or half-integral points in 0 n + 1/2 . Note that f(s) is holomorphic on
the right half plane Re(s) &#x3E; 0 except for the case n is even and s = 0. In particular,
if n is odd, s = 0 is not a pole of E(h; f(s)) by [16].
We recall the theory of degenerate Eisenstein series on GLn (see [12, §5]). Let

Q be the maximal parabolic subgroup of GLn given by

Let IQ(s) be the representation of GLn induced from the character of Q given
by

We define standard sections, holomorphic sections etc. as usual. For each

prime v of k, let F(s)0,v be the meromorphic section of IQ,v(s) which takes value
03B6v(s + n/2) on the standard maximal compact subgroup of GLn,v.
Taking any finite set S of primes of k, put

where Fv(s), v E S are arbitrary holomorphic sections of 1 Q,v(s). Define degenerate
Eisenstein series on GLn by

Then the possible poles of E(g; F(S») are s = ±n/2. Moreover, each pole is at most
simple and the residue is a constant function. The functional equation is given
by

Here
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M wF(s) is a meromorphic section of the representation induced from the

character

of the parabolic subgroup

MwF(s) has at most simple poles at s = n/2, n/2 -1.
We return to the proof of Proposition 1.6. Let

be a good section. We may assume each fv(s), v E S is a standard section, since
d(wv, s) has no pole in Re(s) &#x3E; 0.

Let P i be the parabolic subgroups of H n given by

Let t = (t1, t2) E C2. Let Ip*1(wv, t), be the space of right K,,-finite function fP*1(t) on
Hn,v such that

where

For each v E S, let fv(t) be a standard section (of two variables) of IP*1(wv, t)
defined by
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where pi is as above, k E Kv, and

When v ~ S, let ~P*1,wvt be the standard section of 1 Pi(wv, t) which is identically
1 on K". Put

Here Lv(S) stands for L(co", s). Put

The inner sum in the last expression is a degenerate Eisenstein series on GLn. In
particular, the residue of this inner Eisenstein series along t1- t2 = n/2 is, up to
non-zero constant, equal to

Here s = t2 + 1/2. So, the residue of E(h;f(t)) along t1 - t2 = n/2 is, up to non-zero
constant, equal to

Put
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Then j(t) is holomorphic on D 1, and the summation (1.3.4) is absolutely
convergent on D 1, so E(h; j(t») is holomorphic on D 1. Put

Then

The inner sum of (1.3.6) is

times an Eisenstein series on Hn-1 associated to a good section of I(w, t2). By the
induction assumption, the-poles of this Eisenstein series is

By the functional equation of the inner Eisenstein series, E(h; l(t») is holom-
orphic on the domain

Therefore E(h ; l(t») can be meromorphically continued to the convex closure of
Dl uD2, and the singularities in this domain are given by (1.3.7).

Similarly, by the functional equation of degenerate Eisenstein series on GL",
E(h; l(t») is holomorphic on the domain

and can be meromorphically continued to the convex closure of D1 u D3. The
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singularities in this domain are given by

By the same reason, E(h; J(t») is holomorphic on

and can be meromorphically continued to the convex closure of D2 u D4. The
singularity in this domain is

Thus E(h; l(t») can be meromorphically continued to the convex closure of
D1, U D2 u D3 u D4 and the singularity in this domain is the union of (1.3.7),
(1.3.8) and (1.3.9). Therefore (1.3.5) has at most simple poles at

for Re s ~ 0. Here n+1 is a ole onl if w = 1. If n is even, L s + n 1 hasfor Re(s) &#x3E;, 0. Here 
1 

is a pole only Y w = 1. If n is even, Ls sfor Re(s) ~ 0. Here 
2 

is a pole on y if w = 1.If n is even, Ls s+ 
2 

has

neither oles nor zeros for Re(s) &#x3E; 0. If n is odd, LS s + 
n-1 /2

03B6s (2s) has a simpleneither poles nor zeros for Re(s) &#x3E; 0. If n is odd, Ls s + 2 03B6s(2s) 
has a simple

pole at s = 1/2 and has no zero at positive integral or half-integral points. Note that
we already know that s = 0 is not a pole if n is odd. Thus we have proved
Proposition 1.6.

COROLLARY. Letf(s) be a global holomorphic section of I(w, s). Let S be a finite
set of places of k such that f(s) is invariant under Kv, v e S. Then the set of poles of

ds(w, s)E(h; f(s))

is given by Proposition 1.6.

This result is also proved in [14].

If k is a function field, we can prove the following proposition similarly.
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PROPOSITION 1.7. Suppose k is a function field. If f(s) is a good section of
I(w, s), then the poles of E(h ; f(s») are at most simple. The set of possible poles is as

follows.

(1) When w is principal: we may assume co = 1. The set of possible poles is:

(2) When cv is not principal, and W2 is principal: we may assume W2 = 1. Then the
set of possible poles is:

(3) If W2 is not principal, then E(h; f(s)) is entire.

REMARK. Proposition 1.6 or 1.7 implies that the possible poles of Langlands
L-function of irreducible cuspidal automorphic representations of Spn attached
to the standard representation of the L-group LSPn ~ SO(2n + 1) are

or

and all of them are at most simple (cf. [14], [20], [21]).

1.4. Calculation of the residue at s = n -1/2
In this subsection, we assume cv = 1. Then there exists a class 1 element of I(cv, s).
Take 0, E I(w, s) such that ~s|Kn ~ 1. Put
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E(h, s) satisfies the following functional equation:

We will determine the residue of E(h; s) at s = 
n-1 . Let Pn,r be a parabolicWe will determine the residue of E(h; s ) at s = n-1/2. Let Pn,r be a parabolic

subgroup of Hn given by

Let SEC and t =(t1, t2,..., tn) E cn = X*(T,,) @z C. Let p(h; Pn,r; s), 4J(h; Bn; t) =
~(h; Bn; ti, t2, ... , tn) be the functions on Hn(A) given by

where k E Kn,
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Put

For any oc c- (D H ’,,, let lâ (t) and f03B1±; be linear forms and hyperplanes of C" given by

It is easy to see that the residue along F+03B11, ... , F 03B1n-r-1+ F+03B1n-r+1 ... , F03B1n+ in the
sense of [9, p. 195] is

where R = Ress =1 03BE(s). Put

Then it is known that

is entire and invariant under t ~ wtw -1 for any w E WHn.

The value of
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So the value of (1.4.6) at t = (n - 1, n - 2,..., 1, 0) is

On the other hand, the value of (1.4.6) at t = (s, n - l, n - 2, ... , 1) is

It follows that Epn,n-1(h, s) is holomorphic at s = 0, and the value of (1.4.6) at
t = (0, n - 1, n - 2,..., 1) is

Thus we get the following proposition.
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PROPOSITION 1.8.

or, equivalently

LEMMA 1.9. I 1 n-1/2) is enerated b class 1 vectors.LEMMA 1.9. 1 1, n-1/2) is generated by class 1 vectors.

Proof Let x be a character of Tn given by

Then 1 1 n -1/2) is a quotient of Ind H. Y. It is sufficient to prove that IndHn is
generated by class 1 vectors. Let P be the standard parabolic subgroup of Hn
corresponding to 03B1n. Then

The restriction of IndBnx to ’an(SL2) is an irreducible tempered representation.
Let M be the standard Levi factor of P and w be the longest element of WMB WHn,
i.e.,

By the well-known theory of Langlands quotient, IndPHn(IndBnPX) is generated by
any element f such that M wf =1= 0. It is easy to check that a non-zero class 1

vector satisfies this condition.
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Let f(s) be any good section of I(l, s). Put

It is easy to check that M wf(S) has at most a simple pole at s = 
n-1/2  and
2

is in Ind HnPn,n-11. An easy calculation shows

Thus by Proposition 1.8,

PROPOSITION 1.10.

Proof. By Proposition 1.8, this equation holds for a non-zero class 1 vector.

Since both sides are Hn-equivariant, it holds for any f(s).
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2. Triple L-functions

Let k be a global field. Let K be a semi-simple abelian algebra of degree 3 over k.
There are three cases:

Case (1) K = k Q+ k Q+ k.
Case (2) K = k (B k’, k’ is a quadratic extension of k.
Case (3) K = k", k" is a cubic extension of k.

Let G be an algebraic group defined over k given by

Thus G is

Case (1) {(g(1), g(2), g(3)E  (GL 2)3 det g(1)=det g(2)=det g(3)},
Case (2) {(g(1), g(2»)E GL2 x Rk’lkGL21 | det g(1)=det g(2)},
Case (3) {g E Rk"/kGL2| det g E k X}.

As in [22, §0], we take an 8-dimensional representation 6 of the L-group of
GL2(K). The L-group is the semi-direct product of GL2(C) x GL2(C) x GL2(C)
and Wk . Wk acts by permuting the three GL2(C) factors. The restriction of 6 to
GL2(C) x GL2(C) x GL2(C) is 03C32 (D 62 Q (J2, where 62 is the standard 2-dimen-
sional representation of GL2(C). The restriction of 6 to Wk is the permutation of
the three factors.

We denote by Z the connected component of the center of G. Z is naturally
isomorphic to GL1. We embed G into

as in [22, §1]. We denote this embedding by i.

Let n be an irreducible cuspidal automorphic representation of GL2(A Q K),
i.e.,

Case (1) 03A0=03C0 1 (8) 03C02 Q 03C03, where 03C01, 03C02, and 03C03 are irreducible cuspidal
automorphic representation of GL2(Ak),
Case (2) II = nI Q 03C02, where n, (resp. 03C02) is an irreducible cuspidal automorphic
representation of GL2(Ak) (resp. GL2(Ak,)),
Case (3) Il is an irreducible cuspidal automorphic representation of G L2(Ak,,).

Let an be the central quasi-character of fI, and cvn be the restriction of S2n to
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Z(A). Put co = cvn. Let W(03A0, gl) be the Whittaker model of II, i.e.,

Case (1) 1r(TI, 03C8) = W(03C01, 03C8) O W(03C02, 03C8) O W(03C03, 03C8),
Case (2) W(03A0, 03C8)= 1r(nl’ 03C8) (8) W(03C02,03C80 trk’/k),
Case (3) W(II, 03C8) =W (II, t/J 0 trk"/k).

If ç is a cusp form belonging to Il, then there exists W E W(II, 03C8) such that

We assume that W is decomposable : W = I1v Wv. Here, v runs over all places of
k. Put

By [22, §1], the double cosets PBGSp3/i(G) contains one open coset and the
other cosets are all negligible in the terminology of [20]. We choose a

representative N0 of the open double coset and put

We can choose n0 so that

Let v be a place of k. Let J(cvv, s) be the space of functions fv(h) on GSp3(kv)
which satisfy the following (i) and (ii):

(i) fv is right finite by the standard maximal compact subgroup of GSp3(kv).

(ii) For

Observe that if fvEJ(wV’ s), then fv|SP3(kv)EI(wv,2s-1). We define holo-

morphic sections and meromorphic sections of J(wv’ s) in the same way as in
Section 1. The intertwining operator Mw can be defined similarly. We define a
meromorphic section fv(S) is good if



227

is holomorphic for all W E 03A93. Obviously this condition is equivalent to say that

p(~)fv(s)|SP3(kv) is a good section of I(wv, 2s - 1) for each Hecke operator 0 on
GSp3(kv). By Lemma 1.2, fv(s)(h) is a good section of J(wv, s) if and only if

wv(m(h))M*wofv(s)(h) is a good section of J(w - l, 1- s), where m(h) is the multiplier
of h, and by Lemma 1.3, any holomorphic section of J(wv, s) is a good section.
For each meromorphic section fv(s) EJ(Wv, s), and Wv E 1r(Ilv, t/1v), put

In [7], [22], it is proved that 03C8s(fv(s);Wv) is absolutely convergent for

Re(s) » 0, and has meromorphic continuation to C, and if v is non-archimedean,
’Ps(fv(s); Wv) is a rational function of q;;s. By [22, Proposition 3.3], for each So E C,
there exists a holomorphic section fv (s) of J(ccy, s), and Wv E W(I1v, 03C8v) such that

Put Wv, (g) = 03A9v, (det g) - 1Wv(g), where S2" is the central quasi-character of Ilv.
Then WVEW(IIv, 03C8v). It is proved in [7], [22], that there exists a meromorphic
function £’(s, II", 6, 03C8v) such that

For a non-archimedean place v, we consider the fractional ideal Iv of

Rv = C[q-s, qvs], generated by 03C8s(fv(S); Wv) attached to good sections fv(S) of

J(wV’s) and Wv E W(I1v, 03C8v). Then by [22, Appendix 3 to §3], Iv admits a
common denominator and 1 Elv. Thus Iv has a generator of the form P(qv-s ) - 1,
P(X) E C[X], P(O) = 1. We let

then e(s, Ilv, a, 03C8v) is of the form aqbs, a E C, b E Z, and

When v is unramified, this definition agrees to usual definition

det(18 - a(gm Fr)qv -s) - 1, where gv is the Langlands class of Ilv. For a holo-
morphic section fv(s) and M§ e W(IIv, 03C8v), a careful calculation of denominator of
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03C8S( fv(s); Wv) shows that the denominator divides det(18 - a(gv, Fr)qv -S) (cf. [22,
Appendix 3 to §3]). It follows that L(s, IIv,03C3) -1 is a divisor of d(wm2s-1)-1
det(l 8 - a(gv, Fr)qv S). On the other hand, there are a good section fv(S) of J(wv, s)
and Wv E W(1-1v, t/1 v) such that 03C8s( fv(s); W") = det(18 - u(gv, Fr)qv -S) -1. This shows
that L(s, Ilm u) -1 is a multiple of det(18 - a(gm Fr)q;S). Moreover we know

Since d(wv,2s-1)-1 and d(wv-1, 1-2s)-1 have no common divisor, we have
L(s, 1-1v, u) = det(18 - a(gv, Fr)qv-S) -1, as we expected.
When kv is archimedean, we define L-factor L(s, IIv, 6) as follows. The proof of

[7, Proposition 5.1] shows that there is a meromorphic function (x(s) ~ 0 such
that

is holomorphic for any holomorphic section fv(S) and Wv, E W(rlv, t/1 v). Though
[7] has dealt with only case (1), it is not difficult to generalize the result to the
case k, = R, Kv = R Q+ C. We have only to use the local functional equation of

Asai-type L-functions instead of the results of [8]. By Weierstrass theorem, there
is a meromorphic function 2(s) such that

is holomorphic for any good section f (s) v and Wv, E 1P(Ilv, t/1 v) and if 2’(s) is

another function with this property, then À(s)2’(s) - l is holomorphic. Obviously,
for each so E C, there exists a good section fv(S) and g E 1P(I1v, 03C8 v) such that (2.2)
does not have a zero at s = so. By Lemma 1.3 and [22, Proposition 3.3], 2(s) has
no zeros. We define L(s, IIv, u) = Â(s). Then (2.1) holds with some entire function
8(S, 1-1v, a, 03C8v) which have no zeros. Note that L(s, Ilv, 6) and £(s, Ilv, 6, t/1 v) is

determined only up to entire functions which have no zeros.
Let v be any place of k. Assume Ilv is unitary. We define a non-negative real

number 2(Ilv) as follows.

Case (1) Ilv=n1 10 n2 Q n3: When ni is tempered, put À(ni) = 0. When ni is the
complementary series n(,ua03BB,ua03BB -03BB), (u is a unitary character of kvx ), put À(ni) = 121.
Put À(Hv) = À(n1 ) + 2(n2) + 2(n3).

Case (2) IIv= n1 © n2: let 2(ni) be as above, and put Â(llv) = 2(nl) + 22(n2). 
Case (3) llv = n1 : let 2(nl) be as above, and put 2(Ilv) = 3À(n1).
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LEMMA 2.1. If 11v, is unitary, then L(s, fIv, u) has no poles on the domain
Re(s) &#x3E; 2(Ilv).
Proof By an argument similar to [7, Theorem 1], [22, Proposition 3.2], we

can show that if fv(s) is a holomorphic section of J(wv’ s) and Wv, E W(Hv,03C8v), then
Ws( fv(s) ; Wv) is absolutely convergent for Re(s) &#x3E; 2(fIv). Since d(wv, s) has no poles
for Re(s) &#x3E; 0, a good section fv(s) is holomorphic for Re(s) &#x3E; 0. This proves the

lemma.

LEMMA 2.2. Assume K is not a cubic extension of k. Assume Ilv is unitary.
Assume each component is a subquotient of a principal series, and 2(Ilv)  1/2.
Then L(s, Ilv, a) (resp. e,(s, Ilv, a, 03C8v)) agrees to L- factor (resp. s- factor) associated
to the 8-dimensional representation of the Weil group Wkv determined by I1v, and a.

Proof. By [7, Proposition 5.1], e’(s, fIv, a, 03C8v,) coincides s’-factor determined by
the Weil group. The proof of [7] Proposition 5.1 works for case (2). By the
assumption, L(s, Ilv, u) has no poles on the domain Re(s) &#x3E; 2(Ilv) and

L(l-s,nIIv,u) has no poles on the domain Re(s)  1- À(Ilv). This proves the
lemma.

REMARK. By Lemma 2.2, we can identify the archimedean L-factors and usual
r-factors if Il is generated by Hilbert modular forms over a totally real field.

COROLLARY. Assume K is not a cubic extension of k. Assume fIv is unitary.
Assume no component is extraordinary, and Â(11v)  1/2. Then the conclusion of
Lemma 2.2 holds.

Proof. For simplicity, we assume K = k Q+ k Q+ k, IIv =n1,v ~ n2,v ~ n3,v, and

all Of n 1,,, n2,v and n3,v are supercuspidal. ni,v = n(Xi,v) (i = 1,2,3) for some quasi-
character xi," of some quadratic extension Ki,v of k,. Choose global quadratic
extension Ki of k such that Kikv = Ki,v. It is easy to check that there exists global
quasi-character xi of AK1x such that v-part of xi is Xi,v and 7r(/J is principal series
outside of v and all archimedean place. Put II = n(xi) O n(X2) O n(X3). Then

L(s, Il, a) is L-function associated to 8-dimensional representation of global
Weil group. The conclusion of Lemma 2.2 holds outside v, so does at v.

We now consider the global theory. We say that a meromorphic section of
J(ei, s) is a good section if it is a finite sum of decomposable elements
f(S) "v fv(S), satisfying the following two conditions:

(i) For almost all unramified places v, fv(s)IKv = d(wv, 2s -1).
(ii) fv(s) is a good section of J(wv, s) for all v.

Note that the infinite product fIv fv(S) is absolutely convergent for Re(s) » 0,
and can be meromorphically continued to C.
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For each good section f(S) of J(co, s), put

Then the restriction of E(h; f(s») to Sp3(A) is an Eisenstein series on Sp3(A)
investigated in Section 1.3. In [7], [22], it is proved that if f(s)=IIv,fv(s) is

decomposable, then

for Re(s) » 0. Set

and

Then by Proposition 1.6, (2.1), and (2.3), we have the following propositions.

PROPOSITION 2.3. L(s, fI, u) can be meromorphically continued to C. 1 t is

entire f W2 is not a principal quasi-character. If W2 = 1, and k is a number field,
then L(s, Il, u) has possible poles at s = 0,1. If W2 = l, and k is a function field with

constant field Fq, then L(s, Il, u) has possible poles at s E 2 log  q Z, 
1 + 2 log q Z.

All the possible poles are at most simple.

PROPOSITION 2.4. L(s, fI, u) satisfies the following functional equation:

Now we investigate the poles of L(s, FI, 6). By Proposition 2.3, we may assume
W2 = 1 and s = 0 or 1. By the functional equation, s = 0 is reduced to s = 1. If
L(s, II, Q) has a pole at s = 1, then there exists a good section f (s) of J(co, s) and a
cusp form 9 belonging to II such that

PROPOSITION 2.5. If w=1, then L(s,II,a) is holomorphic at s =1. In
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particular, if k is a number field, L(s, fI, a) is entire (cf. [22, Theorem 5.1]).
Proof. By Proposition 1.10, the restriction of Ress= 1 E(h; f (s)) to SP3 is an

Eisenstein series associated to a function in the representation induced from the
trivial character of the maximal parabolic subgroup P3,2. It is easy to see that
each coset in (z(G)n Sp3)BSp3IP3,2 is negligible. It follows that (2.4) is identically
zero.

We now assume that W2 = 1, w ~ 1 and L(s, Il, a) has a pole at s = 1. Let K be
the quadratic extension of k corresponding to cv by class field theory, and 0 be
the non-trivial element of Gal(K/k).

Suppose that K = k", k" is a cubic extension of k. Let TIK be the base change of
Il to GL2(Ak"K) (cf. [18]). Consider the triple L-function L(s, I1K, aK) of IIK over
K. Here, a K is the restriction of 6 to the semi-direct product of

GL2(C) x GL2(C) x GL2(C) and WK. Then an easy calculation shows

Here, &#x26; is any extension of w to A;’,. Note that G is a Levi subgroup of the quasi-
split simply connected group Spin(8) of either type 3D 4 or 6D4 according as k"/k
is cyclic or not (see Shahidi [23]). Then [23, Theorem 5.1] implies

for Re(s) = 0. Since w is a non-trivial unitary character of Akx , this implies the
non-vanishing of L(s, Il, a) at s = 1. So, L(s, IIK, 6K) has a pole at s = 1. But since

cvnK = 1, IIK cannot be cuspidal by Proposition 2.5. It follows that there is a

quasi-character X of Ak"xK such that II = 7(x). By a simple calculation, the triple
L-function L(s, 7(x), 6) is given by

Here, 0 is regarded as an element of Gal(k"K/k"), by the natural isomorphism
Gal(k"K/k") --- Gal(K/k). This equality holds up to bad prime factors. But in fact,
(2.5) is an equality of global L-functions. To see this, observe that

has no zero on Re(s) &#x3E; 0, and has no poles on Re(s)  1, by comparing the
functional equation as a triple L-function and that as a L-function associated to
8-dimensional representation of the Weil group. By Lemma 2.1,
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coincides with the product of L-factors of the right-hand side, since À(Hv) = 0 for
n=7i;(/). It follows that (2.5) is an equality of global L-functions.

Let us prove x|Akx = 1. First observe that x|Akx = 1, since wn(X)= w. X|Akx.
Suppose xlAkx~ 1. Then Lk"K(S, (X 0 N k"K/K)X -l X03B8) has a pole at s = 1, therefore
we have

Put I= Im(Nk"K/K: Ak"K~ Akx). Then the index [Axk : I . K x ] is 1 or 3, by the
class fields theory. Let y E Ak"x K, x = Nk"K/K(y) Then

It follows that

So X is trivial on 1. K ". It follows that xIAK = 1, since 1. K x . Ak = AKx . Thus we
have proved the following theorem.

THEOREM 2.6. Suppose that K = k", k" is a cubic extension of k, and L(s, Il, a)
has a pole somewhere. Then

(a) Let Il’, 0)’ be the objects obtained by twisting ni by as°, So E C. Then W,2 = 1,
w’ =1= 1, and L(s, fI’, a) has a simple pole at s = 1, for some So E C.

(b) Assume that W2 = 1, W =1= 1, and L(s, Il, u) has a pole at s = 1. Let K be the
quadratic extension of k corresponding to w by class field theory. Let 8 be the non-
trivial element of Gal(k"K/k"). Then there exists a quasi-character X of
AK"k/Kx such that fI=n(x) and ZIAZ = 1. Moreover the triple L-function is

given by

Next, suppose that K = k Q+ k +Q k, Il=nl(8)n2(8)n3. By the assumption,
W1 W2W3 = w. Let ni,K (i = 1, 2, 3) be the base change of 7ri to GL2(AK). Put
IlK = n1,K 0 n2,K O n3,k. Then,
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Here, Il (8) ce means (n, 0 m) 0 n2 Q n3. As is case (3), the left-hand side has a
pole at s = 1, and cvnK = 1. This time, we can deduce that one of ni,, (i = 1, 2, 3),
say n1,K, is not cuspidal. So there is a quasi-character x of AKx IK ’ such that
n1 = n(x). Observe that xlAk = w2 ’w3 1, since the central quasi-character of 7r(y)
is cv - x|Akx. The triple L-function L(s, fI, a) is given by

Let us now prove that neither 7r2,K nor 7r3,K are cuspidal. Suppose that 7r2,K or
7r3,K, say n2,K, is cuspidal. Then

In particular, 7r3,K is cuspidal, too. Since 7r2,K and 7r3,K are 8-invariant,

Put 8 = x(x°)-1. Since n(x) is cuspidal, 8 =1= 1. By (2.6) and (2.7), we have

n2,K (8) e ri 712,K’ It follows that 82 =1. Since 8° = E -1= 8, there is a character E’ of

Ak Ik x such that 8 = f.’ 0 NK/k. Taking the central quasi-character of (2.6), we have

Put. Then

It follows that

This contradicts to the assumption W1 W2W3 = w, since 8’ is not trivial on I.
We have proved that there are quasi-characters Xi (i = 1, 2, 3) of AKx such that

ni = n(Xi). The triple L-function is given by
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In this case, this equality holds for every local L-factor, by Lemma 2.2.

Replacing Xi by xi03B8 if necessary, we have XlX2X3 = 1. We have proved the

following theorem.

THEOREM 2.7. Suppose that K = k E9 k E9 k, and L(s, Il, u) has a pole some-
where. Then the following two assertions hold:

(a) Let Il’, (J)’ be the objects obtained by twisting n1, by 03B1so, so E C. Then W,2 =1,
w~ 1, and L(s, fI’, u) has a simple pole at s = 1, for some So E C.

(b) Assume that W2 =1, W ~1 1, and L(s, Il, u) has a pole at s = 1. Let K be the
quadratic extension of k corresponding to cv by class field theory. Let 0 be the
generator of Gal(K/k). Then there exist quasi-characters Xl’ X2, and X3 of
AKx /K x such that n1 =n(XI), n2=n(X2), n3=n(X3)’ and X1X2X3=1. Moreover, the
triple L- function is equal to

Now, suppose that K = k EB k’, k’ is a quadratic extension of k, II = n1 Q n2.
Let cv and W2 be the central quasi-characters of ni and n2, respectively. By the
assumption, úJI . (w2|Akx) = w.
We first prove K ~ k’. Assume that K = k’. In this case we have, as in case (3),

and this has a pole at s = 1. Here, II (8) co means (ni (8) W) Q n2. As in case (3), we
can prove that n1,K is not cuspidal. It follows that there is a quasi-character X of
K such that n, 1= n(X). Then

Therefore we have n2 (8) X~ n203B8. Then rc2 ~03B5= n2, where E = x(x°) -1 . As in case
(1), we can prove that g2 =1, E~ 1,8° = e and that there is a character E’ of Ak /k"
such that E = E’0 N,lk. Taking the central character of 712 &#x26; x rr n203B8, we have

Let I, x and y be as in the case (1). Then
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It follows that

This contradicts to the assumption COI - w21Akx = w, since e’ is non-trivial on I.
Thus we have proved K ~ k’.

Suppose K ~ k’. Let nl,K (resp. n2,K) be the base change of ni (resp. n2) to
GL2(Ak) (resp. GL2(Ak’K))’ In this case we can prove that at least one of n1,K and
n2,K is not cuspidal as in case (1). We first prove that actually n2,K is not cuspidal.
Suppose that n2,K is cuspidal. Then n1,k, is not cuspidal, so there is a quasi-
character X of AK such that n, = n(x). Then the triple L-function is given by the
Asai-L-function of n2,K twisted by x:

Let n be the character of AKx 1 K x corresponding to k’K/K by class field theory.
Then

Since LK(s, n2,1, Xn)Asai is the triple L-function for n(xq) x n2, it does not have a
zero at s = 1, so LK(s, (n2,1 0 x) x n03B82,K) has a pole at s = 1. As in the case K = k’,
this is impossible.
Thus n2,K is not cuspidal, so n 2 = n(x) for some quasi-character x of Ak’xK. The

triple L-function is given by

up to finite number of Euler factors. Here, K’ is the quadratic extension of k,
contained in k’K différent from K and k’.

It follows that n l ~ n(x-1|Akx) or n 1~ n(x-1 liA;,), but the latter is impossible for
the following reason. First we observe the central quasi-character of n(x),
n(x-1|Akx), and n(x-1|Ak’x,) are X|Akx Wk’Klk’, x-1lAkx. w, and x-1|Akx. wK’lk, re-

spectively. Here, Wk’ Klk’ (resp. WK’ Ik) is the character of Ak’x /k‘x (resp. A x /k X) of
order 2 corresponding to k’K/k’ (resp. K’ Ik) by class field theory. If

n1~ n(x-1| Akx,), we have
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This contradicts to the assumption W1. (w2|Akx) = W, so one cannot have

n1~ n(x-1|Akx).
Suppose n1~n(x-1|Akx), and n2= n(x). Then an easy calculation shows that

the triple L-function is equal to

Here, 8 is regarded as an element of Gal(k’K/k’), by the natural isomorphism
Gal(k’K/k’) ~ Gal(K/k). As in case (1), this equation holds for all place v.
Thus we have proved the following theorem.

THEOREM 2.8. Suppose that K = k EB k’, k’ is a quadratic extension of k, and
L(s, fI, u) has a pole somewhere. Then the following two assertions hold:

(a) Let fI’, ro’ be the objects obtained by twisting Il by (Xso, So E C. Then W,2 =: 1,
ro’ =1= 1, w’ does not correspond to k’Ik by class field theory, and L(s, II’, a) has a
simple pole at s = 1, for some so E C.

(b) Assume that W2 = 1, w ~ 1, w does not correspond to k’Ik by class field
theory, and L(s, I-1, u) has a simple pole at s = 1. Let K be the quadratic extension
of k corresponding to cv by class field theory. Let 8 be the generator of Gal(k’K/k’).
Then there exists a quasi-character X of Ak.Kx /k’Kx such that n1~ n(x-1|Akx), and
Te2 = n(x). Moreover, the triple L- function is equal to
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