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Twistor spaces over the connected sum of 3 projective planes
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Abstract. We consider the map defined by the half-anticanonical linear system on a simply
connected compact twistor space Z under the hypothesis that the natural self-dual conformal
structure on the space X of twistor lines of Z contains a metric with positive scalar curvature and
that X has signature 3. By well-known results of M. Freedman, X has to be homeomorphic to a
connected sum of 3 complex projective planes. Recently, S.K. Donaldson and R. Friedman showed
the existence of such twistor spaces in a more general context. Our result leads to a classification of
all complex compact 3-folds that can arise as such twistor spaces.
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Introduction

Twistor spaces arise naturally in 4-dimensional conformal geometry through
the attempt to introduce a complex structure compatible with the given
conformal structure. Although neither the existence nor uniqueness of such a
structure is evident, like in the analogous 2-dimensional case, this attempt led to
the consideration of the collection of all of these complex structures in the
tangent spaces to the 4-manifold M (inducing a fixed orientation). One obtains a
manifold Z which is fibred over M by Riemann spheres P1(C) and which has a
natural almost complex structure inducing the almost complex structure on the
fibres underlying the natural complex structure of Riemann spheres. This point
of view appeared already in a paper of Hirzebruch and Hopf [HH] in 1958, of
course not under the name of a twistor space, which was coined much later in a

completely different context. In the context of Riemannian geometry the twistor
construction was first developed in detail by Atiyah, Hitchin and Singer [AHS].
There are only two compact twistor spaces that can have Kâhler structures
([Hit2], [FK]) both are actually algebraic varieties, namely the projective space
and the flag variety of the projective plane. Throughout the proof of this result,
two more candidates for twistor spaces emerged, the intersection of 2 quadrics in
P5 and double solids with branch locus of degree 4. However, for both of them
the value of their Euler number is incompatible with their being a twistor space.
Poon showed in his thesis (1985), among other things, that there are small

(l)Part of this work was done while the second author was a member of the Max-Planck Institut für

Mathematik, Bonn, during the academic year 1987/88. He wants to thank this institute for the
hospitality and excellent working conditions.
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resolutions of certain singular intersections of 2 quadrics in P5 which are twistor
spaces (and therefore non-Kâhlerian algebraic varieties).

It turned out, from the work of Poon and Hitchin [Hit2], that in addition to

self-duality the existence of a Riemannian metric of positive scalar curvature in
the given conformal class is necessary for a twistor space to be algebraic (or a
Moishezon space) [Poon3].
The reason why positive scalar curvature plays a crucial role for such a kind

of questions is the famous vanishing theorem for instanton bundles, proved by
several authors, see [Hitl] and the forthcoming paper [K3] for details. It allows
to derive certain vanishing theorems which are similar to the Kâhler case and
could be proved for this case by Kodaira’s vanishing theorem and its various
generalizations. Positivity of scalar curvature in our context means precisely the
following: by a famous result of R. Schoen [Sch] each class of conformally
equivalent Riemannian metrics contains metrics with constant scalar curvature
(see [Sch]).

If we can find, on a self-dual space, such a metric with positive scalar

curvature and compatible with the given conformal structure, we call the space a
self-dual space with positive scalar curvature.

If a compact oriented 4-manifold M has a self-dual structure with positive
scalar curvature the intersection form on M has to be positive definite [LeBrun].
If M is also simply connected it is therefore homeomorphic to a connected sum
of projective planes or to the 4-sphere. The existence of such structures for
#n P2(C) (for n  2) was shown for n = 2 in [Poon1] and for arbitrary n by
[Don-Free] and [Floer]. After reading Poon’s thesis [Poonl] and from the
results of [FK] we were convinced that double solids with quartic (singular)
ramification locus should also be modifications of twistor spaces.

It is not difficult to check that the number of double points of the ramification
locus should be exactly 13 in order to get small resolutions which have the
correct Euler number to be a twistor space. Thanks to a hint of H. Knôrrer we

first found in [Jes] descriptions of such quartics and the geometry of the
corresponding double solids was worked out by the first author (published
1989).
The referee of an earlier version of the present paper brought to our attention

the preprint [Poon2]. There is an essential overlap of our paper with Poon’s
preprint concerning the case of twistor spaces as double solids. However Poon
does not investigate carefully enough the half-anticanonical linear system and
claims that the base locus is empty. This is not true in general. The second
author has analyzed carefully the situation in the presence of base points, it leads
to a family of twistor spaces which are modifications of conic bundles over a
quadric surface and it yields an alternative method to those of LeBrun for an
explicit description of self-dual structures on connected sums of projective
planes.
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A preliminary report appeared in [K4]. A second objection against Poon’s
preprint is the problem of identifying the twistor lines, which is incomplete. We
also could not overcome this difficulty, the problem is that there are too many
candidates for possible twistor lines and to determine their normal bundle. Thus
we only have an indirect, deformation theoretic argument that generically we get
twistor spaces. In spite of these objections we have to admit that methods of
Poon’s thesis were of significant influence and encouragement for our

investigations.
The content of this paper is roughly the following:
In Section 1 we summarize known facts about twistor spaces that are used in

this paper and study the case of surface of degree 1 with respect to the twistor

figration.
In Section 2 we single out certain distinguished line bundles of degree 1 which

could have sections vanishing along a surface of degree 1.
Using this we study surfaces of degree 1 on a twistor space in case of signature

2 in detail, which is the content of Sections 3 and 4.
This leads to two distinct cases according to the existence or non-existence of

base points of the 1/2-anticanonical linear system of Z. In the case of the
existence of base points, the twistor space is a modification of a certain conic
bundle over the quadric [P1  P1, which is described precisely by Theorem 3 of
Section 3. The case of the non-existence of base points is studied in Section 4. It
leads to a 6-parameter family of double solids which are described in detail by
Theorem 4. They are studied further in detail in the paper [Kr].
We work mainly with techniques of algebraic geometry. The final goal of this

philosophy should be an explicit description of the family of self-dual conformal
structures on the connected sum of projective planes, starting with the algebraic-
geometric description of the twistor space. We add some remarks about this
perspective in Section 5.

1. Twistor spaces

We give a summary of main results about twistor spaces, for details we refer to

[AHS], [Frie], [K1], [Hit2] and [Poon].
In this paper M will always be a compact oriented 4-manifold with a

conformal self-dual structure, i.e. the component W - of the Weyl tensor of the
conformal structure vanishes.

Fixing a Spin’-structure with half-spinor bundles F± (which always exists on
oriented compact 4-manifolds) we get:

(i) a P1-bundle P(F-) = Z M which is an almost complex manifold.

The condition W- = 0 is equivalent to the integrability of the almost complex
structure. The twistor fibres F=03C0-1(x) ~ P1 are complex submanifolds.



28

REMARKS. (1) Z does not depend on the choice of the Spin‘-structure on M
since F± are determined up to a twist with a complex line bundle.

(2) Z has a distinguished antiholomorphic involution -c such that Z has no
real points and the twistor lines are invariant under r.

(3) The twistor fibres have the normal bundle NF/Z ~ OF(1)~2.

(ii) A unique holomorphic line bundle L on Z which is diffeomorphic to
T(Z/M). It is a square root of the anticanonical bundle Ki 1.

(iii) A holomorphic bundle H which is of degree 1 on the twistor fibres and

which is determined by the Spinc-structure.

We have the following

THEOREM 1. If M has positive scalar curvature and E is an instanton bundle on
Z, then

for m  2.

A proof can be found in [Hitl] if H arises from a Spin-structure on M, in
[K3] for the general case.

THEOREM 2. If h = c1(T(Z/M)) = c1(L) and [F] EH4(Z,7L) is the cohomology
class of a twistor fibre, then

(where we identify H6(Z, Z) with Z via the orientation)

and the Chern numbers are

Proof See [Hit2] or [Kl]. Here, e(M) is the Euler number of M and sgn(M)
the signature.

COROLLARY 1. Under the assumptions of Theorem 1 we have

Proof. This follows by the Serre duality because of Kz éé L-~2.
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COROLLARY 2. Under the assumption of Theorem 1 and if e(M) - sgn(M) = 2,
we also have H1(Z, (9z) = 0.

This follows because of

by Theorem 2.
For the following lemma we refer to [Hit2] and [Poon].

LEMMA 1. Let N be a holomorphic line bundle on Z, k = deg(N (D (9F)

LEMMA 2 ([Poon]). Let N be a holomorphic line bundle on Z, deg(N (8) OF) = 2
and N real, i.e.

Finally we want to discuss surfaces of degree 1, i.e. compact complex surfaces
S c Z such that (S· F) = 1 for twistor lines. We know that they are smooth
connected and contain at most one twistor line (Lemma 1, (iii)).

LEMMA 3. Let S be a surface of degree 1 on Z.

(i) If S contains no twistor line, then
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(ii) If S contains a twistor line, then

Proof. Follows from the fact that the twistor fibration induces a map
n : S - M which is diffeomorphic in the case (i) and diffeomorphic on SBF in the
case (ii) and contracts F to a point.

Moreover, 03C0 changes the orientation. Now the formulas follow from the
Noether formula (K2S) + e(S) = 12~(OS), the signatur theorem

and in case (ii) by

COROLLARY. If S is chosen as above and if M has positive scalar curvature and

H’(Z, (9,) = 0 then S is an algebraic surface with Pg = q = 0 (q = h’«9s), pg = h2(OS)).
Furthermore b1(M) = 0. In the case (i) b2 (M) =1 and in the case (ii) b2 (M) = 0 and
the linear system |F|S defines a birational morphism S ~ P2.

Proof. By the vanishing theorem and Serre duality

Aiso by Serre duality H3(Z, (9z) = H3(Z, OZ(-S)) = 0. Therefore, H’(S, (9s) =
H2(S, OS)=0 by the exact sequence 0 ~ OZ(-S) ~ OZ ~ OS ~ 0. In particular
bl(S) = 2q = 0 and therefore b1(M) = 0. The linear system 1 F 1 s defines a birational

morphism because of (F2)S=1 and |F|S·F =  (since
hl( (9s) = 0).

2. Linear bundles of degree 1

In this section we assume that M is a compact self-dual simply connected 4-
manifold with positive scalar curvature. By Z  M we denote the twistor space
of M. Then we know that H2(M, 7L) is a positive definite unimodular lattice and
Hq(Z, (9z) = 0 for q &#x3E; 0. Therefore Pic(Z) ~ H2(Z, 7L) and H2(M, 7L) is contained
in this group as a primitive sublattice. Then c1(03C0* TM) = c1(T(Z/M)) = 1 2c1(Z)
and T(Z/M) has a unique holomorphic structure such that T(Z/M)~2 is the
anticanonical class. Furthermore Wu’s formula implies that for any orthogonal
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basis (çv) of H2(M, Z) (identified with its image in H2(Z, Z)),

Therefore, each choice of an orthogonal basis 03BE of H2(M,7L) determines a
distinguished class

and

In this way we get 2b distinguished cohomology classes w(ç) on Z, where
b = rk H2(M, Z). By the results of Section 1 we have

and, using the Riemann-Roch formula and the vanishing theorem we get

provided .

LEMMA 1

(i) If H is a line bundle on Z of degree 1 on the twistor lines, then ~(H)  0
unless c 1 (H) = w( ç).

(ii) If S c Z is a surface and (F. S) = 1 for twistor lines F, then

The surface S contains exactly one twistor line F,

and the linear system |F defines a birational morphism S ~ P2.
(iii) If H is a line bundle on Z, c1(H) = 03C9(03BE), then X(H) = 4 - b and |H1 i= QS for

b  3.

Proof. If (ç 1, ... , Çb) is an orthogonal basis of H2(M,7L) we write

03BE = 03BE1 + ... + 03BEb. This cohomology class determines the basis because of ç2 = b
and 2nd Stiefel-Whitney class = 03BE mod 2 (by Wu’s formula). Any other or-
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thogonal basis is of the form

and

By the Riemann-Roch formula

and

we get

If cl(H)=w(Ç)+I1, ~~H2(M, 7L) and ~ = ’Lvavçv, then

Therefore, ~(H)  0 unless c1(H) = 03C9(03B5103BE1 +... + Eb 03BEb).
Now assume that S c Z is a surface and (S·F) = 1 for twistor lines.

Further, assume [S] = 03C9(03BE) + ~, ~ = LvavC;v. From Section 1 we know that S is
smooth, irreducible, X(OS) = 1, H1(S, OS) = H2(s, (98) = 0, and because of

bl(M) + b2 (M) = 0 it contains exactly one twistor line F and F = S. S.
Furthermore,

Furthermore, from Section 1, corollary to Lemma 3 it follows that the linear
system IF 1. defines a birational morphism
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It remains to show that [S] = 03C9(03BE) for some 03BE. We fix 03BE and write

By the adjunction formula

hence

and, therefore, av = 0 or 1,

The assertion |H| ~Ø if b  3 and c1(H) = 03C9(03BE) follows because of x(H) &#x3E; 0 and

h2(H) = h1KZ~ H-l) = hl«Kz (8) H~4)~ H-~5) = 0

since Kz Q H~4 is an instanton bundle (Theorem 1).

3. The case b = 3

We keep the assumptions and notations of the previous section and assume
furthermore b = b2(M) = 3.

By 03BE we will always denote an integral cohomology class of H2(M, Z) with
(03BE2) = 3 on M. Each such class decomposes uniquely into ç = 03BE1 + 03BE2 + 03BE3, where
(03BE1, 03BE2, 03BE3) is an orthogonal basis of H2(M, Z). We have 8 such classes and
correspondingly 8 distinguished holomorphic line bundles H(03BE) characterized by
the property

where L denotes the uniquely determined holomorphic line bundle with
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c1(L) = cl(T(ZIM». If we fix one 03BE, then

is a basis of Pic(Z) = H2(Z, Z) and the relations in the cohomology ring on Z are

We note the following non-zero products

The linear systems IH(ç)1 are not empty and the surfaces S ~ |H(03BE)| are

smooth connected rational surfaces containing exactly 1 twistor line

F(S) = F(S) = S·S. The linear system IF(S)J on S defines a morphism a: S - P2
which is a composition of 3 blowing up. Therefore we have 3 exceptional
effective divisors 0393j(S) on S ( j = 1, 2, 3) which are contracted under 6 and satisfy

LEMMA 1

(i) The restriction map i*: Pic(Z) - Pic(S) induced by the embedding i: S -+ Z
is an isomorphism. The transfer map i* : Pic(S) ~ H4(Z, Z) is an isomorph-
ism. The divisors rj(S) represent the classes i*(03BEv), and the curve F(S)
represents the class i*(03C9 + 03BE).

(ii) If S’ E |H(03BE’)| and

then, for smooth curves CI c S n S’, the self-intersection numbers satisfy

(if rj(s) represents the class i*(03BEj)).

Proof Using (3), (4) we see that (i*(03C9 + 03BE), i*(03BE1), i*(03BE2), i*(Ç3)) is an orthogonal
basis of Pic(S) and using the adjunction formula for KS and (1), (3), (4) we see
(cl(Ks). i*(ç)) = -1, hence the classes i*(03BEj) are represented by the divisors rj(S)
(using i*(03BEj). F = 0). The proof of (5) follows from the projection formula and the
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standard exact sequence for normal bundles

and correspondingly for C c S’.

LEMMA 2. Let S be a surface of degree 1 then either dim |S| = 0 or dim |S|=1
and the base curve B of the pencil IS satisfies

(i) B is a ( - 2)-curve on S, B e S and (B. S) = 1,
(ii) B is a ( - 3)-curve on exactly three surfaces S1, S2, S3 ~ Z of degree 1,

dimlSjl = 0 and B ~ Sj = Ø,
(iii) dim ILI = 3.

Proof. Assume dim ISI  1 and choose 03BE = 03BE1 + 03BE2 + 03BE3 such that ISI = |H(03BE)|. If
S’ E ISI, S’ i= S and B = S - S’ then

(B F’(S))S = (S S’ ’ S ) = 1, (B rj(S))s = (W2 . ç) = 1.

The relation (B. S) = (S3) = - 2 implies B ~ S. If Sj ~ |H(03BE - 2ç)1 we have

(B. Sj) (B. S) + (B. ç) - 1

hence B c Si and (B2)sj = (B)S - (B·0393j(S))S = - 3 (by formula (5)).
Since for each surface T of degree 1 on Z the map T ~ P2 associated to the

linear system IF(T)I is a composition of 3-blowing up there cannot exist both, a
( - 3)-curve and a ( - 2)-curve B satisfying (B. F(T»)T= 1. Hence, dim |Sj| = 0 (and
therefore also dim |Sj| = 0) and S does not contain ( - 3)-curves. From

(B. F(Sj))Sj = 0 we infer

For a surface T of degree 1 we have T + T E ILI and by the adjunction formula

i.e.
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We also get an exact sequence

Because of hO(OZ(T)) - h1(OZ(T)) = 1 we infer (for T = Sj or dim 1 TI =0)

and consequently (for T = S)

dim |S| = 1.

LEMMA 3. If a surface of degree 1 on Z contains a ( - 3)-curve there exist also a
surface S c Z of degree 1 satisfying dim 1 SI = 1.

Proof. Choose ç’ = 03BE’1 + 03BE’2 + 03BE’3 such that S’ E IH(ç’)1 contains a ( - 3)-curve B. It
has to be of the form

(for suitable ordering of 03BE’1, 03BE’2, 03BE’3).
If S ~ IH(ç’ - 203BE’1)|, formula (4) yields (B·S) = - 2, hence B c S. By (5) we have

and by the projection formula and formula (4)

Thus,

and

COROLLARY 1. dim ILI = 3 and the base locus of the linear system ILI is empty
or the disjoint union B ~ B, where B is a smooth rational curve.

COROLLARY 2. If Bs|L|=B~B there exists a distinguished class
± 03BE = ± (ç 1 + Ç2 + Ç3) such that dim JH(± ç)1 = 1. If S, S’ E (H(ç)) then B = S. S’.
The isomorphism H(03BE) Q H(-03BE) ~ L induces an isomorphism
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Proof of Corollaries 1 and 2

If no surface S of degree 1 contains (- 3)-curves it follows dim ILI = 3 and
H’(Z, (9z(S» = 0 (by Lemma 2). Therefore |L|· S = IL 0 (9s which is base point
free. Since S + S~|L| it follows that ILI is base point free. If there exist (- 3)-
curves we apply Lemma 3 and then Lemma 2 and only the last assertion of
Corollary 2 remains to be checked. With notations from Lemma 2 consider the
exact sequence

where IB c (9z is the sheaf of ideals corresponding to B c Z. Tensoring with S
yields the exact sequence

and therefore

comparing dimensions we get equality and a surjection

COROLLARY 3. With the notations of Corollary 2

and for S E |H(03BE)| there holds

Proof Since dim |H(03BE)|· Si = dim IF(SJ) - 0393j(Sj)| = 1 and B is a fixed component
of |H(03BE)|· Sj, we obtain

since both sides represent the same element in Pic(Sj). In the same way one
proves
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and

The divisors S - Sj- B are effective divisors on S representing the cohomology
classes i*(03BEj), hence S·Sj-B=0393j(S). Because of

it follows

Fo is also a divisor on Sk and satisfies

hence

Now we can prove

THEOREM 3. Let Z be the twistor space of a 4-manifold M with positive scalar
curvature and signature 3 such that the linear system ILI has base points. Then
BslLI is a disjoint union of smooth rational curves B, B. If 6: Î ~ Z is the blowing
up of Z along B, fi and E = 03C3-1(B), E = 03C3-1(B), then the linear system
1 03C3*L( - E - £)1 defines a morphism
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equivariant with respect to the given antiholomorphic involution on Z and the
involution

The surfaces E and E are disjoint sections of n. Z is a small resolution of a conic
bundle with isolated singularities

which is defined by an equation

~ EHO(Q, (9Q(3, 3)), real with respect to the involution LQ. The sections E, É are
defined by zo = z1 = 0 and Zo = Z2 = 0. The antiholomorphic involution on 2 induces
the antiholomorphic involution on 20 given by

Proof. We determine + j as in Corollary 2 then |03C3*H(03BE)(- E)I, 1&#x26;* H( - 03BE)(- É)j
are base point free pencils on Z and define a morphism 03C0:~Q=P1 P1.
Together with the Segre-embedding Q c p3 this is the morphism defined by
|03C3*L(-E-E)|. There exists an antilinear isomorphism

such that div(03C8(03BB)) = div(03BB) holds for sections of H(03BE). This isomorphism is
unique up to a constant and induces the real structure TQ on P1  P1. If

S0~|H(03BE)|, then B intersects So in one point po transversally and

Ao = |H( - ç)l. So c IF(So)ls,, corresponds to the pencil of lines through Q(po) E p2
under the morphism u: So -+ p2. The strict transform So c Z of So is the

blowing up of So in the point po. Similarly, for S E JH(- ç)1 the strict transform
S ~ Z of S is the blowing up of S in the point B n S. The fibres of 03C0 are the curves
S0·S. If S moves, they sweep out a pencil Ao on So which is the strict transform
of the pencil Ao. In general, 6: S0 ~ p2 is the blowing up of 3 distinct colinear
points on a line in p2 and B is the strict transform of this line under a. There are
at most 6 surfaces So E |(H(03BE)|, where 2 or 3 of these centres are infinitely near
(Corollary 3). Namely, if S moves in |H(03BE)|, we obtain a pencil
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|H(03BE)|·Sj - B = 0393j(S) on Si which is |F(Sj) - 0393j(Sj)|. If the centres of 6: S ~ P2 are
infinitely near, there exist j ~ k and 0393j(S) c 0393k(S), i.e. rj(S) c Sj·Sk-B, hence
ri(S) = rj(Sk) by Corollary 2. Therefore the divisors Fi(S), i = 1, 2, 3, are ( -1)-
curves on S if Fj(S) :0 0393j(Sk) for each pair (j, k), j ~ k. Thus, if So E IH(ç)1 is

general in this sense, the pencil|H(- ç)l. So contains exactly three divisors, which
split into

as illustrated in the following picture.

The dual graph of these divisors on So (with selfintersection numbers on So
indicated) is

For the remaining at most 6 surfaces So we have one of the following degenerate
divisors:

The curve B = E n 90 respectively B = E n &#x26;0 intersects these curves as indicated
by the dotted edges. The line bundle M = (9z(E + E) on Z restricted to the fibres
of 03C0 has degree 2, is generated by its global sections and has trivial higher
cohomology. Therefore, if

we get a vector bundle of rank 3 on Q and a Q-morphism
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which maps the fibres of 03C0 onto conics, isomorphically except for the fibres with
3 or 4 components for which the (- 2)-curves are contracted. Therefore, the
image Zo c IP Q(tff) of Z is a conic bundle with isolated singularities and Z ~ Zo
is a small resolution. Now consider the commutative diagram

By standard arguments for blowing up we obtain

and the relatively tautological bundle of E = PB(N*B/Z) is

where Eo (resp. Bo) is a fibre of the projection E ~ B (respectively E ~ P1), hence

From the diagram (*) we infer

Thus,

which yields the following commutative diagram
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In the same way we get a corresponding diagram for B

We also obtain an exact sequence

and therefore, using (6), we infer an exact sequence

Choosing non-zero sections zo of E, z 1 of E(2,1), Z2 of E(1, 2) we can write

for a suitable choice of z1, z2.
The bundle Z0 ~PQ(&#x26;) =:P is defined by section 0 of a line bundle

UP(2) Q nÓ.K on P. By the adjunction formula

and since

we obtain

outside a set of codimension  2. On the other hand,
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consequently

If we change the splitting of 6 by

the equation has the form

This form ç defines a reduced curve A on Q, which is the discriminant of the
conic bundle. The map 0 - Q provides a bijection Zsing0 ~ Asing. The sections
E, E are defined by zo = z 1= 0 respectively zo = z2 = o.

REMARK. We shall discuss varieties obtained by this construction in the
forthcoming paper [K4].

4. Double solids

We continue to study the situation of Section 3 under the additional assumption
that the linear system ILI has no base points. It defines a morphism

of degree 2 that is real with respect to the standard real structure on P3 (because
of s*L rr L). For surfaces S c Z of degree 1 we know

and (S . L. L) = 1. Therefore, 0 maps S birationally onto a plane H(S) = H ~ P3
and because of S + S~|L| = |~-1(H)| we infer
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In particular, H is a real plane. Since (F(S). L) = 2, the twistor fibre F(S) is

mapped isomorphically onto a conic C(S) c H(S) which has no real points. The
map 0: S --+ H is a composition of 3 blowing up and since (F(S)2)S=1, the
following dual graphs of curves with negative self-intersections are possible:

(i) (only infinitely near centres)

(a dot denotes a smooth rational curve contracted under |F|, a small circle
indicates a smooth rational curve contracted under IL Q OS|, and a small
square denotes a smooth rational curve contracted under both, |F| and
IL OO (9sl),

(ii) (2 infinitely near centres)

(iii) (del Pezzo surfaces)

The surfaces S and S are always of the same type. If S e |H(03BE)|, an orthogonal
basis of exceptional divisor classes with respect to IL ~ OS| is represented by the
divisors

since

Since (F(S)· Dj(S)) = 1, the curves Dj(S), Dj(S) are both contracted under 0 to the
points P, P, which are the intersection of the real line H(S)· H(Sj) in p3 with the
conic C(S).

LEMMA 1. If Z  Z0  P’ is the Stein factorization of 0, then Zo is a normal
algebraic 3- fold with isolated singularities and Z  Z0 is a small resolution.

Proof. We have to show that 0 does not contract surfaces E c Z. This follows
because of
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LEMMA 2. The 4 planes Ho, H,, H2, H3 determined by the surfaces of degree 1
are the only planes H for which ~-1(H) splits.

Proof. ~-1(H) can only split into surfaces of degree 1.

LEMMA 3. Only the following combinations of types of surfaces of degree 1 are
possible

(and conjugate for Po,). We have

(b) 2 pairs {S0, So}, ( S i , S1} of type (ii) and 2 pairs {S2, S2}, {S3, S3} of type (iii).
1 n this case

(c) All pairs of type (iii) (del Pezzo surfaces). In this case all pairs

are distinct and

In each of the cases (a), (b), (c) the points Pjk’ Pjk are the only points on
Hou Hl u H2 u H3 where 0 is not finite and the indicated inclusions between
curves and surfaces cover all possible inclusions. The Ej, and Ej are irreducible
exceptional curves on some Si, contracted under IL Q (9sil.
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Proof We fix 03BE as usually such that So E IH(ç)1 is of type with smallest

occurring number. We choose , in a suitable ordering
and denote Dj = S0·Sj, 03C9 = c1(H(03BE)). If So is of type (i) the situation on this
surface is as follows:

The exceptional divisors on S are

Since E2 C S2, E3 C S2·S3 it follows that E2 et S2, E3  S2, E3  S3 and
consequently

Therefore E2 c S2. S3, but El  S2. S3 (since E1 ~ S,, but E, 9t SI - S2). The
exceptional divisors on S2 are then

and on S3

Hence, So, S1, So, Si are of type (i), S2, S3, S2, S3 of type (ii) and there are 2 points
P01, Poli on H0 ~ H1 ~ H2 ~ H3 ~ C(Sj) such that

These are the only points on H0 ~ H1 ~ H2 ~ H3 where 0 is not finite. The

assumption that So is of type (ii) leads to the following:

On S1 we have the exceptional divisors
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The cohomology class of S1· S2 is

and that Eo 1 is

hence

In a similar way one finds the exceptional divisors on S2

and on S3

Hence So, Si, 50, Si are of type (ii), 82, 83, 52, 53 of type (iii). There are 4 pairs of
conjugate points

such that

and these are the only points on H0 ~ H1 ~ H2 ~ H3 where 0 is not finite. The
remaining case that all surfaces are del Pezzo is obvious.

LEMMA 4. The ramification locus of 0 (or ~0) is a normal quartic surface B in
P3.

Proof. On the complement of the finite number of points on p3 where 0 is not
finite we get
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It follows that B is a quartic surface with only isolated singularities.

LEMMA 5. Pic(Z0) ~ H’(ZO, Z) ~ H2(Z, Z).
Proof. Pic(Zo) c Pic(Z) ~ H2(Z, 7L) follows from H’(Z, 03B1*E) = H’(ZO, E) for

line bundles E on Z°. Pic(Z0) ~ H’(ZO, Z) comes from the exponential sequence
on Zo and

LEMMA 6. For each singular point x ~ Zo let Ex c Z be the fibre over x, c(x) the
number of components of Ex and J1(x) the Milnor number of B at 0(x). Then the
dual graph of Ex is a tree of curves homeomorphic to smooth rational curves and

Proof. The exact sequence arising from the Cartan-Leray spectral sequence
for a

and

entails

Therefore, the dual graph of the curve Ex is a tree and each component is a curve
homeomorphic (under normalization) to P1. Thus e(Ex) =1 + c(x) and the
formula is a special case of [Kr] Theorem 4.6.

Now we use these results to determine the possible ramification loci. Recall
that B c p3 has the properties

(a) B has only finitely many singular points.
(b) B is defined by a real equation but BBBsing has no real points (since Z has

no real points).
(c) There are 4 distinguished real planes, H c p3. These are the only planes

for which ~-1(H) splits. Each of these planes cuts B along a smooth conic
without real point (the image of the twistor line).
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Let F c H0(OP3(4)) be a real equation of the quartic B which is non-negative
in the real points of H0(P3(1))*. The double covering Zo is defined by the
equation

as a subvariety of the weighted projective space P(1, l,1,1, 2). For each of the 4
distinguished planes H°, H1, H2, H3 there exists a unique positive definite real
quadratic form Qj c H0(Hj, (!)Hj(2)) such that

Then (Qi - Qj)(Qi + Qj) = 0 on Hi n Hj and Qi + Q; is positive definite on the line
Hi n Hj, hence

Therefore there exists a unique real quadratic form Q E HO(P3, OP3(2)) such that
Q = Qj on Hj. Then the form F - Q2 vanishes on HouH 1 uH2 uH3 and we can
choose real linear forms Lo,..., L3 defining Ho,..., H3 such that

The image of the twistor line on Sj under 0 is the conic Cj defined by

and for 0  j  k  3 we get 2 singular points of B, Cj n Ck = {Pjk, Pjk}.
According to Lemma 3 we have to distinguish the cases (a), (b), (c).

The points P01, P01 are (0 : 0 : + i:1). In each of these points we can use
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as local coordinates. Singularities of this type Z2 - xy(x + y)(ax + by) have the
Milnor number y = 9. Since the inverse image of each of these singularities under
çl splits into 3 components and 2 - (9 + 3) = 24, there must be precisely one more
singularity. This has to be an ordinary double point Po E B)(Ho w H1 ~ H 2 U H3),
Po = (1:03B1:0:0), where a is a real double root of the polynomial
Q0(1,x)2-x(x+1)L(1,x).

Case (b). Ho n H 1 n H2 is a line. Then we can choose coordinates such that

The singularities

The last 3 pairs are ordinary double points which give Milnor number 1. In P01,
Po we can use local coordinates

Thus, these are singularities of the type z2 - xy(x + y) = 0 which have the Milnor
number 4. The inverse image under 0 of Poi, Po splits into 2 components each,
and for the remaining 6 singularities it is irreducible. Since 2·(2 + 4) + 6·(1 + 1) =
24, there is again exactly one ordinary double point Po missing.

Case (c). Each 3 of the 4 hyperplanes are in general position. Then F has the
form

or

Here we get 12 ordinary double points defined by
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(respectively xj=x0+x1+x2=0, Q = 0 in the first case, for k = 3) and, again,
precisely one ordinary double point P0 ~ BB(H0 ~ H1 ~ H2 ~ H3) is missing.
Using geometric arguments one can derive a specific form of equation of the
quartic B [cf. [Ker] § 5]. However, here we present a shorter way to obtain these
equations.

If F = Q2 - LoLlL2L3 we define linear forms yo, Yl, Y2, Y3 E C[x0, x1, X2, X3] by

where Lo, Ll, L2, L3 normalized, such that

If we define a quadratic form R by

Now we choose (real) coordinates Z0,...,Z3 such that z0 = z1 = z2 = 0 in Po and

Z 3 = Y 3. By (2) we get yo = yl = y2 = 0 in Po, hence these yj (j  2) are linear forms
in Zo, z1, Z2- Since Po is an ordinary double point it follows that R has to be a
quadratic form in zo, zl, z2, non-degenerate and, therefore, positive definite
(since F takes only non-negative values on R4). Thus, we have an alternative
form of our equation (up to factor 4) by

The discriminant is

and since B has no real point except Po, also the quadratic forms R - y2j have to
be positive definite. If we use R to introduce a metric on tl = R3, this can be
expressed as follows: we write the linear form yj as (Vj, z) using the metric. Since
R(z) = (z, z), the condition R - y2j is positive definite is equivalent to

The condition that the 4 planes Hj are distinct can be expressed (using (2)) by the
conditions



52

The point Po corresponds to a smooth rational curve Eo which is invariant
under conjugation and which is homologically equivalent to zero (since it is

disjoint to each of the surfaces of degree 1). The vector space V corresponds to
the space of real sections of L that vanish on Eo. Summarizing, we have the

following result:

THEOREM 4. Let Z be the twistor space of a simply connected 4-manifold with
positive scalar curvature, of signature 3. If the 1/2-anticanonical linear system ILI
has no base point, it holds

(i) There exist exactly 8 surfaces of degree 1 and a unique smooth rational
curve Eo which is homologically equivalent to zero.

(ii) For each pair of conjugate surfaces of degree 1, {Sj, Sj}, choose a real
section Àj of L, normalized by 03BBi/03BBj = 1 on Eo, and define
Z3 = Âo + Âl + Â2 + Î3. Define Vc = Ker(H’(Z, L) ~ HO(Eo, (9Eo Q L)) and
let V c Vc be the subspace of real sections. Then V has a unique Euclidian
structure and there exist 3 vectors vo, v1, V2 ~ V, unique up to sign and
satisfying

such that the ramification locus of the map 0: Z -+ P(VC ~ Cz 3) is defined
by the equation

with quadratic respectively linear forms on Vc

(iii) The singular points on B are the point Po with ~-1(P0) = E0 and the
following points (where Eik denotes a smooth rational curve).
(a) If Vo, Vl, V2 are on a line through the origin of V and, say, vo :0 0 the

points P01, Po defined by

Then ~-1(P01) = EOl + E02 + E03

(b) If vo, Vl, V2 are not on a line through the origin but if v2 is on one of the 4
affine lines through i: vo, ± vl, say on the line through vo, vl. We have
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two singular points P01, P01 defined by

with ~-1(P01) = EOl + E12 and 6 singular points

with fibres 0 - ’(Pjk) = Eik,

REMARK. In [Kr] Lemma 5.5, the case where the linear forms Lo, L1, L2 fulfil a
relation (1- a - b)Lo ± aLl ± bL2 = 0 must be excluded, because then two of the
lines Li ± Li = 0 would coincide. This corresponds to our case (iii)(b) in Theorem
4. Furthermore in [Kr] Lemma 5.5, we only need to assume that two of the
linear forms Lo, Ll, L2 are linearly independent, but the third can be a multiple
of one of the other two forms. Then the quartic B contains a conjugate pair of
lines through the real singular point Po containing five of the thirteen nodes.

5. Concluding remarks

If we start with an Euclidean vector space V of dimension 3 and 3 vectors
satisfying the conditions in Theorem 4, (ii) we can construct a double covering
Zo of P(VC (8) Cz3) with a ramification locus defined as in Theorem 4, (ii). Then it
is easy to describe all small resolutions Z with a real structure without real

points for which condition (iii) of Theorem 4 is satisfied. It is very likely that the
resulting 3-folds are twistor spaces. This description is done in the paper [Kr].
There, it is also shown that the cohomology ring of these 3-folds Z is the same as
that for a twistor space. The problem to show that these are indeed twistor
spaces is to single out the family of twistor lines. There are too many candidates,
more precisely 8 pencils in each of the smooth real surfaces of the 1/2-
anticanonical linear system, which could serve as twistor lines. Finally, we want
to remark that in case Z is a twistor space it is easy to see directly that it is a
twistor space of a manifold M diffeomorphic to a connected sum of 3 projective
planes. One simply has to restrict the twistor fibration to one of the surfaces S of
degree 1. Since it contracts on S a smooth rational curve F with normal bundle
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OP1(1)~2 and since S is the blowing up of 3 points of P2, S is diffeomorphic to
P2 # 3(- P’) and, therefore, M is diffeomorphic to P2 # P2 # P2.
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