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Introduction

An SL(2)-embedding is a three-dimensional algebraic SL(2)-variety over C
having an open orbit equivariantly isomorphic to SL(2). The smooth complete
SL(2)-embeddings have been classified in a combinatorial way by assigning
them "diagrams" which contain information about the local rings of the orbits
(see [LV] and [MJ3]). In this paper we will describe how to calculate the Chow
ring of such a variety directly from its diagram. The Chow ring will be shown to
be isomorphic to the cohomology ring.
The determination of the Chow ring is an important aspect in the study of the

geometrical properties of an embedding. Thus it is useful to be able to see it
directly from its diagram. In some ways, the theory of SL(2)-embeddings is
similar to that of torus embeddings (see [KKMS], [Dan], and [Oda]). In the
case of a torus, each embedding corresponds to a "fan" from which many
geometrical properties can be studied. The Chow ring, for example, was
calculated by Danilov and Jurkiewicz (see [Dan] and [Jurl]). For the case of
SL(2)-embeddings, some questions become easier (since we are only interested in
three-dimensional varieties) and others become more complicated. For example,
like for torus embeddings, we will see that the Chow ring is generated by stable
divisors. However, unlike the toric case, the relations between these generators
are not at all apparent. For this reason we introduce an additional generator,
which is the closure of a certain Borel subgroup B of SL(2).

In section 1, we give a brief review of the theory of SL(2)-embeddings. In
section 2, we prove some results concerning how the generators of the Chow
ring intersect. We show, for example, that the stable divisors intersect trans-
versely and that they are smooth surfaces, which are determined very simply by
the diagram. Then in section 3, we calculate explicitly the Chow ring. This is
done as follows: we first prove that we do indeed have a set of generators; then
we give a set of relations which can be described geometrically, and finally we
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Switzerland (Partially supported by the Swiss National Science Foundation, Grant No. 8220-
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prove using information about the dimensions of the groups of classes of cycles
in the Chow ring that we have found enough relations. (For this last part, we use
the fact that the Chow ring coincides with the cohomology ring, and we can
therefore use Poincaré duality.) In section 4 we calculate the Chow ring for two
examples.

In section 5, we deduce the canonical divisor from the diagram of an
embedding. Then in section 6, we study the cone of effective one-cycles. We show
that it is a finite polyhedral cone generated by curves stable by the action of a
Borel subgroup of SL(2), though not necessarily stable by SL(2). (This is similar
to what happens for torus embeddings; there the generators are all stable by the
torus action [Reid].) Having a finite polyhedral cone of effective one-cycles is a
very useful property. For example, it means that Nakai’s criterion for a divisor
to be ample can be simplified to the statement that a divisor D is ample if and
only if D·C &#x3E; 0 for all effective one-cycles C. This is not true for general varieties
(see [Har]). Using this simplified Nakai’s criterion, we find a necessary and
sufficient condition for a smooth complete SL(2)-embedding to be projective. In
section 7, we look at some specific examples of the cones. Finally, in section 8, we
use the knowledge of the Chow rings to solve the following problem posed by
V. L. Popov: Find the degree of a closed three-dimensional orbit of an affine
irreducible representation of SL(2).

1 would like to thank Th. Vust for numerous helpful discussions, remarks and
improvements of proofs in this article. 1 would also like to thank the referee for
his careful reading and useful comments.

1. A review of SL(2)-embeddings

An SL(2)-embedding is an algebraic variety X over C endowed with an action of
SL(2) and an equivariant open immersion i : SL(2) c, X. Thus X is a three-
dimensional variety with an open orbit which we identify to SL(2) using the
immersion i. (We consider the embedding with the base point given by the image
of the identity element under i.) Thus for a subgroup H of SL(2), we can talk
about the closure of H in X. The set of smooth complete SL(2)-embeddings have
been classified in [MJ3]. To each such embedding one associates a "diagram"
which characterizes the local rings of the orbits. Throughout this paper, when
not specified, all varieties are considered to be smooth.
Throughout this paper, we will be interested in SL(2)-stable and B-stable

subvarieties of embeddings, where B is a Borel subgroup of SL(2). When not
specified, the word "stable" means "SL(2)-stable," and "invariant" means
"invariant under the action of SL(2)."

First we recall some important facts about the classification. To each stable
irreducible divisor of an embedding corresponds an invariant geometric
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valuation ring with the same quotient field as C[SL(2)], the ring of regular
functions on SL(2). The set of these valuations are found as follows. Choose a
Borel subgroup B of SL(2). Then the set of eigenvectors of B in C[SL(2)] is the
set of homogeneous polynomials in two variables, which we call z and w. An
invariant valuation is determined by its values on this set, and therefore on the
set {az + bw}(a:b)~P1. It is normalized such that it takes the value -1 for all but
possibly one of these elements, and r  -1 on the remaining one. There is one
valuation which corresponds to a divisor comprised of an infinite number of
one-dimensional orbits; it takes the value -1 on all the elements above. We
denote this valuation by v( , -1). All the others correspond to divisors which
contain an open orbit. Let D be a B-stable divisor of SL(2) corresponding to the
function aoz + bow, (ao : bo) E P1. Then one finds for each r ~Q~(-1, 1] an
invariant valuation denoted v(D, r) with

That there are no other valuations of stable divisors is easy to see using
elementary properties of valuations. One way to show the existence of these
valuations is by using limits of "curves." This process is described in [LV, §4]. A
"curve" in SL(2) is an élément E SL(2, C((t))). Such a 03BB induces a map

To 03BB we associate the valuation v03BB = Vt 0 iA, where v, gives the order of t. One can
show that VA is the valuation of some stable divisor containing a 2-dimensional
orbit, and conversely, all such valuations are obtained in this way. One can also
see that it is enough to restrict the study to curves in B. Consider

C(B) c C(SL(2)) by using the projection of the big cell U - x B - B, where U - is
the unipotent radical of a Borel subgroup distinct from B. Then the valuation is
determined by its restriction to C(B). (Geometrically, this is the valuation ring of
the intersection of the divisor with B, the closure of B, considered as a divisor
of B.)
One knows that X has no fixed point, since it is smooth (see [MJ3]). Thus all

remaining closed orbits are of dimension one (isomorphic to P’). They are
determined by the set of B-stable divisors containing them. We identify the B-
stable divisors of SL(2) with P’ (from the notation given earlier, they are the
divisors given by the zeroes of a function of the form az + bw, (a:b)~P1); their
closures in X are clearly B-stable divisors. Thus the set of possible B-stable
divisors is given by P’ u {SL(2)-stable divisors}. There are several types of
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orbits. For each type we give (i) the set of valuations of SL(2)-stable divisors
containing it; (ii) the B-stable divisors in Pl whose closures contain it; and (iii)
the set of geometric invariant valuations which dominate the orbit. This last part
is used to see what part of the diagram refers to the orbit (see the description
below). The valuations are given in the form v(D, r) where D ~ P1, and r = p/q
with p and q relatively prime and q &#x3E; 0. Given two distinct valuations v = v(D, r)
and v’ = v(D’, r’), we say that v’ lies "above" v if D = D’ and r’ &#x3E; r; otherwise we

say it lies below v.

Type AB:

(i) v(D, rl) and v(D, r2), with D ~ P1 and - 1  r1  r2  1 and ql p2 - q2Pl = 1
(this last condition is needed for smoothness of the orbit in the embedding);

(ii) no elements of P 1;
(iii) {valuations lying above v(D, r1) and below v(D, r2)1;

Type B+:

(i) v(D, r) with D ~ P1 and r = 0 or -1;
(ii) D;

(iii) valuations lying above v(D, r);

Type B_:

(i) v(D, r) with D E P 1 and r = 1/q, q  2;
(ii) P1 BD;

(iii) valuations lying above v(D, r);

Type A1:

(i) v(D, r) with D ~ P1 and r = -1/q, q  2;
(ii) P1BD;

(iii) valuations lying below v(D, r);

Type A2:

(i) v(D1, rl), v(D2, r2) where D1 ~ D2 and either rl = 1 and r2 = (q - I)lq,
q  1, or r1 = r2 = 0;

(ii) P1B{D1, D21;
(iii) valuations lying below v(Dj, rl) and v(D2, r2).

In this paper we sometimes identify an orbit by giving its type and the
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valuations in (i). For example, we say an orbit is of type B + "with v(D, 0)" or
simply "with r = 0" if it is contained in a stable divisor with valuation v(D, 0).
Note that the valuations of (iii) determine the type. This is because we only
consider smooth embeddings.
The diagram of an embedding X is given as follows. First we draw a diagram

of all the invariant valuations (see Fig. la). This will be the "skeleton" of the
diagram. For each stable divisor we mark the corresponding valuations (see Fig.
1 b). Each connected component of the skeleton minus the marks corresponds to
a one-dimensional orbit whose boundaries in the diagram correspond to the
SL(2)-stable divisors containing it. The valuations in this part of the diagram are
those which dominate the local ring of the orbit. For orbits of type B + and B_,
we distinguish the two by labeling the orbits with either + or - (see Fig. 1 c). As
said before, the type is in fact determined by the situation of the orbit in the
diagram (coming from the fact that we are only looking at smooth orbits), and it
would therefore not be necessary to label the B- and B+ orbits. However, for
clarity, we make the distinction.
An important divisor which we will use in the following sections is the closure

of B. We will want to calculate how this divisor intersects with the stable cycles.
What follows will be of use in this direction.

Given a B-embedding S, we can construct a special SL(2)-embedding
SL(2) x , S = SL(2) x S/~, where (g, s) - (gb -1, bs) for g E SL(2), b E B, and s E S.

Fig. 1. The diagram of an embedding. (a) gives the "skeleton" diagram of the geometric stable
valuations. There is a "ray" for each D ~ P1. To each r~(-1,1]~Q there corresponds a valuation
v(D, r) on the ray of D. The center point corresponds to the valuation v( , -1). In (b) we mark the
valuations of stable divisors of an embedding. (c) is the diagram of an embedding. It has an infinite
number of orbits: the open orbit, 9 orbits of dimension 2, 9 orbits of type AB, 1 of type B_, and an
infinite number of type B +.
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The group SL(2) acts by left multiplication. One has the locally trivial

equivariant fibre bundle structure SL(2)  B S ~ SL(2)/B with fibre S. The orbits
of SL(2) x B S are clearly obtained by taking the SL(2)-orbits of the B-orbits in S,
when considering S as the closure of B in the embedding SL(2) x B S.

LEMMA 1.1. (see (MJ1]) A normal SL(2)-embedding is of the form SL(2) x B S f
and only f no orbit is contained in the closure of B.

Proof. First we show that every orbit intersects the closure of B. In other
words, we show that SL(2)· B = X. Consider the dominant morphism

Since SL(2)/B is complete, this map is proper (see e.g. [Kr] 111.2.5, Satz 2), and
therefore surjective.

1 claim that if no orbit of X is entirely contained in the closure of B, then 03C8 is
an isomorphism. We know it is surjective and birational, since it induces an
isomorphism on the open orbit. Thus by Zariski’s Main Theorem it suffices to
prove that the fibres of 03C8 are finite (since X is normal).

Let z be in B. Now dim SL(2)z  dim Bz + 1. This means that

dim B + 1 - dim Bz  dim SL(2) - dim SL(2)z, where Gz means the isotropy
subgroup of z in G. Now since B has codimension one in SL(2), we have that
dim SL(2)z  dim Bz, and since B is in SL(2), we have equality. Thus SL(2)z n B
has a finite number of B-orbits, and SL(2)z/Bz is finite. This implies that the
fibres of 03C8 are finite, and thus 03C8 is an isomorphism. D

Note that B itself is a B-stable irreducible divisor of SL(2); thus from the
information given above about the types of orbits one can tell immediately if the
orbit is in the closure of B. In the diagram of X there is one ray which we call the
"special ray" for which the valuations are of the form v(B, r). Let Z be an orbit of
an embedding. Then Z is in the closure of B if and only if Z is one of the
following types:

(a) Type B+ where D is the "special ray";
(b) Type B - where D is not the "special ray";
(c) Type Ai where D is not the "special ray";
(d) Type A2 where neither Dl nor D2 are the "special ray."

(See Fig. 2.)

As we have described it, the diagram depends on the choice of the Borel
subgroup B. One might ask how the diagram changes when one chooses another
Borel subgroup, say B’ = sBs-1 with SE SL(2). 1 claim that the only change is
that the "rays" of the diagram are permuted. This is because D is a B-stable
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Fig. 2. (a) Gives an example of an embedding isomorphic to SL(2) x B B. We mark the special ray
with a star. (b), (c), and (d) are examples not of this form.

divisor of SL(2) if and only if sD is a B’-stable divisor, and we have

v(D, r) = v(sD, r), since they are both stable by SL(2). Thus in the classification
using B, the ray with D = Bs -1 becomes the "special ray" using B’. Throughout
this paper we will consider several différent Borel subgroups of SL(2). In order to
avoid confusion in the notation, instead of changing the Borel subgroup used for
the classification, when we say simply D is the "special divisor" for B’, we mean
that D = Bs -1 where B’ = sBs-1. Thus we need not ever refer directly to the
Borel subgroup used for the classification.

2. Some preliminary results

In the next section we will describe the Chow ring of a smooth SL(2)-embedding
X using the irreducible stable divisors of X and the closure of a certain Borel
subgroup as generators. In order to calculate the Chow ring, we must know the
intersections of these divisors. In this section we prove some important results
concerning this. First of all we calculate explicitly the local rings of the orbits.
Using this information we can describe just how these generators intersect.

First we give some notation. Let B 1 and B2 be two distinct Borel subgroups of
SL(2) with B2 = s - 1 B 1 S, s ~ SL(2). Choose coordinates of SL(2) such that the
coordinate ring C[SL(2)] = C[x, y, z, w]/(xw - yz - 1), where the equations of
Bi and B2 are z = 0 and y = 0 respectively, and x = s-1z and w = sy (e.g. x, y, z,
and w are the matrix coordinates, B, is the subgroup of upper triangular
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matrices, B2 of lower triangular matrices, and s = ()). Let Di be a divisor
with "special ray" Bi, i = 1, 2. (That is, Di = Bsi where B is the Borel subgroup
used for the classification, and si is chosen such that Bi = s-1iBsi.)

PROPOSITION 2.1. Let Z be a stable subvariety of a smooth SL(2)-embedding.
Suppose that Z is not contained in the closure of B1. Then the local ring of Z is
given by the localization of the ring A in the ideal p where A and ft are given as
follows:

(1) If Z is of dimension two with valuation v(D1, pjq) where p and q are relatively
prime integers and q &#x3E; 0, then

where pk - qm = 1;
(2) If Z is an orbit of type B+ with v(D2, 0), then

If Z is an orbit of type B+ with v(, - 1) contained on the closure of B2, then

3 I Z is an orbit o t e B _ with v D 1 then(3) If Z is an orbit of type B- with v m ,then

(4) If Z is an orbit of type AB with v

plq2 - qlP2 = 1, then
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(5) If Z is an orbit of type A, with v then

(6) If Z is an orbit of type A2 with v(Dj, 0) and v(D2, 0), then

If Z is an orbit of type A2 with v(D,, 1) and then

Also in cases (2)-(6) the localization of A in the idealh + x is the local ring

of the point zo of Z ~ SL(2)/Bl with isotropy group B2.
Proof. First note that in each case, A is a C-algebra with quotient field

C(SL(2)), the field of rational functions on SL(2). Now (1) is easily proven by
remarking that A is a valuation ring dominated by the valuation ring of Z; thus
we have equality.

For the other cases, we use a construction of an embedding from [LV].
Consider an embedding as the set of local rings of its closed points. The action of
SL(2) on C(SL(2)) induces an action of its Lie algebra I2 by derivations. Given a
finitely generated C-algebra A with quotient field C(SL(2)) which is stable under
this action of 512, one can construct an embedding SL(2) - XA, where X A is the set
of localizations of A in its maximal ideals (see §1.6 of [LV]). Then XA is an affine
open subvariety of SL(2). XA which intersects all the orbits; in particular,
SL(2)· XA iS smooth if and only if A is a regular ring. Now I2 is generated by the
derivations

For this proposition, it is easily checked that in all the cases, A is stable by 512,
hence we can do the construction above. Also, A is regular, therefore the
embedding is always smooth. Note that in each case A and * are stable by B 1.
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One checks in a straightforward manner that the localization of A in p is also
stable by the action of s and B2, and hence it is stable by SL(2). Therefore it is the
local ring of a stable subvariety of a smooth embedding of dimension 1. Since
smooth embeddings do not have fixed points, this subvariety is an orbit. It

remains to check that this orbit is indeed Z. To do this, it is enough to find the
invariant valuations which dominate the given ring. If, for example, we are in
case (2) with v(D2, 0), then for v = v(D, r) to dominate A it is necessary that
v(w) &#x3E; 0; thus we have D = D2 and r &#x3E; 0. Conversely, if this is the case, then the
valuation ring of v is known using (1), and we see that it dominates the ring. The
other cases are treated similarly.
As for the last remark, one needs only to check it in the embedding SL(2)· XA,

where it is clearly the case. D

REMARK. In fact we know more. In all cases except where Z is of type B + with
r = -1, the point zo is in the closure of all the orbits of SL(2)·XA; thus X A is
completely contained in any embedding X containing Z. This gives some Bl-
stable charts of X of the form A3C. We will not use this remark in what follows.

COROLLARY 2.2. The irreducible stable divisors of a smooth embedding are
smooth rational surfaces, and they intersect transversely.

Proof. The questions of smoothness and transversality need only to be
verified at the one-dimensional orbits, where one can check the local rings from
the proposition. (For smoothness, for example, one simply checks that the local
rings of the one-dimensional orbits in the residue fields of the irreducible stable
divisors are regular.) Also an irreducible stable divisor is rational since the

residue field of its local ring is of the form C() from (1) of the

proposition. Q
In fact, we will show that the irreducible stable divisors of a smooth complete

embedding are rational ruled surfaces, and we can determine explicitly which
one given its valuation ring; this will be done in the next proposition. First let us
review some basic general facts about smooth rational ruled surfaces. (For a
reference, see [Beau] or [Saf].) For n  0, we denote by Fn the surface given by
P(lPp1 0 lPp1(n). For example, Fo is isomorphic to Pl x P1, and F1 is isomorphic
to the blow up of P2 in a point. Each smooth rational ruled surface is isomorphic
to F n for some n  0. If n  1, there is a unique morphism 03C0n: F n -+ P1, and Fn
has a section e. corresponding to the "section at infinity" of OP1(n) with self-
intersection - n ; it is the only curve of Fn with strictly negative self-intersection.
Let f,, be a fibre of nn, and d. be a section of lPp1(n) considered as a section of nn
(that is, dn is a section which does not intersect en). Then we have that Pic(F n) is
generated by [ej and [fj, where the brackets indicate the linear equivalence
class, and [dn] = [en] + n [fn].
From now on X will always denote a complete smooth SL(2)-embedding. Let
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y be an irreducible stable divisor in X. In the diagram of X, Y corresponds to a
valuation which we denote by v(D, r). Let Z be a stable subvariety which
intersects Y but does not equal Y We say that Z lies "above" Y if the invariant
valuations which dominate the local ring of Z are of the form v(D, r’) with r’ &#x3E; r.

Otherwise we say that Z lies "below" Y

Whenever we write r = p/q, we choose p and q to be relatively prime integers
with q &#x3E; 0.

In the next proposition we will describe the stable irreducible divisors as
surfaces and give notation for some of the curves in an embedding.

PROPOSITION 2.3. Suppose Y is an irreducible stable divisor of a smooth
complete SL(2)-embedding X associated to the valuation v(D, r) with -1  r  1.

(i) If -1  r  1, then Y is equivariantly isomorphic to Fp+q where r = p/q. The
curve e with self- intersection -(p + q) corresponds to the stable curve which
lies "above" Y, and the stable curve which lies "below" corresponds to a section
d of n: F p + q ~ P1 which does not intersect e. A fibre f of n corresponds to the
intersection of Y with the closure of any Borel subgroup containing neither e
nor d.

(ii) If r = - 1, then Y is equivariantly isomorphic to SL(2)/B x Pl where B is a
Borel subgroup of SL(2) and SL(2) acts trivially on Pl.

(iii) If r = 1, then Y is equivariantly isomorphic to SL(2)/B x SL(2)/B for a Borel
subgroup B of SL(2).

NOTATION.

(1) If we are in Case (ii) of Proposition 2.3, then we call [e] the class of an orbit.
The class of a fibre of the projection to SL(2)/B we call [f].

(2) If we are in Case (iii) of Proposition 2.3, then we denote by c the fibre
obtained by intersection Y with the closure of the Borel subgroup whose
"special ray" is D, and c’ a fibre of the other ruling. The stable curve that lies
"below" Y is the diagonal, whose rational class is [c] + [c’].

Proof. First, if the complement to the open orbit in X is irreducible, then the
proposition holds (see proof of Lemma 3.3). Otherwise it is easily checked that
there exists a Borel subgroup B whose closure does not contain any orbits in Y
Thus by Lemma 1.1, Y is contained in an open neighborhood of the form
SL(2) x . S where S is a smooth open subvariety of the closure of B in X (simply
take away all closed orbits in the closure of B). Thus we have that Y is
equivariantly isomorphic to SL(2) x B C, where C is a complete curve is S. Since
Y is smooth and rational, we have that C is isomorphic to P1, and thus Y is ruled
and isomorphic to Fn for some n  0. To find n we must check the action of B on
C ~ P1. If it acts by the character x", where x is a generator of the characters of
B, then Y is isomorphic to Fn. In this case, Y has three orbits: en, another closed
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orbit dn, and the rest (unless n = 0, in which case there are an infinite number of
orbits). If B acts in "the standard way" on P1, i.e. there is only one fixed point,
then we have Y éé SL(2)/B x SL(2)/B ~ Pl x P1. There are two orbits: the

diagonal and its complement. To find which action we have, we must check if Y
has an open orbit, and if so, how SL(2) acts on this orbit.

First of all if r = -1, then Y has an infinite number of orbits, and thus
Y 1---- SL(2)/B x P1 ~ Fo. This proves (ii).
Now if r &#x3E; -1, then Y has an open orbit, and it is isomorphic to F n where n is

determined by the action of SL(2) on this orbit; in particular, we see that n
depends only on the valuation ring of Y, and not on the closed orbits.
The divisor Y has two orbits if and only if r = 1. This gives (iii).
For the remaining cases, B acts on C by a character X", and we must determine

n. In the notation of Proposition 2.1, we can suppose that B = B, and D = Dl
(since n only depends on the valuation ring, we can suppose that for this choice B
does not contain any orbit of Y) and B2 is another Borel subgroup. Then since C
is the intersection of Y with the closure of B, the residue field of Y is C(zqwp).
Now B acts on the function zqwp modulo the prime ideal of C by the character
~p+q, where x generates the group of characters; thus Y is isomorphic to Fp+q.

It remains to check which of the stable sections has self-intersection - n and

which has n. We will show that Y’, the vector bundle over P 1 obtained by taking
the curve lying "below" Y away from Y, is t9( - n) (its only section is the zero
section). We will cover Y’ with two affine charts. Let zo be the point of the 1-
dimensional orbit of Y’ with isotropy group B2 ; from Proposition 2.1 we have
that the local ring of zo in Y’ is obtained by localizing the ring A’ - C[x/z, zqwp]
at the origin where the bar indicates the class of the function in the residue field
of Y (thus f = 0 if and only if v(D, r) is strictly positive on f). In fact 1 claim that
Spec A’ is included in Y’; this is because Spec A’ has two orbits under the action
of Bl both of which contain zo in their closures, and the rational map from
Spec A’ to Y’ must be B 1-equivariant. Similarly Spec A" where A" = sA’ =
C[z/x, xqyp] is contained in Y’. These two charts cover Y’, and the map to

SL(2)/B ~ P1 is given by the projection to the first coordinate. Now we have
that xqyp = (x/z)q+pzqwp since y/w = x/z - 1 /(zw) in C(SL(2)), and 1 /(zw) is in the
ideal of Y This shows that Y’ is isomorphic to t9( - n). Thus the zero section of
Y’, which is the stable curve lying "above" Y, has self-intersection - n in Y.

As for the fibres, from Lemma 1.1 we know that Y is fibred over

SL(2)/B’ ~ SL(2)/B for any Borel subgroup B’ whose closure contains neither e
nor d, and thus Y n B’ is a fibre of Y. D

REMARK. Another way to check which stable curve of Y ~ F n has negative
self-intersection is as follows. Denote by T the torus B1 n B2. Pick a point x E Y
in the open orbit in a fibre not fixed by T. Using the local rings, one can see that
both limt~0 tx and limt~~ tx for t E T are in the curve lying "below" 1’: Thus Tx is
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an irreducible curve which intersects strictly positively with the curve lying
"below" Y, and it is disjoint from the curve lying "above." Using the structure of
Pic F n’ this proves the result.
We will be interested in the intersections of B with itself and with the stable

irreducible divisors for special cases of a Borel subgroup B. Firstly, if X is of the
form SL(2) x B B, then this is easy, since B is a fibre. Thus in this case, [B]2 = 0,
and [B][Y] = {a fibre of Y}, where Y is an irreducible stable divisor. For the
general case, we must work a little harder.

PROPOSITION 2.4. Let B be a Borel subgroup of SL(2) such that the closure of
B in X contains no orbit of type Aa or of type B+ with r = - 1. Denote by el, ... , ek
the orbits in the closure of B. (Note that they are all of type B+ or B_.) Choose
Yl, ..., 1k such that ei is in Y. We call f a fibre of Y, and Y corresponds to the
valuation v(Di, ri) with ri = pilqi with pi and qi relatively prime and qi &#x3E; 0. Then

(i) [B]2= 03A3ki=1 ai [ei], where ai = 1 if ei is of type B+ and ai = qi - 1 if ei is of
type B_;

(ii) [B][Yi]=[ei]+[fi], i=1,...,k;
(iii) [B][fi] = [.], the class of a point of X in the group A3(X) ~ Z, i = 1,..., k.

Proof. The method we use is the following. For s E SL(2)BB, we have that sB is
rationally equivalent to B, and we show that set theoretically we have that
B n sB = ~ei and B~Yi = ei~fi, i = 1,..., k wherefi is a fibre of Yi ~ P1.
Also we show that sB ~ fi = ei nh. Thus we need only to check the multiplic-
ities of the intersections. This can be done using the local ring of the point ei n f
for each i, which we know from Proposition 2.1.

To see that B n sB = ~ ei and B ~ Yi = ei U h, i = 1,..., k, we first look at
the intersections away from the one-dimensional orbits. Let X’ = XB{1-
dimensional orbits}. We know from Lemma 1.1 that X’ is fibred over SL(2)/B,
thus we have that B n sB n X’ = 0 and B~Yi~X’ = f n X’. Now by de-
finition the e/s are exactly those 1-dimensional orbits contained in B n sB, and ei
is the unique 1-dimensional orbit which is in B~Yi. Finally,
sB n f = sB n B n f = ~(ej~fi) = fi~ei since Y and Y do not intersect
for i and j distinct and i, j = 1,..., k.

Fix an i between 1 and k. We apply Proposition 2.1 where B2 = B, Z = ei, and
B 1 = sBs-’ is a Borel subgroup whose closure does not contain ei. Note that
f n ei is the point of ei with isotropy group B, since fj is stable by the action of B;
thus f n e, = zo from Proposition 2.1, and we have an explicit representation of
its local ring.
If is of type B + (with ri = 0), the local ring of zo is obtained by localizing the

ring C x w, 1 z] in the maximal ideal x w,1 z). The equations in this ring for
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the subvarieties needed are as follows:

(For example, the function given for B is certainly zero on B, and since it

generates a prime ideal, it defines B.) The results in the proposition are easily
verified.

If ei is of type B- (with ri = 1/qi), the local ring of Zo is the localization of

C ] in the maximal ideal (), and the équations of the
subvarieties are as follows:

The results given in the proposition are easily verified. ~

We prove one more useful proposition using similar methods.

PROPOSITION 2.5. Let Y and Y’ be stable divisors of X which intersect.
Suppose also that B is a Borel subgroup whose closure does not contain any orbit of
type A2. Then

(i) [Y][Y’][B] = [·];
(ii) If Y corresponds to a valuation v(D, 1), then, using the notation of Proposition

2.3, we have

Proof. First note that [Y][Y’] is the class of a section of Y counted with

multiplicity one, since Y and Y’ intersect transversely, and it is an orbit of type
AB or A2. By the choice of B, this orbit is not contained in the closure of B, thus



81

it has an open SL(2)-stable neighborhood V which is fibred over SL(2)/B, by
Lemma 1.1. This proves (i).

If Y is as in (ii), then V contains Y, since Y has only two orbits. Thus [Y][B] is
the class of a fibre of one of the two rulings of Y counted with the multiplicity 1.

By definition, if B has "special ray" D, then Y n B is c, so [Y][B] = [c].
On the other hand if B is another Borel subgroup, we must check that the

intersection Y n B is not in the class of c; consequently it is in the class of c’. To
do this, we use the same method as in the previous proposition: we check
intersections in a neighborhood. We apply Proposition 2.1 where Bl = B, B2
has "special ray" D and Z is the closed orbit in Y The local ring of zo is the

localization of C[] in the ideal ) for a specific
choice of m. In this ring the ideal for c is given by (), and
the ideal for y, the closed orbit of Y is 1 ,z m+l wm . Now the equation for

s-1B is 2013, thus s-1B passes through zo = c n yc, but it does not contain c.
z

Since we know that Y n B is a fibre of one of the rulings it must be c’. D

REMARK. The last part of Proposition 2.5 can also be proven in another way.
Let B’ be the Borel subgroup whose special ray is D. Using the notation of the
proposition, one first shows that B n B’ n y = 0, so that B does not contain
B’ n Y = c. Then one shows that B intersects c by using the limits of the curve

î(t) = ( ). Since {03BB(t)|t ~ C* is the intersection of B and B’, its limits are
in B n B’, and one finds that it has a limit in Y, using the map i03BB described in
section 1. Thus B n Y must be a fibre of the other ruling. One advantage to this
proof is that one sees how one uses that the valuation of Y is at the "end" of a ray
(r = 1): the limits of 03BB(t) are on orbits whose local rings are dominated by
valuations of this type. But since we have not developed the ideas of curve limits
here, and since we already know the local rings from Proposition 2.1, we use this
latter method.

3. The Chow Rings

In this section we will calculate explicitly the Chow ring with rational

coefficients of a smooth complete SL(2, C)-embedding X. (The only difference
between choosing rational rather than integer coefficients is that torsion is

ignored. In fact we will show in Lemma 3.2 that there is no torsion.) This turns
out to be the same as the cohomology ring with coefficients in Q. First we show
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that the Chow ring is generated over Q by the classes of irreducible stable
divisors (Lemmas 3.3 and 3.4). The relations in terms of these generators is quite
complicated; so we add another generator, which is the closure of a certain Borel
subgroup. Then the relations can all be understood in terms of the geometry
explained in section 2.
We will achieve our goal by first choosing an appropriate set of generators.

Then we divide the problem into four cases:

(n = 1) X has exactly one irreducible stable divisor.
(F) There exists a Borel subgroup B whose closure does not contain any

orbit of X;
(P) in the diagram of X all "rays" end in an orbit of type B + or type Aa, and

X has at least two irreducible stable divisors;
(NP) there are at least two orbits of type B_ in the diagram of X.

These four cases are mutually exclusive and cover all the possibilities. The Case
(n = 1) has only one special embedding in it (all its orbits are of type B + with
v( , -1)), which we treat separately in Lemma 3.3. If X has exactly one orbit of
type B_, then it is in Case (F) with B chosen such that the type B _ orbit is on the
"special ray." If X has no type B - orbit but has a divisor with valuation v(D, 1),
then it is in Case (F) with B chosen such that D is the "special ray." Otherwise we
are in one of the other two cases. For each case we find a set of relations which

generate the relations of the Chow ring. These relations are found using the
results of section 2.

The notation (n = 1) stands for "one irreducible stable divisor," (F) stands for
"fibred over SL(2)/B" (from Lemma 1.1) and (P) and (NP) stand for "projective"
and "non-projective," respectively. In Proposition 6.4 it will be shown that the
varieties of Cases (n = 1), (F) and (P) are projective, while those of Case (NP) are
not.

Let X be a variety of dimension n. We denote by Ai(X) = An-i(X) =
{(n - i) - dimensional algebraic cycles}/rational equivalence. Then A*(X)
forms a ring, where multiplication corresponds to intersection of cycles; this is
called the Chow ring (see [Ful]). We will calculate the ring A*Q(X) = A*(X) (8)z Q
where X is a smooth complete SL(2)-embedding. If Z is a cycle, we denote its
class in A*Q(X) as [Z].
LEMMA 3.1. For SL(2) one has Ao(SL(2)) = A1(SL(2)) = A2(SL(2)) = 0.

Proof. We have the exact sequence

Ai(B) ~ Ai(SL(2)) ~ Ai(SL(2)BB) ~ 0

where B is a Borel subgroup of SL(2) [Ful, p. 21]. Now as varieties, we have
B ~ C x C* and SL(2)BB ~ C2 x C* using the Bruhat decomposition. For i = 0
or 1 we have that Ai(B) = Ai(SL(2))B) = 0, thus Ai(SL(2)) = 0. For i = 2, we
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have A2(SL(2)BB) = 0 and the cycle [B] in A2(SL(2)) is equivalent to 0, thus the
first map is zero; so A2(SL(2)) = 0. D

Let X be a smooth complete SL(2)-embedding. We denote by Y1, ..., Yn the
distinct irreducible components of the complement to the open orbit.

LEMMA 3.2. Let X be a smooth complete SL(2)-embedding. Then

(i) there is an isomorphism A*(X) ~ H2*(X; Z); also these groups are torsion-
free ;

(ii) A0(X) ~ A3(X) ~ Z;
(iii) A1(X) is freely generated by the classes of Yl, ... , Yn;
(iv) rank(A2(X)) = n, and A2(X) is generated by curves in the complement to the

open orbit.

Proof. For any variety X there is a natural map A*(X) ~ H2*(X, Z) given by
taking the homology class of a cycle [Ful, p. 373]. We will show that in our case,
this map is an isomorphism. First of all, if X is projective, then we can use the
Bialynicki-Birula decomposition [BB] (using the action of a maximal torus T of
SL(2) on X) to see that this is indeed the case and that these groups are torsion-
free (the components of the fixed points for T are either points or P if X has an
infinite number of orbits; to see this, note that if Y is a divisor with an infinite
number of one-dimensional orbits, then it is isomorphic to SL(2)/B x P’ from
Proposition 2.3). Now 1 claim that this holds even if X is not projective. Note
that by blowing up a finite number of times along stable curves (~P1), the result
is a projective embedding. Thus we need only check what happens to the two
groups by blowing up. Now on the stable curve Z to be blown up and on the
exceptional divisor Î the groups H2i and Ai are isomorphic. Also for the two
groups one has split exact sequences which yield the following commutative
diagram [Ful, pp. 115] and [G-H, p. 605]:

where 9 is the blow up of X in Z. Thus if Ai(X) is isomorphic to H2i(X), then we
have Ai(X) ~ H2i(X).
Thus (i) is true, and we know that the ranks of A2(X) = A1(X) and

A1(X) = A2(X) are the same by Poincaré duality.
Now we use the exact sequence
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By choosing i = 1 or 2 we see that the corresponding groups are generated by
cycles in the complement to the open orbit. Thus we are left to show that there
are no relations in A2(X) = A1(X) between the classes of Yl, ... , I:,. Suppose f
were a nonzero rational function on X such that the support of div( f ) were
entirely in the complement of the open orbit. Then f regarded as an element of
the coordinate ring of SL(2) would be a unit; thus f would be constant on SL(2)
and therefore constant on X, which gives a contradiction. D

REMARK. The variety X has no homology of odd dimensions (by the same
proof as (i) of the previous lemma). Thus the map which sends an algebraic cycle
to its cohomology class induces an isomorphism between the Chow ring and the
cohomology ring.

LEMMA 3.3. Let X be the smooth complete SL(2)-embedding with one irre-
ducible stable divisor Y Then we have

Z[y, e]l(y2 - 2e, e2) ~ A*(X)

where y is mapped to [Y], e is mapped to the class of a closed orbit in X, and ye is
mapped to [ - ], the class of a point. In particular we have Q[y]/(y4) ~ AQ(X).

Proof. All the orbits of X are of type B+ with r = -1 and the divisor Y
corresponds to the vauation v(, -1). In this case, X is a quadric in p4 given by
the equation z11z22 - z12z21 - z20 = 0. Now Y is isomorphic to P 1 x P 1 and is
given by the equation zo = 0. Let B be the Borel subgroup whose closure in X is
given by the equation z21 = 0. Then [B] = [Y], and one can easily check that
[B][Y] = [e] + [f], where [e] and [ f ] are the two generators of Pic Y, given in
Proposition 2.3(ii). Also, by considering the equivalences of divisors in B, we see
that [e] = [f]. Thus we have that [Y]2 = [B][Y] = 2e = 2f. Similarly,
[Y]’ = 2[·]. Now from Lemma 3.2, we know that [Y] generates A1(X) and
[e] = [ f ] generates A2(X). D

LEMMA 3.4. For X with n  2 the ring A*(X) is generated over Z by the classes
of Yl, ... , Yn.

Proof. First of all by Lemma 3.2, A1(X) is generated by [ Yl ], ... , [Yn], and
A2(X) is generated by the classes of curves in U?= 1 Yi. We must express the class
of a section and a fibre of each Y by a polynomial in [Yl], ... , [Yn]. Now we
know, either using [Bor] or simply by checking the diagrams, that U7= 1 Y is
connected. Hence for each Y, there is a Yj ~ Yi such that the intersection Y, n Y is
not empty. Thus as is noted in the first line of the proof of Proposition 2.5,
[Yi][Yj] is the class of a section of x. Also as noted in the proof of Proposition
2.3, there exists a Borel subgroup Bi whose closure contains no orbit of Y . Now
[Bi] E A1(X) can be expressed as a linear combination of [Y1], ..., Yj. We have
that [Bi][Yi] is the class of a fibre of Y (see remark before Proposition 2.4). As for
A3(X), from Proposition 2.5 we have that [Bi][Yi][Yj] = [·]. D
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Thus to describe the Chow ring we need only to find the relations between the
stable divisors. These relations, however, are not at all intuitive. So instead we
add another divisor to the set of generators. This gives us "room to move"
subvarieties to equivalent subvarieties, and the relations become under-

standable in terms of the geometry of the embedding described in the previous
section. For example, in Lemma 3.3 to find the Chow ring when n = 1 we used
that Yl is rationally equivalent to the closure of a Borel subgroup to find the self-
intersection of Yl. We use this idea in all the cases. The extra generator will be
the class of the closure of a Borel subgroup B of SL(2) where B is chosen as
follows: If X is in Case

(n =1) then B is any Borel subgroup (its closure contains one orbit of type B +
with v( , -1). From the proof of Lemma 3.3, for all choices of B the class
of its closure is equivalent to the class of Yl);

(F) then B contains no orbit of X in its closure;
(P) then the closure of B contains one orbit of type B + with r = 0 (it is the

only orbit in the closure of B);
(NP) then one orbit of type B _ is not contained in the closure of B (the closure

of B contains all the other type B _ orbits).
In particular, B is always chosen such that its closure contains as few orbits as
possible and never any orbits of type Arx, a = 1, 2.
We will describe the kernel of the map

given by yi ~ [Yi], (i = 1, ... , n) and v ~ [B] where B is chosen as above. We list
some polynomials which will be used in Theorem 3.5 to generate the kernel of
this map.
We denote by v(Di, ri) the valuation associated to Yi, and ri = Pi/qi with pi and

qi relatively prime integers with qi &#x3E; 0.

First we order the Y’s such that Yl, ... , Y have Di = D, the "special ray" of B,
and rl &#x3E; r2 &#x3E; ... &#x3E; rs  -1. We call Y and Y neighbors if they are distinct but
intersect. Choose Y + 1 to be a neighbor below Ys. (Note that by the choice of B,
we always have s  1.)

Consider the following homogeneous polynomials:

If yi does not appear in (1), then we will need another generator of the kernel.
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This polynomial depends on where the divisor Y is in relation to the others. We
have that yi does not appear in (1) if and only if the valuation of Y is v(D, 0), i.e.
ri = 0. We consider 4 cases depending on whether there do or do not exist
divisors "above" and "below" Y on the same "ray."

Also if n = 2 we add an extra polynomial:

(In fact, polynomial (5) is always in the kernel, but it is only needed as a
generator if n = 2.)

CASE (F): If B does not contain any orbit of X, then add the polynomial

CASE (P): If n  2 and all "rays" end in orbits of type B + or type Aa, then add the
polynomials

CASE (NP): If there are at least two orbits of type B _, then choose Y’1, ..., Y’ to
be the divisors other than Yl which contain an orbit of type B_, and choose
Yi, ... , Ym as their neighbors, and consider also the polynomials

THEOREM 3.5. Let I be the ideal generated by equations (1)-(5) and (6i) for the
ith case above (i = F, P, or NP) and all homogeneous polynomials of degree 4.
Then ~ induces an isomorphism
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Proof. First we must check that 7 is in the kernel of qJ: Q[v,
y1,...,yn] ~ A*Q(X). The kernel of ç contains (1), because it is the principal
divisor div( f ) where f is chosen in the coordinate ring of SL(2) such that it
generates the ideal of B. If Y and Y are not neighbors, they do not intersect; thus
(2) is in the kernel. (3) comes from Proposition 2.3(i), since with i, j and k chosen
as in (3), we have that [Yi][Yj] = M, [Yi][Yk] = [di], and [Yi][B] = Eh] (for
the last equality note that ei and di are of type AB or A2, and thus by the choice
of B, they are not in the closure of B). As for equations (4)-(4"’), let B’ ~ B be a
Borel subgroup which contains neither ei nor di in its closure. Then there is a
relation in A*Q(X)

which comes from div( f ’), where f’is a function in the ring of regular functions
of SL(2), which generates the ideal of B’. We have that [k][ Yi] = [fi] and either
[B][Yi] is Eh] or, if i = 1, we have that [B][Yi] = Eh] + [ei] and [B]2 = M
using Proposition 2.4. We multiply the equation above by [Yi] and substitute
either [B][Yi] or [B][Yi] - [B] 2 for [B’][Yi] to see that (4)-(4"’) are in the
kernel. For (5) we have

using Propositions 2.3 and 2.5.
In Case (F), we have that X~SL(2) B B. Therefore [B] is rationally

equivalent to [sB], and B and sB do not intersect for any SE SL(2)BB, thus
[B] 2 = [B][sB] = 0. In Case (P) the first polynomial of (6p) is clearly in the
kernel because for i = 2,..., n the divisor Y is in an open neighborhood fibred
over SL(2)/B as in Case (F), so [B]2[Yi] = 0. The second one comes from
Propositions 2.3 and 2.4 (remember that r, = 0 in this case). For Case (NP) the
first part of (6Np) is clearly in the kernel as in Case (P). For the second one, we
have [B]2[Y’j] = [B]([e’j] + [f’j]) = [B]([dj] - q’j[f’j]) using Propositions 2.3
and 2.4, and by Propositions 2.4(iii) and 2.5(i) this is equal to

(1 - q’j)[B][Y1][Y2]. The third also comes for Propositions 2.3 and 2.4:

We have
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Together these yield (6NP).
Now we check that 7 generates all the relations.
For the Case (n = 1), by Lemma 3.3, 1 is generated by v - yi (which is (1)) and

yi. So now we can assume that n  2 and we are in one of the other 3 cases.
That equation (1) generates the degree one relations is clear from Lemma 3.2

(one simply checks dimensions).
As for the degree 2 equations, we proceed as follows. First we show that using

the equations above, we can "move" all second degree monomials into a linear
sum of YlY2, VYi, (i = 1,..., n) using the generators of I. Then we show that these
n + 1 elements are linearly dependent modulo I, thus they generate an n-
dimensional vector space, which by Lemma 3.2 is A2Q(X).
For degree 3, we show that any third degree monomial can be "moved" to a

multiple of vy1y2 = [· ], the class of a point in X.
We give a list of the monomials with the relations of I needed to "move" them:

Degree 2 monomials:

YiYj i ~ j: use (2) and (3);

y2i if yi appears in (1): use yi· (1);
v2: use v·(1);

y2 if yi is not in (1): use (4) - (4"’).

The relation satisfied by VYi (i = 1,..., n) and y1y2 is given by (6). In Case (F), use
v· (1) - V2. In Case (P), use vyl - yly2. In Case (NP), solve for V2 in v· (1) and the
third part of (6NP) (this clearly does give a non-trivial relation, because vyi does
not occur in (6Np), but it does occur in v· (1)).

Degree 3 monomials:

Using the result for monomials of degree 2, we see it suffices to check the

monomials y21y2 and v2yi (i = 1,..., n).

(YîY2 = Y2(* Y1Y2 + E * vyi). The only term which still has to be calculated is
y1y22, for which we use (5).)

This finishes the proof of the theorem. D

In fact, using Theorem 3.5 we can calculate the Chow ring with coefficients in
Z. If n = 1, we know the Chow ring from Lemma 3.3. For n  2, from Lemma
3.4 we know that ç induces a surjective morphism over the integers. Since the
groups Ai(X) have no torsion (Lemma 3.2), we get an isomorphism between
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A*(X) and Z[v, y1, ..., yn]/(I n Z[v, yl, ... , yn]). However, the relations given
generate I over Q, but not necessarily over Z.
Note that though at first view the relations given in this theorem might look

complicated, they can be understood using simple geometrical properties of the
irreducible stable subvarieties.

Another comment is that in special cases, one can often avoid using some of
the relations given in the theorem. For example, sometimes there are several
possible choices for the Borel subgroup. In this case, by using several different
possibilities, we find new relations which can replace ones such as (4)-(4"’) in the
theorem. This method will be used in some of the examples of the following
sections. Although the idea works well in specific calculations, it is not

appropriate for the general theorem, because there are too many separate cases
to study. For this reason, we use only one Borel subgroup in Theorem 3.5.

1 do not claim that the given set of generators of the relations of the Chow ring
are in any way minimal. In fact, one can easily see that in many specific
examples, many of the relations given are not needed (see e.g. the first example of
the next section). But as mentioned in the previous comment, to make the theory
work in general without dividing into too many cases, we must add some
generators which are superfluous in some special cases.

4. Two examples

For our first example, let Xq, q  2 be an embedding with 6 orbits: the open
orbit, 2 two-dimensional orbits with valuations v(D, 0) and v(D, -1/q), and an
orbit of type B +, one of type AB, and one of type Ai (see Figure 3a). We call Yl
(resp. Y2) the stable divisor with valuation v(D, 0) (resp. v(D, -1/q)). From
Theorem 3.5, the Chow ring AQ(Xq) is isomorphic to Q[v, yl, Y2]/I where 1 is
generated by:

all homogeneous polynomials of degree four.

Clearly, the third and fifth relations are superfluous. We find

A*Q(Xq) ~ Q[y1, y2]/((1 - q)ylY2 - y22 - y21, y32, homogeneous polynomials
of degree four)
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where [ . ], the class of a point in A3(Xq), maps to y1y22. We can calculate for
example that [Y2]3 = 0 and [Y1]3 = (q 2 - 2q)[·].

In the next example, there are four two-dimensional orbits whose closures are:
Yl with valuation v(D, 1/n), Y2 with valuation v(D, 0), Y’ with valuation v(D’, 1/m)
and Y2 with v(D’, 0) with n, m  2 (see Figure 3b). Here the Chow ring with
rational coefficients is isomorphic to Q[v, yl, Y2, Y’l y’2]/I where I is generated by

all homogeneous polynomials of degree four.

Here we can calculate [Y1]3 = [Y’1]3 = 0, [Y2]3 = -(n2 + 2n)[·], [Y’2]3 =
- (m2 + 2m)[·] and [B]3 = m - m2)[·].

5. Canonical Divisors

In this section we will calculate the canonical divisor of a smooth complete
SL(2)-embedding in terms of the irreducible stable divisors Yl, ... , Yn using the
diagram. The result is as follows.

PROPOSITION 5.1. Let X be a smooth SL(2)-embedding with irreducible stable

Fig. 3. Diagrams for the examples of section 4.
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divisors Y1, ..., Yn where Y corresponds to the valuation v(Di, ri), and ri = Pi/qi
with pi and qi relatively prime and qi &#x3E; 0. Then the canonical divisor Kx is given by

n

KX = 03A3(pi - qi - 1)[Yi].

Proof. We choose a three-form 0 on SL(2) whose divisor is trivial, and then we
extend it to X and check the multiplicity of each stable divisor in the divisor of 0.
As usual, we choose coordinates of C[SL(2)] = C[x, y, z, w]/(xw - yz - 1).
Given a stable divisor Y with valuation v = v(D, p/q) with v(z) = p/q and
v(w) = -1 we know from Proposition 2.1 that the valuation ring of v is given by
C[(x/z, zqwp, zkwm](zkwm) where m and k are chosen such that pk - qm = 1. Let U
be equal to Spec(C[x/z, zqwp, zkwm]). It has a divisor Y’ with the same valuation
ring as Y The multiplicity of Y in the divisor of 0 on X is the same as that of Y’
for 0 on U.

Let 0 be the form given by x dx A dy A dz in SL(2)B{x = 01. It is easily
checked that on SL(2)B{z = 01 we have 03B8 = -z dx A dz A dw. Thus on SL(2)
the divisor of 0 is trivial. Now we check 0 on U. Let a = x/z, b = zqwp, and
c = Zkw’. One finds 0 = b-1-m+kc-1-q+pda A db n dc. Thus the multiplicity
of Yis p-q- 1. D

6. The cône of effective one-cycles

In general, if X is an algebraic normal variety, we can define a vector space
N1(X) by

N,(X) = ({1-cycles}/numerical equivalence) (8)zR.

DEFINITION. The cone of effective one-cycles of X is the convex cone in
N1(X) generated by all effective one-cycles. It is denoted by NE(X), and its
closure by NE(X). If X is projective, then by a criterion of Kleiman [Kle] or

[Har], the cone NE(X) contains no lines. In this case, a ray R + in NE(X) is
called bad extremal if it is extremal in the usual sense (that is, if C + C’ E R + with
C and C’ E NE(X), then C and C’ are in R +) and we have C E R + with KX· C  0.
It is called good extremal if it is extremal in the usual sense, and it contains a 1-
cycle whose intersection with the canonical divisor is strictly negative. A curve is
called extremal (good or bad) if it generates an extremal ray of NE(X).

In general for a projective variety X, the cone NE(X) can be very complicated.
It is not always closed, and its closure does not have to be finitely generated. A
theorem by S. Mori [Mor] proves that a part of this cone is polyhedral and
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locally finitely generated, and the extremal rays in this part are generated by
rational curves. (It is the part which has negative intersection with the canonical
divisor.) For a smooth projective variety of dimension 3, Mori shows that these
good extremal rays correspond to "contractions" which in some sense generalize
the notion of blowing down exceptional curves for smooth surfaces. It is,
however, more complicated. For example he must allow for certain singularities
to occur.

In our situation (where X is a smooth SL(2)-embedding) these results become
much simpler, much as in the case of torus embeddings (see [Reid]). In this
section, we describe what happens for SL(2)-embeddings.

In section 3, we calculated the 1-cycles modulo rational equivalence. In this
case, this is the same as numerical equivalence. To see this, first note that as
shown in Lemma 3.2(i), a 1-cycle is rationally equivalent to 0 if and only if it is
homologically equivalent to 0. Let Z be an algebraic 1-cycle. If it is homologi-
cally equivalent to 0, then it is clearly numerically equivalent to 0, since

intersections depend only on the homology class. Conversely, if Z is not

homologically equivalent to 0, then by Poincaré duality, there is a homological
4-cycle Z’ which intersects Z positively (remember that there is no torsion in the
homology groups). Again by Lemma 3.2(i), Z’ corresponds to an algebraic 2-
cycle ; thus Z is not numerically equivalent to 0. Thus we have all the information
needed to calculate NE(X).

First we will prove that the cone of effective 1-cycles is a closed finite

polyhedral cone generated by rational curves. This will simplify matters
tremendously, and we will discuss some of the consequences afterwards.
From now on, to simplify notation we denote by v the class of the closure of B,

and by yi the class of Y, and we do not distinguish between curves and their
classes.

The following lemma was formulated and proven by Th. Vust with the help of
M. Brion and M. Reid.

LEMMA 6.1. Let G be a connected linear algebraic group and H an algebraic
subgroup such that the homogeneous space G/H is one-dimensional but not

complete (i.e. it is not isomorphic to Pl), and let f: X ~ X’ be a G-equivariant
morphism between complete G-varieties. Suppose that C is a closed subvariety of
X stable by H and contained in a fibre of f. Then C is rationally equivalent to an
effective cycle which is stable by G and which is contained in a fibre of f.

Proof. (The idea of this proof comes from [Reid].) Denote by pl and P2 the
projections on the first and second coordinates of Pl x X. We will find a closed
subvariety Y of Pl x X with the following property: there exists two point xl,
x0 ~ P1 with p2(03C0-1(x1)) = C and P2(n-l(xo) = Co is stable by the action of G
where is the restriction of pi to Y Therefore C and Co are rationally
equivalent.



93

First we show that the image G X H C of the morphism

G  C ~ G/H X

(s, c) ~ (sH, sc)

is closed. Note that G X H C is G-stable where G acts diagonally on G/H x X. Let
Z be the closure of G x H X, and suppose z~Z-G HC. Since Z is two-
dimensional, its intersection with F = H/H x X is purely one-dimensional, and
by equivariance, we can assume that z E F n Z. Thus there is a curve C’in F n Z
where C’ is not contained in G x H C. In other words, C’ - G  H C is one-
dimensional, and thus G(C’ - G X H C) is two-dimensional, and it is contained in
Z - G x H C. This is a contradiction to the existence of z.

Now since G/H is one-dimensional, there is an equivariant open immersion
i: G/H - P1. Consider the equivariant morphism

where G acts diagonally on G/H x X and on Pl x X. Denote by Y the closure of
the image. Now since G/H is not complete, there exists a point xo ~P1 fixed by G.
Let xi be the image of H/H in P1. Since G x H C is closed in G/H x X, we have
that p2(03C0-1x1)) = C, and since the maps above are equivariant, we have that
Co = P2(n-l(xo)) is G-stable.

Moreover, if C c f-1(x’), then consider the morphism G/H ~ X’ given by
gH ~ gx’. It extends to a morphism (p: Pl --+ X’. Now the diagram

is commutative (it is enough to check commutativity on the image of G x H C).
Thus Co is contained in the fibre of ~(x0). D

PROPOSITION 6.2. The cone NE(X) is polyhedral generated by the curvesfi or
ci and ci (when Y is a stable divisor isomorphic to SL(2)/B x SL(2)/B) (i = 1,..., n),
and the SL(2)-orbits of types B+ with r = 0 and types B -. (See Proposition 2.3 and
notation following it for the explanation of these curves.)

Proof. First of all, by using the lemma twice, we see that all curves are

equivalent to effective one-cycles which are stable by a Borel subgroup B of
SL(2) (first use G/H = U/{e} where U is the unipotent radical of B, and then
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G/H = B/U). In particular, the cone NE(X) is generated by curves in the
complement to the open orbit.
Now the cycles outside of the open orbit are generated by the curves given

above, since the effective 1-cycles of Y are generated by ei and fi or ci and c’i, and
if ei is not of type B + or B _, then it is equal to dj for some j. If n  2, then any
orbit of type B + with r = -1 is also equivalent to dj for some j (see Proposition
2.3(iii)), and if n = 1, then it is equivalent to a fibre (see Lemma 3.3). D

Thus the possible extremal rays are those curves listed in the proposition. For
each embedding we can calculate which ones of these are in fact extremal, and
then using Proposition 5.1, we can find which are good and bad extremal. In
Proposition 6.5, we will give some general partial results. First let us show a nice
consequence of this proposition.

COROLLARY 6.3. A divisor D of X is ample if and only if D intersects strictly
positively with all the curves listed in Proposition 6.2.

Proof. We know from the Proposition that NE(X) is closed. Thus by a result
of Kleiman, Nakai’s Criterion can be simplified to the statement that a divisor is
ample if and only if it intersects all effective 1-cycles strictly positively (see [Kle]
and also [Har, p. 42]). D

Now we can prove

PROPOSITION 6.4. Let X be a smooth complete SL(2)-embedding. Then X is
projective if and only if it contains at most one orbit of type B_.

Proof. First of all, if it contains two orbits of type B_, we will use the

knowledge about the Chow ring to find an effective 1-cycle which is equivalent
to 0. We fix some notation: let Y1,..., Ys have valuations v(D, ri) with

r &#x3E; ... &#x3E; rs with e, of type B_. Let Y, be another divisor with et of type B_.
Denote by D’ the divisor such that Y, has valuation v(D’, rt), and choose the
ordering such that Ys+1, ..., Yt are the divisors having valuations with D, = D’,
i = s + 1,..., t. Let Yt+1,..., Yk be the other divisors with ei of type B_. We have
by (1) of section 3 and Proposition 2.4 that

thus
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Now exchange the role of Y and Y,. By symmetry we find

Solving (1) and (2) together, we get

and since qi - pi is always non-negative, this gives an effective cycle equivalent
to 0.

Now the embedding in Case (n = 1) of section 3 is clearly projective (see
Lemma 3.3 for a complete description).

If X is in Case (F) of section 3, that is, it is isomorphic to SL(2) x B B, then it is
projective. To see this, first note that since B is a smooth (algebraic) surface, it is
projective. Now there are two ways to proceed. Firstly, we use that B can be
embedded equivariantly in P", where B acts linearly on P". Now G x B P" is a
projective bundle over P’. By a theorem of Kodaira, any bundle with fibre
isomorphic to projective space over a projective variety is projective (see [Hir],
Theorem 18.3.1 and [Kod], Theorem 8). A second method goes as follows: We
use that SL(2) X B B is a locally trivial equivariant fibre bundle, whose fibre is a
projective variety and whose base space is homogeneous. Therefore we can
apply the Moisezon Criterion: Given G a connected algebraic group, if a G-
variety X contains an open quasi-projective set which intersects all orbits in X,
then X is quasi-projective (see [Moi], p. 43).
We are left with X of Case (P) of section 3, that is that all rays end in either

orbits of type B + or of type Aa and n  2. In [MJ3], a list of all minimal smooth
SL(2)-embeddings is given. (An embedding is minimal if it is not obtained by
blowing up another smooth embedding.) One finds that any embedding in this
case is obtained by blowing up one of the embeddings with diagram in Figure 4.

Fig. 4. The diagrams of minimal models where all the rays end in orbits of types B + or A03B1.
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Thus we need only show that those in the figure are projective. For this we will
find an ample divisor. For the embedding with the diagram in Figure 4a, one can
easily show using Corollary 6.3 that Yl + Y2 is ample. For Figure 4b, the ample
divisor we find is Yl + (q + 1) Y2. In order to show how to use the results of the
previous sections, we give the details for the case of the diagram in Figure 4b
(this is the first example from section 4). Let Yl have valuation v(D, 0), Y2 have
valuation v(D, -1/q) and B be the Borel subgroup with "special ray" D. Then by
the relation (1) of section 3, we have v - Y2 = 0; thus V2 = vy2. Now vy2 = f2,
and by Proposition 2.4, v2 = el. We know that the cone NE(X) is generated by
el = f2 and f 1. We have that the intersection

(Yl + (q + 1)y2)e1 = Ylf2 + (q + 1)y2e1 = 1 &#x3E; 0.

As for the intersection with f l, we have (y1 + (q + 1)y2)f1 = Ylfl + q + 1.
Now y1f1 = Yl(dl - el) = Yye2 - f2) = Yl(d2 - (q - 1)f2 - f2) = -q. Thus

(Yl + (q + 1)Y2)fi = 1 &#x3E; 0. For Figure 4a, the reasoning is similar, but a bit
easier. D

REMARKS. (1) Those minimal embeddings of the form SL(2) XBS can be
described further: we have that S is a minimal embedding of B, and they are
classified in [MJ2]. Thus we have that an embedding of this form is of the type
SL(2)  BFn, n ~ 1, or SL(2) BP2. The diagrams of these types can be
determined using the action of B on S (see [MJ1] for a complete list).

(2) One can in fact show that each embedding of Figure 4 is the total space of
an equivariant P 1-bundle over P2, where P2 = P(Ro Q Ri) and Ri is the (i + 1)-
dimensional irreducible representation of SL(2). In fact, the one with the

diagram of Figure 4a is isomorphic to the flag variety SL(3)/{a Borel subgroup.
Thus one can use the same argument as when X is fibred over SL(2)/B to show
that it is projective.

(3) For those with more than one type B_ orbits, there are several other ways
to show that they are not projective. One way is by using the action of certain
maximal torus and showing that the Bialynicki-Birula decomposition is not
filtrable, because the variety contains a "cycle" using this torus (see [BB] and
[Jur2] for a reference of these terms).

PROPOSITION 6.5. Let X be a smooth projective SL(2)-embedding. Then

(i) Stable curves of type B_ are always bad extremal;
(ii) Stable curves of type B + always have negative intersection with the canonical

divisor, but they are extremal if and only if either r = -1 and n = 1 or r = 0
and n = 2.

Proof. (i) First we will show that a type B_ orbit ei is extremal. Choose a
Borel subgroup B’ whose closure contains the orbit ei and at most one other
orbit; this second orbit should be of type B + or A 1 (to see that this is possible see
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the description of the different types in section 1). We denote the class of B’ by w.
1 claim that the intersection ei w is strictly negative, and the intersection of w with
any other 1-dimensional orbit is nonnegative. Once this is proven, suppose we
have aei = 03A3bj03B3j, where a and the bj’s are positive numbers and the y/s are
irreducible curves. Since X is projective, we can assume that none of the y/s are
equal to ei. Now one of the y/s, say yi has a strictly negative intersection with w
and therefore it is in B’. But this is also true for sB’ for all s ~ SL(2); for
s E SL(2)BB’ we have that B n sB is a union of 1-dimensional orbits, so 03B31 is an

orbit, and thus y 1 = ei ; this gives a contradiction.
It remains to prove the claim. For the first part, note that since B’ contains ei,

its "special ray" is not the one containing ei ; Thus w - qiyi + ... = 0, that is,
eiw = qieiyi. If B is chosen such that its "special ray" does contain ei (that is B
does not contain ei), then v + Yi + ... = o, and eiyi = -eiv  0, so eiw  0. Now
let y be another 1-dimensional orbit; if it is not in the closure of B’, it clearly has a
non-negative intersection with w. Now if 03B3 = ej is of type B + and in the closure
of B’, then we know that w + pjyj + ... = 0, thus wej = -pjyjej. If ri = 0, then
Pj = 0, and the claim is true. If rj = -1, the pj = - 1 and y. e. = vej = 1, where v
is the class of the closure of the Borel subgroup B which does not contain ej. On
the other hand, if y = dj is of type A 1, Then we have w - qjyj + ... = o, thus
wdj = qjyjdj. Also, for v as before, we have v - Yj + ... = o, since pj = -1. Thus
yjdj = vdj = 1.
To check it is bad extremal we must check the intersection with the canonical

divisor Kx whose class is (1 - qi - 1)yi + .... We have KXei = -qiyiei &#x3E; 0 by
the calculations above.

(ii) If n = 1, the result is clear, because we have KX = -3Y1, and

ylel = vel = 1.

For all n one can easily check that the intersection with the canonical divisor
is always negative in this case. It remains to check when such a curve is extremal.

If n is not 1, then an orbit of type B + with r = -1 is not extremal, because it is
equivalent to dk for some k with k = 1,..., n.

If n &#x3E; 2 then we will show that ei is not extremal, where ei is an orbit of type
B + with ri = 0. If X has no orbit of type B_, we choose B such that B contains ei
(that is, the "special ray" of B contains ei), and we denote its class by v. Then
v2 = ei by Proposition 2.4. By the relation (1) of section 3, we have

v = -03A3pkyk + 03A3qjyj

where all the pk’s that appear in the equation are negative. By multiplying the
equation by v, we see that ei is a positive sum with n - 1 terms. Thus if ei were
extremal, then ei and all these terms would be in the same ray of NE(X). We will
show that this is impossible. Denote ei by e,, and by Y2 and Y3 the classes of two
intersecting stable divisors distinct from y1 (where Yl contains el). Then we have
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Fig. 5. The possibilities with n = 2 and a type B + orbit with r = 0.

ely3 = 0 and vy2y3 &#x3E; 0; thus el and VY2 are not in the same ray.
If X does contain an orbit ek of type B_, we still choose B such that its closure

contains ei (even though this is not the choice of B in section 3), and this time, by
Proposition 2.4, we have v2 = ei + (qk - 1)ek and vyk = fk + ek. Again the
equation above multiplied by v shows that ei is not extremal.
Now we check all the possibilities for n = 2 with an orbit of type B + with

r = 0. There are three cases shown in Fig. 5. Since n = 2, we know that NE(X) is
generated by two elements among those of Proposition 6.2. One checks easily
that in the three cases of Figure 5, there are two equivalence classes of curves
among the curves of Proposition 6.2, thus they are all extremal. For example, in
the first case, we have Yl with valuation v(Dj, 0) and Y2 with valuation v(D2, 0)
and v is the class of the closure of the Borel subgroup containing e1. Then by
equation (1) of section 3, we have v = y2; thus el = V2 = vy2 = f2. Similarly we
have e2 = fl. The classes of curves from Proposition 6.2 are el = f2 and e2 = fi.
The other two cases are treated similarly (see also Example 1 in section 7). D

REMARK. Note that there is a "contraction" of an orbit of type B_, namely we
send the orbit to a fixed point (see [MJ1] or [MJ3]). However the image has a
"bad" singularity, and this does not count as a contraction in Mori’s sense. In
fact by [Nak] we know that the image of a Mori contraction is always smooth in
the case of smooth SL(2)-embeddings. In general, from trying out many
examples, it seems to me that a curve C of a smooth projective embedding X is
extremal if and only if the following is true: there exists an equivariant morphism
f X ~ X where X is a normal projective SL(2)-variety, such that a curve C’ of X
is contracted to a point by f if and only if C’ and C are in the same ray in NE(X).
Then the image is smooth if and only if the curve is good extremal. As of now 1
have no proof of this.
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7. Some examples of the cône of effective one-cycles

In this section we will calculate the cone of effective one-cycles with their
extremal rays for three examples. In order to do this, we first determine the
Chow rings.

EXAMPLE 1 Diagram of Figure 6a:
Here we have n = 2, Yl with valuation v(D 1, 1) and Y, with valuation v(D2, 0).

There are two one-dimensional orbits: one of type A2 and one of type B + . From
Lemma 1.1, we see that we are in Case (F) of section 3, that is X is isomorphic to
SL(2) x B B, where B is chosen to have "special ray" D 1. Remember that v is the
class of the closure of B. We have that the Chow ring AQ(X) is isomorphic to
Q[v, yl, Y2], where v, Yl and Y2 satisfy the relations

all homogeneous polynomials of degree 4 = 0.

Now let us check the cone NE(X). We know from Proposition 6.2 that the
generators are among c1 = VY1, Ci = Y1Y2 - vy1, f2 = VY2 and e2 = Y1Y2 - VY2
(see Proposition 2.3). Thus

f2 = v(v + y1) = vy1 = Ci

and

Now we know that NE(X) is generated by two elements, because it is a cone
which over the real numbers generates A (X) (D R, which is of dimension n = 2.
Thus all the curves above are extremal.

We check the intersections with Kx. We know already from Proposition 6.5
that e2 = c’1 is good extremal. Now KX = -y1 - 2Y2. Thus

Thus f2 = c 1 is also good extremal.
In fact one can show (using the method mentioned in the Remark (1) after

Proposition 6.4) that this embedding is isomorphic to
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Fig. 6. Examples for section 7.

The contractions corresponding to the two good extremal rays are the

projections to P’ and P’.

EXAMPLE 2 Diagram of Figure 6b:
We have n = 2 and Yl with valuation v(Di , 1/2) and Y2 with valuation v(D2, 1).

The two one-dimensional orbits are of type A2 and B_. We choose B with
"special ray" D 1, and as before X is isomorphic to SL(2) x B B. The Chow ring is
given by Q[v, yl, Y2] where the generators satisfy the relations

all homogeneous polynomials of degree 4 = 0.

The generators of NE(X) are among fl = vyl, el = dl - 3f, = ylY2 - 3vYl,
C2 = vy2, and C2 = YlY2 - vY2 (see Propositions 2.3 and 2.5(ii)). We already
know from Proposition 6.5 that e 1 is bad extremal. For the others we have

and

Again the cone is generated by exactly two classes, thus we have that c2 is not
extremal and c2 = fl and el are extremal.
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The canonical divisor is given by - 2y 1 - Y2. Thus

So this curve is good extremal.
One can show that this embedding is isomorphic to SL(2) x B P2 where B acts

on P2 by:

The one good extremal ray corresponds to the contraction to SL(2)/B.

EXAMPLE 3 Diagram of Figure 6c:
In this case we have n = 5. The valuations correspond to the stable divisors as

follows:

There are 3 orbits of type AB, 1 of type B_, and 1 of type A2. The Chow ring is
given by Q[v, Yl, Y2, Y3, Y4, y5] where the generators satisfy the following
relations:

all homogeneous polynomials of degree 4 = 0

As for the cone NE(X), we know it is generated by e,, fi, f2, f3, f4, cs and c5.
Also since n = 5, it needs at least 5 generators. We will find two of these curves
which are not extremal, and then we can conclude that all the rest are extremal.
First of all from (1) and (7) we have fl = VY1 = VY3 + 2vy4 + vy5 = f3 + 2f4 + cs
is not extremal (if it were, then we would have that f1,f3,f4 and c5 would all be in
the same ray, and we could not have five distinct rays generating NE(X)). One
can also see that c5 = f2 + 2f3 + 3f4 + 2c5 + el, and thus it is not extremal.
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Thus the extremal curves are given by el, f2, f3, f4, and c’.
We already know from Proposition 6.5 that el is bad extremal. One can

calculate the other intersections with Kx = -2y1 - 2Y2 - 2y3 - 2y4 - Y5 to
see that the only good extremal curve is f4. Its contraction corresponds to the
blow down of the divisor Y4 in X to another smooth embedding (see [MJ3]).

In Propositions 6.1 and 6.2 of [MJ3] we find all the equivariant morphisms
between SL(2)-embeddings, and we show that among smooth varieties, they
always correspond to a composition of blowing downs. In particular, one sees
that one can blow down the divisor YS to obtain a smooth embedding with
another orbit of type B-. However, this new embedding is not projective by
Proposition 6.4, thus this is not a contraction in the sense of Mori. The resulting
variety is very similar to the non-projective PGL(2)-embedding described in
[LMJV] which can be quotiented to obtain an analytic variety which is not a
scheme (Artin-Moisezon space).

8. An application

In this section we will use the calculation of the Chow rings from section 3 to
resolve a special case of a problem posed by V. L. Popov.

Let G be a connected algebraic reductive group, V a finite dimensional
rational G-module and v an element of E Suppose that the orbit Gv is closed and
that the isotropy group G v is finite.

PROBLEM (V. L. Popov) Calculate Gv n A ~···Ad| = deg(Gv) where the Ai’s
are affine hyperplanes in general position in V and d is the dimension of G.

This problem was resolved by Th. Vust for the case G = SL(2) and V = Rn is
the irreducible SL(2)-module of dimension n + 1. We present here his solution.
(For the case where all roots of v are simple, the degree of Gv can also be
calculated by a different method, which is independent of the results of this
paper. This will be discussed at the end of this section.)

Consider the inclusion V c P(V ~ 1) and the closure Gv of Gv in P(V~ 1).
Since Gv is of dimension three, if Hl, H2 and H3 are hyperplanes in P(V ~ 1) in

general position, then Hl n H2 n H3 does not intersect Gv at infinity, and the
divisors Hi n Gv of Gv intersect transversely. Thus the number we want to
calculate is Gv n H ~ H2 n H3| = [Gv n H1]3 in the Chow ring of Gv.
The variety Gv is not smooth and is not necessarily an embedding of SL(2).

However, we can find a smooth complete SL(2)-embedding which dominates it.
Consider the rational map
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where M2(C) is the set of two-by-two matrices. This restricts to a rational map

where X-1 is the smooth complete SL(2)-embedding in which the complement
to the open orbit is irreducible (the embedding from Lemma 3.3). Now
v = vn11···vnpp where v1, ..., vp are distinct linear forms in two variables and
03A3pi=1 ni = n. We know that n - 2ni  0 for i = 1,..., p since the orbit of v is
closed. The rational map 9 is undefined at exactly p orbits: they are where t = 0
and svi = 0, i = 1,..., p. Denote by Di the B-stable divisor of SL(2) such that the
closure of Di contains the orbit {(s : t) ~ X-1|t = 0 and sv, = 01. (Here B is the
arbitrary Borel subgroup used for the classification of the SL(2)-embeddings
from section 1.)
Now we resolve the indeterminacy of ç. First we blow up the p orbits of X-1

where 9 is not defined to obtain a new embedding X p. From section 6 of [MJ3]
we can find the diagram of X’p. It has stable irreducible divisors with valuations
v( , -1) and v(Di, 0) i = 1,..., p. The rational map ç induces a rational map
from X’p to Gv. By studying the local coordinates of the blow-up, it can be seen
that this map is still not regular. We blow up p more orbits to obtain a variety
Xp whose irreducible stable divisors have the following valuations:

(see Figure 7). The induced rational map ~p:Xp ~ Gv is in fact regular.
Moreover, using the direct calculations of the local coordinates of the blow-ups,
one can show that the divisor

Fig. 7. Diagram for section 8.
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is in the linear system induced by ~p (i.e. A is the pullback of the hyperplane at

infinity in Gv). Now since gp is proper we see that the number we are looking for
is simply

where Gv is the isotropy group of v. Using the results from section 3, we can
calculate that in A3(Xp) ~ Z[·] ~ Z we have that

and all the other monomials of degree three are 0. Thus one can calculate that

Now suppose that all roots of v are simple (i.e. ni = 1 for all i and p = n). Then

Also, if we assume v is in general position (i.e. the isotropy group of v is as small
as possible), then the order of G, is

Therefore we have

1 where the Ai’s are hyperplanes in Rn in general position.
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REMARK. One could also calculate the Chow ring of Xp directly using the
behavior of the Chow ring under blow ups.

If all roots of v are simple, then the degree of Gv can also be deduced from a
calculation of Enriques and Fano [E-F]. They find the degree of the closure X(v)
of G[v] in the projective space P(Rn) to be 2n(n - 1)(n - 2)/|G[v]|, where G[v] is the
isotropy group of the line [v]. A proof of their result can be found in [M-U],
Proposition 1.10, but this presentation is incomplete. They find the intersection
of G[v] with three specific hyperplanes, but they do not show that this

intersection is transversal, i.e. that the hyperplanes are in general position. This
missing step can be proven by studying the tangent space of G[v] at [v] and
showing it is complementary to the intersection of the three hyperplanes. To
obtain the degree of Gv c Rn, consider the finite morphism f : Gv - X(v), where
Gv is the closure of Gv in P(Rn 01), and the map is given by projection away
from the origin. It is of degree d = |Gv/G[v]|. Note that given a hyperplane section
D in X(v), the pullback f *D is a hyperplane section of Gv. (In other words, one
can find a hyperplane in Rn which goes through the origin and intersects Gv
transversely. This can either be checked directly, or, using the fact that the map
P(Rn G 1) - {origin} ~ P(Rn) is flat, it is a consequence of the pull-back formula
for flat morphisms (see [Ful], p. 34).) Thus deg(Gv) = [f*D]3, and

deg(X(v)) = [D]3. By the projection formula ([Ful], p. 34), we find

deg(Gv) = d. deg(X(v)).
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