Compositio Mathematica

TAMOTSU IKEDA

On the location of poles of the triple L-functions

Compositio Mathematica, tome 83, no 2 (1992), p. 187-237
http://www.numdam.org/item?id=CM_1992__83_2_187_0
© Foundation Compositio Mathematica, 1992, tous droits réservés.
L'accès aux archives de la revue « Compositio Mathematica » (http: //http://www.compositio.nl/) implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Numdam

On the location of poles of the triple L-functions

TAMOTSU IKEDA*
Kyoto University, Kitashirakawa, Kyoto, 606 Japan

Received 30 July 1990; accepted 11 November 1991

Introduction

Let \mathbf{K} be a semi-simple abelian algebra of degree 3 over a global field k. In [22], I. I. Piatetski-Shapiro and S. Rallis constructed the triple L-functions for irreducible cuspidal automorphic representations of $\mathrm{GL}_{2}\left(\mathbf{K} \otimes \mathbf{A}_{k}\right)$ by means of Rankin-type integrals following P. B. Garrett [3]. The purpose of this paper is to determine the location of the poles of these L-functions. To describe our main result, assume, for simplicity, $\mathbf{K}=k \oplus k \oplus k$. Let α be the standard idele norm: $\mathbf{A}_{k}^{\times} \rightarrow \mathbf{R}_{+}^{\times}$. Given three irreducible cuspidal automorphic representations π_{1}, π_{2}, and π_{3} of $G L_{2}\left(\mathbf{A}_{k}\right)$, let ω be the product of the central quasi-characters of these representations. Let σ be the 8 -dimensional representation of the L-group $\mathrm{GL}_{2}(\mathbf{C})^{3}$ obtained by the tensor product of the standard representations of $\mathrm{GL}_{2}(\mathrm{C})$. The triple L-function $L(s, \Pi, \sigma)$ is the L -function associated to $\Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$ and σ. This is defined by the Euler product:

$$
L(s, \Pi, \sigma)=\prod_{v} L\left(s, \Pi_{v}, \sigma\right) .
$$

If k_{v} is non-archimedean and Π_{v} is of class 1 , then

$$
L\left(s, \Pi_{v}, \sigma\right)=\operatorname{det}\left(\mathbf{1}_{8}-A_{1} \otimes A_{2} \otimes A_{3} \cdot q_{v}^{-s}\right)^{-1}
$$

where q_{v} is the order of the residue field of k_{v}, and A_{i} is the Langlands class of $\pi_{i, v}$ $(i=1,2,3)$. Then our main theorem in the case $\mathbf{K}=k \oplus k \oplus k$ can be stated as follows.

THEOREM 2.7. Suppose that $\mathbf{K}=k \oplus k \oplus k$, and $L(s, \Pi, \pi)$ has a pole somewhere. Then the following two assertions hold:
(a) Let $\Pi^{\prime}, \omega^{\prime}$ be the objects obtained by twisting π_{1} by $\alpha^{s_{0}}, s_{0} \in \mathbf{C}$. Then $\omega^{\prime 2}=1$, $\omega^{\prime} \neq 1$, and $L\left(s, \Pi^{\prime}, \sigma\right)$ has a simple pole at $s=1$, for some $s_{0} \in \mathbf{C}$.
(b) Assume that $\omega^{2}=1, \omega \neq 1$, and $L(s, \Pi, \sigma)$ has a pole at $s=1$. Let K be the

[^0]quadratic extension of k corresponding to ω by class field theory. Let θ be the generator of Gal (K / k). Then there exist quasi-characters χ_{1}, χ_{2}, and χ_{3} of $\mathbf{A}_{K}^{\times} / K^{\times}$such that $\pi_{1}=\pi\left(\chi_{1}\right), \pi_{2}=\pi\left(\chi_{2}\right), \pi_{3}=\pi\left(\chi_{3}\right)$, and $\chi_{1} \chi_{2} \chi_{3}=1$. Moreover, the triple L-function is equal to
$$
\zeta_{K}(s) L_{K}\left(s, \chi_{1}^{-1} \chi_{1}^{\theta}\right) L_{K}\left(s, \chi_{2}^{-1} \chi_{2}^{\theta}\right) L_{K}\left(s, \chi_{3}^{-1} \chi_{3}^{\theta}\right) .
$$

Note that our results are consistent with "the Langlands philosophy". Assume that for each π_{i}, there is a 2-dimensional complex representation ρ_{i} of $\operatorname{Gal}(\bar{k} / k)$ such that $L\left(s, \pi_{i}\right)=L\left(s, \rho_{i}\right)$. Then our main theorem implies that, up to twist by $\alpha^{s 0}$ for some $s_{0} \in \mathbf{C}, L(s, \Pi, \sigma)$ has a pole if and only if $\rho_{1} \otimes \rho_{2} \otimes \rho_{3}$ has a trivial constituent.

A significant point of this result is its possible application to the construction of the lift $\mathrm{GL}_{2} \times \mathrm{GL}_{2} \rightarrow \mathrm{GL}_{4}$ of automorphic representations by means of "the converse theorem". The author hopes to treat this problem in the future.

Let us now describe the contents of this paper. Section 1 is devoted to the theory of Eisenstein series on symplectic group Sp_{n}. Assume, for simplicity, k is a number field. Consider the representation space $I(\omega, s)$ of the representation $\mathrm{Ind}_{P_{n}}^{\mathrm{Sp}} \omega \alpha^{s}$ induced from a quasi-character ω of the parabolic subgroup

$$
P_{n}=\left\{\left(\begin{array}{cc}
A & * \\
\mathbf{0}_{n} & { }^{t} A^{-1}
\end{array}\right) \in \mathrm{Sp}_{n}\right\}
$$

of Sp_{n}. Let $f^{(s)}$ be a meromorphic section of $I(\omega, s)$, which roughly means that $f^{(s)}$ belongs to $I(\omega, s)$ for each $s \in \mathbf{C}$ and is meromorphic in s. In order to make use of the Rankin-Selberg convolution, we require that the family $\left\{f^{(s)}\right\}$ has the following properties:
(i) $E\left(h ; f^{(s)}\right)$ has finite number of poles.
(ii) The family $\left\{f^{(s)}\right\}$ is stable under the intertwining operator $M_{w_{0}}$ with respect to the longest Weyl group element w_{0}.
(iii) The family $\left\{f^{(s)}\right\}$ is the restricted tensor product of families of meromorphic sections $\left\{f_{v}^{(s)}\right\}$ of induced representations $I\left(\omega_{v}, s\right)$ on $\mathrm{Sp}_{n}\left(k_{v}\right)$.
(iv) The family $\left\{f_{v}^{(s)}\right\}$ contains all holomorphic sections.

Moreover, to get a good local functional equation, we need a normalization $M_{w_{0}}^{*}$ of the local intertwining operator such that
(v) $M_{w_{0}}^{*} \circ M_{w_{0}}^{*}=$ const.
(vi) The family $\left\{f_{v}^{(s)}\right\}$ is stable under the normalized intertwining operator $M_{w_{0}}^{*}$ 。

We shall construct this normalized intertwining operator, and the family $\left\{f_{v}^{(s)}\right\}$ in Section 1.2. A function $f^{(s)}$ in this family is called a good section. Our normalized intertwining operator is different from Langlands's normalization [16, Appendix 2]. In Section 1.3 we shall determine the location of the poles of the Eisenstein series $E\left(h ; f^{(s)}\right)$ associated to a good section $f^{(s)}$. In Section 1.4 we calculate the residue of the Eisenstein series $E\left(h ; f^{(s)}\right)$ at $s=\frac{n-1}{2}$.

Section 2 is devoted to the theory of the triple L-functions. We shall define the local L-factor and ε-factor, and give the functional equation for the triple Lfunctions. The location of the poles is then determined. The key lemma is that if $\omega=1$, then $L(s, \Pi, \sigma)$ does not have a pole at $s=1$ (Proposition 2.5). The main theorem will be proved by showing that the base change of Π to $\mathrm{GL}_{2}\left(\mathbf{A}_{K}\right)^{3}$ is not cuspidal.

The author would like to thank D. Blasius for his suggestion to use the base change which simplified the proof. The author would like to thank Prof. F. Shahidi for some comments. The author also would like to express his gratitude to H . Hijikata and H . Yoshida for their kind advice and constant encouragement.

Notation

The $n \times n$ zero and identity matrices are denoted by $\mathbf{0}_{n}$ and $\mathbf{1}_{n}$, respectively. If X is a matrix, $\operatorname{det} X$ stands for its determinant. For a function f on a group G and $x \in G$, we denote by $\rho(x) f$ the right translation of f by x, i.e., $\rho(x) f(g)=f(g x)$. When G is locally compact, the Schwartz-Bruhat space of G is denoted by $\mathscr{S}(G)$. If G is an algebraic group defined over a field k, the group of k-valued points of G is denoted by $G(k)$ or G. If π is a representation of G, its contragredient is denoted by $\tilde{\pi}$. When k is a global field, the adele ring (resp. the idele group) of k is denoted by \mathbf{A}_{k} or \mathbf{A} (resp. \mathbf{A}_{k}^{\times}or $\left.\mathbf{A}^{\times}\right)$. We fix a non-trivial additive character ψ of \mathbf{A} / k (resp. k), if k is a global field (resp. local field). The standard idele norm: $\mathbf{A}^{\times} \rightarrow \mathbf{R}_{+}^{\times}$is denoted by $\|$or α. When k is a local field, the normalized absolute value: $k^{\times} \rightarrow \mathbf{R}_{+}^{\times}$is denoted by $\|$or α. When k is a global (resp. local) field, a quasi-character χ of \mathbf{A}^{\times}(resp. k^{\times}) is called principal if $\chi=\alpha^{s_{0}}$ for some $s_{0} \in \mathbf{C}$. When k is a global function field, the order of the coefficient field of k is denoted by q. When k is a non-archimedean local field, $\mathcal{O}, \boldsymbol{\infty}$, and q are the maximal order of k, a prime element of \mathcal{O}, and the order of the residue field of k, respectively. The multiplicative Haar measure $d^{\times} x$ of k^{\times}is normalized so that $\operatorname{Vol}\left(\mathbb{C}^{\times}\right)=1$.

1. Analytic theory of Eisenstein series

1.1. Definitions

Let H_{n} be the symplectic group Sp_{n} :

$$
\begin{aligned}
H_{n} & =\mathrm{Sp}_{n} \\
& =\left\{h \in \mathrm{GL}_{2 n} \left\lvert\, h\left(\begin{array}{rr}
\mathbf{0}_{n} & -\mathbf{1}_{n} \\
\mathbf{1}_{n} & \mathbf{0}_{n}
\end{array}\right){ }^{t} h=\left(\begin{array}{rr}
\mathbf{0}_{n} & -\mathbf{1}_{n} \\
\mathbf{1}_{n} & \mathbf{0}_{n}
\end{array}\right)\right.\right\} .
\end{aligned}
$$

We define parabolic subgroups P_{n} and B_{n} of H_{n} by

$$
\begin{aligned}
& P_{n}=\left\{\left(\begin{array}{cc}
A & * \\
\mathbf{0}_{n} & A^{-1}
\end{array}\right) \in H_{n}\right\}, \\
& B_{n}=\left\{\left.\left(\begin{array}{cc}
A & * \\
\mathbf{0}_{n} & A^{-1}
\end{array}\right) \in P_{n} \right\rvert\, A \text { is upper triangular }\right\} .
\end{aligned}
$$

Let $M_{m}\left(\right.$ resp. $\left.T_{n}\right)$ be a Levi factor of $P_{n}\left(\right.$ resp. $\left.B_{n}\right)$ given by

$$
\begin{aligned}
& M_{n}=\left\{\left.\left(\begin{array}{cc}
A & \mathbf{0}_{n} \\
\mathbf{0}_{n} & { }^{t} A^{-1}
\end{array}\right) \right\rvert\, A \in \mathrm{GL}_{n}\right\}, \\
& T_{n}=\left\{\left.\left(\begin{array}{cc}
A & \mathbf{0}_{n} \\
\mathbf{0}_{n} & { }^{t} A^{-1}
\end{array}\right) \right\rvert\, A \text { is diagonal }\right\} .
\end{aligned}
$$

We denote by $U_{n}\left(\right.$ resp. $\left.N_{n}\right)$ the unipotent radical of $P_{n}\left(\right.$ resp. $\left.B_{n}\right)$:

$$
\begin{aligned}
& U_{n}=\left\{\left.\left(\begin{array}{ll}
\mathbf{1}_{n} & B \\
\mathbf{0}_{n} & \mathbf{1}_{n}
\end{array}\right) \right\rvert\, B={ }^{t} B\right\}, \\
& N_{n}=\left\{\left.\left(\begin{array}{cc}
A & * \\
\mathbf{0}_{n} & A^{-1}
\end{array}\right) \in H_{n} \right\rvert\, A \text { is unipotent upper triangular }\right\} .
\end{aligned}
$$

Let P_{n}^{-}and B_{n}^{-}be the opposite parabolic subgroups of P_{n} and B_{n}, respectively. We denote by $U_{n}^{-}\left(\right.$resp. $\left.N_{n}^{-}\right)$the unipotent radical of $P_{n}^{-}\left(\right.$resp. $\left.B_{n}^{-}\right)$.

Let $x_{i}(1 \leqslant i \leqslant n)$ be the character of T_{n} given by

$$
\left(\begin{array}{cccccc}
t_{1} & & & & & \\
& \ddots & & & & \\
& & t_{n} & & & \\
& & & t_{1}^{-1} & & \\
& & & & \vdots & \\
& & & & & t_{n}^{-1}
\end{array}\right) \mapsto t_{i}
$$

Let $\operatorname{Norm}\left(T_{n}\right)$ be the normalizer of T_{n} in H_{n}. We denote the Weyl group $\operatorname{Norm}\left(T_{n}\right) / T_{n}$ by $W_{H_{n}}$. We shall often use the same symbol for an element of $\operatorname{Norm}\left(T_{n}\right)$ and its image in $W_{H_{n}}$. Let $\Phi_{H_{n}}\left(\operatorname{resp} . \Phi_{M_{n}}\right)$ be the set of roots of H_{n} (resp. M_{n}) with respect to T_{n}. We denote by N_{α} the unipotent group associated to a root $\alpha \in \Phi_{H_{n}}$. Each N_{α} is isomorphic to k in the natural way (by the coordinate). We denote by w_{α} the reflection determined by α. Let α_{i} be the simple root:

$$
\begin{aligned}
& \alpha_{i}=x_{i}-x_{i+1}, \quad(1 \leqslant i \leqslant n-1) \\
& \alpha_{n}=2 x_{n}
\end{aligned}
$$

Let Ω_{n} be the complete set of representatives for $W_{H_{n}} / W_{M_{n}}$ obtained by choosing the unique element of minimal length in each coset. For each subset $I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$ of $\{1,2, \ldots, n\}$, we define an element w_{I} of $W_{H_{n}}$ by

$$
\begin{aligned}
& x_{1} \rightarrow x_{j_{1}}, \ldots, x_{n-k} \rightarrow x_{j_{n-k}} \\
& x_{n-k+1} \rightarrow-x_{i_{k}}, \ldots, x_{n} \rightarrow-x_{i_{1}}
\end{aligned}
$$

where $J=\left\{j_{1}, j_{2}, \ldots, j_{n-k}\right\}=\{1,2, \ldots, n\}-I, i_{1}<i_{2}<\cdots<i_{k}, j_{1}<j_{2}<\cdots<$ j_{n-k}. The element w_{I} belongs to Ω_{n} and each element of Ω_{n} is obtained in this way (cf. [20]). We also denote by Ω_{n} a set of representatives of Ω_{n} in $\operatorname{Norm}\left(T_{n}\right)$. The length $l\left(w_{I}\right)$ of w_{I} is given by

$$
\begin{aligned}
l\left(w_{I}\right) & =\#\left\{\alpha \in \Phi_{H_{n}} \mid \alpha>0, w_{I} \alpha<0\right\} \\
& =\sum_{r=1}^{k}\left(n+1-i_{r}\right)
\end{aligned}
$$

Put

This is the longest element in Ω_{n}. For $w \in \operatorname{Norm}\left(T_{n}\right)$ and a character χ of T_{n}, we put

$$
\chi^{w}(t)=\chi\left(w^{-1} t w\right) .
$$

Obviously χ^{w} depends only upon the class of w in $W_{H_{n}}$, so we shall use the same notation χ^{w} for $w \in W_{H_{n}}$. We often regard a character of T_{n} as a character of B_{n} by the isomorphism $B_{n} / N_{n} \simeq T_{n}$.

1.2. Local theory

In this subsection, k is a local field. We define the standard maximal compact subgroup K_{n} of H_{n} as follows.

When k is non-archimedean, we put $K_{n}=H_{n}(\mathcal{O})$. When $k=\mathbf{R}$, we put

$$
K_{n}=\left\{\left.\left(\begin{array}{rr}
A & B \\
-B & A
\end{array}\right) \in H_{n} \right\rvert\, A^{t} B=B^{t} A, A^{t} A+B^{t} B=\mathbf{1}_{n}\right\} .
$$

When $k=\mathbf{C}$, we put

$$
K_{n}=\left\{\left.\left(\begin{array}{rr}
A & B \\
-\bar{B} & \bar{A}
\end{array}\right) \in H_{n} \right\rvert\, A^{t} B=B^{t} A, A^{\bar{t} A}+B^{\bar{t}} \boldsymbol{B}=\mathbf{1}_{n}\right\} .
$$

When k is non-archimedean, we put $R=\mathbf{C}\left[q^{s}, q^{-s}\right]$. When k is archimedean, we let R be the ring of entire functions on \mathbf{C}. Let ω be a quasi-character of k^{\times} and let s denote a complex number. Let $I(\omega, s)=\operatorname{Ind}_{P_{n}}^{H_{n}}\left(\omega \alpha^{s}\right)$ be the space of functions f on H_{n} which satisfy the following two conditions:
(i) f is right K_{n}-finite.
(ii) For any $p=\left(\begin{array}{cc}A & * \\ \mathbf{0}_{n} & { }^{t} A^{-1}\end{array}\right) \in P_{n}$,

$$
f(p h)=\omega(\operatorname{det} A)|\operatorname{det} A|^{s+(n+1) / 2} f(h)
$$

We say that a function $f^{(s)}(h)$ on $H_{n} \times \mathbf{C}$ is a holomorphic section of $I(\omega, s)$ if the following three conditions are satisfied:
(1) For each $s \in \mathbf{C}, f^{(s)}(h)$ belongs to $I(\omega, s)$ as a function of $h \in H_{n}$.
(2) For each $h \in H_{n}, f^{(s)}(h)$ belongs to R as a function of $s \in \mathbf{C}$.
(3) $f^{(s)}(h)$ is right K_{n}-finite.

We say that a meromorphic function $f^{(s)}(h)$ on $H_{n} \times \mathbf{C}$ is a meromorphic section of $I(\omega, s)$, if there is $\alpha(s) \in R$ such that $\alpha(s) \not \equiv 0$, and $\alpha(s) f^{(s)}(h)$ is a holomorphic section of $I(\omega, s)$. Note that a holomorphic section of $I(\omega, s)$ is determined by its restriction to $K_{n} \times \mathbf{C}$. We say that a holomorphic section $f^{(s)}(h)$ is a standard section if its restriction to $K_{n} \times \mathbf{C}$ does not depend on $s \in \mathbf{C}$. Obviously the space of holomorphic sections is generated by standard sections over R.

For a quasi-character χ of T_{n}, we define $\operatorname{Ind}_{B_{n}}^{H_{n}}(\chi)$ to be the space of right $K_{n^{-}}$ finite functions $f(h)$ on H_{n} such that

$$
f(b h)=\chi(b) \delta_{B_{n}}^{1 / 2}(b) f(h),
$$

where $\delta_{B_{n}}$ is the modulus quasi-character of B_{n}. Put

$$
\chi_{s}(t)=\prod_{i=1}^{n} \omega\left(t_{i}\right)\left|t_{i}\right|^{s-(n+1) / 2+i}
$$

Then $I(\omega, s) \subset \operatorname{Ind}_{B_{n}}^{H_{n}}\left(\chi_{s}\right)$. We define holomorphic sections, meromorphic sections, and standard sections of $\operatorname{Ind}_{B_{n}}^{H_{n}}\left(\chi_{s}\right)$ similarly.

For $w \in \operatorname{Norm}\left(T_{n}\right)$ and a quasi-character χ of T_{n}, we define the intertwining operator

$$
M_{w}=M(w, \chi): \operatorname{Ind}_{B_{n}}^{H_{n}}(\chi) \rightarrow \operatorname{Ind}_{B_{n}}^{H_{n}}\left(\chi^{w}\right)
$$

by

$$
M_{w} f(h)=\int_{N_{n} n w N_{n}^{-} w^{-1}} f\left(w^{-1} n h\right) d n .
$$

Here the Haar measure $d n$ is determined as follows. For each $\alpha \in \Phi_{H_{n}}$, the Haar measure $d n_{\alpha}$ on N_{α} is given by the self dual measure on k with respect to ψ by the natural isomorphism $N_{\alpha} \simeq k$. Then the measure $d n$ is the product measure: $d n=\Pi d n_{\alpha}$. The integral is absolutely convergent if χ belongs to some open set and can be meromorphically continued to all χ (cf. [8], [25]).

If $l\left(w_{1}\right)+l\left(w_{2}\right)=l\left(w_{1} w_{2}\right)$, then $M_{w_{1}} \circ M_{w_{2}}=M_{w_{1} w_{2}}$. When $w=w_{\alpha}$ is a reflection with respect to a simple root α, then $M(w, \chi)$ can be regarded as an intertwining
operator on SL_{2} as follows: let $l_{\alpha}: \mathrm{SL}_{2} \rightarrow H_{n}$ be a homomorphism corresponding to α. We may assume $w=l_{\alpha}\left(\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)\right)$. Then for any $f \in \operatorname{Ind}_{B_{n}}^{\boldsymbol{H}^{n}}(\chi)$,

$$
l_{\alpha}^{*}(M(w, \chi) f)=M\left(\left(\begin{array}{rr}
0 & -1 \tag{1.2.1}\\
1 & 0
\end{array}\right), l_{\alpha}^{*} \chi\right)\left(i_{\alpha}^{*} f\right),
$$

as a function on SL_{2}. Since $M(w, \chi)$ commutes with right translations (or actions of Hecke operators), it follows from (1.2.1) that the whole property of $M(w, \chi)$ is reduced to that of $M\left(\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right), l_{\alpha}^{*} \chi\right)$. When ω is unramified, there exists a unique standard section $\phi_{\omega, s}$ of $I(\omega, s)$ such that $\left.\phi_{\omega, s}\right|_{K_{n}} \equiv 1$. Similarly, there exists a unique standard section $\phi_{\omega, s}^{w}$ of $\operatorname{Ind}_{B_{n}}^{H_{n}}\left(\chi_{s}^{w}\right)$ such that $\left.\phi_{\omega, s}^{w}\right|_{K_{n}} \equiv 1$, for any $w \in \Omega_{n}$. Note that $\phi_{\omega, s}^{w_{0}}=\phi_{\omega^{-1},-s}$.

Let us recall some known results concerning $\mathrm{SL}_{2} \simeq H_{1}$. Let $w=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$, $M_{w}=M(w, \omega)=M(w, \omega, s): I(\omega, s) \rightarrow I\left(\omega^{-1},-s\right)$. Then:
(1.2.2) $L(s, \omega)^{-1} M_{w}$ is holomorphic.
(1.2.3) $M\left(w^{-1}, \omega^{-1}\right) \circ M(w, \omega)=\varepsilon^{\prime}(s, \omega, \psi)^{-1} \varepsilon^{\prime}\left(-s, \omega^{-1}, \psi\right)^{-1} \cdot \mathrm{id}$.
(1.2.4) If ω is unramified, and ψ is of order 0 ,

$$
M_{w} \phi_{\omega, s}=\frac{L(s, \omega)}{L(s+1, \omega)} \phi_{\omega^{-1},-s} .
$$

(1.2.5) If k is non-archimedean and $\omega=1$, the kernel and the image of $M(w, 1,1)$: $I(1,1) \rightarrow I(1,-1)$ are the Steinberg representation and the trivial representation, respectively.
(1.2.6) If k is non-archimedean and $\omega=1$, the kernel and the image of $M(w, 1,-1): I(1,-1) \rightarrow I(1,1)$ are the trivial representation and the Steinberg representation, respectively. (1.2.7) If $\omega=1$, then $\operatorname{Res}_{s=0} M(w, 1, s)$ is a non-zero scalar multiplication.

If $w \in \Omega_{n}$, then the restriction of M_{w} to $I(\omega, s) \subset \operatorname{Ind}_{B_{n}}^{H_{n}}\left(\chi_{s}\right)$ is well defined (except for countably many values of s). If $f^{(s)}$ is a holomorphic section of $I(\omega, s$), then $M_{w} f^{(s)}$ is a meromorphic section of $\operatorname{Ind}_{B_{n}}^{H_{n}}\left(\chi_{s}^{w}\right)$. We denote this restriction by $M_{w}=M(w, \omega)=M(w, \omega, s)$, too. If ω is unramified, $w \in \operatorname{Norm}\left(T_{n}\right) \cap K_{n}$, and ψ is of order 0 , then there exists a meromorphic function $c_{w}(s)=c_{w}(\omega, s)$ such that

$$
\begin{aligned}
& M_{w}\left(\phi_{\omega, s}\right)=c_{w}(s) \phi_{\omega, s}^{w} . \\
& c_{w}(s)=\prod_{\substack{\alpha \in \Phi_{H_{n}} \\
w \alpha<0 \\
\alpha>0}} \frac{L\left(\left\langle\breve{\alpha}, \chi_{s}\right\rangle\right)}{L\left(\left\langle\breve{\alpha}, \chi_{s}\right\rangle+1\right)},
\end{aligned}
$$

where \langle,$\rangle is a W_{H_{n}}$-invariant inner product on $X^{*}\left(T_{n}\right) \otimes_{\mathrm{Z}} \mathbf{C}$, and $\breve{\alpha}=2 \alpha /\langle\alpha, \alpha\rangle$ is the coroot of α.

In [20], the common denominator of $c_{w}(s)$ is calculated. Here we proceed in a slightly different way. Let $w=w_{I}, I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. Put

$$
\begin{aligned}
N\left(w_{I}\right)= & \left\{\alpha \in \Phi_{H_{n}} \mid \alpha>0, w_{I} \alpha<0\right\} \\
= & \left\{2 x_{n-m+1} \mid 1 \leqslant m \leqslant k\right\} \\
& \bigcup\left\{x_{m}+x_{n-r+1} \mid 1 \leqslant r \leqslant k, i_{r}-r+1 \leqslant m \leqslant n-r\right\}
\end{aligned}
$$

We divide $N\left(w_{I}\right)$ into a disjoint union $\coprod_{r=0}^{[n / 2]} N_{r}\left(w_{I}\right)$:

$$
N_{r}\left(w_{I}\right)= \begin{cases}\left\{2 x_{n-m+1} \mid 1 \leqslant m \leqslant k\right\}, & \text { if } r=0 \\ \varnothing, & \text { if } r>k \\ \left\{x_{m}+x_{n-r+1} \mid i_{r}-r+1 \leqslant m \leqslant n-r\right\}, & \text { if } 1 \leqslant r \leqslant k, i_{r} \geqslant 2 r \\ \left\{x_{m}+x_{n-r+1} \mid r \leqslant m \leqslant n-r\right\} & \\ \bigcup\left\{x_{m}+x_{r} \mid \mu_{w}(r) \leqslant m \leqslant n-r\right\}, & \text { if } 1 \leqslant r \leqslant k, i_{r} \leqslant 2 r-1\end{cases}
$$

Here

$$
\mu_{w}(r)= \begin{cases}\min \left\{m \mid n-k+1 \leqslant m \leqslant n, j_{r}<i_{n-m+1}\right\}, & \text { if } 1 \leqslant r \leqslant n-k \\ r+1, & \text { if } n-k+1 \leqslant r \leqslant\left[\frac{n}{2}\right] .\end{cases}
$$

Put

$$
\begin{aligned}
& d^{r}(s)= \begin{cases}L\left(s+\frac{n+1}{2}, \omega\right), & \text { if } r=0 \\
L\left(2 s+n+1-2 r, \omega^{2}\right), & \text { if } 1 \leqslant r \leqslant\left[\frac{n}{2}\right],\end{cases} \\
& a_{w}^{r}(s)= \begin{cases}L\left(s+\frac{n+1}{2}-k, \omega\right), & \text { if } r=0 \\
L\left(2 s+n+1-2 r, \omega^{2}\right), & \text { if } k<r \leqslant\left[\frac{n}{2}\right] \\
L\left(2 s+i_{r}-2 r+1, \omega^{2}\right), & \text { if } 1 \leqslant r \leqslant k, i_{r} \geqslant 2 r \\
L\left(2 s-n+r+\mu_{w}(r)-1, \omega^{2}\right), & \text { if } 1 \leqslant r \leqslant k, i_{r} \leqslant 2 r-1,\end{cases} \\
& d(s)=\prod_{r=0}^{[n / 2]} d^{r}(s), \quad a_{w}(s)=\prod_{r=0}^{[n / 2]} a_{w}^{r}(s) .
\end{aligned}
$$

Then we have

$$
\begin{aligned}
c_{w}(s) & =\prod_{r=0}^{[n / 2]} \prod_{\alpha \in N_{r}\left(w_{t}\right)} \frac{L\left(\left\langle\breve{\alpha}, \chi_{s}\right\rangle\right)}{L\left(\left\langle\breve{\alpha}, \chi_{s}\right\rangle+1\right)} \\
& =\prod_{r=0}^{[n / 2]} \frac{a_{w}^{r}(s)}{d^{r}(s)} \\
& =\frac{a_{w}(s)}{d(s)}
\end{aligned}
$$

Thus $d(s)$ is the smallest common denominator of $c_{w}(s), w \in \Omega_{n}$. Note that

$$
c_{w}(s)=\prod_{r=0}^{\min (k,[n / 2])} \frac{a_{w}^{r}(s)}{d^{r}(s)} .
$$

Now, even when ω is not unramified, we define $c_{w}(s), d(s)$ etc. by formally substituting ω.

DEFINITION. The normalized intertwining operator

$$
M_{w_{0}}^{*}=M^{*}\left(w_{0}, \omega\right)=M^{*}\left(w_{0}, \omega ; \psi\right): I(\omega, s) \rightarrow I\left(\omega^{-1},-s\right)
$$

is given by

$$
M_{w_{0}}^{*}=\varepsilon^{\prime}\left(s-\frac{n-1}{2}, \omega, \psi\right) \cdot \prod_{r=1}^{[n / 2]} \varepsilon^{\prime}\left(2 s-n+2 r, \omega^{2}, \psi\right) \cdot M_{w_{0}} .
$$

LEMMA 1.1.

$$
\begin{aligned}
& M^{*}\left(w_{0}^{-1}, \omega^{-1} ; \psi\right) \circ M^{*}\left(w_{0}, \omega ; \psi\right)=\omega(-1)^{n+1} \cdot \mathrm{id}, \\
& M^{*}\left(w_{0}, \omega^{-1} ; \bar{\psi}\right) \circ M^{*}\left(w_{0}, \omega ; \psi\right)=\mathrm{id} .
\end{aligned}
$$

Proof. The second formula is just a reformulation of the first formula. We will prove the first formula. When $n=1$, this is (1.2.3). Since

$$
\varepsilon^{\prime}\left(-s, \omega^{-1}, \psi\right) \varepsilon^{\prime}(s+1, \omega, \psi)=\omega(-1)
$$

the right-hand side of (1.2.3) is equal to

$$
\omega(-1) \frac{\varepsilon^{\prime}(s+1, \omega, \psi)}{\varepsilon^{\prime}(s, \omega, \psi)} \cdot \mathrm{id}
$$

For general n, take a minimal expression of w_{0} in $W_{H_{n}}$ by simple reflections

$$
w_{0}=w_{1} w_{2} \cdots w_{k}
$$

By using (1.2.1) and (1.2.3) successively,

$$
\begin{aligned}
M_{w_{o}^{-1}} \circ M_{w_{0}}= & M_{w_{k}^{-1}} \cdots \circ M_{w_{2}^{-1}} \circ M_{w_{1}^{-1}} \circ M_{w_{1}} \circ M_{w_{2}} \circ \cdots \circ M_{w_{k}} \\
= & \omega(-1)^{n} \prod_{\substack{\alpha \in \Phi_{\Phi_{n}} \\
\alpha \neq \Phi_{M_{n}}}} \frac{\varepsilon^{\prime}\left(\left\langle\breve{\alpha}, \chi_{s}\right\rangle+1, \psi\right)}{\varepsilon^{\prime}\left(\left\langle\breve{\alpha}, \chi_{s}\right\rangle, \psi\right)} \cdot \mathrm{id} \\
= & \omega(-1)^{n} \frac{\varepsilon^{\prime}(s+(n+1) / 2, \omega, \psi)}{\varepsilon^{\prime}(s-(n-1) / 2, \omega, \psi)} \\
& \times \prod_{r=1}^{[n / 2]} \frac{\varepsilon^{\prime}\left(2 s+n+1-2 r, \omega^{2}, \psi\right)}{\varepsilon^{\prime}\left(2 s-n+2 r, \omega^{2}, \psi\right)} \cdot \mathrm{id} \\
= & \omega(-1)^{n+1} \varepsilon^{\prime}\left(s-\frac{n-1}{2}, \omega, \psi\right)^{-1} \varepsilon^{\prime}\left(-s-\frac{n-1}{2}, \omega^{-1}, \psi\right)^{-1} \\
& \times \prod_{r=1}^{[n / 2]} \varepsilon^{\prime}\left(2 s-n+2 r, \omega^{2}, \psi\right)^{-1} \varepsilon^{\prime}\left(-2 s-n+2 r, \omega^{-2}, \psi\right)^{-1} \cdot \mathrm{id.}
\end{aligned}
$$

Hence the lemma.

DEFINITION. A meromorphic section $f^{(s)}(h)$ of $I(\omega, s)$ is a good section of $I(\omega, s)$ if for any $w \in \Omega_{n}$,

$$
\left[d(s) c_{w}(s)\right]^{-1} M_{w} f^{(s)}
$$

is holomorphic.
In particular, if ω is unramified, $d(s) \phi_{\omega, s}$ is a good section of $I(\omega, s)$.

LEMMA 1.2. $f^{(s)}$ is a good section of $I(\omega, s)$ if and only if $M_{w_{0}}^{*} f^{(s)}$ is a good section of $I\left(\omega^{-1},-s\right)$.

Proof. It will suffice to prove that for each $w_{I} \in \Omega_{n}$, there exists an entire function $\varepsilon(s)$ with no zeros such that

$$
\begin{align*}
& {\left[d(\omega, s) c_{w_{I}}(\omega, s)\right]^{-1} M_{w_{I}} f^{(s)}(h)} \\
& \quad=\varepsilon(s)\left[d\left(\omega^{-1},-s\right) c_{w_{J}}\left(\omega^{-1},-s\right)\right]^{-1} M_{w_{J}} \circ M_{w_{0}}^{*} f^{(s)}(h) . \tag{1.2.8}
\end{align*}
$$

We shall proceed by induction on $l\left(w_{J}\right)$. Obviously, (1.2.8) holds when $l\left(w_{J}\right)=0$.

Suppose $l\left(w_{J}\right)>0$. There are two cases:
(1) $j_{n-k}=n$.
(2) $j_{n-k}=m<n$.

In case (1), put $I^{\prime}=I \cup\{n\}, J^{\prime}=J-\{n\}$. Then

$$
\begin{aligned}
& l\left(w_{I^{\prime}}\right)=l\left(w_{I}\right)+1, \quad l\left(w_{J^{\prime}}\right)=l\left(w_{J}\right)-1, \\
& w_{J}=w_{\alpha_{n}} \cdot w_{J^{\prime}}, \quad M_{w_{J}}=M_{w_{\alpha_{n}}} \circ M_{w_{J}}, \\
& w_{I^{\prime}}=w_{\alpha_{n}} \cdot w_{I}, \quad M_{w_{I^{\prime}}}=M_{w_{\alpha_{n}}} \circ M_{w_{I}}, \\
& c_{w_{J}}\left(\omega^{-1},-s\right)=c_{w_{J}}\left(\omega^{-1},-s\right) \frac{L\left(-s+\frac{-n+1}{2}+k, \omega^{-1}\right)}{L\left(-s+\frac{-n+1}{2}+k+1, \omega^{-1}\right)}, \\
& c_{w_{I}}(\omega, s)=c_{w_{I}}(\omega, s) \frac{L\left(s+\frac{n+1}{2}-k, \omega\right)}{L\left(s+\frac{n+1}{2}-k-1, \omega\right)} .
\end{aligned}
$$

On the other hand, by (1.2.1) and (1.2.3),

$$
\begin{aligned}
& M_{w_{x_{n}}} \circ M_{w_{I}}=M_{w_{\alpha_{n}}} \circ M_{w_{x_{n}}} \circ M_{w_{I}} \\
& \quad=C \cdot \varepsilon^{\prime}\left(s+\frac{n-1}{2}-k, \omega, \psi\right)^{-1} \varepsilon^{\prime}\left(-s-\frac{n-1}{2}+k, \omega^{-1}, \psi\right)^{-1} \cdot M_{w_{I}}
\end{aligned}
$$

where C is some non-zero constant. We have
$\left[d(\omega, s) c_{w_{I}}(\omega, s)\right]^{-1} M_{w_{I}} f^{(s)}$

$$
\begin{aligned}
= & {\left[d(\omega, s) c_{w_{r}}(\omega, s)\right]^{-1} \frac{L\left(s+\frac{n+1}{2}-k-1, \omega\right)}{L\left(s+\frac{n+1}{2}-k, \omega\right)} } \\
& \times C^{-1} \cdot \varepsilon^{\prime}\left(s+\frac{n-1}{2}-k, \omega, \psi\right) \varepsilon^{\prime}\left(-s-\frac{n-1}{2}+k, \omega^{-1}, \psi\right) \cdot M_{w_{x_{n}}} \circ M_{w_{r}} f^{(s)} .
\end{aligned}
$$

By the induction assumption, this is equal to

$$
\begin{aligned}
\varepsilon_{1}(s) & \frac{L\left(s+\frac{n+1}{2}-k-1, \omega\right)}{L\left(s+\frac{n+1}{2}-k, \omega\right)} \frac{L\left(1-s-\frac{n-1}{2}+k, \omega^{-1}\right)}{L\left(s+\frac{n-1}{2}-k, \omega\right)} \\
& \times \frac{L\left(s+\frac{n+1}{2}-k, \omega\right)}{L\left(-s-\frac{n-1}{2}+k, \omega^{-1}\right)} \\
& \times\left[d\left(\omega^{-1},-s\right) c_{w_{J}}\left(\omega^{-1},-s\right)\right]^{-1} M_{w_{\alpha_{n}}} \circ M_{w_{J}} \circ M_{w_{0}}^{*} f^{(s)} \\
= & \varepsilon_{1}(s)\left[d\left(\omega^{-1},-s\right) c_{w_{J}}\left(\omega^{-1},-s\right)\right]^{-1} M_{w_{J}} \circ M_{w_{0}}^{*} f^{(s)} .
\end{aligned}
$$

Here $\varepsilon_{1}(s)$ is some entire function with no zeros.
In case (2), put $I^{\prime}=I-\{m\} \cup\{m+1\}, J^{\prime}=J-\{m+1\} \cup\{m\}$. Then

$$
\begin{array}{lc}
l\left(w_{I^{\prime}}\right)=l\left(w_{I}\right)+1, & l\left(w_{J^{\prime}}\right)=l\left(w_{J}\right)-1, \\
w_{J}=w_{\alpha_{m}} \cdot w_{J^{\prime}}, & M_{w_{J}}=M_{w_{\alpha_{m}}} \circ M_{w_{J}}, \\
w_{I^{\prime}}=w_{\alpha_{m}} \cdot w_{I}, & M_{w_{I}}=M_{w_{\alpha_{m}}} \circ M_{w_{I}} .
\end{array}
$$

By a calculation similar to case (1), (1.2.8) for I is reduced to (1.2.8) for I^{\prime}. Thus the lemma follows.

The following lemma is crucial for our theory.
LEMMA 1.3. Every holomorphic section of $I(\omega, s)$ is a good section.

REMARK. If $k \neq \mathbf{C}$, and ω is unramified, this lemma is nothing but [22, Theorem 4.2].

Proof of Lemma 1.3. Here we assume k is non-archimedean. We may assume ω is ramified. If ω^{2} is ramified, then $d(s)=c_{w}(s)=1$, for any $w \in \Omega_{n}$. Take a minimal expression of w by simple reflections:

$$
w=w_{1} w_{2} \cdots w_{r}, \quad M_{w}=M_{w_{1}} \circ M_{w_{2}} \circ \cdots \circ M_{w_{r}}
$$

Each $M_{w_{i}}(1 \leqslant i \leqslant r)$ is holomorphic by (1.2.1) and (1.2.2). So the lemma is obvious in this case.

Now we assume ω is ramified and $\omega^{2}=1$. Let $w=w_{I}, I=\left\{i_{1}, i_{2}, \ldots, i_{k}\right\}$. Recall

$$
a_{w}(s)=d(s) c_{w}(s)=\prod_{r=0}^{[n / 2]} a_{w}^{r}(s)
$$

It suffices to prove

$$
\begin{equation*}
\left[\prod_{r=0}^{\min (k,[/[/ 2])} a_{w}^{r}(s)\right]^{-1} M_{w} f^{(s)} \tag{1.2.9}
\end{equation*}
$$

is holomorphic. Put

$$
A_{w}(s)=\prod_{r=0}^{\min (k,[n / 2])} a_{w}^{r}(s)
$$

We proceed by induction on $l(w)$. If $l(w)=0,(1.2 .9)$ is obviously holomorphic.
(I) When $i_{k}=n$: put $I^{\prime}=I-\{n\}, w^{\prime}=w_{I^{\prime}}$. Then

$$
M_{w}=M_{w_{x_{n}}} \circ M_{w^{\prime}}, \quad A_{w}(s)=A_{w^{\prime}}(s) .
$$

Since $M_{w_{x_{n}}}$ is entire, the holomorphy of (1.2.9) for w is reduced to that for w^{\prime}.
(II) When $i_{r}+2=i_{r+1}+1<i_{r+2}$, for some $1 \leqslant r \leqslant k-2$: put $i_{r}=m$, $I^{\prime}=I-\{m+1\} \cup\{m+2\}, I^{\prime \prime}=I-\{m\} \cup\{m+2\}, w^{\prime}=w_{I^{\prime}}, w^{\prime \prime}=w_{I^{\prime \prime}}$. We reduce the holomorphy of (1.2.9) for w to that for w^{\prime}. By definition, we have

$$
\begin{aligned}
& A_{w^{\prime}}(s) A_{w}(s)^{-1}=\zeta(2 s+m-2 r+2) \zeta(2 s+m-2 r+1)^{-1} \\
& M\left(w, \chi_{s}\right)=M\left(w_{\alpha_{m}}, \chi_{s}^{w^{\prime}}\right) \circ M\left(w^{\prime}, \chi_{s}\right) .
\end{aligned}
$$

Since $\zeta(2 s+m-2 r+1)^{-1} M\left(w_{\alpha_{m}}, \chi_{s}^{w^{\prime}}\right)$ is entire, it will suffice to prove that $2 s \equiv-m+2 r-2\left(\bmod \frac{2 \pi \sqrt{-1}}{\log q} \mathbf{Z}\right)$ are not poles of (1.2.9). We now prove that the residue vanishes. By (1.2.7),

$$
\zeta(2 s+m-2 r+1)^{-1} M\left(w_{\alpha_{m}}, \chi_{s}^{w^{\prime}}\right)
$$

is holomorphic at these points. The residue is

$$
\begin{aligned}
& \operatorname{Res}_{2 s \equiv-m+2 r-2}\left(A_{w}(s)^{-1} M_{w} f^{(s)}\right) \\
& \quad=c \cdot M\left(w_{\alpha_{m}}, \chi_{s}^{w^{\prime}}\right) \circ \operatorname{Res}_{2 s \equiv-m+2 r-2}\left[\zeta(2 s+m-2 r+2) A_{w^{\prime}}(s)^{-1} M_{w^{\prime}} f^{(s)}\right] \\
& \quad=c^{\prime} \cdot M\left(w_{\alpha_{m}}, \chi_{s}^{w^{\prime}}\right) \circ\left[A_{w^{\prime}}(s)^{-1} M_{w^{\prime}} f^{(s)}\right]_{2 s \equiv-m+2 r-2},
\end{aligned}
$$

for some non-zero constants c, c^{\prime}. By (1.2.6), it is sufficient to prove that

$$
\begin{equation*}
\left[A_{w^{\prime}}(s)^{-1} M_{w^{\prime}} f^{(s)}\right]_{2 s \equiv-m+2 r-2} \tag{1.2.10}
\end{equation*}
$$

is left $l_{\alpha_{m}}\left(\mathrm{SL}_{2}\right)$-invariant. We first observe

$$
\begin{aligned}
& A_{w^{\prime}}(s)^{-1} M_{w^{\prime}} f^{(s)} \\
& \quad=\zeta(2 s+m-2 r+3) \zeta(2 s+m-2 r+2)^{-1} A_{w^{\prime \prime}}(s)^{-1} M\left(w_{\alpha_{m}+1}, \chi_{s}^{w^{\prime \prime}}\right) M\left(w^{\prime \prime}, \chi_{s}\right) f^{(s)} .
\end{aligned}
$$

Since $\zeta(2 s+m-2 r+3)$ and $\zeta(2 s+m-2 r+2)^{-1} M\left(w_{\alpha_{m+1}}, \chi_{s}^{w^{\prime \prime}}\right)$ is holomorphic at $2 s \equiv-m+2 r-2\left(\bmod \frac{2 \pi \sqrt{-1}}{\log q} \mathbf{Z}\right)$, this is equal to

$$
c^{\prime \prime} \cdot\left[\zeta(2 s+m-2 r+2)^{-1} M\left(w_{\alpha_{m}+1}, \chi_{s}^{w^{\prime \prime}}\right)\right]_{2 s \equiv-m+2 r-2^{\circ} A_{w^{\prime \prime}}(s)^{-1} M\left(w^{\prime \prime}, \chi_{s}\right) f^{(s)}, .}
$$

for some non-zero constant $c^{\prime \prime}$. By the induction assumption,

$$
A_{w^{\prime \prime}}(s)^{-1} M\left(w^{\prime \prime}, \chi_{s}\right) f^{(s)}
$$

is holomorphic. Moreover this is left $l_{\alpha_{m}}\left(\mathrm{SL}_{2}\right)$-invariant since

$$
w^{\prime \prime-1} l_{\alpha_{m}}\left(\mathrm{SL}_{2}\right) w^{\prime \prime} \subset M_{n} .
$$

By (1.2.7),

$$
\left[\zeta(2 s+m-2 r+2)^{-1} M\left(w_{\alpha_{m}+1}, \chi_{s}^{w^{\prime \prime}}\right)\right]_{2 s \equiv-m+2 r-2}
$$

is a scalar multiplication. Thus (1.2.10) is left ${l_{\alpha_{m}}}^{\left(\mathrm{SL}_{2}\right) \text {-invariant. }}$
(III) When $i_{k}=n-1, i_{k-1}=n-2$: this case can be treated by the same technique as in the case (II) by putting

$$
I^{\prime}=I-\{n-1\} \cup\{n\}, \quad I^{\prime \prime}=I-\{n-2\} \cup\{n\} .
$$

(IV) When $i_{k}<n-1$. This case can be treated by a similar technique as in the case (II) by putting

$$
I^{\prime}=I-\left\{i_{k}\right\} \cup\left\{i_{k}+1\right\}, \quad I^{\prime \prime}=I-\left\{i_{k}\right\} \cup\left\{i_{k}+2\right\}
$$

Now we may assume $i_{k}=n-1$, by (I) and (IV). Moreover, we may assume $k \leqslant\left[\frac{n}{2}\right]$, since otherwise the assumption of (II) or (III) holds. To see this, assume
$k>\left[\frac{n}{2}\right]$ and neither the assumption of (II) nor that of (III) holds. Then

$$
i_{k}=n-1, i_{k-1} \leqslant n-3, \ldots, i_{k} \leqslant n-2 k+2 m-1, \ldots, i_{1} \leqslant n-2 k+1 \leqslant 0 .
$$

This is a contradiction.
(V) When $k \leqslant\left[\frac{n}{2}\right]$: put $I^{\prime}=I-\{n-1\}, w^{\prime}=w_{I^{\prime} .}$ Then

$$
\begin{aligned}
& M_{w}=M\left(w_{\alpha_{n}-1}, \chi_{s}^{w_{\alpha_{n}} w^{\prime}}\right) \circ M\left(w_{\alpha_{n}}, \chi_{s}^{w^{\prime}}\right) \circ M\left(w^{\prime}, \chi_{s}\right), \\
& A_{w}(s)=A_{w^{\prime}}(s) \cdot \zeta(2 s+n-2 k) .
\end{aligned}
$$

By the induction assumption, $A_{w^{\prime}}(s)^{-1} M_{w^{\prime}} f^{(s)}$ is entire. Since both $M\left(w_{\alpha_{n}}, \chi_{s}^{w^{\prime}}\right)$ and $\zeta(2 s+n-2 k)^{-1} \cdot M\left(w_{\alpha_{n}-1}, \chi_{s}^{w_{a_{n}} w^{\prime}}\right)$ are entire, $A_{w}(s)^{-1} M_{w} f^{(s)}$ is entire. Thus the proof for non-archimedean local field is complete.

Appendix 1. Proof for Lemma 1.3 for archimedean case

In this appendix, we give a proof for Lemma 1.3 for an archimedean local field k. We may assume that ω is unitary.

SUBLEMMA 1. If $w=w_{0}$, then (1.2.9) is holomorphic.
Proof. If $k=\mathbf{R}$, and $\omega=1$, this is proved in [22 §4 Appendix 1]. Their proof is valid for $k=\mathbf{R}, \omega=\operatorname{sgn}$. If $k=\mathbf{C}$, we have to show that the first part of [22 §4 Appendix 1, Theorem (p. 106)] holds for our situation, i.e., we have to show that

$$
\begin{equation*}
a_{w_{0}}(\omega, s)^{-1} \int_{\operatorname{Sym}^{n} \mathbf{(C)}} \varphi(z)|\operatorname{det} z \bar{z}|^{s-(n+1) / 2} \omega(\operatorname{det} z) \mathrm{d} z \tag{1.2.11}
\end{equation*}
$$

is entire for any $\varphi \in \mathscr{S}\left(\operatorname{Sym}^{n}(\mathbf{C})\right.$). We may assume that $\omega(z)=z^{k}$ or $(\bar{z})^{k}, k \geqslant 0$. But the case $\omega(z)=(\bar{z})^{k}$ is reduced to the case $\omega(z)=z^{k}$ by taking complex conjugate. Put

$$
\partial=\operatorname{det}\left|\begin{array}{cccc}
\frac{\partial}{\partial z_{11}} & \frac{1}{2} \frac{\partial}{\partial z_{12}} & \cdots & \frac{1}{2} \frac{\partial}{\partial z_{1 n}} \\
\frac{1}{2} \frac{\partial}{\partial z_{12}} & \frac{\partial}{\partial z_{22}} & & \vdots \\
\vdots & & \vdots & \\
\frac{1}{2} \frac{\partial}{\partial z_{1 n}} & \cdots & & \frac{\partial}{\partial z_{n n}}
\end{array}\right|
$$

Then it is known that

$$
\partial\left(|\operatorname{det} z \bar{z}|^{s}(\operatorname{det} z)^{k}\right)=\prod_{i=0}^{n-1}\left(s+k+\frac{i}{2}\right) \cdot\left(|\operatorname{det} z \bar{z}|^{s}(\operatorname{det} z)^{k-1}\right)
$$

Repeating partial integration, we have

$$
\begin{aligned}
& \prod_{j=1}^{m} \prod_{i=0}^{n-1}\left(s+k+j+\frac{i-n-1}{2}\right) \int_{\operatorname{Sym}^{n}(\mathbf{C})} \varphi(z)|\operatorname{det} z \bar{z}|^{s-(n+1) / 2}(\operatorname{det} z)^{k} \mathrm{~d} z \\
& \quad=(-1)^{m n} \int_{\operatorname{Sym}^{n}(\mathbf{C})} \partial^{m} \varphi(z)|\operatorname{det} z \bar{z}|^{s-(n+1) / 2}(\operatorname{det} z)^{k+m} \mathrm{~d} z
\end{aligned}
$$

for $\operatorname{Re}(s) \gg 0$. Since the right-hand side is absolutely convergent for $\operatorname{Re}(s)>\frac{n-k-m-1}{2}$, we have

$$
\prod_{i=0}^{n-1} \Gamma\left(s+k-\frac{i}{2}\right)^{-1} \int_{\operatorname{Sym}^{n}(\mathbf{C})} \varphi(z)|\operatorname{det} z \bar{z}|^{s-(n+1) / 2}(\operatorname{det} z)^{k} \mathrm{~d} z
$$

is entire. So (1.2.11) is entire.
Let Q (resp. Q^{\prime}) be the maximal parabolic subgroup of GL_{n} given by

$$
\begin{aligned}
& Q=\left\{\left.\left(\begin{array}{cc}
a_{1} & * \\
0 & a_{2}
\end{array}\right) \right\rvert\, a_{1} \in \mathrm{GL}_{n-1}, a_{2} \in k^{\times}\right\} \\
& \left(\text {resp. } Q^{\prime}=\left\{\left.\left(\begin{array}{cc}
a_{1} & * \\
0 & a_{2}
\end{array}\right) \right\rvert\, a_{1} \in k^{\times}, a_{2} \in \mathrm{GL}_{n-1}\right\}\right)
\end{aligned}
$$

Let $I_{Q}(\omega, s)\left(\operatorname{resp} . I_{Q^{\prime}}(\omega, s)\right)$ be the representation of GL_{n} induced from the character of Q (resp. Q^{\prime}) given by

$$
\begin{aligned}
& \left(\begin{array}{cc}
a_{1} & * \\
0 & a_{2}
\end{array}\right) \mapsto \omega\left(\operatorname{det} a_{1}\right)\left|\operatorname{det} a_{1}\right|^{s / n}\left|a_{2}\right|^{-[(n-1) / n] s} \\
& \left(\operatorname{resp} .\left(\begin{array}{cc}
a_{1} & * \\
0 & a_{2}
\end{array}\right) \mapsto \omega^{-1}\left(\operatorname{det} a_{2}\right)\left|a_{1}\right|^{[(n-1) s / n}\left|\operatorname{det} a_{2}\right|^{-s / n}\right) .
\end{aligned}
$$

We define standard sections, holomorphic sections, and meromorphic sections as usual. We define the intertwining operator $M_{w}: I_{Q}(\omega, s) \mapsto I_{Q^{\prime}}\left(\omega^{-1},-s\right)$
$\left(\operatorname{resp} . M_{w^{\prime}}: I_{Q^{\prime}}(\omega, s) \mapsto I_{Q}\left(\omega^{-1},-s\right)\right)$. Here

$$
w=\left(\begin{array}{llll}
& 1 & & \\
& & \ddots & \\
& & & 1 \\
1 & & &
\end{array}\right), \quad w^{\prime}=\left(\begin{array}{llll}
1 & & & \\
& \ddots & & \\
& & 1
\end{array}\right)
$$

SUBLEMMA 2. $L\left(s-\frac{n-2}{2}, \omega\right)^{-1} M(w, s)$ and $L\left(s-\frac{n-2}{2}, \omega\right)^{-1} M\left(\omega^{\prime}, s\right)$ are holomorphic.

Proof. This can be proved in the same way as [22, §4]. (See also [12 §5].)

SUBLEMMA 3.

$$
\begin{aligned}
& M\left(w^{\prime}, \omega^{-1}\right) \circ M(w, \omega) \\
& \quad=\omega(-1)^{n+1} \varepsilon^{\prime}\left(s-\frac{n-2}{2}, \omega, \psi\right)^{-1} \varepsilon^{\prime}\left(-s-\frac{n-2}{2}, \omega^{-1}, \psi\right)^{-1} \cdot \mathrm{id} .
\end{aligned}
$$

Proof. This can be proved in the same way as the proof of Lemma 1.1.
We now return to the proof of Lemma 1.3. Let $w=w_{I}$ be an element of Ω_{n}. We prove that

$$
\left[d(\omega, s) c_{w}(\omega, s)\right]^{-1} M_{w} f(s)
$$

is holomorphic. M_{w} can be considered as an intertwining operator of $I\left(\omega, s+\frac{i_{1}-1}{2}\right)$ on $\mathrm{Sp}_{n-i_{1}+1}$. We may assume $i_{1}=1$ by replacing n by $n-i_{1}+1$ and I by $\left\{i_{r}-i_{1}+1 \mid 1 \leqslant r \leqslant k\right\}$. We proceed by the induction on $\delta(w)=n-k$. When $n=k$, this is Sublemma 1. Assume $n-k \geqslant 1$. Put

$$
\begin{aligned}
& m=\max \left\{r \mid i_{r}<n-k+r\right\}, \\
& I^{\prime}=I \cup\{n-k+m\}, \\
& w^{\prime}=w_{I^{\prime}} .
\end{aligned}
$$

Then $\# I^{\prime}=k+1, l\left(w^{\prime}\right)=l(w)+k-m+1$ and

$$
w^{\prime}=w_{\alpha_{n}} w_{\alpha_{n-1}} \cdots w_{\alpha_{n-k+m}} w .
$$

Put

$$
\begin{aligned}
& w_{(0)}=w, \\
& w_{(r)}=w^{\prime}=w_{\alpha_{n-k+m+r-1}} \cdots w_{\alpha_{n}-k+m+1} w_{\alpha_{n}-k+m} w, \quad 1 \leqslant r \leqslant k-m+1 .
\end{aligned}
$$

Then

$$
\begin{aligned}
& M_{w_{(r)}}=M\left(w_{\alpha_{n-k+m+r-1}}, \chi_{s}^{\left.w_{(r-1}\right)}\right) \circ M_{w_{(r r}}, \quad 1 \leqslant r \leqslant k-m+1 \\
& c_{w_{(r)}}(s)=c_{w_{(r-1)}}(s) \times \begin{cases}\frac{L\left(2 s+n-k-m-r, \omega^{2}\right)}{L\left(2 s+n-k-m-r+1, \omega^{2}\right)}, & 1 \leqslant r \leqslant k-m \\
\frac{L\left(s+\frac{n-1}{2}-k, \omega\right)}{L\left(s+\frac{n+1}{2}-k, \omega\right)}, & r=k-m+1\end{cases}
\end{aligned}
$$

We have

$$
c_{w^{\prime}}(s)=\frac{L\left(2 s+n-2 k, \omega^{2}\right)}{L\left(2 s+n-k-m, \omega^{2}\right)} \frac{L\left(s+\frac{n+1}{2}-k, \omega\right)}{L\left(s+\frac{n+1}{2}-k, \omega\right)} c_{w}(s) .
$$

It is easy to see that

$$
M\left(w_{\alpha_{n}-1}, \chi_{s}^{\left.w_{(k-m-1}\right)}\right) \circ \cdots \circ M\left(w_{\alpha_{n-k+m}}, \chi_{s}^{w}\right)
$$

is an intertwining operator on GL_{k-m}. By (1.2.3) and Sublemma 3,

$$
\begin{aligned}
& M\left(w_{\alpha_{n}-k+m}, \chi_{s}^{\left.w_{(1)}\right)}\right) \cdots \circ M\left(w_{\alpha_{n}-1}, \chi_{s}^{\left.w_{(k-m)}\right)}\right) M\left(w_{\alpha_{n}}, \chi_{s}^{w^{\prime}}\right) \circ M_{w^{\prime}} \\
& =\omega(-1) \varepsilon^{\prime}\left(s+\frac{n-1}{2}-k, \omega, \psi\right)^{-1} \varepsilon^{\prime}\left(-s-\frac{n-1}{2}+k, \omega^{-1}, \psi\right)^{-1} \\
& \times \varepsilon^{\prime}\left(2 s+n-2 k, \omega^{2}, \psi\right)^{-1} \varepsilon^{\prime}\left(-2 s-n+k+m+1, \omega^{-2}, \psi\right)^{-1} M_{w}
\end{aligned}
$$

By (1.2.2), Sublemma 2, and the induction assumption,

$$
\begin{aligned}
& L\left(-s-\frac{n-1}{2}+k, \omega^{-1}\right)^{-1} M\left(w_{\alpha_{n}}, \chi_{s}^{w^{\prime}}\right), \\
& L\left(-2 s-n+k+m+1, \omega^{-2}\right)^{-1} M\left(w_{\alpha_{n}-k+m}, \chi_{s}^{\left.w_{(1)}\right)}\right) \cdots \circ M\left(w_{\alpha_{n}-1}, \chi_{s}^{w_{(k-m)}}\right)
\end{aligned}
$$

and

$$
\left[d(\omega, s) c_{w^{\prime}}(\omega, s)\right]^{-1} M_{w^{\prime}}
$$

are holomorphic. Thus we have

$$
L\left(-s-\frac{n-3}{2}+k, \omega^{-1}\right)^{-1} L\left(-2 s-n+2 k+1, \omega^{-2}\right)^{-1}\left[d(\omega, s) c_{w}(\omega, s)\right]^{-1} M_{w}
$$

is holomorphic.
On the other hand, put

$$
w=w^{\prime} w_{k}
$$

Then $M_{w}=M_{w^{\prime}} \circ M_{w_{k}}$. Here, as in [22 §4], $M_{w^{\prime}}$ is an intertwining operator on certain induced representation of GL_{n}. As in [22 §4], we can prove

$$
\prod_{r=1}^{k} L\left(2 s+i_{r}-2 r+1, \omega^{2}\right)^{-1} M_{w^{\prime}}
$$

is holomorphic (cf. [22, Remark 4.1]). As for $M_{w_{k}}$, by Sublemma 1,

$$
L\left(s+\frac{n+1}{2}-k, \omega\right)^{-1} \prod_{r=1}^{[k / 2]} L\left(2 s+n-2 k+2 r, \omega^{2}\right)^{-1} M_{w_{k}}
$$

is holomorphic. Putting together, we can easily deduce

$$
\prod_{r=[k+1 / 2]}^{k} L\left(2 s+n-2 r, \omega^{2}\right)^{-1}\left[d(\omega, s) c_{w}(\omega, s)\right]^{-1} M_{w}
$$

is holomorphic. Since

$$
L\left(-s-\frac{n-3}{2}+k, \omega^{-1}\right) L\left(-2 s-n+2 k+1, \omega^{-2}\right)
$$

has no poles in $\operatorname{Re}(s)<-\frac{n}{2}+k+\frac{1}{2}$, and

$$
\prod_{r=[k+1 / 2]}^{k} L\left(2 s+n-2 r, \omega^{2}\right)
$$

has no poles in $\operatorname{Re}(s)>-\frac{n}{2}+k$, it follows that

$$
\left[d(\omega, s) c_{w}(\omega, s)\right]^{-1} M_{w}
$$

is holomorphic. Thus Lemma 1.3 is proved.
REMARK. Our definition of good section is different from that of [22]. But we can prove that "germs" of good section of $I(\omega, s)$ at $s=s_{0}$ are generated by the following two families:
(1) germs of holomorphic sections of $I(\omega, s)$ at $s=s_{0}$,
(2) $\left\{M_{w_{0}}^{*} f^{(s)} \mid f^{(s)}\right.$ is a germ of holomorphic section of $I\left(\omega^{-1},-s\right)$ at $\left.s=s_{0}\right\}$.

In fact, we may assume ω is unitary and $\operatorname{Re}\left(s_{0}\right) \geqslant 0$, by Lemma 1.2. Since $d(\omega, s)$ does not have zero at $s=s_{0}$, any good section of $I(\omega, s)$ is holomorphic at $s=s_{0}$. It is easy to see that when k is non-archimedean, our definition agrees to that of [22] because there are essentially finite number of singularities.

Appendix 2. An interpretation of the normalizing factor

We give an interpretation of the normalizing factor $d(\omega, s)$ in terms of Arthur's conjecture [1]. Let G be a reductive group, P be a maximal parabolic subgroup of G, M be a Levi factor of P, N be the unipotent radical of P, and A be the maximal split torus of the center of M. Let π be an irreducible discrete automorphic representation of M. Then, according to Arthur's conjecture, π is associated to a homomorphism

$$
\varphi_{\pi}: \mathscr{L} \times \mathrm{SL}_{2}(\mathbf{C}) \rightarrow{ }^{L} M
$$

Here \mathscr{L} is the conjectual Langlands group. Let ${ }^{L} \mathcal{N}$ be the Lie algebra of ${ }^{L} N$. Decompose ${ }^{L} \mathscr{N}$ as in Shahidi [24].

$$
{ }^{L} \mathcal{N}=\prod_{i=1}^{r}{ }^{L} \mathscr{N}_{i}
$$

Consider the induced representation $\operatorname{Ind}_{M}^{G} \pi \tilde{\alpha}^{s}$. Here $\tilde{\alpha}$ is as in [24]. Let $\operatorname{Ad}_{L_{\mathcal{V}_{1}}}$ be
the adjoint action of ${ }^{L} M$ on ${ }^{L} \mathscr{N}_{i}$. If π is cuspidal and φ_{π} is trivial on $\mathrm{SL}_{2}(\mathbf{C})$, then the normalizing factor should be given by

$$
\prod_{i=1}^{r} L\left(1+i s, \varphi_{\pi}{ }^{\circ} \mathrm{Ad}_{\mathcal{L}_{\mathcal{V}_{i}}}\right)
$$

(cf. Shahidi [24], Langlands [15].) Consider the general case where $\varphi_{\pi}{ }^{\circ} \mathrm{Ad}_{\nu_{\mathcal{N}_{i}}}$ is not trivial on $\mathrm{SL}_{2}(\mathbf{C})$. In this case, decompose $\varphi_{\pi}{ }^{\circ} \mathrm{Ad}_{L_{\mathcal{N}_{i}}}$ into irreducible representation:

$$
\varphi_{\pi} \circ \mathrm{Ad}_{\mathcal{L}_{i}}=\bigoplus_{j=1}^{m_{i}} \varphi_{i j} \otimes \operatorname{sym}^{r_{i j}}
$$

where $\varphi_{i j}$ is an irreducible representation of \mathscr{L}, and sym ${ }^{r_{i j}}$ is the $r_{i j}$ th symmetric power of the standard representation of $\mathrm{SL}_{2}(\mathbf{C})$. Then we claim the normalizing factor should be

$$
\prod_{i=1}^{r} \prod_{j=1}^{m_{i}} L\left(i s+\frac{r_{i j}}{2}+1, \varphi_{i j}\right)
$$

In fact, the c-function $c_{w_{0}}(\pi, s)$ for the longest element w_{0} of the Weyl group is given by

$$
\begin{aligned}
c_{w_{0}}(\pi, s) & =\prod_{i=1}^{r} \frac{L\left(i s, \varphi_{\pi}{ }^{\circ} \mathrm{Ad}_{L_{\mathcal{V}_{i}}}\right)}{L\left(1+i s, \varphi_{\pi}{ }^{\circ} \mathrm{Ad}_{\left.L_{\mathcal{L}_{i}}\right)}\right.} \\
& =\prod_{i=1}^{r} \prod_{j=1}^{m_{i}} \frac{L\left(i s, \varphi_{i j} \otimes \mathrm{sym}^{r_{i j}}\right)}{L\left(1+i s, \varphi_{i j} \otimes \operatorname{sym}^{r_{i j}}\right)} \\
& =\prod_{i=1}^{r} \prod_{j=1}^{m_{i}} \prod_{a=0}^{r_{i j}} \frac{L\left(i s-\frac{r_{i j}}{2}+a, \varphi_{i j}\right)}{L\left(i s-\frac{r_{i j}}{2}+a+1, \varphi_{i j}\right)} \\
& =\prod_{i=1}^{r} \prod_{j=1}^{m_{i}} \frac{L\left(i s-\frac{r_{i j}}{2}, \varphi_{i j}\right)}{L\left(i s+\frac{r_{i j}}{2}+1, \varphi_{i j}\right)}
\end{aligned}
$$

at least up to bad primes. If π is cuspidal, this is the only non-trivial c-function. This means at least when π is cuspidal, our claim is justified, since the normalizing factor should be the least common denominator of the c-functions. One can expect that the least common denominator of the c-functions is equal to
the denominator of the c-function for the longest Weyl element even when π is not cuspidal.

Observe that in our case, $G=\mathrm{Sp}_{n}, M=\mathrm{GL}_{n}, \pi=\omega, \varphi_{\pi}=\omega \otimes \operatorname{sym}^{n-1}$, $\operatorname{Ad}_{L_{\mathcal{N}_{1}}}=\rho, \operatorname{Ad}_{L_{\mathcal{V}_{2}}}=\Lambda^{2} \rho$. Here ρ is the standard representation of GL_{n}. Therefore,

$$
\varphi_{\pi}{ }^{\circ} \mathrm{Ad}_{L_{\mathcal{N}_{1}}}=\omega \otimes \operatorname{sym}^{n-1}
$$

gives $L\left(s+\frac{n+1}{2}, \omega\right)$, and

$$
\varphi_{\pi} \circ \mathrm{Ad}_{\nu_{\mathcal{V}_{2}}}=\bigotimes_{j=1}^{[n / 2]}\left(\omega^{2} \otimes \operatorname{sym}^{2 n-4 j}\right)
$$

gives $\prod_{r=1}^{[n / 2]} L\left(2 s+n+1-2 r, \omega^{2}\right)$.

1.3. Eisenstein series

In this subsection, we assume k to be a global field. We will investigate the poles of Eisenstein series associated to good sections.

Let ω be a quasi-character of $\mathbf{A}^{\times} / k^{\times}$. Put $K_{n}=\Pi_{v} K_{n, v}$. Let $I(\omega, s)$ be the space of functions $f(h)$ on $H_{n}(\mathbf{A})$ which satisfy (1) and (2):
(1) f is right K_{n}-finite.
(2) For any $p=\left(\begin{array}{cc}A & * \\ \mathbf{0}_{n} & { }^{t} A^{-1}\end{array}\right) \in P_{n}(\mathbf{A})$,

$$
f(p h)=\omega(\operatorname{det} A)|\operatorname{det} A|^{s+(n+1) / 2} f(h)
$$

Clearly, $I(\omega, s)=\otimes_{v} I\left(\omega_{v}, s\right)$. We also define holomorphic sections and meromorphic sections similarly. We say that a meromorphic section of $I(\omega, s)$ is a good section if it is a finite sum of decomposable elements $f^{(s)}=\Pi_{v} f_{v}^{(s)}$ satisfying following (i) and (ii).
(i) For almost all unramified $v, f_{v}^{(s)}=d\left(\omega_{v}, s\right) \phi_{\omega_{v}, s}$.
(ii) $f_{v}^{(s)}$ is a good section of $I\left(\omega_{v}, s\right)$ for all v.

In other words, the space of global good sections is the restricted tensor product of the local good sections with respect to $d\left(\omega_{v}, s\right) \phi_{\omega_{v}, s}$. Note that the product $f^{(s)}=\Pi_{v} f_{v}^{(s)}$ is absolutely convergent for $\operatorname{Re}(s)>\frac{n+1}{2}$, and can be meromorphically continued to \mathbf{C}.

We define the Eisenstein series $E\left(h ; f^{(s)}\right)$ associated to $f^{(s)}$ by

$$
E\left(h ; f^{(s)}\right)=\sum_{\gamma \in P_{n} \backslash H_{n}} f^{(s)}(\gamma h) .
$$

This is absolutely convergent for $\operatorname{Re}(s) \gg 0$, and can be meromorphically continued to \mathbf{C}. The functional equation of $E\left(h ; f^{(s)}\right)$ is given by

$$
E\left(h ; f^{(s)}\right)=E\left(h ; M_{w_{0}} f^{(s)}\right)
$$

Here $M_{w_{0}}$ is the global intertwining operator:

$$
M_{w_{0}}=\otimes_{v}\left(M_{w_{0}}\right)_{v}
$$

The global intertwining operator $M_{w_{0}}$ does not depend on the choice of representative of $w_{0} \in W_{H_{n}}$ in $\operatorname{Norm}\left(T_{n}\right)$.

LEMMA 1.4. If $f^{(s)}$ is a good section of $I(\omega, s)$, then $M_{w_{0}} f^{(s)}$ is a good section of $I\left(\omega^{-1},-s\right)$.

Proof. Let S be a finite set of places of k such that if $v \notin S$, then ω_{v} is unramified, ψ_{v} is of order 0 , and $f_{v}^{(s)}=d\left(\omega_{v}, s\right) \phi_{\omega_{v}, s}$. Then

$$
\begin{aligned}
M_{w_{0}} f^{(s)} & =\prod_{v \notin S} d\left(\omega_{v}, s\right) c_{w_{0}}\left(\omega_{v}, s\right) \phi_{\omega_{v}^{-1},-s} \times \prod_{v \in S} M_{w_{0}} f_{v}^{(s)} \\
& =\prod_{v \notin S} a_{w_{0}}\left(\omega_{v}, s\right) \phi_{\omega_{v}^{-1},-s} \times \prod_{v \in S} M_{w_{0}} f_{v}^{(s)} \\
& =\prod_{v \notin S} d\left(\omega_{v}^{-1},-s\right) \phi_{\omega_{v}^{-1},-s} \times \prod_{v \in S} M_{w_{0}}^{*} f_{v}^{(s)}
\end{aligned}
$$

By Lemma 1.2, the lemma follows.
LEMMA 1.5. Suppose that $n=1$, and $\omega=1$. Let $w=\left(\begin{array}{rr}0 & -1 \\ 1 & 0\end{array}\right)$. Then the global intertwining operator $M_{w}: I(1, s) \rightarrow I(1,-s)$ is holomorphic at $s=0$, and is equal to the scalar multiplication by -1 at $s=0$.

Proof. Put $f^{(s)}=\Pi_{v} \phi_{1, s}$, and $\xi(s)=|D|^{s / 2} \zeta(s)$. Here D is the discriminant of k (resp. $D=q^{2 g-2}, g$ is the genus of k) if k is a number field (resp. if k is a function field). Then

$$
\begin{equation*}
M_{w} f^{(s)}=\frac{\xi(s)}{\xi(s+1)} \prod_{v} \phi_{1,-s} \tag{1.3.1}
\end{equation*}
$$

Since $\xi(1-s)=\xi(s)$ and $\xi(s)$ has a simple pole at $s=0,1$, the right-hand side of
(1.3.1) is holomorphic at $s=0$, and

$$
M_{w} f^{(0)}=-f^{(0)}
$$

Since $I(1, s)$ is irreducible on some neighbourhood of $s=0$, the lemma follows. PROPOSITION 1.6. Suppose that k is a number field. Iff ${ }^{(s)}$ is a good section of $I(\omega, s)$, then the pole of $E\left(h ; f^{(s)}\right)$ are at most simple. The set of possible poles is as follows.
(1) When ω is principal: we may assume $\omega=1$. Then the set of possible poles is:

$$
\left\{\left.\frac{n+1}{2}-m \right\rvert\, m \in \mathbf{Z}, 0 \leqslant m \leqslant n+1, m \neq \frac{n+1}{2}\right\}
$$

(2) When ω is not principal, and ω^{2} is principal: we may assume $\omega^{2}=1$. Then the set of possible poles is:

$$
\left\{\left.\frac{n-1}{2}-m \right\rvert\, m \in \mathbf{Z}, 0 \leqslant m \leqslant n-1, m \neq \frac{n-1}{2}\right\}
$$

(3) If ω^{2} is not principal, then $E\left(h ; f^{(s)}\right)$ is entire.

Proof. As in [22], the constant term $E^{0}\left(h ; f^{(s)}\right)$ of $E\left(h ; f^{(s)}\right)$ along $U_{n}(\mathbf{A})$ is given by

$$
\begin{aligned}
E^{0}\left(h ; f^{(s)}\right) & =\int_{U_{n}(k) \backslash U_{n}(\mathbf{A})} E\left(u h ; f^{(s)}\right) \mathrm{d} u \\
& =\sum_{w \in \Omega_{n}} M_{w} f^{(s)}
\end{aligned}
$$

Let S be as in the proof of Lemma 1.4. Then

$$
\begin{aligned}
M_{w} f^{(s)}= & \prod_{v \notin S} d\left(\omega_{v}, s\right) c_{w}\left(\omega_{v}, s\right) \phi_{\omega_{v}, s}^{w} \times \prod_{v \in S} M_{w} f_{v}^{(s)} \\
= & d(\omega, s) c_{w}(\omega, s) \prod_{v \notin S} \phi_{\omega_{v}, s}^{w} \\
& \times \prod_{v \in S}\left[d\left(\omega_{v}, s\right) c_{w}\left(\omega_{v}, s\right)\right]^{-1} M_{w} f_{v}^{(s)} .
\end{aligned}
$$

Therefore the poles of $E\left(h ; f^{(s)}\right)$ comes from the poles of $d(\omega, s) c_{w}(\omega, s)$. In particular, if ω^{2} is not principal, $E\left(h ; f^{(s)}\right)$ is entire.

We may assume $\omega^{2}=1$, without loss of generality. When $\omega=1$, (resp. $\omega^{2}=1$,
$\omega \neq 1)$, the possible poles of $d(\omega, s) c_{w}(\omega, s)$ are integral or half-integral points in

$$
\left[-\frac{n+1}{2}, \frac{n+1}{2}\right]\left(\operatorname{resp} .\left[-\frac{n-1}{2}, \frac{n-1}{2}\right]\right) .
$$

We first prove the proposition for the case $n=1$ or $n=2$. If $n=1, \omega \neq 1$, then (2) is obvious since $d(\omega, s) c_{w}(\omega, s)$ are entire. If $n=1, \omega=1$, then we have to show that $s=0$ is not a pole of $E^{0}\left(h ; f^{(s)}\right)$. Note that $f^{(s)}$ may have a simple pole at $s=0$. Let w be as in Lemma 1.5. Then by Lemma 1.5,

$$
\begin{aligned}
\lim _{s \rightarrow 0} s E^{0}\left(h ; f^{(s)}\right) & =\left(1+M_{w}\right)\left[\lim _{s \rightarrow 0} s f^{(s)}\right] \\
& =0
\end{aligned}
$$

Thus $E^{0}\left(h ; f^{(s)}\right)$ is holomorphic at $s=0$.
If $n=2$, the possible poles of $d(\omega, s) c_{w}(\omega, s)$ are as follows:

	I	$l(w)$	$d(\omega, s) c_{w}(\omega, s)$	poles $(\omega=1)$	poles $\left(\omega^{2}=1, \omega \neq 1\right)$
w_{1}	\varnothing	0	$L\left(s+\frac{3}{2}\right) \zeta(2 s+1)$	$\left\{-\frac{3}{2},-\frac{1}{2},-\frac{1}{2}, 0\right\}$	$\left\{-\frac{1}{2}, 0\right\}$
w_{2}	$\{2\}$	1	$L\left(s+\frac{1}{2}\right) \zeta(2 s+1)$	$\left\{-\frac{1}{2},-\frac{1}{2}, 0, \frac{1}{2}\right\}$	$\left\{-\frac{1}{2}, 0\right\}$
w_{3}	$\{1\}$	2	$L\left(s+\frac{1}{2}\right) \zeta(2 s)$	$\left\{-\frac{1}{2}, 0, \frac{1}{2}, \frac{1}{2}\right\}$	$\left\{0, \frac{1}{2}\right\}$
w_{4}	$\{1,2\}$	3	$L\left(s-\frac{1}{2}\right) \zeta(2 s)$	$\left\{0, \frac{1}{2}, \frac{1}{2}, \frac{3}{2}\right\}$	$\left\{0, \frac{1}{2}\right\}$

Here, $L(s)=L(s, \omega)$. By functional equation, we may assume $\operatorname{Re}(s) \geqslant 0$, so what we have to prove are reduced to the following two statements.
(1.3.2) If $\omega=1$,

$$
\lim _{s \rightarrow 1 / 2}\left(s-\frac{1}{2}\right)^{2}\left(M_{w_{3}}+M_{w_{4}}\right) f^{(s)}=0 .
$$

(1.3.3) If $\omega^{2}=1$,

$$
\lim _{s \rightarrow 0} s\left(1+M_{w_{2}}+M_{w_{3}}+M_{w_{4}}\right) f^{(s)}=0 .
$$

Proof of (1.3.2)

$$
\lim _{s \rightarrow 1 / 2}\left(s-\frac{1}{2}\right)^{2} M_{w_{4}} f^{(s)}=\lim _{s \rightarrow 1 / 2} M\left(w_{\alpha_{2}}, \chi_{s}^{w_{3}}\right) \circ\left[\left(s-\frac{1}{2}\right)^{2} M_{w_{3}} f^{(s)}\right] .
$$

We know that $\left(s-\frac{1}{2}\right)^{2} M_{w_{3}} f^{(s)}$ is holomorphic at $s=\frac{1}{2}$. Moreover, by (1.2.1) and

Lemma 1.5, $M\left(w_{\alpha_{2}}, \chi_{s}^{w_{3}}\right)$ is holomorphic and is equal to the scalar multiplication by -1 at $s=\frac{1}{2}$. Hence (1.3.2).

Proof of (1.3.3). By the same way as above, we can prove

$$
\lim _{s \rightarrow 0} s\left(M_{w_{2}}+M_{w_{3}}\right) f^{(s)}=0
$$

But the proof that

$$
\lim _{s \rightarrow 0} s\left(1+M_{w_{4}}\right) f^{(s)}=0
$$

is more delicate. We have

$$
M_{w_{4}} f^{(s)}=M\left(w_{\alpha_{2}}, \chi_{s}^{w_{3}}\right) \circ M\left(w_{\alpha_{1}}, \chi_{s}^{w_{2}}\right) \circ M\left(w_{\alpha_{2}}, \chi_{s}\right) f^{(s)}
$$

By (1.2.1) and Lemma 1.5, $M\left(w_{\alpha_{1}}, \chi_{s}^{w_{2}}\right)$ is holomorphic and is equal to the scalar multiplication by -1 at $s=0$. Moreover, by (1.2.1), $M\left(w_{\alpha_{2}}, \chi_{s}\right)$ (resp. $M\left(w_{\alpha_{2}}, \chi_{s}^{w_{3}}\right)$ is essentially the intertwining operator

$$
\begin{aligned}
& M\left(\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), s+\frac{1}{2}\right): I\left(\omega, s+\frac{1}{2}\right) \rightarrow I\left(\omega,-s-\frac{1}{2}\right) \\
& \left(\text { resp. } M\left(\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right),-s-\frac{1}{2}\right): I\left(\omega,-s-\frac{1}{2}\right) \rightarrow I\left(\omega, s+\frac{1}{2}\right)\right)
\end{aligned}
$$

on SL_{2}. Moreover, these two are mutually the inverse of the other except for their singular points. Since the representations $I\left(\omega, s+\frac{1}{2}\right)$ and $I\left(\omega,-s-\frac{1}{2}\right)$ of $\mathrm{SL}_{2}(\mathrm{~A})$ are irreducible on some neighbourhood of $s=0$, there is an integer α such that

$$
s^{-\alpha} M\left(\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right), s+\frac{1}{2}\right) \quad \text { and } \quad s^{\alpha} M\left(\left(\begin{array}{rr}
0 & -1 \\
1 & 0
\end{array}\right),-s-\frac{1}{2}\right)
$$

are holomorphic, and are mutually the inverse of each other at $s=0$. In fact, it is easy to see that $\alpha=\operatorname{ord}_{s=1 / 2} L(s, \omega)$. We have

$$
\lim _{s \rightarrow 0} s M_{w_{4}} f^{(s)}=\lim _{s \rightarrow 0}\left[s^{\alpha} M\left(w_{\alpha_{2}}, \chi_{s}^{w_{3}}\right)\right] \circ\left[M\left(w_{\alpha_{1}}, \chi_{s}^{w_{2}}\right)\right] \circ\left[s^{-\alpha} M\left(w_{\alpha_{2}}, \chi_{s}\right)\right]\left[s f^{(s)}\right] .
$$

Each term is holomorphic at $s=0$, so the exchange of limit and the composition is possible. Hence (1.3.3).

Now we assume $n \geqslant 3$. By the functional equation, it is enough to investigate
the integral or half-integral points in $\left[0, \frac{n+1}{2}\right]$. Note that $f^{(s)}$ is holomorphic on the right half plane $\operatorname{Re}(s) \geqslant 0$ except for the case n is even and $s=0$. In particular, if n is odd, $s=0$ is not a pole of $E\left(h ; f^{(s)}\right)$, by [16].

We recall the theory of degenerate Eisenstein series on GL_{n} (see [12, §5]). Let Q be the maximal parabolic subgroup of GL_{n} given by

$$
Q=\left\{\left.\left(\begin{array}{cc}
a_{1} & * \\
0 & a_{2}
\end{array}\right) \right\rvert\, a_{1} \in \mathrm{GL}_{n-1}, a_{2} \in k^{\times}\right\}
$$

Let $I_{Q}(s)$ be the representation of GL_{n} induced from the character of Q given by

$$
\left(\begin{array}{cc}
a_{1} & * \\
0 & a_{2}
\end{array}\right) \mapsto\left|\operatorname{det} a_{1}\right|^{s / n}\left|a_{2}\right|^{-(n-1) s / n}
$$

We define standard sections, holomorphic sections etc. as usual. For each prime v of k, let $F_{0, v}^{(s)}$ be the meromorphic section of $I_{Q, v}(s)$ which takes value $\zeta_{v}\left(s+\frac{n}{2}\right)$ on the standard maximal compact subgroup of $\mathrm{GL}_{n, v}$.
Taking any finite set S of primes of k, put

$$
F^{(s)}=\prod_{v \notin S} F_{0, v}^{(s)} \times \prod_{v \in S} F_{v}^{(s)}
$$

where $F_{v}^{(s)}, v \in S$ are arbitrary holomorphic sections of $I_{Q, v}(s)$. Define degenerate Eisenstein series on GL_{n} by

$$
E\left(g ; F^{(s)}\right)=\sum_{\gamma \in Q \backslash G L_{n}} F^{(s)}(\gamma g) .
$$

Then the possible poles of $E\left(g ; F^{(s)}\right)$ are $s= \pm \frac{n}{2}$. Moreover, each pole is at most simple and the residue is a constant function. The functional equation is given by

$$
E\left(g ; F^{(s)}\right)=E\left(g ; M_{w} F^{(s)}\right)
$$

Here

$$
w=\left(\begin{array}{llll}
& 1 & & \\
& & \ddots & \\
& & & 1 \\
1 & & &
\end{array}\right)
$$

$M_{w} F^{(s)}$ is a meromorphic section of the representation induced from the character

$$
\left(\begin{array}{cc}
a_{1} & * \\
0 & a_{2}
\end{array}\right) \mapsto\left|a_{1}\right|^{-(n-1) s / n}\left|\operatorname{det} a_{2}\right|^{s / n}
$$

of the parabolic subgroup

$$
Q^{\prime}=\left\{\left.\left(\begin{array}{cc}
a_{1} & * \\
0 & a_{2}
\end{array}\right) \right\rvert\, a_{1} \in k^{\times}, a_{2} \in \mathrm{GL}_{n-1}\right\}
$$

$M_{w} F^{(s)}$ has at most simple poles at $s=\frac{n}{2}, \frac{n}{2}-1$.
We return to the proof of Proposition 1.6. Let

$$
f^{(s)}=\prod_{v \notin S} d\left(\omega_{v}, s\right) \phi_{\omega_{v}, s} \times \prod_{r \in S} f_{v}^{(s)}
$$

be a good section. We may assume each $f_{v}^{(s)}, v \in S$ is a standard section, since $d\left(\omega_{v}, s\right)$ has no pole in $\operatorname{Re}(s) \geqslant 0$.

Let P_{1}^{*} be the parabolic subgroups of H_{n} given by

$$
P_{1}^{*}=\left\{\left.\left|\begin{array}{cc|cc}
a & * & * & * \\
0 & A & * & * \\
\hline \mathbf{0}_{n} & a^{-1} & 0 \\
* & { }^{t} A^{-1}
\end{array}\right| \in H_{n} \right\rvert\, a \in k^{\times}, A \in \mathrm{GL}_{n-1}\right\} .
$$

Let $t=\left(t_{1}, t_{2}\right) \in \mathbf{C}^{2}$. Let $I_{P_{1}^{*}}\left(\omega_{v}, t\right)$, be the space of right K_{v}-finite function $f_{P_{1}^{*}}^{(t)}$ on $H_{n, v}$ such that

$$
f_{P_{1}^{*}}^{(t)}\left(p_{1} h\right)=\omega(a \operatorname{det} A)|a|^{t_{1}+n}|\operatorname{det} A|^{t_{2}+n / 2} f_{P_{1}^{*}}^{(t)}(h)
$$

where

$$
p_{1}=\left(\begin{array}{cc|cc}
a & * & * & * \\
0 & A & * & * \\
\hline \mathbf{0}_{n} & a^{-1} & 0 \\
* & { }^{t} A^{-1}
\end{array}\right) \in P_{1}^{*}
$$

For each $v \in S$, let $\tilde{f}_{v}^{(t)}$ be a standard section (of two variables) of $I_{P_{1}^{*}}\left(\omega_{v}, t\right)$ defined by

$$
\tilde{f}_{v}^{(t)}\left(p_{1} k\right)=\left|a^{n-1} \operatorname{det} A^{-1}\right|^{\left(t_{1}-t_{2}\right) / n+1 / 2} f_{v}^{(s)}(k),
$$

where p_{1} is as above, $k \in K_{v}$, and

$$
s=\frac{t_{1}+(n-1) t_{2}}{n} .
$$

When $v \notin S$, let $\phi_{P_{1}^{*}, \omega_{v}, t}$ be the standard section of $I_{P_{1}^{*}}\left(\omega_{v}, t\right)$ which is identically 1 on K_{v}. Put

$$
\begin{aligned}
\tilde{f}^{(t)}=\prod_{v \notin S} & {\left[L_{v}\left(t_{1}+1\right) \zeta_{v}\left(t_{1}-t_{2}+\frac{n}{2}\right) \zeta_{v}\left(t_{1}+t_{2}+\frac{n}{2}\right) L_{v}\left(t_{2}+\frac{n}{2}\right) \prod_{r=1}^{[(n-1) / 2]} \zeta_{v}\left(2 t_{2}+n-2 r\right)\right] } \\
& \times \prod_{v \notin S} \phi_{P_{1}^{*}, \omega_{v}, t} \times \prod_{v \in S} \tilde{f}_{v}^{(t)} .
\end{aligned}
$$

Here $L_{v}(s)$ stands for $L\left(\omega_{v}, s\right)$. Put

$$
\begin{align*}
E\left(h ; \tilde{f}^{(t)}\right) & =\sum_{\gamma \in P_{1}^{*} \backslash H_{n}} \tilde{f}^{(t)}(\gamma h) \\
& =\sum_{\gamma \in P_{n} \backslash H_{n}} \sum_{\gamma_{1} \in P_{1}^{*} \backslash P_{n}} \tilde{f}^{(t)}\left(\gamma_{1} \gamma h\right) . \tag{1.3.4}
\end{align*}
$$

The inner sum in the last expression is a degenerate Eisenstein series on GL_{n}. In particular, the residue of this inner Eisenstein series along $t_{1}-t_{2}=\frac{n}{2}$ is, up to non-zero constant, equal to

$$
\begin{aligned}
& L_{S}\left(s+\frac{n+1}{2}\right) \zeta_{S}(s+n-1) L_{S}\left(s+\frac{n-1}{2}\right)^{[(n-1) / 2]} \prod_{r=1} \zeta_{S}(2 s+n+1-2 r) \\
& \quad \times \prod_{v \notin S} \phi_{\omega_{v}, s} \times \prod_{v \in S} f_{v}^{(s)}(\gamma h) .
\end{aligned}
$$

Here $s=t_{2}+\frac{1}{2}$. So, the residue of $E\left(h ; \tilde{f}^{(t)}\right)$ along $t_{1}-t_{2}=\frac{n}{2}$ is, up to non-zero constant, equal to

$$
\begin{cases}L_{S}\left(s+\frac{n-1}{2}\right) \zeta_{S}(2 s) E\left(h ; f^{(s)}\right), & \text { if } n \text { is even } \tag{1.3.5}\\ L_{S}\left(s+\frac{n-1}{2}\right) E\left(h ; f^{(s)}\right), & \text { if } n \text { is odd. }\end{cases}
$$

Put

$$
D_{1}=\left\{\left(t_{1}, t_{2}\right) \left\lvert\, \operatorname{Re}\left(t_{1}\right)>\operatorname{Re}\left(t_{2}\right)+\frac{n}{2}\right., \operatorname{Re}\left(t_{2}\right)>\frac{n}{2}\right\} .
$$

Then $\tilde{f}^{(t)}$ is holomorphic on D_{1}, and the summation (1.3.4) is absolutely convergent on D_{1}, so $E\left(h ; \tilde{f}^{(t)}\right)$ is holomorphic on D_{1}. Put

$$
P_{2}^{*}=\left\{\left.\left(\begin{array}{cc|cc}
a & * & * & * \\
0 & A & * & B \\
\hline 0 & 0 & a^{-1} & 0 \\
0 & C & * & D
\end{array}\right) \in H_{n} \right\rvert\, a \in k^{\times},\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in H_{n-1}\right\} .
$$

Then

$$
\begin{equation*}
E\left(h ; \tilde{f}^{(t)}\right)=\sum_{\gamma \in P_{2}^{*} \backslash H_{n}} \sum_{\gamma_{1} \in P_{1}^{*} \backslash P_{2}^{*}} \tilde{f}^{(t)}\left(\gamma_{1} \gamma h\right) . \tag{1.3.6}
\end{equation*}
$$

The inner sum of (1.3.6) is

$$
L_{S}\left(t_{1}+1\right) \zeta_{S}\left(t_{1}-t_{2}+\frac{n}{2}\right) \zeta_{S}\left(t_{1}+t_{2}+\frac{n}{2}\right)
$$

times an Eisenstein series on H_{n-1} associated to a good section of $I\left(\omega, t_{2}\right)$. By the induction assumption, the poles of this Eisenstein series is

$$
\begin{cases}\left\{\left.t_{2}=\frac{n}{2}-m \right\rvert\, m \in \mathbf{Z}, 0 \leqslant m \leqslant n, n \neq \frac{n}{2}\right\} & \text { if } \omega=1 \tag{1.3.7}\\ \left\{\left.t_{2}=\frac{n-2}{2}-m \right\rvert\, m \in \mathbf{Z}, 0 \leqslant m \leqslant n-2, n \neq \frac{n-2}{2}\right\} & \text { if } \omega \neq 1\end{cases}
$$

By the functional equation of the inner Eisenstein series, $E\left(h ; \tilde{f}^{(t)}\right)$ is holomorphic on the domain

$$
D_{2}=\left\{\left(t_{1}, t_{2}\right) \left\lvert\, \operatorname{Re}\left(t_{1}\right)>\operatorname{Re}\left(t_{2}\right)+\frac{n}{2}\right., \operatorname{Re}\left(t_{1}\right)>-\operatorname{Re}\left(t_{2}\right)+\frac{n}{2}, \operatorname{Re}\left(t_{2}\right)>\frac{n}{2}\right\}
$$

Therefore $E\left(h ; \tilde{f}^{(t)}\right)$ can be meromorphically continued to the convex closure of $D_{1} \cup D_{2}$, and the singularities in this domain are given by (1.3.7).

Similarly, by the functional equation of degenerate Eisenstein series on GL_{n}, $E\left(h ; \tilde{f}^{(t)}\right)$ is holomorphic on the domain

$$
D_{3}=\left\{\left(t_{1}, t_{2}\right) \mid \operatorname{Re}\left(t_{1}\right)>1, \operatorname{Re}\left(t_{2}\right)>\operatorname{Re}\left(t_{1}\right)+\frac{n}{2}\right\}
$$

and can be meromorphically continued to the convex closure of $D_{1} \cup D_{3}$. The
singularities in this domain are given by

$$
\begin{equation*}
\left\{t_{1}-t_{2}= \pm \frac{n}{2}\right\} \tag{1.3.8}
\end{equation*}
$$

By the same reason, $E\left(h ; \tilde{f}^{(t)}\right)$ is holomorphic on

$$
D_{4}=\left\{\left(t_{1}, t_{2}\right) \mid \operatorname{Re}\left(t_{1}\right)<-1, \operatorname{Re}\left(t_{2}\right)>-\operatorname{Re}\left(t_{1}\right)+\frac{n}{2}\right\}
$$

and can be meromorphically continued to the convex closure of $D_{2} \cup D_{4}$. The singularity in this domain is

$$
\begin{equation*}
\left\{t_{1}+t_{2}= \pm \frac{n}{2}\right\} \tag{1.3.9}
\end{equation*}
$$

Thus $E\left(h ; \tilde{f}^{(t)}\right)$ can be meromorphically continued to the convex closure of $D_{1} \cup D_{2} \cup D_{3} \cup D_{4}$ and the singularity in this domain is the union of (1.3.7), (1.3.8) and (1.3.9). Therefore (1.3.5) has at most simple poles at
$\begin{cases}s=\frac{1}{2}, \frac{3}{2}, \ldots, \frac{n+1}{2}, & \text { if } n \text { is even } \\ s=\frac{1}{2}, 1,2, \ldots, \frac{n+1}{2}, & \text { if } n \text { is odd }\end{cases}$
for $\operatorname{Re}(s) \geqslant 0$. Here $\frac{n+1}{2}$ is a pole only if $\omega=1$. If n is even, $L_{S}\left(s+\frac{n-1}{2}\right)$ has neither poles nor zeros for $\operatorname{Re}(s) \geqslant 0$. If n is odd, $L_{S}\left(s+\frac{n-1}{2}\right) \zeta_{S}(2 s)$ has a simple pole at $s=\frac{1}{2}$ and has no zero at positive integral or half-integral points. Note that we already know that $s=0$ is not a pole if n is odd. Thus we have proved Proposition 1.6.

COROLLARY. Let $f^{(s)}$ be a global holomorphic section of $I(\omega, s)$. Let S be a finite set of places of k such that $f^{(s)}$ is invariant under $K_{v}, v \notin S$. Then the set of poles of

$$
d_{S}(\omega, s) E\left(h ; f^{(s)}\right)
$$

is given by Proposition 1.6.
This result is also proved in [14].
If k is a function field, we can prove the following proposition similarly.

PROPOSITION 1.7. Suppose k is a function field. If $f^{(s)}$ is a good section of $I(\omega, s)$, then the poles of $E\left(h ; f^{(s)}\right)$ are at most simple. The set of possible poles is as follows.
(1) When ω is principal: we may assume $\omega=1$. The set of possible poles is:

$$
\begin{aligned}
& \left\{ \pm \frac{n+1}{2}+\frac{2 \pi \sqrt{-1}}{\log q} \mathbf{Z}\right\} \\
& \qquad\left\{\left.\frac{n-1}{2}-m+\frac{\pi \sqrt{-1}}{\log q} \mathbf{Z} \right\rvert\, m \in \mathbf{Z}, 0 \leqslant m \leqslant n-1, m \neq \frac{n-1}{2}\right\}
\end{aligned}
$$

(2) When ω is not principal, and ω^{2} is principal: we may assume $\omega^{2}=1$. Then the set of possible poles is:

$$
\left\{\left.\frac{n-1}{2}-m+\frac{\pi \sqrt{-1}}{\log q} \mathbf{Z} \right\rvert\, m \in \mathbf{Z}, 0 \leqslant m \leqslant n-1, m \neq \frac{n-1}{2}\right\}
$$

(3) If ω^{2} is not principal, then $E\left(h ; f^{(s)}\right)$ is entire.

REMARK. Proposition 1.6 or 1.7 implies that the possible poles of Langlands L-function of irreducible cuspidal automorphic representations of Sp_{n} attached to the standard representation of the L-group ${ }^{L} \mathrm{Sp}_{n} \simeq \mathrm{SO}(2 n+1)$ are

$$
\{-n+1,-n+2, \ldots, n-1, n\}
$$

or

$$
\left\{-n+1+\frac{\pi \sqrt{-1}}{\log q} \mathbf{Z},-n+2+\frac{\pi \sqrt{-1}}{\log q} \mathbf{Z}, \ldots, n-1+\frac{\pi \sqrt{-1}}{\log q} \mathbf{Z}, n+\frac{\pi \sqrt{-1}}{\log q} \mathbf{Z}\right\}
$$

and all of them are at most simple (cf. [14], [20], [21]).
1.4. Calculation of the residue at $s=\frac{n-1}{2}$

In this subsection, we assume $\omega=1$. Then there exists a class 1 element of $I(\omega, s)$. Take $\phi_{s} \in I(\omega, s)$ such that $\left.\phi_{s}\right|_{K_{n}} \equiv 1$. Put

$$
\begin{aligned}
& E(h, s)=E\left(h ; \phi_{s}\right) \\
& \tilde{E}(h, s)=\xi\left(s+\frac{n+1}{2}\right) \prod_{r=1}^{[n / 2]} \xi(2 s+n+1-2 r) E(h, s)
\end{aligned}
$$

$\tilde{E}(h, s)$ satisfies the following functional equation:

$$
\tilde{E}(h, s)=\tilde{E}(h,-s) .
$$

We will determine the residue of $E(h ; s)$ at $s=\frac{n-1}{2}$. Let $P_{n, r}$ be a parabolic subgroup of H_{n} given by

$$
P_{n, r}=\left\{\left.\left(\begin{array}{cc|cc}
a & * & * & * \\
0 & A & * & B \\
\hline 0 & 0 & { }^{t} a^{-1} & 0 \\
0 & C & * & D
\end{array}\right) \in H_{n} \right\rvert\, a \in \mathrm{GL}_{n-r},\left(\begin{array}{cc}
A & B \\
C & D
\end{array}\right) \in \mathrm{Sp}_{r}\right\}
$$

Let $s \in \mathbf{C}$ and $t=\left(t_{1}, t_{2}, \ldots, t_{n}\right) \in \mathbf{C}^{n}=X^{*}\left(T_{n}\right) \otimes_{\mathrm{Z}} \mathbf{C}$. Let $\phi\left(h ; P_{n, r} ; s\right), \phi\left(h ; B_{n} ; t\right)=$ $\phi\left(h ; B_{n} ; t_{1}, t_{2}, \ldots, t_{n}\right)$ be the functions on $H_{n}(\mathbf{A})$ given by

$$
\begin{aligned}
& \phi\left(p k ; P_{n, r} ; s\right)=|a|^{s+(n+r+1) / 2} \\
& \phi\left(b k ; B_{n} ; s\right)=\prod_{i=1}^{n}\left|b_{i}\right|^{t_{i}+n+1-i}
\end{aligned}
$$

where $k \in K_{n}$,

$$
p=\left(\begin{array}{cc|cc}
a & * & * & * \\
0 & A & * & B \\
\hline 0 & 0 & { }^{t} a^{-1} & 0 \\
0 & C & * & D
\end{array}\right) \in P_{n, r}(\mathbf{A})
$$

Put

$$
\begin{aligned}
& E_{P_{n, r}}(h, s)=\sum_{\gamma \in P_{n, r} \backslash H_{n}} \phi\left(\gamma h ; P_{n, r} ; s\right), \\
& E_{B_{n}}(h, t)=\sum_{\gamma \in B_{n} \backslash H_{n}} \phi\left(\gamma h ; B_{n} ; t\right) .
\end{aligned}
$$

For any $\alpha \in \Phi_{H_{n}}^{+}$, let $l_{\alpha}^{ \pm}(t)$ and $\mathscr{F}_{\alpha}^{ \pm}$be linear forms and hyperplanes of \mathbf{C}^{n} given by

$$
\begin{array}{ll}
l_{\alpha}^{+}(t)=\langle\breve{\alpha}, t\rangle-1, & l_{\alpha}^{-}(t)=\langle\breve{\alpha}, t\rangle+1, \\
\mathscr{F}_{\alpha}^{+}=\left\{t \in \mathbf{C}^{n} \mid l_{\alpha}^{+}(t)=0\right\}, & \mathscr{F}_{\alpha}^{-}=\left\{t \in \mathbf{C}^{n} \mid l_{\alpha}^{-}(t)=0\right\} .
\end{array}
$$

It is easy to see that the residue along $\mathscr{F}_{\alpha_{1}}^{+}, \ldots, \mathscr{F}_{\alpha_{n-r-1}}^{+}, \mathscr{F}_{\alpha_{n-r+1}}^{+}, \ldots, \mathscr{F}_{\alpha_{n}}^{+}$in the sense of [9, p. 195] is

$$
R^{n-1} \prod_{i=2}^{n-r} \xi(i)^{-1} \prod_{i=1}^{r} \xi(2 i)^{-1} E_{P_{n, r}}\left(h, t_{n-r}+\frac{n-r-1}{2}\right),
$$

where $R=\operatorname{Res}_{s=1} \xi(s)$. Put

$$
\begin{aligned}
\tilde{E}_{B_{n}}(h, t) & =\prod_{\alpha \in \Phi_{H_{n}}^{+}} \xi(\langle\breve{\alpha}, t\rangle+1) E_{B_{n}}(h, t) \\
& =\prod_{1 \leqslant i<j \leqslant n} \xi\left(t_{i}+t_{j}+1\right) \xi\left(t_{i}-t_{j}+1\right) \prod_{i=1}^{n} \xi\left(t_{i}+1\right) E_{B_{n}}(h, t) .
\end{aligned}
$$

Then it is known that

$$
\begin{equation*}
\prod_{\alpha \in \Phi_{H_{n}}^{+}} l_{\alpha}^{+}(t) l_{\alpha}^{-}(t) E_{B_{n}}(h, t) \tag{1.4.6}
\end{equation*}
$$

is entire and invariant under $t \rightarrow w t w^{-1}$ for any $w \in W_{H_{n}}$.
The value of (1.4.6) at $t=\left(s+\frac{n-1}{2}, s+\frac{n-3}{2}, \ldots, s-\frac{n-1}{2}\right)$ is

$$
\begin{aligned}
& (2 R)^{n-1} \prod_{i=2}^{n-1}\{(i-1)(i+1) \xi(i)\}^{n-i} \\
& \quad \times \prod_{i=1}^{n}\left(s+\frac{n+3}{2}-i\right)\left(s+\frac{n-1}{2}-i\right) \xi\left(s+\frac{n+3}{2}-i\right) \\
& \quad \times \prod_{1 \leqslant i<j \leqslant n}(2 s+n+2-i-j)(2 s+n-i-j) \xi(2 s+n+2-i-j) \\
& \quad \times E_{P_{n, 0}}(h, s) .
\end{aligned}
$$

So the value of (1.4.6) at $t=(n-1, n-2, \ldots, 1,0)$ is

$$
\begin{aligned}
& (2 R)^{n-1} \prod_{i=2}^{n-1}\{(i-1)(i+1) \xi(i)\}^{n-i} \\
& \quad \times(-R) n!(n-2)!\prod_{i=2}^{n} \xi(i) \\
& \quad \times 2 \xi(2) \prod_{i=2}^{n-1} \prod_{j=1}^{i} \xi(i+j) \\
& \quad \times 2 \operatorname{Res}_{s=(n-1) / 2} E_{P_{n, 0}}(h, s) .
\end{aligned}
$$

On the other hand, the value of (1.4.6) at $t=(s, n-1, n-2, \ldots, 1)$ is

$$
\begin{aligned}
& (2 R)^{n-1} \prod_{i=2}^{n-1}\{(i-1)(i+1) \xi(i)\}^{n-i} \\
& \quad \times \prod_{1 \leqslant i<j \leqslant n-1}(i+j+1)(i+j-1) \xi(i+j) \\
& \quad \times \prod_{i=1}^{2 n-1}(s-n+i+1)(s-n+i-1) \xi(s-n+i+1) \\
& \quad \times E_{P_{n, n-1}}(h, s) .
\end{aligned}
$$

It follows that $E_{P_{n, n-1}}(h, s)$ is holomorphic at $s=0$, and the value of (1.4.6) at $t=(0, n-1, n-2, \ldots, 1)$ is

$$
\begin{aligned}
& (2 R)^{n-1} \prod_{i=2}^{n-1}\{(i-1)(i+1) \xi(i)\}^{n-i} \\
& \quad \times \prod_{1 \leqslant i<j \leqslant n-1}(i+j+1)(i+j-1) \xi(i+j) \\
& \quad \times\left(-R^{2}\right)(n!)^{2}\{(n-2)!\}^{2} \prod_{i=2}^{n} \xi(i) \prod_{i=2}^{n-1} \xi(i) \\
& \quad \times E_{P_{n, n-1}}(h, 0) .
\end{aligned}
$$

Thus we get the following proposition.

PROPOSITION 1.8.

$$
\begin{aligned}
& \operatorname{Res}_{s=(n-1) / 2} E_{P_{n, 0}}(h, s) \\
& \quad=\frac{1}{2} R \prod_{i=1}^{[n / 2]-1} \xi(2 i+1) \prod_{i=1}^{[n / 2]} \xi(2 n-2 i)^{-1} E_{P_{n, n-1}}(h, 0),
\end{aligned}
$$

or, equivalently

$$
\begin{aligned}
& \operatorname{Res}_{s=(n-1) / 2} \tilde{E}_{P_{n, 0}}(h, s) \\
& \quad=\frac{1}{2} R \xi(n) \prod_{i=1}^{[n / 2]-1} \xi(2 i+1) E_{P_{n, n-1}}(h, 0)
\end{aligned}
$$

LEMMA 1.9. $I\left(1, \frac{n-1}{2}\right)$ is generated by class 1 vectors.
Proof. Let χ be a character of T_{n} given by

$$
\chi(t)=\prod_{i=1}^{n}\left|t_{i}\right|^{n-i}
$$

Then $I\left(1, \frac{n-1}{2}\right)$ is a quotient of $\operatorname{Ind}_{B_{n}}^{H_{n}} \chi$. It is sufficient to prove that $\operatorname{Ind}_{B_{n}}^{H_{n}} \chi$ is generated by class 1 vectors. Let P be the standard parabolic subgroup of H_{n} corresponding to α_{n}. Then

$$
\operatorname{Ind}_{B_{n}}^{H_{n}} \chi=\operatorname{Ind}_{P}^{H_{n}}\left(\operatorname{Ind}_{B_{n}}^{P} \chi\right) .
$$

The restriction of $\operatorname{Ind}_{B_{n}}^{P} \chi$ to $l_{\alpha_{n}}\left(\mathrm{SL}_{2}\right)$ is an irreducible tempered representation. Let M be the standard Levi factor of P and w be the longest element of $W_{M} \backslash W_{H_{n}}$, i.e.,

By the well-known theory of Langlands quotient, $\operatorname{Ind}_{P}^{H^{n}}\left(\operatorname{Ind}_{B_{n}}^{P} \chi\right)$ is generated by any element f such that $M_{w} f \neq 0$. It is easy to check that a non-zero class 1 vector satisfies this condition.

Let $f^{(s)}$ be any good section of $I(1, s)$. Put

$$
\begin{aligned}
& w=w_{\{2, \cdots, n\}}
\end{aligned}
$$

It is easy to check that $M_{w} f^{(s)}$ has at most a simple pole at $s=\frac{n-1}{2}$ and

$$
\operatorname{Res}_{s=(n-1) / 2} M_{w} f^{(s)}
$$

is in $\operatorname{Ind}_{P_{n, n-1}}^{H_{n}}$. An easy calculation shows

$$
\begin{aligned}
& \operatorname{Res}_{s=(n-1) / 2} M_{w} \phi\left(h ; P_{n, 0} ; s\right) \\
& \quad=R \prod_{i=1}^{[n / 2]-1} \xi(2 i+1) \prod_{i=1}^{[n / 2]} \xi(2 n-2 i)^{-1} \phi\left(h ; P_{n, n-1} ; 0\right)
\end{aligned}
$$

Thus by Proposition 1.8,

$$
\begin{aligned}
& \operatorname{Res}_{s=(n-1) / 2} E_{P_{n, 0}}\left(h, \phi\left(h ; P_{n, 0} ; s\right)\right) \\
& \quad=\frac{1}{2} E_{P_{n, n-1}}\left(h, \operatorname{Res}_{s=(n-1) / 2} M_{w} \phi\left(h ; P_{n, 0} ; s\right)\right) .
\end{aligned}
$$

PROPOSITION 1.10.

$\operatorname{Res}_{s=(n-1) / 2} E_{P_{n, 0}}\left(h ; f^{(s)}\right)=\frac{1}{2} E_{P_{n, n-1}}\left(h ; \operatorname{Res}_{s=(n-1) / 2} M_{w} f^{(s)}\right)$.

Proof. By Proposition 1.8, this equation holds for a non-zero class 1 vector. Since both sides are H_{n}-equivariant, it holds for any $f^{(s)}$.

2. Triple L-functions

Let k be a global field. Let \mathbf{K} be a semi-simple abelian algebra of degree 3 over k. There are three cases:

Case (1) $\mathbf{K}=k \oplus k \oplus k$.
Case (2) $\mathbf{K}=k \oplus k^{\prime}, k^{\prime}$ is a quadratic extension of k.
Case (3) $\mathbf{K}=k^{\prime \prime}, k^{\prime \prime}$ is a cubic extension of k.
Let G be an algebraic group defined over k given by

$$
G=\left\{g \in \mathbf{G L}_{2}(\mathbf{K}) \mid \operatorname{det} g \in k^{\times}\right\}
$$

Thus G is
Case (1) $\left\{\left(g^{(1)}, g^{(2)}, g^{(3)}\right) \in\left(\mathrm{GL}_{2}\right)^{3} \mid \operatorname{det} g^{(1)}=\operatorname{det} g^{(2)}=\operatorname{det} g^{(3)}\right\}$,
Case (2) $\left\{\left(g^{(1)}, g^{(2)}\right) \in \mathrm{GL}_{2} \times R_{k^{\prime} / k} \mathrm{GL}_{2} \mid \operatorname{det} g^{(1)}=\operatorname{det} g^{(2)}\right\}$,
Case (3) $\left\{g \in R_{k^{\prime \prime} / k} \mathrm{GL}_{2} \mid \operatorname{det} g \in k^{\times}\right\}$.
As in $[22, \S 0]$, we take an 8 -dimensional representation σ of the L-group of $\mathrm{GL}_{2}(\mathbf{K})$. The L-group is the semi-direct product of $\mathrm{GL}_{2}(\mathbf{C}) \times \mathrm{GL}_{2}(\mathbf{C}) \times \mathrm{GL}_{2}(\mathbf{C})$ and W_{k}. W_{k} acts by permuting the three $\mathrm{GL}_{2}(\mathbf{C})$ factors. The restriction of σ to $\mathrm{GL}_{2}(\mathbf{C}) \times \mathrm{GL}_{2}(\mathbf{C}) \times \mathrm{GL}_{2}(\mathbf{C})$ is $\sigma_{2} \otimes \sigma_{2} \otimes \sigma_{2}$, where σ_{2} is the standard 2-dimensional representation of $\mathrm{GL}_{2}(\mathbf{C})$. The restriction of σ to W_{k} is the permutation of the three factors.

We denote by Z the connected component of the center of $G . Z$ is naturally isomorphic to GL_{1}. We embed G into

$$
\mathrm{GSp}_{3}=\left\{h \in \mathrm{GL}_{6} \left\lvert\, h\left(\begin{array}{rr}
\mathbf{0}_{3} & -\mathbf{1}_{3} \\
\mathbf{1}_{3} & \mathbf{0}_{3}
\end{array}\right) t h=m(h)\left(\begin{array}{rr}
\mathbf{0}_{3} & -\mathbf{1}_{3} \\
\mathbf{1}_{3} & \mathbf{0}_{3}
\end{array}\right)\right., m(h) \in k^{\times}\right\}
$$

as in [22, §1]. We denote this embedding by l.
Let Π be an irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}(\mathbf{A} \otimes \mathbf{K})$, i.e.,

Case (1) $\Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$, where π_{1}, π_{2}, and π_{3} are irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}\left(\mathbf{A}_{k}\right)$,
Case (2) $\Pi=\pi_{1} \otimes \pi_{2}$, where π_{1} (resp. π_{2}) is an irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}\left(\mathbf{A}_{k}\right)$ (resp. $\mathrm{GL}_{2}\left(\mathbf{A}_{k^{\prime}}\right)$),
Case (3) Π is an irreducible cuspidal automorphic representation of $\mathrm{GL}_{2}\left(\mathbf{A}_{k^{\prime \prime}}\right)$.
Let Ω_{Π} be the central quasi-character of Π, and ω_{Π} be the restriction of Ω_{Π} to
$Z(\mathbf{A})$. Put $\omega=\omega_{\Pi}$. Let $\mathscr{W}(\Pi, \psi)$ be the Whittaker model of Π, i.e.,
Case (1) $\mathscr{W}(\Pi, \psi)=\mathscr{W}\left(\pi_{1}, \psi\right) \otimes \mathscr{W}\left(\pi_{2}, \psi\right) \otimes \mathscr{W}\left(\pi_{3}, \psi\right)$,
Case (2) $\mathscr{W}(\Pi, \psi)=\mathscr{W}\left(\pi_{1}, \psi\right) \otimes \mathscr{W}\left(\pi_{2}, \psi \circ \mathbf{t r}_{k^{\prime} / k}\right)$,
Case (3) $\mathscr{W}(\Pi, \psi)=\mathscr{W}\left(\Pi, \psi \circ \operatorname{tr}_{k^{\prime \prime} / k}\right)$.
If φ is a cusp form belonging to Π, then there exists $W \in \mathscr{W}(\Pi, \psi)$ such that

$$
\varphi(g)=\sum_{\alpha \in \mathbf{K}^{\times}} W\left(\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right) g\right)
$$

We assume that W is decomposable: $W=\Pi_{v} W_{v}$. Here, v runs over all places of k. Put

$$
P=\left\{\left(\begin{array}{cc}
m A & * \\
\mathbf{0}_{3} & { }^{t} A^{-1}
\end{array}\right) \in \mathrm{GSp}_{3}\right\} .
$$

By [22, §1], the double cosets $P \backslash \mathrm{GSp}_{3} / l(G)$ contains one open coset and the other cosets are all negligible in the terminology of [20]. We choose a representative η_{0} of the open double coset and put

$$
R_{0}=\left\{g \in G \mid \eta_{0} \imath(g) \eta_{0}^{-1} \in P\right\} .
$$

We can choose η_{0} so that

$$
R_{0}=\left\{\left.\left(\begin{array}{ll}
a & n \\
0 & a
\end{array}\right) \in \mathrm{GL}_{2}(\mathbf{K}) \right\rvert\, a \in k^{\times}, \operatorname{tr}_{\mathbf{K} / k} n=0\right\} .
$$

Let v be a place of k. Let $J\left(\omega_{v}, s\right)$ be the space of functions $f_{v}(h)$ on $\operatorname{GSp}_{3}\left(k_{v}\right)$ which satisfy the following (i) and (ii):
(i) f_{v} is right finite by the standard maximal compact subgroup of $\mathrm{GSp}_{3}\left(k_{v}\right)$.
(ii) For $p=\left(\begin{array}{cc}m A & * \\ 0_{3} & { }^{t} A^{-1}\end{array}\right) \in P\left(k_{v}\right)$,

$$
f_{v}(p h)=\omega_{v}(m)|m|^{3 s+(3 / 2)} \omega_{v}(\operatorname{det} A)|\operatorname{det} A|^{2 s+1} f_{v}(h) .
$$

Observe that if $f_{v} \in J\left(\omega_{v}, s\right)$, then $\left.f_{v}\right|_{\mathrm{sp}_{3}\left(k_{v}\right)} \in I\left(\omega_{v}, 2 s-1\right)$. We define holomorphic sections and meromorphic sections of $J\left(\omega_{v}, s\right)$ in the same way as in Section 1. The intertwining operator M_{w} can be defined similarly. We define a meromorphic section $f_{v}^{(s)}$ is good if

$$
\left[d\left(\omega_{v}, 2 s-1\right) c_{w}\left(\omega_{v}, 2 s-1\right)\right]^{-1} M_{w} f_{v}^{(s)}
$$

is holomorphic for all $w \in \Omega_{3}$. Obviously this condition is equivalent to say that $\left.\rho(\phi) f_{v}^{(s)}\right|_{\mathbf{p}_{3}\left(k_{v}\right)}$ is a good section of $I\left(\omega_{v}, 2 s-1\right)$ for each Hecke operator ϕ on $\mathrm{GSp}_{3}\left(k_{v}\right)$. By Lemma 1.2, $f_{v}^{(s)}(h)$ is a good section of $J\left(\omega_{v}, s\right)$ if and only if $\omega_{v}(m(h)) M_{w_{0}}^{*} f_{v}^{(s)}(h)$ is a good section of $J\left(\omega_{v}^{-1}, 1-s\right)$, where $m(h)$ is the multiplier of h, and by Lemma 1.3, any holomorphic section of $J\left(\omega_{v}, s\right)$ is a good section.

For each meromorphic section $f_{v}^{(s)} \in J\left(\omega_{v}, s\right)$, and $W_{v} \in \mathscr{W}\left(\Pi_{v}, \psi_{v}\right)$, put

$$
\Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)=\int_{R_{0, v} \backslash G_{v}} f_{v}^{(s)}\left(\eta_{0} l(g)\right) W_{v}(g) \mathrm{d} g
$$

In [7], [22], it is proved that $\Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)$ is absolutely convergent for $\operatorname{Re}(s) \gg 0$, and has meromorphic continuation to \mathbf{C}, and if v is non-archimedean, $\Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)$ is a rational function of q_{v}^{-s}. By [22, Proposition 3.3], for each $s_{0} \in \mathbf{C}$, there exists a holomorphic section $f_{v}^{(s)}$ of $J\left(\omega_{v}, s\right)$, and $W_{v} \in \mathscr{W}\left(\Pi_{v}, \psi_{v}\right)$ such that

$$
\Psi_{s_{0}}\left(f_{v}^{\left(s_{0}\right)} ; W_{v}\right) \neq 0
$$

Put $\tilde{W}_{v}(g)=\Omega_{v}(\operatorname{det} g)^{-1} W_{v}(g)$, where Ω_{v} is the central quasi-character of Π_{v}. Then $\tilde{W}_{v} \in \mathscr{W}\left(\tilde{\Pi}_{v}, \psi_{v}\right)$. It is proved in [7], [22], that there exists a meromorphic function $\varepsilon^{\prime}\left(s, \Pi_{v}, \sigma, \psi_{v}\right)$ such that

$$
\Psi_{1-s}\left(\omega_{v}(m(h)) M_{w_{0}}^{*} f_{v}^{(s)} ; \tilde{W}_{v}\right)=\varepsilon^{\prime}\left(s, \Pi_{v}, \sigma, \psi_{v}\right) \Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)
$$

For a non-archimedean place v, we consider the fractional ideal I_{v} of $R_{v}=\mathbf{C}\left[q_{v}^{-s}, q_{v}^{s}\right]$, generated by $\Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)$ attached to good sections $f_{v}^{(s)}$ of $J\left(\omega_{v}, s\right)$ and $W_{v} \in \mathscr{W}\left(\Pi_{v}, \psi_{v}\right)$. Then by [22, Appendix 3 to $\S 3$], I_{v} admits a common denominator and $1 \in I_{v}$. Thus I_{v} has a generator of the form $P\left(q_{v}^{-s}\right)^{-1}$, $P(X) \in \mathbf{C}[X], P(0)=1$. We let

$$
\begin{aligned}
& L\left(s, \Pi_{v}, \sigma\right)=P\left(q_{v}^{-s}\right)^{-1} \\
& \varepsilon\left(s, \Pi_{v}, \sigma, \psi_{v}\right)=\varepsilon^{\prime}\left(s, \Pi_{v}, \sigma, \psi_{v}\right) L\left(s, \Pi_{v}, \sigma\right) L\left(1-s, \tilde{\Pi}_{v}, \sigma\right)^{-1}
\end{aligned}
$$

then $\varepsilon\left(s, \Pi_{v}, \sigma, \psi_{v}\right)$ is of the form $a q^{b s}, a \in \mathbf{C}, b \in \mathbf{Z}$, and

$$
\begin{equation*}
\frac{\Psi_{1-s}\left(\omega_{v}(m(h)) M_{w_{0}}^{*} f_{v}^{(s)} ; \tilde{W}_{v}\right)}{L\left(1-s, \tilde{\Pi}_{v}, \sigma\right)}=\varepsilon\left(s, \Pi_{v}, \sigma, \psi_{v}\right) \frac{\Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)}{L\left(s, \Pi_{v}, \sigma\right)} \tag{2.1}
\end{equation*}
$$

When v is unramified, this definition agrees to usual definition $\operatorname{det}\left(\mathbf{1}_{8}-\sigma\left(g_{v}, \mathrm{Fr}\right) q_{v}^{-s}\right)^{-1}$, where g_{v} is the Langlands class of Π_{v}. For a holomorphic section $f_{v}^{(s)}$ and $W_{v} \in \mathscr{W}\left(\Pi_{v}, \psi_{v}\right)$, a careful calculation of denominator of
$\Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)$ shows that the denominator divides $\operatorname{det}\left(\mathbf{1}_{8}-\sigma\left(g_{v}, \mathrm{Fr}\right) q_{v}^{-s}\right)$ (cf. [22, Appendix 3 to §3]). It follows that $L\left(s, \Pi_{v}, \sigma\right)^{-1}$ is a divisor of $d\left(\omega_{v}, 2 s-1\right)^{-1}$ $\operatorname{det}\left(\mathbf{1}_{8}-\sigma\left(g_{v}, \mathrm{Fr}\right) q_{v}^{-s}\right)$. On the other hand, there are a good section $f_{v}^{(s)}$ of $J\left(\omega_{v}, s\right)$ and $W_{v} \in \mathscr{W}\left(\Pi_{v}, \psi_{v}\right)$ such that $\Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)=\operatorname{det}\left(\mathbf{1}_{8}-\sigma\left(g_{v}, \mathrm{Fr}\right) q_{v}^{-s}\right)^{-1}$. This shows that $L\left(s, \Pi_{v}, \sigma\right)^{-1}$ is a multiple of $\operatorname{det}\left(\mathbf{1}_{8}-\sigma\left(g_{v}, \mathrm{Fr}\right) q_{v}^{-s}\right)$. Moreover we know

$$
\varepsilon^{\prime}\left(s, \Pi_{v}, \sigma, \psi_{v}\right)=\frac{\operatorname{det}\left(\mathbf{1}_{8}-\sigma\left(g_{v}, \mathrm{Fr}\right) q_{v}^{-s}\right)}{\operatorname{det}\left(\mathbf{1}_{8}-\sigma\left(g_{v}, \mathrm{Fr}\right)^{-1} q_{v}^{s-1}\right)}
$$

Since $d\left(\omega_{v}, 2 s-1\right)^{-1}$ and $d\left(\omega_{v}^{-1}, 1-2 s\right)^{-1}$ have no common divisor, we have $L\left(s, \Pi_{v}, \sigma\right)=\operatorname{det}\left(\mathbf{1}_{8}-\sigma\left(g_{v}, \operatorname{Fr}\right) q_{v}^{-s}\right)^{-1}$, as we expected.

When k_{v} is archimedean, we define L-factor $L\left(s, \Pi_{v}, \sigma\right)$ as follows. The proof of [7, Proposition 5.1] shows that there is a meromorphic function $\alpha(s) \not \equiv 0$ such that

$$
\alpha(s)^{-1} \Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)
$$

is holomorphic for any holomorphic section $f_{v}^{(s)}$ and $W_{v} \in \mathscr{W}\left(\Pi_{v}, \psi_{v}\right)$. Though [7] has dealt with only case (1), it is not difficult to generalize the result to the case $k_{v}=\mathbf{R}, \mathbf{K}_{v}=\mathbf{R} \oplus \mathbf{C}$. We have only to use the local functional equation of Asai-type L-functions instead of the results of [8]. By Weierstrass theorem, there is a meromorphic function $\lambda(s)$ such that

$$
\begin{equation*}
\lambda(s)^{-1} \Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right) \tag{2.2}
\end{equation*}
$$

is holomorphic for any good section $f_{v}^{(s)}$ and $W_{v} \in \mathscr{W}\left(\Pi_{v}, \psi_{v}\right)$ and if $\lambda^{\prime}(s)$ is another function with this property, then $\lambda(s) \lambda^{\prime}(s)^{-1}$ is holomorphic. Obviously, for each $s_{0} \in \mathbf{C}$, there exists a good section $f_{v}^{(s)}$ and $W_{v} \in \mathscr{W}\left(\Pi_{v}, \psi_{v}\right)$ such that (2.2) does not have a zero at $s=s_{0}$. By Lemma 1.3 and [22, Proposition 3.3], $\lambda(s)$ has no zeros. We define $L\left(s, \Pi_{v}, \sigma\right)=\lambda(s)$. Then (2.1) holds with some entire function $\varepsilon\left(s, \Pi_{v}, \sigma, \psi_{v}\right)$ which have no zeros. Note that $L\left(s, \Pi_{v}, \sigma\right)$ and $\varepsilon\left(s, \Pi_{v}, \sigma, \psi_{v}\right)$ is determined only up to entire functions which have no zeros.

Let v be any place of k. Assume Π_{v} is unitary. We define a non-negative real number $\lambda\left(\Pi_{v}\right)$ as follows.

Case (1) $\Pi_{v}=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$: When π_{i} is tempered, put $\lambda\left(\pi_{i}\right)=0$. When π_{i} is the complementary series $\pi\left(\mu \alpha^{\lambda}, \mu \alpha^{-\lambda}\right),\left(\mu\right.$ is a unitary character of $\left.k_{v}^{\times}\right)$, put $\lambda\left(\pi_{i}\right)=|\lambda|$. Put $\lambda\left(\Pi_{v}\right)=\lambda\left(\pi_{1}\right)+\lambda\left(\pi_{2}\right)+\lambda\left(\pi_{3}\right)$.

Case (2) $\Pi_{v}=\pi_{1} \otimes \pi_{2}$: let $\lambda\left(\pi_{i}\right)$ be as above, and put $\lambda\left(\Pi_{v}\right)=\lambda\left(\pi_{1}\right)+2 \lambda\left(\pi_{2}\right)$.
Case (3) $\Pi_{v}=\pi_{1}$: let $\lambda\left(\pi_{1}\right)$ be as above, and put $\lambda\left(\Pi_{v}\right)=3 \lambda\left(\pi_{1}\right)$.

LEMMA 2.1. If Π_{v} is unitary, then $L\left(s, \Pi_{v}, \sigma\right)$ has no poles on the domain $\operatorname{Re}(s)>\lambda\left(\Pi_{v}\right)$.

Proof. By an argument similar to [7, Theorem 1], [22, Proposition 3.2], we can show that if $f_{v}^{(s)}$ is a holomorphic section of $J\left(\omega_{v}, s\right)$ and $W_{v} \in \mathscr{W}\left(\Pi_{v}, \psi_{v}\right)$, then $\Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right)$ is absolutely convergent for $\operatorname{Re}(s)>\lambda\left(\Pi_{v}\right)$. Since $d\left(\omega_{v}, s\right)$ has no poles for $\operatorname{Re}(s)>0$, a good section $f_{v}^{(s)}$ is holomorphic for $\operatorname{Re}(s)>0$. This proves the lemma.

LEMMA 2.2. Assume \mathbf{K} is not a cubic extension of k. Assume Π_{v} is unitary. Assume each component is a subquotient of a principal series, and $\lambda\left(\Pi_{v}\right)<1 / 2$. Then $L\left(s, \Pi_{v}, \sigma\right)\left(\right.$ resp. $\left.\varepsilon\left(s, \Pi_{v}, \sigma, \psi_{v}\right)\right)$ agrees to L-factor (resp. ε-factor) associated to the 8-dimensional representation of the Weil group $W_{k_{v}}$ determined by Π_{v}, and σ.

Proof. By [7, Proposition 5.1], $\varepsilon^{\prime}\left(s, \Pi_{v}, \sigma, \psi_{v}\right)$ coincides ε^{\prime}-factor determined by the Weil group. The proof of [7] Proposition 5.1 works for case (2). By the assumption, $L\left(s, \Pi_{v}, \sigma\right)$ has no poles on the domain $\operatorname{Re}(s)>\lambda\left(\Pi_{v}\right)$ and $L\left(1-s, \tilde{\Pi}_{v}, \sigma\right)$ has no poles on the domain $\operatorname{Re}(s)<1-\lambda\left(\Pi_{v}\right)$. This proves the lemma.

REMARK. By Lemma 2.2, we can identify the archimedean L-factors and usual Γ-factors if Π is generated by Hilbert modular forms over a totally real field.

COROLLARY. Assume \mathbf{K} is not a cubic extension of k. Assume Π_{v} is unitary. Assume no component is extraordinary, and $\lambda\left(\Pi_{v}\right)<1 / 2$. Then the conclusion of Lemma 2.2 holds.

Proof. For simplicity, we assume $\mathbf{K}=k \oplus k \oplus k, \Pi_{v}=\pi_{1, v} \otimes \pi_{2, v} \otimes \pi_{3, v}$, and all of $\pi_{1, v}, \pi_{2, v}$ and $\pi_{3, v}$ are supercuspidal. $\pi_{i, v}=\pi\left(\chi_{i, v}\right)(i=1,2,3)$ for some quasicharacter $\chi_{i, v}$ of some quadratic extension $K_{i, v}$ of k_{v}. Choose global quadratic extension K_{i} of k such that $K_{i} k_{v}=K_{i, v}$. It is easy to check that there exists global quasi-character χ_{i} of $\mathbf{A}_{K_{1}}^{\times}$such that v-part of χ_{i} is $\chi_{i, v}$ and $\pi\left(\chi_{i}\right)$ is principal series outside of v and all archimedean place. Put $\Pi=\pi\left(\chi_{1}\right) \otimes \pi\left(\chi_{2}\right) \otimes \pi\left(\chi_{3}\right)$. Then $L(s, \Pi, \sigma)$ is L-function associated to 8 -dimensional representation of global Weil group. The conclusion of Lemma 2.2 holds outside v, so does at v.

We now consider the global theory. We say that a meromorphic section of $J(\omega, s)$ is a good section if it is a finite sum of decomposable elements $f^{(s)}=\Pi_{v} f_{v}^{(s)}$, satisfying the following two conditions:
(i) For almost all unramified places $v,\left.f_{v}^{(s)}\right|_{K_{v}} \equiv d\left(\omega_{v}, 2 s-1\right)$.
(ii) $f_{v}^{(s)}$ is a good section of $J\left(\omega_{v}, s\right)$ for all v.

Note that the infinite product $\Pi_{v} f_{v}^{(s)}$ is absolutely convergent for $\operatorname{Re}(s) \gg 0$, and can be meromorphically continued to \mathbf{C}.

For each good section $f^{(s)}$ of $J(\omega, s)$, put

$$
E\left(h ; f^{(s)}\right)=\sum_{\gamma \in P \backslash \mathrm{GSp}_{3}} f^{(s)}(\gamma h) .
$$

Then the restriction of $E\left(h ; f^{(s)}\right)$ to $\mathrm{Sp}_{3}(\mathbf{A})$ is an Eisenstein series on $\mathrm{Sp}_{3}(\mathbf{A})$ investigated in Section 1.3. In [7], [22], it is proved that if $f^{(s)}=\Pi_{v} f_{v}^{(s)}$ is decomposable, then

$$
\begin{equation*}
\int_{Z(\mathbf{A}) G(k) \backslash G(\mathbf{A})} E\left(\imath(g) ; f^{(s)}\right) \varphi(g) \mathrm{d} g=\prod_{v} \Psi_{s}\left(f_{v}^{(s)} ; W_{v}\right), \tag{2.3}
\end{equation*}
$$

for $\operatorname{Re}(s) \gg 0$. Set

$$
L(s, \Pi, \sigma)=\prod_{v} L\left(s, \Pi_{v}, \sigma\right)
$$

and

$$
\varepsilon(s, \Pi, \sigma)=\prod_{v} \varepsilon\left(s, \Pi_{v}, \sigma, \psi_{v}\right) .
$$

Then by Proposition 1.6, (2.1), and (2.3), we have the following propositions.
PROPOSITION 2.3. $L(s, \Pi, \sigma)$ can be meromorphically continued to \mathbf{C}. It is entire if ω^{2} is not a principal quasi-character. If $\omega^{2}=1$, and k is a number field, then $L(s, \Pi, \sigma)$ has possible poles at $s=0$, 1 . If $\omega^{2}=1$, and k is a function field with constant field \mathbf{F}_{q}, then $L(s, \Pi, \sigma)$ has possible poles at $s \in \frac{\pi \sqrt{-1}}{2 \log q} \mathbf{Z}, 1+\frac{\pi \sqrt{-1}}{2 \log q} \mathbf{Z}$. All the possible poles are at most simple.

PROPOSITION 2.4. $L(s, \Pi, \sigma)$ satisfies the following functional equation:

$$
L(s, \Pi, \sigma)=\varepsilon(s, \Pi, \sigma) L(1-s, \tilde{\Pi}, \sigma)
$$

Now we investigate the poles of $L(s, \Pi, \sigma)$. By Proposition 2.3, we may assume $\omega^{2}=1$ and $s=0$ or 1 . By the functional equation, $s=0$ is reduced to $s=1$. If $L(s, \Pi, \sigma)$ has a pole at $s=1$, then there exists a good section $f^{(s)}$ of $J(\omega, s)$ and a cusp form φ belonging to Π such that

$$
\begin{equation*}
\int_{Z(\mathbf{A}) G(k) \backslash G(\mathbf{A})}\left[\operatorname{Res}_{s=1} E\left(l(g) ; f^{(s)}\right)\right] \varphi(g) \mathrm{d} g \neq 0 \tag{2.4}
\end{equation*}
$$

PROPOSITION 2.5. If $\omega=1$, then $L(s, \Pi, \sigma)$ is holomorphic at $s=1$. In
particular, if k is a number field, $L(s, \Pi, \sigma)$ is entire (cf. [22, Theorem 5.1]).
Proof. By Proposition 1.10, the restriction of $\mathrm{Res}_{s=1} E\left(h ; f^{(s)}\right)$ to Sp_{3} is an Eisenstein series associated to a function in the representation induced from the trivial character of the maximal parabolic subgroup $P_{3,2}$. It is easy to see that each coset in $\left(l(G) \cap \mathrm{Sp}_{3}\right) \backslash \mathrm{Sp}_{3} / P_{3,2}$ is negligible. It follows that (2.4) is identically zero.

We now assume that $\omega^{2}=1, \omega \neq 1$ and $L(s, \Pi, \sigma)$ has a pole at $s=1$. Let K be the quadratic extension of k corresponding to ω by class field theory, and θ be the non-trivial element of $\operatorname{Gal}(K / k)$.

Suppose that $\mathbf{K}=k^{\prime \prime}, k^{\prime \prime}$ is a cubic extension of k. Let Π_{K} be the base change of Π to $\mathrm{GL}_{2}\left(\mathbf{A}_{k^{\prime \prime} K}\right)$ (cf. [18]). Consider the triple L-function $L\left(s, \Pi_{K}, \sigma_{K}\right)$ of Π_{K} over K. Here, σ_{K} is the restriction of σ to the semi-direct product of $\mathrm{GL}_{2}(\mathbf{C}) \times \mathrm{GL}_{2}(\mathbf{C}) \times \mathrm{GL}_{2}(\mathbf{C})$ and W_{K}. Then an easy calculation shows

$$
L\left(s, \Pi_{K}, \sigma_{K}\right)=L(s, \Pi \otimes \tilde{\omega}, \sigma) L(s, \Pi, \sigma)
$$

Here, $\tilde{\omega}$ is any extension of ω to $\mathbf{A}_{k^{\prime \prime}}^{\times}$. Note that G is a Levi subgroup of the quasisplit simply connected group $\operatorname{Spin}(8)$ of either type ${ }^{3} D_{4}$ or ${ }^{6} D_{4}$ according as $k^{\prime \prime} / k$ is cyclic or not (see Shahidi [23]). Then [23, Theorem 5.1] implies

$$
L(1+2 s, \omega) L(1+s, \Pi \otimes \tilde{\omega}, \sigma) \neq 0
$$

for $\operatorname{Re}(s)=0$. Since ω is a non-trivial unitary character of A_{k}^{\times}, this implies the non-vanishing of $L(s, \Pi, \sigma)$ at $s=1$. So, $L\left(s, \Pi_{K}, \sigma_{K}\right)$ has a pole at $s=1$. But since $\omega_{\Pi_{K}}=1, \Pi_{K}$ cannot be cuspidal by Proposition 2.5. It follows that there is a quasi-character χ of $\mathbf{A}_{k^{\prime \prime} K}^{\times}$such that $\Pi=\pi(\chi)$. By a simple calculation, the triple L-function $L(s, \pi(\chi), \sigma)$ is given by

$$
\begin{equation*}
L(s, \pi(\chi), \sigma)=L_{K}\left(s,\left.\chi\right|_{\mathbf{A}_{K}^{x}}\right) L_{k^{\prime \prime} K}\left(s,\left(\chi^{\circ} N_{k^{\prime \prime} K / K}\right) \chi^{-1} \chi^{\theta}\right) . \tag{2.5}
\end{equation*}
$$

Here, θ is regarded as an element of $\operatorname{Gal}\left(k^{\prime \prime} K / k^{\prime \prime}\right)$, by the natural isomorphism $\operatorname{Gal}\left(k^{\prime \prime} K / k^{\prime \prime}\right)=\operatorname{Gal}(K / k)$. This equality holds up to bad prime factors. But in fact, (2.5) is an equality of global L-functions. To see this, observe that

$$
\prod_{v \in S} \varepsilon^{\prime}\left(s, \Pi_{v}, \sigma, \psi_{v}\right)
$$

has no zero on $\operatorname{Re}(s)>0$, and has no poles on $\operatorname{Re}(s)<1$, by comparing the functional equation as a triple L-function and that as a L-function associated to 8 -dimensional representation of the Weil group. By Lemma 2.1,

$$
\prod_{v \in S} L\left(s, \Pi_{v}, \sigma\right)
$$

coincides with the product of L-factors of the right-hand side, since $\lambda\left(\Pi_{v}\right)=0$ for $\Pi=\pi(\chi)$. It follows that (2.5) is an equality of global L-functions.

Let us prove $\left.\chi\right|_{\mathbf{A}_{\kappa}^{\times}}=1$. First observe that $\left.\chi\right|_{\mathbf{A}_{k}^{\star}}=1$, since $\omega_{\pi(x)}=\left.\omega \cdot \chi\right|_{\mathbf{A}_{k}}$. Suppose $\left.\chi\right|_{\mathbf{A}_{k}^{\times}} \neq 1$. Then $L_{k^{\prime \prime} K}\left(s,\left(\chi^{\circ} N_{k^{\prime \prime} K / K}\right) \chi^{-1} \chi^{\theta}\right)$ has a pole at $s=1$, therefore we have

$$
\chi^{\circ} N_{k^{\prime \prime} K / K}=\chi\left(\chi^{\theta}\right)^{-1} .
$$

Put $I=\operatorname{Im}\left(N_{k^{\prime \prime} K / K}: \mathbf{A}_{k^{\prime \prime} K}^{\times} \rightarrow \mathbf{A}_{K}^{\times}\right)$. Then the index $\left[\mathbf{A}_{K}^{\times}: I \cdot K^{\times}\right]$is 1 or 3 , by the class fields theory. Let $y \in \mathbf{A}_{k^{\prime \prime} K}^{\times}, x=N_{k^{\prime \prime} K / K}(y)$. Then

$$
\begin{aligned}
\chi^{\theta}(x) & =\chi\left(y^{\theta}\right) \chi\left(y^{-1}\right) \\
& =\chi(x)^{-1} .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\chi\left(x^{3}\right) & =\chi\left(N_{k^{\prime \prime} K / K}(x)\right) \\
& =\chi(x) \chi^{\theta}(x)^{-1} \\
& =\chi\left(x^{2}\right) .
\end{aligned}
$$

So χ is trivial on $I \cdot K^{\times}$. It follows that $\left.\chi\right|_{\mathbf{A}_{K}^{\times}}=1$, since $I \cdot K^{\times} \cdot \mathbf{A}_{k}^{\times}=\mathbf{A}_{K}^{\times}$. Thus we have proved the following theorem.

THEOREM 2.6. Suppose that $\mathbf{K}=k^{\prime \prime}, k^{\prime \prime}$ is a cubic extension of k, and $L(s, \Pi, \sigma)$ has a pole somewhere. Then
(a) Let Π^{\prime}, ω^{\prime} be the objects obtained by twisting π_{1} by $\alpha^{s_{0}}, s_{0} \in \mathbf{C}$. Then $\omega^{\prime 2}=1$, $\omega^{\prime} \neq 1$, and $L\left(s, \Pi^{\prime}, \sigma\right)$ has a simple pole at $s=1$, for some $s_{0} \in \mathbf{C}$.
(b) Assume that $\omega^{2}=1, \omega \neq 1$, and $L(s, \Pi, \sigma)$ has a pole at $s=1$. Let K be the quadratic extension of k corresponding to ω by class field theory. Let θ be the nontrivial element of $\operatorname{Gal}\left(k^{\prime \prime} K / k^{\prime \prime}\right)$. Then there exists a quasi-character χ of $\mathbf{A}_{k^{\prime \prime} K}^{\times} / k^{\prime \prime} K^{\times}$such that $\Pi=\pi(\chi)$ and $\left.\chi\right|_{\mathbf{A}_{K}^{\times}}=1$. Moreover the triple L-function is given by

$$
L(s, \pi(\chi), \sigma)=\zeta_{K}(s) L_{k^{\prime \prime} K}\left(s, \chi^{-1} \chi^{\theta}\right)
$$

Next, suppose that $\mathbf{K}=k \oplus k \oplus k, \Pi=\pi_{1} \otimes \pi_{2} \otimes \pi_{3}$. By the assumption, $\omega_{1} \omega_{2} \omega_{3}=\omega$. Let $\pi_{i, K}(i=1,2,3)$ be the base change of π_{i} to $\mathrm{GL}_{2}\left(\mathbf{A}_{K}\right)$. Put $\Pi_{K}=\pi_{1, K} \otimes \pi_{2, K} \otimes \pi_{3, K}$. Then,

$$
L\left(s, \Pi_{K}, \sigma_{K}\right)=L(s, \Pi \otimes \omega, \sigma) L(s, \Pi, \sigma) .
$$

Here, $\Pi \otimes \omega$ means $\left(\pi_{1} \otimes \omega\right) \otimes \pi_{2} \otimes \pi_{3}$. As is case (3), the left-hand side has a pole at $s=1$, and $\omega_{\Pi_{K}}=1$. This time, we can deduce that one of $\pi_{i, K}(i=1,2,3)$, say $\pi_{1, K}$, is not cuspidal. So there is a quasi-character χ of $\mathbf{A}_{K}^{\times} / K^{\times}$such that $\pi_{1}=\pi(\chi)$. Observe that $\left.\chi\right|_{\mathbf{A}_{k}^{\times}}=\omega_{2}^{-1} \omega_{3}^{-1}$, since the central quasi-character of $\pi(\chi)$ is $\left.\omega \cdot \chi\right|_{A_{k}^{\times}}$. The triple L-function $L(s, \Pi, \sigma)$ is given by

$$
L(s, \Pi, \sigma)=L_{K}\left(s,\left(\pi_{2, K} \otimes \chi\right) \times \pi_{3, K}\right) .
$$

Let us now prove that neither $\pi_{2, K}$ nor $\pi_{3, K}$ are cuspidal. Suppose that $\pi_{2, K}$ or $\pi_{3, K}$, say $\pi_{2, K}$, is cuspidal. Then

$$
\begin{equation*}
\pi_{2, K} \otimes \chi \simeq \tilde{\pi}_{3, K} \tag{2.6}
\end{equation*}
$$

In particular, $\pi_{3, K}$ is cuspidal, too. Since $\pi_{2, K}$ and $\pi_{3, K}$ are θ-invariant,

$$
\begin{equation*}
\pi_{2, K} \otimes \chi^{\theta} \simeq \tilde{\pi}_{3, K} \tag{2.7}
\end{equation*}
$$

Put $\varepsilon=\chi\left(\chi^{\theta}\right)^{-1}$. Since $\pi(\chi)$ is cuspidal, $\varepsilon \neq 1$. By (2.6) and (2.7), we have $\pi_{2, K} \otimes \varepsilon \simeq \pi_{2, K}$. It follows that $\varepsilon^{2}=1$. Since $\varepsilon^{\theta}=\varepsilon^{-1}=\varepsilon$, there is a character ε^{\prime} of $\mathbf{A}_{k}^{\times} / k^{\times}$such that $\varepsilon=\varepsilon^{\prime} \circ N_{K / k}$. Taking the central quasi-character of (2.6), we have

$$
\left(\omega_{2} \circ N_{K / k}\right) \chi^{2}=\left(\omega_{3} \circ N_{K / k}\right)^{-1} .
$$

Put $I=\operatorname{Im}\left(N_{K / k}: \mathbf{A}_{K}^{\times} \rightarrow \mathbf{A}_{k}^{\times}\right)$. Let $y \in \mathbf{A}_{K}^{\times}, x=N_{K / k}(y)$. Then

$$
\begin{aligned}
\omega_{2}(x) & =\omega_{3}(x)^{-1} \chi(y)^{-2} \\
& =\omega_{3}(x)^{-1} \chi(y)^{-1} \chi\left(y^{\theta}\right)^{-1} \varepsilon(y) \\
& =\omega_{3}(x)^{-1} \chi(x)^{-1} \varepsilon^{\prime}(x) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\omega_{1}(x) \omega_{2}(x) \omega_{3}(x) & =\chi(x) \omega(x) \omega_{3}(x)^{-1} \chi(x)^{-1} \varepsilon^{\prime}(x) \omega_{3}(x) \\
& =\omega(x) \varepsilon^{\prime}(x)
\end{aligned}
$$

This contradicts to the assumption $\omega_{1} \omega_{2} \omega_{3}=\omega$, since ε^{\prime} is not trivial on I.
We have proved that there are quasi-characters $\chi_{i}(i=1,2,3)$ of \mathbf{A}_{K}^{\times}such that $\pi_{i}=\pi\left(\chi_{i}\right)$. The triple L-function is given by

$$
L(s, \Pi, \sigma)=L_{K}\left(s, \chi_{1} \chi_{2} \chi_{3}\right) L_{K}\left(s, \chi_{1}^{\theta} \chi_{2} \chi_{3}\right) L_{K}\left(s, \chi_{1} \chi_{2}^{\theta} \chi_{3}\right) L_{K}\left(s, \chi_{1} \chi_{2} \chi_{3}^{\theta}\right) .
$$

In this case, this equality holds for every local L-factor, by Lemma 2.2. Replacing χ_{i} by χ_{i}^{θ} if necessary, we have $\chi_{1} \chi_{2} \chi_{3}=1$. We have proved the following theorem.

THEOREM 2.7. Suppose that $\mathbf{K}=k \oplus k \oplus k$, and $L(s, \Pi, \sigma)$ has a pole somewhere. Then the following two assertions hold:
(a) Let $\Pi^{\prime}, \omega^{\prime}$ be the objects obtained by twisting π_{1} by $\alpha^{s_{0}}, s_{0} \in \mathbf{C}$. Then $\omega^{\prime 2}=1$, $\omega^{\prime} \neq 1$, and $L\left(s, \Pi^{\prime}, \sigma\right)$ has a simple pole at $s=1$, for some $s_{0} \in \mathbf{C}$.
(b) Assume that $\omega^{2}=1, \omega \neq 1$, and $L(s, \Pi, \sigma)$ has a pole at $s=1$. Let K be the quadratic extension of k corresponding to ω by class field theory. Let θ be the generator of $\operatorname{Gal}(K / k)$. Then there exist quasi-characters χ_{1}, χ_{2}, and χ_{3} of $\mathbf{A}_{K}^{\times} / K^{\times}$such that $\pi_{1}=\pi\left(\chi_{1}\right), \pi_{2}=\pi\left(\chi_{2}\right), \pi_{3}=\pi\left(\chi_{3}\right)$, and $\chi_{1} \chi_{2} \chi_{3}=1$. Moreover, the triple L-function is equal to

$$
\zeta_{K}(s) L_{K}\left(s, \chi_{1}^{-1} \chi_{1}^{\theta}\right) L_{K}\left(s, \chi_{2}^{-1} \chi_{2}^{\theta}\right) L_{K}\left(s, \chi_{3}^{-1} \chi_{3}^{\theta}\right) .
$$

Now, suppose that $\mathbf{K}=k \oplus k^{\prime}, k^{\prime}$ is a quadratic extension of $k, \Pi=\pi_{1} \otimes \pi_{2}$. Let ω_{1} and ω_{2} be the central quasi-characters of π_{1} and π_{2}, respectively. By the assumption, $\omega_{1} \cdot\left(\left.\omega_{2}\right|_{\mathbf{A}_{k}^{\star}}\right)=\omega$.

We first prove $K \neq k^{\prime}$. Assume that $K=k^{\prime}$. In this case we have, as in case (3),

$$
L(s, \Pi \otimes \omega, \sigma) L(s, \Pi, \sigma)=L_{K}\left(s, \pi_{1, K} \times \pi_{2} \times \pi_{2}^{\theta}\right)
$$

and this has a pole at $s=1$. Here, $\Pi \otimes \omega$ means $\left(\pi_{1} \otimes \omega\right) \otimes \pi_{2}$. As in case (3), we can prove that $\pi_{1, K}$ is not cuspidal. It follows that there is a quasi-character χ of K such that $\pi_{1}=\pi(\chi)$. Then

$$
L(s, \Pi, \sigma)=L_{K}\left(s,\left(\pi_{2} \otimes \chi\right) \times \pi_{2}^{\theta}\right) .
$$

Therefore we have $\pi_{2} \otimes \chi \simeq \tilde{\pi}_{2}^{\theta}$. Then $\pi_{2} \otimes \varepsilon \simeq \pi_{2}$, where $\varepsilon=\chi\left(\chi^{\theta}\right)^{-1}$. As in case (1), we can prove that $\varepsilon^{2}=1, \varepsilon \neq 1, \varepsilon^{\theta}=\varepsilon$ and that there is a character ε^{\prime} of $\mathbf{A}_{k}^{\times} / k^{\times}$ such that $\varepsilon=\varepsilon^{\prime} \circ N_{K / k}$. Taking the central character of $\pi_{2} \otimes \chi \simeq \tilde{\pi}_{2}^{\theta}$, we have

$$
\omega_{2} \chi^{2}=\left(\omega_{2}^{\theta}\right)^{-1}
$$

Let I, x and y be as in the case (1). Then

$$
\begin{aligned}
\omega_{2}(y) & =\omega_{2}\left(y^{\theta}\right)^{-1} \chi(y)^{-2} \\
& =\omega_{2}\left(y^{\theta}\right)^{-1} \chi(y)^{-1} \chi\left(y^{\theta}\right)^{-1} \varepsilon(y) \\
& =\omega_{2}\left(y^{\theta}\right)^{-1} \chi(x)^{-1} \varepsilon^{\prime}(x) .
\end{aligned}
$$

It follows that

$$
\begin{aligned}
\omega_{1}(x) \omega_{2}(x) & =\chi(x) \omega(x) \omega_{2}\left(y y^{\theta}\right) \\
& =\chi(x) \omega(x) \chi(x)^{-1} \varepsilon^{\prime}(x) \\
& =\omega(x) \varepsilon^{\prime}(x)
\end{aligned}
$$

This contradicts to the assumption $\left.\omega_{1} \cdot \omega_{2}\right|_{\mathbf{A}_{k}^{\times}}=\omega$, since ε^{\prime} is non-trivial on I. Thus we have proved $K \neq k^{\prime}$.

Suppose $K \neq k^{\prime}$. Let $\pi_{1, K}$ (resp. $\pi_{2, K}$) be the base change of π_{1} (resp. π_{2}) to $\mathrm{GL}_{2}\left(\mathbf{A}_{k}\right)\left(\right.$ resp. $\left.\mathrm{GL}_{2}\left(\mathbf{A}_{k^{\prime} K}\right)\right)$. In this case we can prove that at least one of $\pi_{1, K}$ and $\pi_{2, K}$ is not cuspidal as in case (1). We first prove that actually $\pi_{2, K}$ is not cuspidal. Suppose that $\pi_{2, K}$ is cuspidal. Then $\pi_{1, K}$ is not cuspidal, so there is a quasicharacter χ of \mathbf{A}_{K}^{\times}such that $\pi_{1}=\pi(\chi)$. Then the triple L-function is given by the Asai-L-function of $\pi_{2, K}$ twisted by χ :

$$
L(s, \Pi, \sigma)=L_{K}\left(s, \pi_{2, K}, \chi\right)_{\mathrm{Asai}}
$$

Let η be the character of $\mathbf{A}_{K}^{\times} / K^{\times}$corresponding to $k^{\prime} K / K$ by class field theory. Then

$$
L_{K}\left(s,\left(\pi_{2, K} \otimes \chi\right) \times \pi_{2, K}^{\theta}\right)=L_{K}\left(s, \pi_{2, K}, \chi\right)_{\mathrm{Asai}} L_{K}\left(s, \pi_{2, K}, \chi \eta\right)_{\mathrm{Asai}} .
$$

Since $L_{K}\left(s, \pi_{2, K}, \chi \eta\right)_{\text {Asai }}$ is the triple L-function for $\pi(\chi \eta) \times \pi_{2}$, it does not have a zero at $s=1$, so $L_{K}\left(s,\left(\pi_{2, K} \otimes \chi\right) \times \pi_{2, K}^{\theta}\right)$ has a pole at $s=1$. As in the case $K=k^{\prime}$, this is impossible.

Thus $\pi_{2, K}$ is not cuspidal, so $\pi_{2}=\pi(\chi)$ for some quasi-character χ of $\mathbf{A}_{k^{\prime} K}^{\times}$. The triple L-function is given by

$$
L(s, \Pi, \sigma)=L\left(s, \pi_{1} \times \pi\left(\left.\chi\right|_{\mathbf{A}_{K}^{\times}}\right)\right) L\left(s, \pi_{1} \times \pi\left(\left.\chi\right|_{\mathbf{A}_{K}^{\times}}\right)\right),
$$

up to finite number of Euler factors. Here, K^{\prime} is the quadratic extension of k, contained in $k^{\prime} K$ different from K and k^{\prime}.

It follows that $\pi_{1} \simeq \pi\left(\left.\chi^{-1}\right|_{\mathbf{A}_{K}^{\times}}\right)$or $\pi_{1} \simeq \pi\left(\left.\chi^{-1}\right|_{\mathbf{A}_{K}^{\times}}\right)$, but the latter is impossible for the following reason. First we observe the central quasi-character of $\pi(\chi)$, $\pi\left(\left.\chi^{-1}\right|_{\mathbf{A}_{K}^{\times}}\right)$, and $\pi\left(\left.\chi^{-1}\right|_{\mathbf{A}_{K_{1}}^{\times}}\right)$are $\left.\chi\right|_{\mathbf{A}_{k}^{\times}} \cdot \omega_{k^{\prime} K / k^{\prime}},\left.\chi^{-1}\right|_{\mathbf{A}_{k}^{\times}} \cdot \omega$, and $\left.\chi^{-1}\right|_{\mathbf{A}_{k}^{\times}} \cdot \omega_{K^{\prime} / k}$, respectively. Here, $\omega_{k^{\prime} K / k^{\prime}}\left(\right.$ resp. $\left.\omega_{K^{\prime} / k}\right)$ is the character of $\mathbf{A}_{k^{\prime}}^{\times} / k^{\prime \times}$ (resp. $\mathbf{A}^{\times} / k^{\times}$) of order 2 corresponding to $k^{\prime} K / k^{\prime}$ (resp. K^{\prime} / k) by class field theory. If $\pi_{1} \simeq \pi\left(\chi^{-1} \mid A_{K}^{\times}\right)$, we have

$$
\begin{aligned}
\omega_{1}(x) \omega_{2}(x) & =\chi^{-1}(x) \omega_{K^{\prime} / k}(x) \chi(x) \omega_{k^{\prime} K / k^{\prime}}(x) \\
& =\omega_{K^{\prime} / k}(x)
\end{aligned}
$$

This contradicts to the assumption $\omega_{1} \cdot\left(\left.\omega_{2}\right|_{\mathbf{A}_{k}^{\times}}\right)=\omega$, so one cannot have $\pi_{1} \simeq \pi\left(\left.\chi^{-1}\right|_{\mathbf{A}_{K}^{\star}}\right)$.

Suppose $\pi_{1} \simeq \pi\left(\left.\chi^{-1}\right|_{\mathbf{A}_{\kappa}^{\times}}\right)$, and $\pi_{2} \simeq \pi(\chi)$. Then an easy calculation shows that the triple L-function is equal to

$$
\zeta_{K}(s) L_{K}\left(s,\left.\left(\chi^{-1} \chi^{\theta}\right)\right|_{\mathbf{A}_{K}^{\times}}\right) L_{k^{\prime} K}\left(s, \chi^{-1} \chi^{\theta}\right)
$$

Here, θ is regarded as an element of $\operatorname{Gal}\left(k^{\prime} K / k^{\prime}\right)$, by the natural isomorphism $\operatorname{Gal}\left(k^{\prime} K / k^{\prime}\right) \simeq \operatorname{Gal}(K / k)$. As in case (1), this equation holds for all place v.

Thus we have proved the following theorem.
THEOREM 2.8. Suppose that $\mathbf{K}=k \oplus k^{\prime}, k^{\prime}$ is a quadratic extension of k, and $L(s, \Pi, \sigma)$ has a pole somewhere. Then the following two assertions hold:
(a) Let $\Pi^{\prime}, \omega^{\prime}$ be the objects obtained by twisting Π by $\alpha^{s_{0}}, s_{0} \in \mathbf{C}$. Then $\omega^{\prime 2}=1$, $\omega^{\prime} \neq 1, \omega^{\prime}$ does not correspond to k^{\prime} / k by class field theory, and $L\left(s, \Pi^{\prime}, \sigma\right)$ has a simple pole at $s=1$, for some $s_{0} \in \mathbf{C}$.
(b) Assume that $\omega^{2}=1, \omega \neq 1, \omega$ does not correspond to k^{\prime} / k by class field theory, and $L(s, \Pi, \sigma)$ has a simple pole at $s=1$. Let K be the quadratic extension of k corresponding to ω by class field theory. Let θ be the generator of $\operatorname{Gal}\left(k^{\prime} K / k^{\prime}\right)$. Then there exists a quasi-character χ of $\mathbf{A}_{k^{\prime} K}^{\times} / k^{\prime} K^{\times}$such that $\pi_{1} \simeq \pi\left(\left.\chi^{-1}\right|_{\mathbf{A}_{K}^{\times}}\right)$, and $\pi_{2}=\pi(\chi)$. Moreover, the triple L-function is equal to

$$
\zeta_{K}(s) L_{K}\left(s,\left.\left(\chi^{-1} \chi^{\theta}\right)\right|_{\mathbf{A}_{K}^{\star}}\right) L_{k^{\prime} K}\left(s, \chi^{-1} \chi^{\theta}\right)
$$

References

1. J. Arthur: On some problems suggested by the trace formula, Lecture Note in Math. 1041.
2. A. Borel: Automorphic L-functions, Proc. Symp. in Pure Math. 33(2) (1979), 27-61.
3. P. B. Garrett: Decomposition of Eisenstein series; Rankin triple products, Ann. of Math. 125 (1987), 209-235.
4. P. B. Garrett: Integral representation of certain L-functions, attached to one, two, and three modular forms, preprint.
5. S. Gelbert and H. Jacquet: A relation between automorphic representation of $\mathrm{Gl}(2)$ and $\mathrm{Gl}(3)$, Ann. Sci. Ec. Norm. Sup 4e serié 11 (1978), 471-542.
6. R. Godement and H. Jacquet: Zeta functions of simple algebras, Lecture Note in Math. 260.
7. T. Ikeda: On the functional equation of the triple L-functions, J. Math. Kyoto Univ. 29 (1989), 175-219.
8. H. Jacquet: Automorphic forms on $G L_{2} I I$, Lecture Note in Math. 278.
9. H. Jacquet: On the residual spectrum of GL(n), Lecture Note in Math. 1041 (1984), 185-280.
10. H. Jacquet and R. P. Langlands: Automorphic forms on $G L_{2}$, Lecture Note in Math. 114.
11. D. A. Kazhdan and S. J. Patterson: Metaplectic forms, Publ. IHES 59 (1984), 35-142.
12. S. Kudla and S. Rallis: On the Weil-Siegel formula I, J. für die reine und angew. Math. 387 (1988), 1-68.
13. S. Kudla and S. Rallis: On the Weil-Siegel formula II, J. für die reine und angew. Math. 392 (1988), 110-124.
14. S. Kudla and S. Rallis: Poles of Eisenstein series and L-functions, preprint.
15. R. P. Langlands: Euler products, Yale University, New Haven.
16. R. P. Langlands: On the functional equations satisfied by Eisenstein series, Lecture Note in Math. 544.
17. R. P. Langlands: The volume of fundamental domain for some arithmetic subgroups of chevalley groups, Proc. Symp. in Pure Math. 9 (1966), 143-148.
18. R. P. Langlands: Base change for $G L_{2}$ Annals of mathematics studies, Princeton Univeristy Press.
19. L. E. Morris: Eisenstein series for reductive groups over global function fields I, II, Can. J. Math. 34 (1982), 91-168, 1112-1182.
20. I. I. Piatetski-Shapiro and S. Rallis: L-functions for the classical groups, Lecture Note in Math. 1254, 1-52.
21. I. I. Piatetski-Shapiro and S. Rallis: ε-Factors of representations of classical groups, Proc. Nat. Acad. Science 83 (1986), 4589-4953.
22. I. I. Piatetski-Shapiro and S. Rallis: Rankin triple L-functions, Comp. Math. 64 (1987), 31-115.
23. F. Shahidi: On certain L-functions, Amer. J. of Math. 103 (1981), 297-335.
24. F. Shahidi: On the Ramanujan conjecture and finiteness of poles for certain L-functions, Ann. of Math. 127 (1988), 547-584.
25. A. J. Silberger: Introduction to harmonic analysis on reductive p-adic groups, Math. Notes No. 23, Princeton Univ. Press.
26. J. Tate: Number theoretic background, Proc. Symp. in Pure Math. 33(2) (1979), 3-26.

[^0]: *Partially supported by NSF Grant DMS-8610730.

